sustaining_gazes/lib/local/Utilities/src/Visualizer.cpp

267 lines
9.3 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Tadas Baltrusaitis, all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
//
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "Visualizer.h"
#include "VisualizationUtils.h"
#include "RotationHelpers.h"
// For drawing on images
#include <opencv2/imgproc.hpp>
using namespace Utilities;
// For subpixel accuracy drawing
const int draw_shiftbits = 4;
const int draw_multiplier = 1 << 4;
Visualizer::Visualizer(std::vector<std::string> arguments)
{
// By default not visualizing anything
this->vis_track = false;
this->vis_hog = false;
this->vis_align = false;
for (size_t i = 0; i < arguments.size(); ++i)
{
if (arguments[i].compare("-verbose") == 0)
{
vis_track = true;
vis_align = true;
vis_hog = true;
}
else if (arguments[i].compare("-vis-align") == 0)
{
vis_align = true;
}
else if (arguments[i].compare("-vis-hog") == 0)
{
vis_hog = true;
}
else if (arguments[i].compare("-vis-track") == 0)
{
vis_track = true;
}
}
}
Visualizer::Visualizer(bool vis_track, bool vis_hog, bool vis_align)
{
this->vis_track = vis_track;
this->vis_hog = vis_hog;
this->vis_align = vis_align;
}
void Visualizer::SetImage(const cv::Mat& canvas, float fx, float fy, float cx, float cy)
{
captured_image = canvas.clone();
this->fx = fx;
this->fy = fy;
this->cx = cx;
this->cy = cy;
}
void Visualizer::SetObservationFaceAlign(const cv::Mat& aligned_face)
{
this->aligned_face_image = aligned_face;
}
void Visualizer::SetObservationHOG(const cv::Mat_<double>& hog_descriptor, int num_cols, int num_rows)
{
2017-11-12 11:24:25 +00:00
if(vis_hog)
{
Visualise_FHOG(hog_descriptor, num_rows, num_cols, this->hog_image);
}
}
void Visualizer::SetObservationLandmarks(const cv::Mat_<double>& landmarks_2D, double confidence, bool success, const cv::Mat_<int>& visibilities)
{
if(confidence > visualisation_boundary)
{
// Draw 2D landmarks on the image
int n = landmarks_2D.rows / 2;
// Drawing feature points
for (int i = 0; i < n; ++i)
{
if (visibilities.empty() || visibilities.at<int>(i))
{
cv::Point featurePoint(cvRound(landmarks_2D.at<double>(i) * (double)draw_multiplier), cvRound(landmarks_2D.at<double>(i + n) * (double)draw_multiplier));
// A rough heuristic for drawn point size
int thickness = (int)std::ceil(3.0* ((double)captured_image.cols) / 640.0);
int thickness_2 = (int)std::ceil(1.0* ((double)captured_image.cols) / 640.0);
cv::circle(captured_image, featurePoint, 1 * draw_multiplier, cv::Scalar(0, 0, 255), thickness, CV_AA, draw_shiftbits);
cv::circle(captured_image, featurePoint, 1 * draw_multiplier, cv::Scalar(255, 0, 0), thickness_2, CV_AA, draw_shiftbits);
}
}
}
}
void Visualizer::SetObservationPose(const cv::Vec6d& pose, double confidence)
{
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
if (confidence > visualisation_boundary)
{
double vis_certainty = confidence;
if (vis_certainty > 1)
vis_certainty = 1;
// Scale from 0 to 1, to allow to indicated by colour how confident we are in the tracking
vis_certainty = (vis_certainty - visualisation_boundary) / (1 - visualisation_boundary);
// A rough heuristic for box around the face width
int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0);
// Draw it in reddish if uncertain, blueish if certain
DrawBox(captured_image, pose, cv::Scalar(vis_certainty*255.0, 0, (1 - vis_certainty) * 255), thickness, fx, fy, cx, cy);
}
}
// Eye gaze infomration drawing, first of eye landmarks then of gaze
void Visualizer::SetObservationGaze(const cv::Point3f& gaze_direction0, const cv::Point3f& gaze_direction1, const cv::Vec2d& gaze_angle, const std::vector<cv::Point2d>& eye_landmarks2d, const std::vector<cv::Point3d>& eye_landmarks3d, double confidence)
{
if(confidence > visualisation_boundary)
{
if (eye_landmarks2d.size() > 0)
{
// First draw the eye region landmarks
for (size_t i = 0; i < eye_landmarks2d.size(); ++i)
{
cv::Point featurePoint(cvRound(eye_landmarks2d[i].x * (double)draw_multiplier), cvRound(eye_landmarks2d[i].y * (double)draw_multiplier));
// A rough heuristic for drawn point size
int thickness = 1;
int thickness_2 = 1;
size_t next_point = i + 1;
if (i == 7)
next_point = 0;
if (i == 19)
next_point = 8;
if (i == 27)
next_point = 20;
if (i == 7 + 28)
next_point = 0 + 28;
if (i == 19 + 28)
next_point = 8 + 28;
if (i == 27 + 28)
next_point = 20 + 28;
cv::Point nextFeaturePoint(cvRound(eye_landmarks2d[next_point].x * (double)draw_multiplier), cvRound(eye_landmarks2d[next_point].y * (double)draw_multiplier));
if ((i < 28 && (i < 8 || i > 19)) || (i >= 28 && (i < 8 + 28 || i > 19 + 28)))
cv::line(captured_image, featurePoint, nextFeaturePoint, cv::Scalar(255, 0, 0), thickness_2, CV_AA, draw_shiftbits);
else
cv::line(captured_image, featurePoint, nextFeaturePoint, cv::Scalar(0, 0, 255), thickness_2, CV_AA, draw_shiftbits);
}
// Now draw the gaze lines themselves
cv::Mat cameraMat = (cv::Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 0);
// Grabbing the pupil location, to draw eye gaze need to know where the pupil is
cv::Point3d pupil_left(0, 0, 0);
cv::Point3d pupil_right(0, 0, 0);
for (size_t i = 0; i < 8; ++i)
{
pupil_left = pupil_left + eye_landmarks3d[i];
pupil_right = pupil_right + eye_landmarks3d[i + eye_landmarks3d.size()/2];
}
pupil_left = pupil_left / 8;
pupil_right = pupil_right / 8;
std::vector<cv::Point3d> points_left;
points_left.push_back(cv::Point3d(pupil_left));
points_left.push_back(cv::Point3d(pupil_left + cv::Point3d(gaze_direction0)*50.0));
std::vector<cv::Point3d> points_right;
points_right.push_back(cv::Point3d(pupil_right));
points_right.push_back(cv::Point3d(pupil_right + cv::Point3d(gaze_direction1)*50.0));
cv::Mat_<double> proj_points;
cv::Mat_<double> mesh_0 = (cv::Mat_<double>(2, 3) << points_left[0].x, points_left[0].y, points_left[0].z, points_left[1].x, points_left[1].y, points_left[1].z);
Project(proj_points, mesh_0, fx, fy, cx, cy);
cv::line(captured_image, cv::Point(cvRound(proj_points.at<double>(0, 0) * (double)draw_multiplier), cvRound(proj_points.at<double>(0, 1) * (double)draw_multiplier)),
cv::Point(cvRound(proj_points.at<double>(1, 0) * (double)draw_multiplier), cvRound(proj_points.at<double>(1, 1) * (double)draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, draw_shiftbits);
cv::Mat_<double> mesh_1 = (cv::Mat_<double>(2, 3) << points_right[0].x, points_right[0].y, points_right[0].z, points_right[1].x, points_right[1].y, points_right[1].z);
Project(proj_points, mesh_1, fx, fy, cx, cy);
cv::line(captured_image, cv::Point(cvRound(proj_points.at<double>(0, 0) * (double)draw_multiplier), cvRound(proj_points.at<double>(0, 1) * (double)draw_multiplier)),
cv::Point(cvRound(proj_points.at<double>(1, 0) * (double)draw_multiplier), cvRound(proj_points.at<double>(1, 1) * (double)draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, draw_shiftbits);
}
}
}
2017-11-13 09:07:52 +00:00
void Visualizer::SetFps(double fps)
{
// Write out the framerate on the image before displaying it
char fpsC[255];
std::sprintf(fpsC, "%d", (int)fps);
std::string fpsSt("FPS:");
fpsSt += fpsC;
cv::putText(captured_image, fpsSt, cv::Point(10, 20), CV_FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255, 0, 0), 1, CV_AA);
}
void Visualizer::ShowObservation()
{
if (vis_track)
{
cv::namedWindow("tracking_result", 1);
cv::imshow("tracking_result", captured_image);
}
if (vis_align)
{
cv::imshow("sim_warp", aligned_face_image);
}
if (vis_hog)
{
cv::imshow("hog", hog_image);
}
2017-11-12 11:24:25 +00:00
cv::waitKey(1);
}
cv::Mat Visualizer::GetVisImage()
{
return captured_image;
}