141 lines
4.5 KiB
C++
141 lines
4.5 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////
|
|||
|
// Copyright (C) 2017, Tadas Baltrusaitis, all rights reserved.
|
|||
|
//
|
|||
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|||
|
//
|
|||
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|||
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|||
|
//
|
|||
|
// License can be found in OpenFace-license.txt
|
|||
|
//
|
|||
|
// * Any publications arising from the use of this software, including but
|
|||
|
// not limited to academic journal and conference publications, technical
|
|||
|
// reports and manuals, must cite at least one of the following works:
|
|||
|
//
|
|||
|
// OpenFace: an open source facial behavior analysis toolkit
|
|||
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
|
|||
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|||
|
//
|
|||
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|||
|
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|||
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|||
|
//
|
|||
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|||
|
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
|
|||
|
// in Facial Expression Recognition and Analysis Challenge,
|
|||
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|||
|
//
|
|||
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|||
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
|
|||
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|||
|
//
|
|||
|
///////////////////////////////////////////////////////////////////////////////
|
|||
|
|
|||
|
#include "Visualizer.h"
|
|||
|
#include "VisualizationUtils.h"
|
|||
|
|
|||
|
using namespace Utilities;
|
|||
|
|
|||
|
Visualizer::Visualizer(std::vector<std::string> arguments)
|
|||
|
{
|
|||
|
// By default not visualizing anything
|
|||
|
this->vis_track = false;
|
|||
|
this->vis_hog = false;
|
|||
|
this->vis_align = false;
|
|||
|
|
|||
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|||
|
{
|
|||
|
if (arguments[i].compare("-verbose") == 0)
|
|||
|
{
|
|||
|
vis_track = true;
|
|||
|
vis_align = true;
|
|||
|
vis_hog = true;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-vis-align") == 0)
|
|||
|
{
|
|||
|
vis_align = true;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-vis-hog") == 0)
|
|||
|
{
|
|||
|
vis_hog = true;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-vis-track") == 0)
|
|||
|
{
|
|||
|
vis_track = true;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
Visualizer::Visualizer(bool vis_track, bool vis_hog, bool vis_align)
|
|||
|
{
|
|||
|
this->vis_track = vis_track;
|
|||
|
this->vis_hog = vis_hog;
|
|||
|
this->vis_align = vis_align;
|
|||
|
}
|
|||
|
|
|||
|
void Visualizer::SetImage(const cv::Mat& canvas, float fx, float fy, float cx, float cy)
|
|||
|
{
|
|||
|
captured_image = canvas.clone();
|
|||
|
this->fx = fx;
|
|||
|
this->fy = fy;
|
|||
|
this->cx = cx;
|
|||
|
this->cy = cy;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
void Visualizer::SetObservationFaceAlign(const cv::Mat& aligned_face)
|
|||
|
{
|
|||
|
this->aligned_face_image = aligned_face;
|
|||
|
}
|
|||
|
|
|||
|
void Visualizer::SetObservationHOG(const cv::Mat_<double>& hog_descriptor, int num_cols, int num_rows)
|
|||
|
{
|
|||
|
Visualise_FHOG(hog_descriptor, num_rows, num_cols, this->hog_image);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
void Visualizer::SetObservationLandmarks(const cv::Mat_<double>& landmarks_2D, double confidence, bool success, const cv::Mat_<int>& visibilities)
|
|||
|
{
|
|||
|
DrawLandmarkDetResults(captured_image, landmarks_2D, visibilities);
|
|||
|
}
|
|||
|
|
|||
|
void Visualizer::SetObservationPose(const cv::Vec6d& pose, double confidence)
|
|||
|
{
|
|||
|
|
|||
|
double visualisation_boundary = 0.4;
|
|||
|
|
|||
|
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
|
|||
|
if (confidence > visualisation_boundary)
|
|||
|
{
|
|||
|
double vis_certainty = confidence;
|
|||
|
if (vis_certainty > 1)
|
|||
|
vis_certainty = 1;
|
|||
|
|
|||
|
// Scale from 0 to 1, to allow to indicated by colour how confident we are in the tracking
|
|||
|
vis_certainty = (vis_certainty - visualisation_boundary) / (1 - visualisation_boundary);
|
|||
|
|
|||
|
// A rough heuristic for box around the face width
|
|||
|
int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0);
|
|||
|
|
|||
|
// Draw it in reddish if uncertain, blueish if certain
|
|||
|
DrawBox(captured_image, pose, cv::Scalar(vis_certainty*255.0, 0, (1 - vis_certainty) * 255), thickness, fx, fy, cx, cy);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
void Visualizer::SetObservationGaze(const cv::Point3f& gaze_direction0, const cv::Point3f& gaze_direction1,
|
|||
|
const cv::Vec2d& gaze_angle, const std::vector<cv::Point2d>& eye_landmarks)
|
|||
|
{
|
|||
|
// TODO actual drawing
|
|||
|
|
|||
|
if (det_parameters.track_gaze && detection_success && face_model.eye_model)
|
|||
|
{
|
|||
|
GazeAnalysis::DrawGaze(captured_image, face_model, gazeDirection0, gazeDirection1, fx, fy, cx, cy);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|