2017-11-11 11:57:57 +00:00
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Copyright (C) 2017, Tadas Baltrusaitis, all rights reserved.
|
|
|
|
|
//
|
|
|
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
|
|
|
//
|
|
|
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
|
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
|
|
|
//
|
|
|
|
|
// License can be found in OpenFace-license.txt
|
|
|
|
|
//
|
|
|
|
|
// * Any publications arising from the use of this software, including but
|
|
|
|
|
// not limited to academic journal and conference publications, technical
|
|
|
|
|
// reports and manuals, must cite at least one of the following works:
|
|
|
|
|
//
|
|
|
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
|
|
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
|
|
|
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
|
|
|
//
|
|
|
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
|
|
|
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
|
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
|
|
|
//
|
|
|
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
|
|
|
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
|
|
|
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
|
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
|
|
|
//
|
|
|
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
|
|
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
|
|
|
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
|
|
|
//
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
#include "Visualizer.h"
|
|
|
|
|
#include "VisualizationUtils.h"
|
2017-11-12 10:55:47 +00:00
|
|
|
|
#include "RotationHelpers.h"
|
2017-11-11 11:57:57 +00:00
|
|
|
|
|
2017-11-11 21:13:29 +00:00
|
|
|
|
// For drawing on images
|
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
|
|
2017-11-11 11:57:57 +00:00
|
|
|
|
using namespace Utilities;
|
|
|
|
|
|
2017-11-11 21:13:29 +00:00
|
|
|
|
// For subpixel accuracy drawing
|
|
|
|
|
const int draw_shiftbits = 4;
|
|
|
|
|
const int draw_multiplier = 1 << 4;
|
|
|
|
|
|
2017-11-11 11:57:57 +00:00
|
|
|
|
Visualizer::Visualizer(std::vector<std::string> arguments)
|
|
|
|
|
{
|
|
|
|
|
// By default not visualizing anything
|
|
|
|
|
this->vis_track = false;
|
|
|
|
|
this->vis_hog = false;
|
|
|
|
|
this->vis_align = false;
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
|
|
|
{
|
|
|
|
|
if (arguments[i].compare("-verbose") == 0)
|
|
|
|
|
{
|
|
|
|
|
vis_track = true;
|
|
|
|
|
vis_align = true;
|
|
|
|
|
vis_hog = true;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-vis-align") == 0)
|
|
|
|
|
{
|
|
|
|
|
vis_align = true;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-vis-hog") == 0)
|
|
|
|
|
{
|
|
|
|
|
vis_hog = true;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-vis-track") == 0)
|
|
|
|
|
{
|
|
|
|
|
vis_track = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Visualizer::Visualizer(bool vis_track, bool vis_hog, bool vis_align)
|
|
|
|
|
{
|
|
|
|
|
this->vis_track = vis_track;
|
|
|
|
|
this->vis_hog = vis_hog;
|
|
|
|
|
this->vis_align = vis_align;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Visualizer::SetImage(const cv::Mat& canvas, float fx, float fy, float cx, float cy)
|
|
|
|
|
{
|
|
|
|
|
captured_image = canvas.clone();
|
|
|
|
|
this->fx = fx;
|
|
|
|
|
this->fy = fy;
|
|
|
|
|
this->cx = cx;
|
|
|
|
|
this->cy = cy;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void Visualizer::SetObservationFaceAlign(const cv::Mat& aligned_face)
|
|
|
|
|
{
|
|
|
|
|
this->aligned_face_image = aligned_face;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Visualizer::SetObservationHOG(const cv::Mat_<double>& hog_descriptor, int num_cols, int num_rows)
|
|
|
|
|
{
|
2017-11-12 11:24:25 +00:00
|
|
|
|
if(vis_hog)
|
|
|
|
|
{
|
|
|
|
|
Visualise_FHOG(hog_descriptor, num_rows, num_cols, this->hog_image);
|
|
|
|
|
}
|
2017-11-11 11:57:57 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void Visualizer::SetObservationLandmarks(const cv::Mat_<double>& landmarks_2D, double confidence, bool success, const cv::Mat_<int>& visibilities)
|
|
|
|
|
{
|
2017-11-11 21:13:29 +00:00
|
|
|
|
|
2017-11-12 21:40:30 +00:00
|
|
|
|
if(confidence > visualisation_boundary)
|
2017-11-11 21:13:29 +00:00
|
|
|
|
{
|
2017-11-12 21:40:30 +00:00
|
|
|
|
// Draw 2D landmarks on the image
|
|
|
|
|
int n = landmarks_2D.rows / 2;
|
|
|
|
|
|
|
|
|
|
// Drawing feature points
|
|
|
|
|
for (int i = 0; i < n; ++i)
|
2017-11-11 21:13:29 +00:00
|
|
|
|
{
|
2017-11-12 21:40:30 +00:00
|
|
|
|
if (visibilities.empty() || visibilities.at<int>(i))
|
|
|
|
|
{
|
|
|
|
|
cv::Point featurePoint(cvRound(landmarks_2D.at<double>(i) * (double)draw_multiplier), cvRound(landmarks_2D.at<double>(i + n) * (double)draw_multiplier));
|
2017-11-11 21:13:29 +00:00
|
|
|
|
|
2017-11-12 21:40:30 +00:00
|
|
|
|
// A rough heuristic for drawn point size
|
|
|
|
|
int thickness = (int)std::ceil(3.0* ((double)captured_image.cols) / 640.0);
|
|
|
|
|
int thickness_2 = (int)std::ceil(1.0* ((double)captured_image.cols) / 640.0);
|
2017-11-11 21:13:29 +00:00
|
|
|
|
|
2017-11-12 21:40:30 +00:00
|
|
|
|
cv::circle(captured_image, featurePoint, 1 * draw_multiplier, cv::Scalar(0, 0, 255), thickness, CV_AA, draw_shiftbits);
|
|
|
|
|
cv::circle(captured_image, featurePoint, 1 * draw_multiplier, cv::Scalar(255, 0, 0), thickness_2, CV_AA, draw_shiftbits);
|
2017-11-11 21:13:29 +00:00
|
|
|
|
|
2017-11-12 21:40:30 +00:00
|
|
|
|
}
|
2017-11-11 21:13:29 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2017-11-11 11:57:57 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Visualizer::SetObservationPose(const cv::Vec6d& pose, double confidence)
|
|
|
|
|
{
|
|
|
|
|
|
2017-11-12 21:40:30 +00:00
|
|
|
|
|
2017-11-11 11:57:57 +00:00
|
|
|
|
|
|
|
|
|
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
|
|
|
|
|
if (confidence > visualisation_boundary)
|
|
|
|
|
{
|
|
|
|
|
double vis_certainty = confidence;
|
|
|
|
|
if (vis_certainty > 1)
|
|
|
|
|
vis_certainty = 1;
|
|
|
|
|
|
|
|
|
|
// Scale from 0 to 1, to allow to indicated by colour how confident we are in the tracking
|
|
|
|
|
vis_certainty = (vis_certainty - visualisation_boundary) / (1 - visualisation_boundary);
|
|
|
|
|
|
|
|
|
|
// A rough heuristic for box around the face width
|
|
|
|
|
int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0);
|
|
|
|
|
|
|
|
|
|
// Draw it in reddish if uncertain, blueish if certain
|
|
|
|
|
DrawBox(captured_image, pose, cv::Scalar(vis_certainty*255.0, 0, (1 - vis_certainty) * 255), thickness, fx, fy, cx, cy);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2017-11-12 10:55:47 +00:00
|
|
|
|
// Eye gaze infomration drawing, first of eye landmarks then of gaze
|
2017-11-13 17:30:19 +00:00
|
|
|
|
void Visualizer::SetObservationGaze(const cv::Point3f& gaze_direction0, const cv::Point3f& gaze_direction1, const std::vector<cv::Point2d>& eye_landmarks2d, const std::vector<cv::Point3d>& eye_landmarks3d, double confidence)
|
2017-11-11 11:57:57 +00:00
|
|
|
|
{
|
2017-11-12 21:40:30 +00:00
|
|
|
|
if(confidence > visualisation_boundary)
|
2017-11-11 11:57:57 +00:00
|
|
|
|
{
|
2017-11-12 21:40:30 +00:00
|
|
|
|
if (eye_landmarks2d.size() > 0)
|
2017-11-11 21:13:29 +00:00
|
|
|
|
{
|
2017-11-12 21:40:30 +00:00
|
|
|
|
// First draw the eye region landmarks
|
|
|
|
|
for (size_t i = 0; i < eye_landmarks2d.size(); ++i)
|
|
|
|
|
{
|
|
|
|
|
cv::Point featurePoint(cvRound(eye_landmarks2d[i].x * (double)draw_multiplier), cvRound(eye_landmarks2d[i].y * (double)draw_multiplier));
|
|
|
|
|
|
|
|
|
|
// A rough heuristic for drawn point size
|
|
|
|
|
int thickness = 1;
|
|
|
|
|
int thickness_2 = 1;
|
|
|
|
|
|
|
|
|
|
size_t next_point = i + 1;
|
|
|
|
|
if (i == 7)
|
|
|
|
|
next_point = 0;
|
|
|
|
|
if (i == 19)
|
|
|
|
|
next_point = 8;
|
|
|
|
|
if (i == 27)
|
|
|
|
|
next_point = 20;
|
|
|
|
|
|
|
|
|
|
if (i == 7 + 28)
|
|
|
|
|
next_point = 0 + 28;
|
|
|
|
|
if (i == 19 + 28)
|
|
|
|
|
next_point = 8 + 28;
|
|
|
|
|
if (i == 27 + 28)
|
|
|
|
|
next_point = 20 + 28;
|
|
|
|
|
|
|
|
|
|
cv::Point nextFeaturePoint(cvRound(eye_landmarks2d[next_point].x * (double)draw_multiplier), cvRound(eye_landmarks2d[next_point].y * (double)draw_multiplier));
|
|
|
|
|
if ((i < 28 && (i < 8 || i > 19)) || (i >= 28 && (i < 8 + 28 || i > 19 + 28)))
|
|
|
|
|
cv::line(captured_image, featurePoint, nextFeaturePoint, cv::Scalar(255, 0, 0), thickness_2, CV_AA, draw_shiftbits);
|
|
|
|
|
else
|
|
|
|
|
cv::line(captured_image, featurePoint, nextFeaturePoint, cv::Scalar(0, 0, 255), thickness_2, CV_AA, draw_shiftbits);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Now draw the gaze lines themselves
|
|
|
|
|
cv::Mat cameraMat = (cv::Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 0);
|
|
|
|
|
|
|
|
|
|
// Grabbing the pupil location, to draw eye gaze need to know where the pupil is
|
|
|
|
|
cv::Point3d pupil_left(0, 0, 0);
|
|
|
|
|
cv::Point3d pupil_right(0, 0, 0);
|
|
|
|
|
for (size_t i = 0; i < 8; ++i)
|
|
|
|
|
{
|
|
|
|
|
pupil_left = pupil_left + eye_landmarks3d[i];
|
|
|
|
|
pupil_right = pupil_right + eye_landmarks3d[i + eye_landmarks3d.size()/2];
|
|
|
|
|
}
|
|
|
|
|
pupil_left = pupil_left / 8;
|
|
|
|
|
pupil_right = pupil_right / 8;
|
|
|
|
|
|
|
|
|
|
std::vector<cv::Point3d> points_left;
|
|
|
|
|
points_left.push_back(cv::Point3d(pupil_left));
|
|
|
|
|
points_left.push_back(cv::Point3d(pupil_left + cv::Point3d(gaze_direction0)*50.0));
|
|
|
|
|
|
|
|
|
|
std::vector<cv::Point3d> points_right;
|
|
|
|
|
points_right.push_back(cv::Point3d(pupil_right));
|
|
|
|
|
points_right.push_back(cv::Point3d(pupil_right + cv::Point3d(gaze_direction1)*50.0));
|
|
|
|
|
|
|
|
|
|
cv::Mat_<double> proj_points;
|
|
|
|
|
cv::Mat_<double> mesh_0 = (cv::Mat_<double>(2, 3) << points_left[0].x, points_left[0].y, points_left[0].z, points_left[1].x, points_left[1].y, points_left[1].z);
|
|
|
|
|
Project(proj_points, mesh_0, fx, fy, cx, cy);
|
|
|
|
|
cv::line(captured_image, cv::Point(cvRound(proj_points.at<double>(0, 0) * (double)draw_multiplier), cvRound(proj_points.at<double>(0, 1) * (double)draw_multiplier)),
|
|
|
|
|
cv::Point(cvRound(proj_points.at<double>(1, 0) * (double)draw_multiplier), cvRound(proj_points.at<double>(1, 1) * (double)draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, draw_shiftbits);
|
|
|
|
|
|
|
|
|
|
cv::Mat_<double> mesh_1 = (cv::Mat_<double>(2, 3) << points_right[0].x, points_right[0].y, points_right[0].z, points_right[1].x, points_right[1].y, points_right[1].z);
|
|
|
|
|
Project(proj_points, mesh_1, fx, fy, cx, cy);
|
|
|
|
|
cv::line(captured_image, cv::Point(cvRound(proj_points.at<double>(0, 0) * (double)draw_multiplier), cvRound(proj_points.at<double>(0, 1) * (double)draw_multiplier)),
|
|
|
|
|
cv::Point(cvRound(proj_points.at<double>(1, 0) * (double)draw_multiplier), cvRound(proj_points.at<double>(1, 1) * (double)draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, draw_shiftbits);
|
2017-11-11 21:13:29 +00:00
|
|
|
|
|
|
|
|
|
}
|
2017-11-11 11:57:57 +00:00
|
|
|
|
}
|
2017-11-11 21:13:29 +00:00
|
|
|
|
}
|
2017-11-11 11:57:57 +00:00
|
|
|
|
|
2017-11-13 09:07:52 +00:00
|
|
|
|
void Visualizer::SetFps(double fps)
|
|
|
|
|
{
|
|
|
|
|
// Write out the framerate on the image before displaying it
|
|
|
|
|
char fpsC[255];
|
|
|
|
|
std::sprintf(fpsC, "%d", (int)fps);
|
|
|
|
|
std::string fpsSt("FPS:");
|
|
|
|
|
fpsSt += fpsC;
|
|
|
|
|
cv::putText(captured_image, fpsSt, cv::Point(10, 20), CV_FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255, 0, 0), 1, CV_AA);
|
|
|
|
|
}
|
|
|
|
|
|
2017-11-11 21:13:29 +00:00
|
|
|
|
void Visualizer::ShowObservation()
|
|
|
|
|
{
|
|
|
|
|
if (vis_track)
|
|
|
|
|
{
|
|
|
|
|
cv::namedWindow("tracking_result", 1);
|
|
|
|
|
cv::imshow("tracking_result", captured_image);
|
|
|
|
|
}
|
|
|
|
|
if (vis_align)
|
|
|
|
|
{
|
|
|
|
|
cv::imshow("sim_warp", aligned_face_image);
|
|
|
|
|
}
|
|
|
|
|
if (vis_hog)
|
|
|
|
|
{
|
|
|
|
|
cv::imshow("hog", hog_image);
|
|
|
|
|
}
|
2017-11-12 11:24:25 +00:00
|
|
|
|
cv::waitKey(1);
|
2017-11-11 21:13:29 +00:00
|
|
|
|
}
|
2017-11-11 11:57:57 +00:00
|
|
|
|
|
2017-11-12 10:55:47 +00:00
|
|
|
|
cv::Mat Visualizer::GetVisImage()
|
|
|
|
|
{
|
|
|
|
|
return captured_image;
|
|
|
|
|
}
|