2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED <20> AS IS<49> FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called <20> open source<63> software licenses (<28> Open Source
// Components<74> ), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensee<65> s request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72> aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72> aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
# include "stdafx.h"
# include <LandmarkDetectorUtils.h>
// OpenCV includes
# include <opencv2/core/core.hpp>
# include <opencv2/imgproc.hpp>
# include <opencv2/calib3d.hpp>
// Boost includes
# include <filesystem.hpp>
# include <filesystem/fstream.hpp>
using namespace boost : : filesystem ;
using namespace std ;
namespace LandmarkDetector
{
// Useful utility for creating directories for storing the output files
void create_directory_from_file ( string output_path )
{
// Creating the right directory structure
// First get rid of the file
auto p = path ( path ( output_path ) . parent_path ( ) ) ;
if ( ! p . empty ( ) & & ! boost : : filesystem : : exists ( p ) )
{
bool success = boost : : filesystem : : create_directories ( p ) ;
if ( ! success )
{
cout < < " Failed to create a directory... " < < p . string ( ) < < endl ;
}
}
}
// Useful utility for creating directories for storing the output files
void create_directories ( string output_path )
{
// Creating the right directory structure
// First get rid of the file
auto p = path ( output_path ) ;
if ( ! p . empty ( ) & & ! boost : : filesystem : : exists ( p ) )
{
bool success = boost : : filesystem : : create_directories ( p ) ;
if ( ! success )
{
cout < < " Failed to create a directory... " < < p . string ( ) < < endl ;
}
}
}
// Extracting the following command line arguments -f, -fd, -op, -of, -ov (and possible ordered repetitions)
2016-07-31 20:31:17 +00:00
void get_video_input_output_params ( vector < string > & input_video_files , vector < string > & depth_dirs , vector < string > & output_files ,
vector < string > & output_video_files , bool & world_coordinates_pose , vector < string > & arguments )
2016-04-28 19:40:36 +00:00
{
bool * valid = new bool [ arguments . size ( ) ] ;
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
valid [ i ] = true ;
}
// By default use rotation with respect to camera (not world coordinates)
world_coordinates_pose = false ;
2016-07-31 20:31:17 +00:00
string input_root = " " ;
string output_root = " " ;
2016-04-28 19:40:36 +00:00
// First check if there is a root argument (so that videos and outputs could be defined more easilly)
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
2016-07-31 20:31:17 +00:00
if ( arguments [ i ] . compare ( " -root " ) = = 0 )
{
input_root = arguments [ i + 1 ] ;
output_root = arguments [ i + 1 ] ;
2016-04-28 19:40:36 +00:00
i + + ;
2016-07-31 20:31:17 +00:00
}
if ( arguments [ i ] . compare ( " -inroot " ) = = 0 )
{
input_root = arguments [ i + 1 ] ;
i + + ;
}
if ( arguments [ i ] . compare ( " -outroot " ) = = 0 )
{
output_root = arguments [ i + 1 ] ;
i + + ;
}
2016-04-28 19:40:36 +00:00
}
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
if ( arguments [ i ] . compare ( " -f " ) = = 0 )
{
2016-07-31 20:31:17 +00:00
input_video_files . push_back ( input_root + arguments [ i + 1 ] ) ;
2016-04-28 19:40:36 +00:00
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -fd " ) = = 0 )
{
2016-07-31 20:31:17 +00:00
depth_dirs . push_back ( input_root + arguments [ i + 1 ] ) ;
2016-04-28 19:40:36 +00:00
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -of " ) = = 0 )
{
2016-07-31 20:31:17 +00:00
output_files . push_back ( output_root + arguments [ i + 1 ] ) ;
create_directory_from_file ( output_root + arguments [ i + 1 ] ) ;
2016-04-28 19:40:36 +00:00
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -ov " ) = = 0 )
{
2016-07-31 20:31:17 +00:00
output_video_files . push_back ( output_root + arguments [ i + 1 ] ) ;
create_directory_from_file ( output_root + arguments [ i + 1 ] ) ;
2016-04-28 19:40:36 +00:00
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -world_coord " ) = = 0 )
{
world_coordinates_pose = true ;
}
}
for ( int i = arguments . size ( ) - 1 ; i > = 0 ; - - i )
{
if ( ! valid [ i ] )
{
arguments . erase ( arguments . begin ( ) + i ) ;
}
}
}
void get_camera_params ( int & device , float & fx , float & fy , float & cx , float & cy , vector < string > & arguments )
{
bool * valid = new bool [ arguments . size ( ) ] ;
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
valid [ i ] = true ;
if ( arguments [ i ] . compare ( " -fx " ) = = 0 )
{
stringstream data ( arguments [ i + 1 ] ) ;
data > > fx ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -fy " ) = = 0 )
{
stringstream data ( arguments [ i + 1 ] ) ;
data > > fy ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -cx " ) = = 0 )
{
stringstream data ( arguments [ i + 1 ] ) ;
data > > cx ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -cy " ) = = 0 )
{
stringstream data ( arguments [ i + 1 ] ) ;
data > > cy ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -device " ) = = 0 )
{
stringstream data ( arguments [ i + 1 ] ) ;
data > > device ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
}
for ( int i = arguments . size ( ) - 1 ; i > = 0 ; - - i )
{
if ( ! valid [ i ] )
{
arguments . erase ( arguments . begin ( ) + i ) ;
}
}
}
void get_image_input_output_params ( vector < string > & input_image_files , vector < string > & input_depth_files , vector < string > & output_feature_files , vector < string > & output_pose_files , vector < string > & output_image_files ,
vector < cv : : Rect_ < double > > & input_bounding_boxes , vector < string > & arguments )
{
bool * valid = new bool [ arguments . size ( ) ] ;
string out_pts_dir , out_pose_dir , out_img_dir ;
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
valid [ i ] = true ;
if ( arguments [ i ] . compare ( " -f " ) = = 0 )
{
input_image_files . push_back ( arguments [ i + 1 ] ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -fd " ) = = 0 )
{
input_depth_files . push_back ( arguments [ i + 1 ] ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -fdir " ) = = 0 )
{
// parse the -fdir directory by reading in all of the .png and .jpg files in it
path image_directory ( arguments [ i + 1 ] ) ;
try
{
// does the file exist and is it a directory
if ( exists ( image_directory ) & & is_directory ( image_directory ) )
{
vector < path > file_in_directory ;
copy ( directory_iterator ( image_directory ) , directory_iterator ( ) , back_inserter ( file_in_directory ) ) ;
// Sort the images in the directory first
sort ( file_in_directory . begin ( ) , file_in_directory . end ( ) ) ;
for ( vector < path > : : const_iterator file_iterator ( file_in_directory . begin ( ) ) ; file_iterator ! = file_in_directory . end ( ) ; + + file_iterator )
{
// Possible image extension .jpg and .png
if ( file_iterator - > extension ( ) . string ( ) . compare ( " .jpg " ) = = 0 | | file_iterator - > extension ( ) . string ( ) . compare ( " .png " ) = = 0 | | file_iterator - > extension ( ) . string ( ) . compare ( " .bmp " ) = = 0 )
{
input_image_files . push_back ( file_iterator - > string ( ) ) ;
// If there exists a .txt file corresponding to the image, it is assumed that it contains a bounding box definition for a face
// [minx, miny, maxx, maxy]
path current_file = * file_iterator ;
path bbox = current_file . replace_extension ( " txt " ) ;
// If there is a bounding box file push it to the list of bounding boxes
if ( exists ( bbox ) )
{
std : : ifstream in_bbox ( bbox . string ( ) . c_str ( ) , ios_base : : in ) ;
double min_x , min_y , max_x , max_y ;
in_bbox > > min_x > > min_y > > max_x > > max_y ;
in_bbox . close ( ) ;
input_bounding_boxes . push_back ( cv : : Rect_ < double > ( min_x , min_y , max_x - min_x , max_y - min_y ) ) ;
}
}
}
}
}
catch ( const filesystem_error & ex )
{
cout < < ex . what ( ) < < ' \n ' ;
}
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -ofdir " ) = = 0 )
{
out_pts_dir = arguments [ i + 1 ] ;
create_directories ( out_pts_dir ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -opdir " ) = = 0 )
{
out_pose_dir = arguments [ i + 1 ] ;
create_directories ( out_pose_dir ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -oidir " ) = = 0 )
{
out_img_dir = arguments [ i + 1 ] ;
create_directories ( out_img_dir ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -op " ) = = 0 )
{
output_pose_files . push_back ( arguments [ i + 1 ] ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -of " ) = = 0 )
{
output_feature_files . push_back ( arguments [ i + 1 ] ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -oi " ) = = 0 )
{
output_image_files . push_back ( arguments [ i + 1 ] ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
}
// If any output directories are defined populate them based on image names
if ( ! out_img_dir . empty ( ) )
{
for ( size_t i = 0 ; i < input_image_files . size ( ) ; + + i )
{
path image_loc ( input_image_files [ i ] ) ;
path fname = image_loc . filename ( ) ;
2016-07-22 13:35:50 +00:00
fname = fname . replace_extension ( " bmp " ) ;
2016-04-28 19:40:36 +00:00
output_image_files . push_back ( out_img_dir + " / " + fname . string ( ) ) ;
}
if ( ! input_image_files . empty ( ) )
{
create_directory_from_file ( output_image_files [ 0 ] ) ;
}
}
if ( ! out_pts_dir . empty ( ) )
{
for ( size_t i = 0 ; i < input_image_files . size ( ) ; + + i )
{
path image_loc ( input_image_files [ i ] ) ;
path fname = image_loc . filename ( ) ;
fname = fname . replace_extension ( " pts " ) ;
output_feature_files . push_back ( out_pts_dir + " / " + fname . string ( ) ) ;
}
create_directory_from_file ( output_feature_files [ 0 ] ) ;
}
if ( ! out_pose_dir . empty ( ) )
{
for ( size_t i = 0 ; i < input_image_files . size ( ) ; + + i )
{
path image_loc ( input_image_files [ i ] ) ;
path fname = image_loc . filename ( ) ;
fname = fname . replace_extension ( " pose " ) ;
output_pose_files . push_back ( out_pose_dir + " / " + fname . string ( ) ) ;
}
create_directory_from_file ( output_pose_files [ 0 ] ) ;
}
// Make sure the same number of images and bounding boxes is present, if any bounding boxes are defined
if ( input_bounding_boxes . size ( ) > 0 )
{
assert ( input_bounding_boxes . size ( ) = = input_image_files . size ( ) ) ;
}
// Clear up the argument list
for ( int i = arguments . size ( ) - 1 ; i > = 0 ; - - i )
{
if ( ! valid [ i ] )
{
arguments . erase ( arguments . begin ( ) + i ) ;
}
}
}
//===========================================================================
// Fast patch expert response computation (linear model across a ROI) using normalised cross-correlation
//===========================================================================
void crossCorr_m ( const cv : : Mat_ < float > & img , cv : : Mat_ < double > & img_dft , const cv : : Mat_ < float > & _templ , map < int , cv : : Mat_ < double > > & _templ_dfts , cv : : Mat_ < float > & corr )
{
// Our model will always be under min block size so can ignore this
//const double blockScale = 4.5;
//const int minBlockSize = 256;
int maxDepth = CV_64F ;
cv : : Size dftsize ;
dftsize . width = cv : : getOptimalDFTSize ( corr . cols + _templ . cols - 1 ) ;
dftsize . height = cv : : getOptimalDFTSize ( corr . rows + _templ . rows - 1 ) ;
// Compute block size
cv : : Size blocksize ;
blocksize . width = dftsize . width - _templ . cols + 1 ;
blocksize . width = MIN ( blocksize . width , corr . cols ) ;
blocksize . height = dftsize . height - _templ . rows + 1 ;
blocksize . height = MIN ( blocksize . height , corr . rows ) ;
cv : : Mat_ < double > dftTempl ;
// if this has not been precomputed, precompute it, otherwise use it
if ( _templ_dfts . find ( dftsize . width ) = = _templ_dfts . end ( ) )
{
dftTempl . create ( dftsize . height , dftsize . width ) ;
cv : : Mat_ < float > src = _templ ;
cv : : Mat_ < double > dst ( dftTempl , cv : : Rect ( 0 , 0 , dftsize . width , dftsize . height ) ) ;
cv : : Mat_ < double > dst1 ( dftTempl , cv : : Rect ( 0 , 0 , _templ . cols , _templ . rows ) ) ;
if ( dst1 . data ! = src . data )
src . convertTo ( dst1 , dst1 . depth ( ) ) ;
if ( dst . cols > _templ . cols )
{
cv : : Mat_ < double > part ( dst , cv : : Range ( 0 , _templ . rows ) , cv : : Range ( _templ . cols , dst . cols ) ) ;
part . setTo ( 0 ) ;
}
// Perform DFT of the template
dft ( dst , dst , 0 , _templ . rows ) ;
_templ_dfts [ dftsize . width ] = dftTempl ;
}
else
{
// use the precomputed version
dftTempl = _templ_dfts . find ( dftsize . width ) - > second ;
}
cv : : Size bsz ( std : : min ( blocksize . width , corr . cols ) , std : : min ( blocksize . height , corr . rows ) ) ;
cv : : Mat src ;
cv : : Mat cdst ( corr , cv : : Rect ( 0 , 0 , bsz . width , bsz . height ) ) ;
cv : : Mat_ < double > dftImg ;
if ( img_dft . empty ( ) )
{
dftImg . create ( dftsize ) ;
dftImg . setTo ( 0.0 ) ;
cv : : Size dsz ( bsz . width + _templ . cols - 1 , bsz . height + _templ . rows - 1 ) ;
int x2 = std : : min ( img . cols , dsz . width ) ;
int y2 = std : : min ( img . rows , dsz . height ) ;
cv : : Mat src0 ( img , cv : : Range ( 0 , y2 ) , cv : : Range ( 0 , x2 ) ) ;
cv : : Mat dst ( dftImg , cv : : Rect ( 0 , 0 , dsz . width , dsz . height ) ) ;
cv : : Mat dst1 ( dftImg , cv : : Rect ( 0 , 0 , x2 , y2 ) ) ;
src = src0 ;
if ( dst1 . data ! = src . data )
src . convertTo ( dst1 , dst1 . depth ( ) ) ;
dft ( dftImg , dftImg , 0 , dsz . height ) ;
img_dft = dftImg . clone ( ) ;
}
cv : : Mat dftTempl1 ( dftTempl , cv : : Rect ( 0 , 0 , dftsize . width , dftsize . height ) ) ;
cv : : mulSpectrums ( img_dft , dftTempl1 , dftImg , 0 , true ) ;
cv : : dft ( dftImg , dftImg , cv : : DFT_INVERSE + cv : : DFT_SCALE , bsz . height ) ;
src = dftImg ( cv : : Rect ( 0 , 0 , bsz . width , bsz . height ) ) ;
src . convertTo ( cdst , CV_32F ) ;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
void matchTemplate_m ( const cv : : Mat_ < float > & input_img , cv : : Mat_ < double > & img_dft , cv : : Mat & _integral_img , cv : : Mat & _integral_img_sq , const cv : : Mat_ < float > & templ , map < int , cv : : Mat_ < double > > & templ_dfts , cv : : Mat_ < float > & result , int method )
{
int numType = method = = CV_TM_CCORR | | method = = CV_TM_CCORR_NORMED ? 0 :
method = = CV_TM_CCOEFF | | method = = CV_TM_CCOEFF_NORMED ? 1 : 2 ;
bool isNormed = method = = CV_TM_CCORR_NORMED | |
method = = CV_TM_SQDIFF_NORMED | |
method = = CV_TM_CCOEFF_NORMED ;
// Assume result is defined properly
if ( result . empty ( ) )
{
cv : : Size corrSize ( input_img . cols - templ . cols + 1 , input_img . rows - templ . rows + 1 ) ;
result . create ( corrSize ) ;
}
LandmarkDetector : : crossCorr_m ( input_img , img_dft , templ , templ_dfts , result ) ;
if ( method = = CV_TM_CCORR )
return ;
double invArea = 1. / ( ( double ) templ . rows * templ . cols ) ;
cv : : Mat sum , sqsum ;
cv : : Scalar templMean , templSdv ;
double * q0 = 0 , * q1 = 0 , * q2 = 0 , * q3 = 0 ;
double templNorm = 0 , templSum2 = 0 ;
if ( method = = CV_TM_CCOEFF )
{
// If it has not been precomputed compute it now
if ( _integral_img . empty ( ) )
{
integral ( input_img , _integral_img , CV_64F ) ;
}
sum = _integral_img ;
templMean = cv : : mean ( templ ) ;
}
else
{
// If it has not been precomputed compute it now
if ( _integral_img . empty ( ) )
{
integral ( input_img , _integral_img , _integral_img_sq , CV_64F ) ;
}
sum = _integral_img ;
sqsum = _integral_img_sq ;
meanStdDev ( templ , templMean , templSdv ) ;
templNorm = templSdv [ 0 ] * templSdv [ 0 ] + templSdv [ 1 ] * templSdv [ 1 ] + templSdv [ 2 ] * templSdv [ 2 ] + templSdv [ 3 ] * templSdv [ 3 ] ;
if ( templNorm < DBL_EPSILON & & method = = CV_TM_CCOEFF_NORMED )
{
result . setTo ( 1.0 ) ;
return ;
}
templSum2 = templNorm + templMean [ 0 ] * templMean [ 0 ] + templMean [ 1 ] * templMean [ 1 ] + templMean [ 2 ] * templMean [ 2 ] + templMean [ 3 ] * templMean [ 3 ] ;
if ( numType ! = 1 )
{
templMean = cv : : Scalar : : all ( 0 ) ;
templNorm = templSum2 ;
}
templSum2 / = invArea ;
templNorm = std : : sqrt ( templNorm ) ;
templNorm / = std : : sqrt ( invArea ) ; // care of accuracy here
q0 = ( double * ) sqsum . data ;
q1 = q0 + templ . cols ;
q2 = ( double * ) ( sqsum . data + templ . rows * sqsum . step ) ;
q3 = q2 + templ . cols ;
}
double * p0 = ( double * ) sum . data ;
double * p1 = p0 + templ . cols ;
double * p2 = ( double * ) ( sum . data + templ . rows * sum . step ) ;
double * p3 = p2 + templ . cols ;
int sumstep = sum . data ? ( int ) ( sum . step / sizeof ( double ) ) : 0 ;
int sqstep = sqsum . data ? ( int ) ( sqsum . step / sizeof ( double ) ) : 0 ;
int i , j ;
for ( i = 0 ; i < result . rows ; i + + )
{
float * rrow = result . ptr < float > ( i ) ;
int idx = i * sumstep ;
int idx2 = i * sqstep ;
for ( j = 0 ; j < result . cols ; j + + , idx + = 1 , idx2 + = 1 )
{
double num = rrow [ j ] , t ;
double wndMean2 = 0 , wndSum2 = 0 ;
if ( numType = = 1 )
{
t = p0 [ idx ] - p1 [ idx ] - p2 [ idx ] + p3 [ idx ] ;
wndMean2 + = t * t ;
num - = t * templMean [ 0 ] ;
wndMean2 * = invArea ;
}
if ( isNormed | | numType = = 2 )
{
t = q0 [ idx2 ] - q1 [ idx2 ] - q2 [ idx2 ] + q3 [ idx2 ] ;
wndSum2 + = t ;
if ( numType = = 2 )
{
num = wndSum2 - 2 * num + templSum2 ;
num = MAX ( num , 0. ) ;
}
}
if ( isNormed )
{
t = std : : sqrt ( MAX ( wndSum2 - wndMean2 , 0 ) ) * templNorm ;
if ( fabs ( num ) < t )
num / = t ;
else if ( fabs ( num ) < t * 1.125 )
num = num > 0 ? 1 : - 1 ;
else
num = method ! = CV_TM_SQDIFF_NORMED ? 0 : 1 ;
}
rrow [ j ] = ( float ) num ;
}
}
}
//===========================================================================
// Point set and landmark manipulation functions
//===========================================================================
// Using Kabsch's algorithm for aligning shapes
//This assumes that align_from and align_to are already mean normalised
cv : : Matx22d AlignShapesKabsch2D ( const cv : : Mat_ < double > & align_from , const cv : : Mat_ < double > & align_to )
{
cv : : SVD svd ( align_from . t ( ) * align_to ) ;
// make sure no reflection is there
// corr ensures that we do only rotaitons and not reflections
double d = cv : : determinant ( svd . vt . t ( ) * svd . u . t ( ) ) ;
cv : : Matx22d corr = cv : : Matx22d : : eye ( ) ;
if ( d > 0 )
{
corr ( 1 , 1 ) = 1 ;
}
else
{
corr ( 1 , 1 ) = - 1 ;
}
cv : : Matx22d R ;
cv : : Mat ( svd . vt . t ( ) * cv : : Mat ( corr ) * svd . u . t ( ) ) . copyTo ( R ) ;
return R ;
}
//=============================================================================
// Basically Kabsch's algorithm but also allows the collection of points to be different in scale from each other
cv : : Matx22d AlignShapesWithScale ( cv : : Mat_ < double > & src , cv : : Mat_ < double > dst )
{
int n = src . rows ;
// First we mean normalise both src and dst
double mean_src_x = cv : : mean ( src . col ( 0 ) ) [ 0 ] ;
double mean_src_y = cv : : mean ( src . col ( 1 ) ) [ 0 ] ;
double mean_dst_x = cv : : mean ( dst . col ( 0 ) ) [ 0 ] ;
double mean_dst_y = cv : : mean ( dst . col ( 1 ) ) [ 0 ] ;
cv : : Mat_ < double > src_mean_normed = src . clone ( ) ;
src_mean_normed . col ( 0 ) = src_mean_normed . col ( 0 ) - mean_src_x ;
src_mean_normed . col ( 1 ) = src_mean_normed . col ( 1 ) - mean_src_y ;
cv : : Mat_ < double > dst_mean_normed = dst . clone ( ) ;
dst_mean_normed . col ( 0 ) = dst_mean_normed . col ( 0 ) - mean_dst_x ;
dst_mean_normed . col ( 1 ) = dst_mean_normed . col ( 1 ) - mean_dst_y ;
// Find the scaling factor of each
cv : : Mat src_sq ;
cv : : pow ( src_mean_normed , 2 , src_sq ) ;
cv : : Mat dst_sq ;
cv : : pow ( dst_mean_normed , 2 , dst_sq ) ;
double s_src = sqrt ( cv : : sum ( src_sq ) [ 0 ] / n ) ;
double s_dst = sqrt ( cv : : sum ( dst_sq ) [ 0 ] / n ) ;
src_mean_normed = src_mean_normed / s_src ;
dst_mean_normed = dst_mean_normed / s_dst ;
double s = s_dst / s_src ;
// Get the rotation
cv : : Matx22d R = AlignShapesKabsch2D ( src_mean_normed , dst_mean_normed ) ;
cv : : Matx22d A ;
cv : : Mat ( s * R ) . copyTo ( A ) ;
cv : : Mat_ < double > aligned = ( cv : : Mat ( cv : : Mat ( A ) * src . t ( ) ) ) . t ( ) ;
cv : : Mat_ < double > offset = dst - aligned ;
double t_x = cv : : mean ( offset . col ( 0 ) ) [ 0 ] ;
double t_y = cv : : mean ( offset . col ( 1 ) ) [ 0 ] ;
return A ;
}
//===========================================================================
// Visualisation functions
//===========================================================================
void Project ( cv : : Mat_ < double > & dest , const cv : : Mat_ < double > & mesh , double fx , double fy , double cx , double cy )
{
dest = cv : : Mat_ < double > ( mesh . rows , 2 , 0.0 ) ;
int num_points = mesh . rows ;
double X , Y , Z ;
cv : : Mat_ < double > : : const_iterator mData = mesh . begin ( ) ;
cv : : Mat_ < double > : : iterator projected = dest . begin ( ) ;
for ( int i = 0 ; i < num_points ; i + + )
{
// Get the points
X = * ( mData + + ) ;
Y = * ( mData + + ) ;
Z = * ( mData + + ) ;
double x ;
double y ;
// if depth is 0 the projection is different
if ( Z ! = 0 )
{
x = ( ( X * fx / Z ) + cx ) ;
y = ( ( Y * fy / Z ) + cy ) ;
}
else
{
x = X ;
y = Y ;
}
// Project and store in dest matrix
( * projected + + ) = x ;
( * projected + + ) = y ;
}
}
void DrawBox ( cv : : Mat image , cv : : Vec6d pose , cv : : Scalar color , int thickness , float fx , float fy , float cx , float cy )
{
double boxVerts [ ] = { - 1 , 1 , - 1 ,
1 , 1 , - 1 ,
1 , 1 , 1 ,
- 1 , 1 , 1 ,
1 , - 1 , 1 ,
1 , - 1 , - 1 ,
- 1 , - 1 , - 1 ,
- 1 , - 1 , 1 } ;
vector < std : : pair < int , int > > edges ;
edges . push_back ( pair < int , int > ( 0 , 1 ) ) ;
edges . push_back ( pair < int , int > ( 1 , 2 ) ) ;
edges . push_back ( pair < int , int > ( 2 , 3 ) ) ;
edges . push_back ( pair < int , int > ( 0 , 3 ) ) ;
edges . push_back ( pair < int , int > ( 2 , 4 ) ) ;
edges . push_back ( pair < int , int > ( 1 , 5 ) ) ;
edges . push_back ( pair < int , int > ( 0 , 6 ) ) ;
edges . push_back ( pair < int , int > ( 3 , 7 ) ) ;
edges . push_back ( pair < int , int > ( 6 , 5 ) ) ;
edges . push_back ( pair < int , int > ( 5 , 4 ) ) ;
edges . push_back ( pair < int , int > ( 4 , 7 ) ) ;
edges . push_back ( pair < int , int > ( 7 , 6 ) ) ;
// The size of the head is roughly 200mm x 200mm x 200mm
cv : : Mat_ < double > box = cv : : Mat ( 8 , 3 , CV_64F , boxVerts ) . clone ( ) * 100 ;
cv : : Matx33d rot = LandmarkDetector : : Euler2RotationMatrix ( cv : : Vec3d ( pose [ 3 ] , pose [ 4 ] , pose [ 5 ] ) ) ;
cv : : Mat_ < double > rotBox ;
// Rotate the box
rotBox = cv : : Mat ( rot ) * box . t ( ) ;
rotBox = rotBox . t ( ) ;
// Move the bounding box to head position
rotBox . col ( 0 ) = rotBox . col ( 0 ) + pose [ 0 ] ;
rotBox . col ( 1 ) = rotBox . col ( 1 ) + pose [ 1 ] ;
rotBox . col ( 2 ) = rotBox . col ( 2 ) + pose [ 2 ] ;
// draw the lines
cv : : Mat_ < double > rotBoxProj ;
Project ( rotBoxProj , rotBox , fx , fy , cx , cy ) ;
cv : : Rect image_rect ( 0 , 0 , image . cols , image . rows ) ;
for ( size_t i = 0 ; i < edges . size ( ) ; + + i )
{
cv : : Mat_ < double > begin ;
cv : : Mat_ < double > end ;
rotBoxProj . row ( edges [ i ] . first ) . copyTo ( begin ) ;
rotBoxProj . row ( edges [ i ] . second ) . copyTo ( end ) ;
cv : : Point p1 ( ( int ) begin . at < double > ( 0 ) , ( int ) begin . at < double > ( 1 ) ) ;
cv : : Point p2 ( ( int ) end . at < double > ( 0 ) , ( int ) end . at < double > ( 1 ) ) ;
// Only draw the line if one of the points is inside the image
if ( p1 . inside ( image_rect ) | | p2 . inside ( image_rect ) )
{
2016-07-31 17:11:14 +00:00
cv : : line ( image , p1 , p2 , color , thickness , CV_AA ) ;
2016-04-28 19:40:36 +00:00
}
}
}
vector < std : : pair < cv : : Point , cv : : Point > > CalculateBox ( cv : : Vec6d pose , float fx , float fy , float cx , float cy )
{
double boxVerts [ ] = { - 1 , 1 , - 1 ,
1 , 1 , - 1 ,
1 , 1 , 1 ,
- 1 , 1 , 1 ,
1 , - 1 , 1 ,
1 , - 1 , - 1 ,
- 1 , - 1 , - 1 ,
- 1 , - 1 , 1 } ;
vector < std : : pair < int , int > > edges ;
edges . push_back ( pair < int , int > ( 0 , 1 ) ) ;
edges . push_back ( pair < int , int > ( 1 , 2 ) ) ;
edges . push_back ( pair < int , int > ( 2 , 3 ) ) ;
edges . push_back ( pair < int , int > ( 0 , 3 ) ) ;
edges . push_back ( pair < int , int > ( 2 , 4 ) ) ;
edges . push_back ( pair < int , int > ( 1 , 5 ) ) ;
edges . push_back ( pair < int , int > ( 0 , 6 ) ) ;
edges . push_back ( pair < int , int > ( 3 , 7 ) ) ;
edges . push_back ( pair < int , int > ( 6 , 5 ) ) ;
edges . push_back ( pair < int , int > ( 5 , 4 ) ) ;
edges . push_back ( pair < int , int > ( 4 , 7 ) ) ;
edges . push_back ( pair < int , int > ( 7 , 6 ) ) ;
// The size of the head is roughly 200mm x 200mm x 200mm
cv : : Mat_ < double > box = cv : : Mat ( 8 , 3 , CV_64F , boxVerts ) . clone ( ) * 100 ;
cv : : Matx33d rot = LandmarkDetector : : Euler2RotationMatrix ( cv : : Vec3d ( pose [ 3 ] , pose [ 4 ] , pose [ 5 ] ) ) ;
cv : : Mat_ < double > rotBox ;
// Rotate the box
rotBox = cv : : Mat ( rot ) * box . t ( ) ;
rotBox = rotBox . t ( ) ;
// Move the bounding box to head position
rotBox . col ( 0 ) = rotBox . col ( 0 ) + pose [ 0 ] ;
rotBox . col ( 1 ) = rotBox . col ( 1 ) + pose [ 1 ] ;
rotBox . col ( 2 ) = rotBox . col ( 2 ) + pose [ 2 ] ;
// draw the lines
cv : : Mat_ < double > rotBoxProj ;
Project ( rotBoxProj , rotBox , fx , fy , cx , cy ) ;
vector < std : : pair < cv : : Point , cv : : Point > > lines ;
for ( size_t i = 0 ; i < edges . size ( ) ; + + i )
{
cv : : Mat_ < double > begin ;
cv : : Mat_ < double > end ;
rotBoxProj . row ( edges [ i ] . first ) . copyTo ( begin ) ;
rotBoxProj . row ( edges [ i ] . second ) . copyTo ( end ) ;
cv : : Point p1 ( ( int ) begin . at < double > ( 0 ) , ( int ) begin . at < double > ( 1 ) ) ;
cv : : Point p2 ( ( int ) end . at < double > ( 0 ) , ( int ) end . at < double > ( 1 ) ) ;
lines . push_back ( pair < cv : : Point , cv : : Point > ( p1 , p2 ) ) ;
}
return lines ;
}
void DrawBox ( vector < pair < cv : : Point , cv : : Point > > lines , cv : : Mat image , cv : : Scalar color , int thickness )
{
cv : : Rect image_rect ( 0 , 0 , image . cols , image . rows ) ;
for ( size_t i = 0 ; i < lines . size ( ) ; + + i )
{
cv : : Point p1 = lines . at ( i ) . first ;
cv : : Point p2 = lines . at ( i ) . second ;
// Only draw the line if one of the points is inside the image
if ( p1 . inside ( image_rect ) | | p2 . inside ( image_rect ) )
{
2016-07-31 17:11:14 +00:00
cv : : line ( image , p1 , p2 , color , thickness , CV_AA ) ;
2016-04-28 19:40:36 +00:00
}
}
}
// Computing landmarks (to be drawn later possibly)
vector < cv : : Point2d > CalculateLandmarks ( const cv : : Mat_ < double > & shape2D , cv : : Mat_ < int > & visibilities )
{
int n = shape2D . rows / 2 ;
vector < cv : : Point2d > landmarks ;
for ( int i = 0 ; i < n ; + + i )
{
if ( visibilities . at < int > ( i ) )
{
cv : : Point2d featurePoint ( shape2D . at < double > ( i ) , shape2D . at < double > ( i + n ) ) ;
landmarks . push_back ( featurePoint ) ;
}
}
return landmarks ;
}
// Computing landmarks (to be drawn later possibly)
vector < cv : : Point2d > CalculateLandmarks ( cv : : Mat img , const cv : : Mat_ < double > & shape2D )
{
int n ;
vector < cv : : Point2d > landmarks ;
if ( shape2D . cols = = 2 )
{
n = shape2D . rows ;
}
else if ( shape2D . cols = = 1 )
{
n = shape2D . rows / 2 ;
}
for ( int i = 0 ; i < n ; + + i )
{
cv : : Point2d featurePoint ;
if ( shape2D . cols = = 1 )
{
featurePoint = cv : : Point2d ( shape2D . at < double > ( i ) , shape2D . at < double > ( i + n ) ) ;
}
else
{
featurePoint = cv : : Point2d ( shape2D . at < double > ( i , 0 ) , shape2D . at < double > ( i , 1 ) ) ;
}
landmarks . push_back ( featurePoint ) ;
}
return landmarks ;
}
// Computing landmarks (to be drawn later possibly)
vector < cv : : Point2d > CalculateLandmarks ( CLNF & clnf_model )
{
int idx = clnf_model . patch_experts . GetViewIdx ( clnf_model . params_global , 0 ) ;
// Because we only draw visible points, need to find which points patch experts consider visible at a certain orientation
return CalculateLandmarks ( clnf_model . detected_landmarks , clnf_model . patch_experts . visibilities [ 0 ] [ idx ] ) ;
}
// Drawing landmarks on a face image
void Draw ( cv : : Mat img , const cv : : Mat_ < double > & shape2D , const cv : : Mat_ < int > & visibilities )
{
int n = shape2D . rows / 2 ;
// Drawing feature points
if ( n > = 66 )
{
for ( int i = 0 ; i < n ; + + i )
{
if ( visibilities . at < int > ( i ) )
{
cv : : Point featurePoint ( ( int ) shape2D . at < double > ( i ) , ( int ) shape2D . at < double > ( i + n ) ) ;
// A rough heuristic for drawn point size
int thickness = ( int ) std : : ceil ( 3.0 * ( ( double ) img . cols ) / 640.0 ) ;
int thickness_2 = ( int ) std : : ceil ( 1.0 * ( ( double ) img . cols ) / 640.0 ) ;
2016-07-31 17:11:14 +00:00
cv : : circle ( img , featurePoint , 1 , cv : : Scalar ( 0 , 0 , 255 ) , thickness , CV_AA ) ;
cv : : circle ( img , featurePoint , 1 , cv : : Scalar ( 255 , 0 , 0 ) , thickness_2 , CV_AA ) ;
2016-04-28 19:40:36 +00:00
}
}
}
else if ( n = = 28 ) // drawing eyes
{
for ( int i = 0 ; i < n ; + + i )
{
cv : : Point featurePoint ( ( int ) shape2D . at < double > ( i ) , ( int ) shape2D . at < double > ( i + n ) ) ;
// A rough heuristic for drawn point size
int thickness = 1.0 ;
int thickness_2 = 1.0 ;
int next_point = i + 1 ;
if ( i = = 7 )
next_point = 0 ;
if ( i = = 19 )
next_point = 8 ;
if ( i = = 27 )
next_point = 20 ;
cv : : Point nextFeaturePoint ( ( int ) shape2D . at < double > ( next_point ) , ( int ) shape2D . at < double > ( next_point + n ) ) ;
if ( i < 8 | | i > 19 )
2016-07-31 17:11:14 +00:00
cv : : line ( img , featurePoint , nextFeaturePoint , cv : : Scalar ( 255 , 0 , 0 ) , thickness_2 , CV_AA ) ;
2016-04-28 19:40:36 +00:00
else
2016-07-31 17:11:14 +00:00
cv : : line ( img , featurePoint , nextFeaturePoint , cv : : Scalar ( 0 , 0 , 255 ) , thickness_2 , CV_AA ) ;
2016-04-28 19:40:36 +00:00
//cv::circle(img, featurePoint, 1, Scalar(0,255,0), thickness);
//cv::circle(img, featurePoint, 1, Scalar(0,0,255), thickness_2);
}
}
else if ( n = = 6 )
{
for ( int i = 0 ; i < n ; + + i )
{
cv : : Point featurePoint ( ( int ) shape2D . at < double > ( i ) , ( int ) shape2D . at < double > ( i + n ) ) ;
// A rough heuristic for drawn point size
int thickness = 1.0 ;
int thickness_2 = 1.0 ;
//cv::circle(img, featurePoint, 1, Scalar(0,255,0), thickness);
//cv::circle(img, featurePoint, 1, Scalar(0,0,255), thickness_2);
int next_point = i + 1 ;
if ( i = = 5 )
next_point = 0 ;
cv : : Point nextFeaturePoint ( ( int ) shape2D . at < double > ( next_point ) , ( int ) shape2D . at < double > ( next_point + n ) ) ;
2016-07-31 17:11:14 +00:00
cv : : line ( img , featurePoint , nextFeaturePoint , cv : : Scalar ( 255 , 0 , 0 ) , thickness_2 , CV_AA ) ;
2016-04-28 19:40:36 +00:00
}
}
}
// Drawing landmarks on a face image
void Draw ( cv : : Mat img , const cv : : Mat_ < double > & shape2D )
{
int n ;
if ( shape2D . cols = = 2 )
{
n = shape2D . rows ;
}
else if ( shape2D . cols = = 1 )
{
n = shape2D . rows / 2 ;
}
for ( int i = 0 ; i < n ; + + i )
{
cv : : Point featurePoint ;
if ( shape2D . cols = = 1 )
{
featurePoint = cv : : Point ( ( int ) shape2D . at < double > ( i ) , ( int ) shape2D . at < double > ( i + n ) ) ;
}
else
{
featurePoint = cv : : Point ( ( int ) shape2D . at < double > ( i , 0 ) , ( int ) shape2D . at < double > ( i , 1 ) ) ;
}
// A rough heuristic for drawn point size
int thickness = ( int ) std : : ceil ( 5.0 * ( ( double ) img . cols ) / 640.0 ) ;
int thickness_2 = ( int ) std : : ceil ( 1.5 * ( ( double ) img . cols ) / 640.0 ) ;
2016-07-31 17:11:14 +00:00
cv : : circle ( img , featurePoint , 1 , cv : : Scalar ( 0 , 0 , 255 ) , thickness , CV_AA ) ;
cv : : circle ( img , featurePoint , 1 , cv : : Scalar ( 255 , 0 , 0 ) , thickness_2 , CV_AA ) ;
2016-04-28 19:40:36 +00:00
}
}
// Drawing detected landmarks on a face image
void Draw ( cv : : Mat img , const CLNF & clnf_model )
{
int idx = clnf_model . patch_experts . GetViewIdx ( clnf_model . params_global , 0 ) ;
// Because we only draw visible points, need to find which points patch experts consider visible at a certain orientation
Draw ( img , clnf_model . detected_landmarks , clnf_model . patch_experts . visibilities [ 0 ] [ idx ] ) ;
// If the model has hierarchical updates draw those too
for ( size_t i = 0 ; i < clnf_model . hierarchical_models . size ( ) ; + + i )
{
if ( clnf_model . hierarchical_models [ i ] . pdm . NumberOfPoints ( ) ! = clnf_model . hierarchical_mapping [ i ] . size ( ) )
{
Draw ( img , clnf_model . hierarchical_models [ i ] ) ;
}
}
}
void DrawLandmarks ( cv : : Mat img , vector < cv : : Point > landmarks )
{
for ( cv : : Point p : landmarks )
{
// A rough heuristic for drawn point size
int thickness = ( int ) std : : ceil ( 5.0 * ( ( double ) img . cols ) / 640.0 ) ;
int thickness_2 = ( int ) std : : ceil ( 1.5 * ( ( double ) img . cols ) / 640.0 ) ;
2016-07-31 17:11:14 +00:00
cv : : circle ( img , p , 1 , cv : : Scalar ( 0 , 0 , 255 ) , thickness , CV_AA ) ;
cv : : circle ( img , p , 1 , cv : : Scalar ( 255 , 0 , 0 ) , thickness_2 , CV_AA ) ;
2016-04-28 19:40:36 +00:00
}
}
//===========================================================================
// Angle representation conversion helpers
//===========================================================================
// Using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign
cv : : Matx33d Euler2RotationMatrix ( const cv : : Vec3d & eulerAngles )
{
cv : : Matx33d rotation_matrix ;
double s1 = sin ( eulerAngles [ 0 ] ) ;
double s2 = sin ( eulerAngles [ 1 ] ) ;
double s3 = sin ( eulerAngles [ 2 ] ) ;
double c1 = cos ( eulerAngles [ 0 ] ) ;
double c2 = cos ( eulerAngles [ 1 ] ) ;
double c3 = cos ( eulerAngles [ 2 ] ) ;
rotation_matrix ( 0 , 0 ) = c2 * c3 ;
rotation_matrix ( 0 , 1 ) = - c2 * s3 ;
rotation_matrix ( 0 , 2 ) = s2 ;
rotation_matrix ( 1 , 0 ) = c1 * s3 + c3 * s1 * s2 ;
rotation_matrix ( 1 , 1 ) = c1 * c3 - s1 * s2 * s3 ;
rotation_matrix ( 1 , 2 ) = - c2 * s1 ;
rotation_matrix ( 2 , 0 ) = s1 * s3 - c1 * c3 * s2 ;
rotation_matrix ( 2 , 1 ) = c3 * s1 + c1 * s2 * s3 ;
rotation_matrix ( 2 , 2 ) = c1 * c2 ;
return rotation_matrix ;
}
// Using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign
cv : : Vec3d RotationMatrix2Euler ( const cv : : Matx33d & rotation_matrix )
{
double q0 = sqrt ( 1 + rotation_matrix ( 0 , 0 ) + rotation_matrix ( 1 , 1 ) + rotation_matrix ( 2 , 2 ) ) / 2.0 ;
double q1 = ( rotation_matrix ( 2 , 1 ) - rotation_matrix ( 1 , 2 ) ) / ( 4.0 * q0 ) ;
double q2 = ( rotation_matrix ( 0 , 2 ) - rotation_matrix ( 2 , 0 ) ) / ( 4.0 * q0 ) ;
double q3 = ( rotation_matrix ( 1 , 0 ) - rotation_matrix ( 0 , 1 ) ) / ( 4.0 * q0 ) ;
double t1 = 2.0 * ( q0 * q2 + q1 * q3 ) ;
double yaw = asin ( 2.0 * ( q0 * q2 + q1 * q3 ) ) ;
double pitch = atan2 ( 2.0 * ( q0 * q1 - q2 * q3 ) , q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3 ) ;
double roll = atan2 ( 2.0 * ( q0 * q3 - q1 * q2 ) , q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3 ) ;
return cv : : Vec3d ( pitch , yaw , roll ) ;
}
cv : : Vec3d Euler2AxisAngle ( const cv : : Vec3d & euler )
{
cv : : Matx33d rotMatrix = LandmarkDetector : : Euler2RotationMatrix ( euler ) ;
cv : : Vec3d axis_angle ;
cv : : Rodrigues ( rotMatrix , axis_angle ) ;
return axis_angle ;
}
cv : : Vec3d AxisAngle2Euler ( const cv : : Vec3d & axis_angle )
{
cv : : Matx33d rotation_matrix ;
cv : : Rodrigues ( axis_angle , rotation_matrix ) ;
return RotationMatrix2Euler ( rotation_matrix ) ;
}
cv : : Matx33d AxisAngle2RotationMatrix ( const cv : : Vec3d & axis_angle )
{
cv : : Matx33d rotation_matrix ;
cv : : Rodrigues ( axis_angle , rotation_matrix ) ;
return rotation_matrix ;
}
cv : : Vec3d RotationMatrix2AxisAngle ( const cv : : Matx33d & rotation_matrix )
{
cv : : Vec3d axis_angle ;
cv : : Rodrigues ( rotation_matrix , axis_angle ) ;
return axis_angle ;
}
//===========================================================================
//============================================================================
// Face detection helpers
//============================================================================
bool DetectFaces ( vector < cv : : Rect_ < double > > & o_regions , const cv : : Mat_ < uchar > & intensity )
{
cv : : CascadeClassifier classifier ( " ./classifiers/haarcascade_frontalface_alt.xml " ) ;
if ( classifier . empty ( ) )
{
cout < < " Couldn't load the Haar cascade classifier " < < endl ;
return false ;
}
else
{
return DetectFaces ( o_regions , intensity , classifier ) ;
}
}
bool DetectFaces ( vector < cv : : Rect_ < double > > & o_regions , const cv : : Mat_ < uchar > & intensity , cv : : CascadeClassifier & classifier )
{
vector < cv : : Rect > face_detections ;
classifier . detectMultiScale ( intensity , face_detections , 1.2 , 2 , 0 , cv : : Size ( 50 , 50 ) ) ;
// Convert from int bounding box do a double one with corrections
o_regions . resize ( face_detections . size ( ) ) ;
for ( size_t face = 0 ; face < o_regions . size ( ) ; + + face )
{
// OpenCV is overgenerous with face size and y location is off
// CLNF detector expects the bounding box to encompass from eyebrow to chin in y, and from cheeck outline to cheeck outline in x, so we need to compensate
// The scalings were learned using the Face Detections on LFPW, Helen, AFW and iBUG datasets, using ground truth and detections from openCV
// Correct for scale
o_regions [ face ] . width = face_detections [ face ] . width * 0.8924 ;
o_regions [ face ] . height = face_detections [ face ] . height * 0.8676 ;
// Move the face slightly to the right (as the width was made smaller)
o_regions [ face ] . x = face_detections [ face ] . x + 0.0578 * face_detections [ face ] . width ;
// Shift face down as OpenCV Haar Cascade detects the forehead as well, and we're not interested
o_regions [ face ] . y = face_detections [ face ] . y + face_detections [ face ] . height * 0.2166 ;
}
return o_regions . size ( ) > 0 ;
}
bool DetectSingleFace ( cv : : Rect_ < double > & o_region , const cv : : Mat_ < uchar > & intensity_image , cv : : CascadeClassifier & classifier , cv : : Point preference )
{
// The tracker can return multiple faces
vector < cv : : Rect_ < double > > face_detections ;
bool detect_success = LandmarkDetector : : DetectFaces ( face_detections , intensity_image , classifier ) ;
if ( detect_success )
{
bool use_preferred = ( preference . x ! = - 1 ) & & ( preference . y ! = - 1 ) ;
if ( face_detections . size ( ) > 1 )
{
// keep the closest one if preference point not set
double best = - 1 ;
int bestIndex = - 1 ;
for ( size_t i = 0 ; i < face_detections . size ( ) ; + + i )
{
double dist ;
bool better ;
if ( use_preferred )
{
dist = sqrt ( ( preference . x ) * ( face_detections [ i ] . width / 2 + face_detections [ i ] . x ) +
( preference . y ) * ( face_detections [ i ] . height / 2 + face_detections [ i ] . y ) ) ;
better = dist < best ;
}
else
{
dist = face_detections [ i ] . width ;
better = face_detections [ i ] . width > best ;
}
// Pick a closest face to preffered point or the biggest face
if ( i = = 0 | | better )
{
bestIndex = i ;
best = dist ;
}
}
o_region = face_detections [ bestIndex ] ;
}
else
{
o_region = face_detections [ 0 ] ;
}
}
else
{
// if not detected
o_region = cv : : Rect_ < double > ( 0 , 0 , 0 , 0 ) ;
}
return detect_success ;
}
bool DetectFacesHOG ( vector < cv : : Rect_ < double > > & o_regions , const cv : : Mat_ < uchar > & intensity , std : : vector < double > & confidences )
{
dlib : : frontal_face_detector detector = dlib : : get_frontal_face_detector ( ) ;
return DetectFacesHOG ( o_regions , intensity , detector , confidences ) ;
}
bool DetectFacesHOG ( vector < cv : : Rect_ < double > > & o_regions , const cv : : Mat_ < uchar > & intensity , dlib : : frontal_face_detector & detector , std : : vector < double > & o_confidences )
{
cv : : Mat_ < uchar > upsampled_intensity ;
double scaling = 1.3 ;
cv : : resize ( intensity , upsampled_intensity , cv : : Size ( ( int ) ( intensity . cols * scaling ) , ( int ) ( intensity . rows * scaling ) ) ) ;
dlib : : cv_image < uchar > cv_grayscale ( upsampled_intensity ) ;
std : : vector < dlib : : full_detection > face_detections ;
detector ( cv_grayscale , face_detections , - 0.2 ) ;
// Convert from int bounding box do a double one with corrections
o_regions . resize ( face_detections . size ( ) ) ;
o_confidences . resize ( face_detections . size ( ) ) ;
for ( size_t face = 0 ; face < o_regions . size ( ) ; + + face )
{
// CLNF expects the bounding box to encompass from eyebrow to chin in y, and from cheeck outline to cheeck outline in x, so we need to compensate
// The scalings were learned using the Face Detections on LFPW and Helen using ground truth and detections from the HOG detector
// Move the face slightly to the right (as the width was made smaller)
o_regions [ face ] . x = ( face_detections [ face ] . rect . get_rect ( ) . tl_corner ( ) . x ( ) + 0.0389 * face_detections [ face ] . rect . get_rect ( ) . width ( ) ) / scaling ;
// Shift face down as OpenCV Haar Cascade detects the forehead as well, and we're not interested
o_regions [ face ] . y = ( face_detections [ face ] . rect . get_rect ( ) . tl_corner ( ) . y ( ) + 0.1278 * face_detections [ face ] . rect . get_rect ( ) . height ( ) ) / scaling ;
// Correct for scale
o_regions [ face ] . width = ( face_detections [ face ] . rect . get_rect ( ) . width ( ) * 0.9611 ) / scaling ;
o_regions [ face ] . height = ( face_detections [ face ] . rect . get_rect ( ) . height ( ) * 0.9388 ) / scaling ;
o_confidences [ face ] = face_detections [ face ] . detection_confidence ;
}
return o_regions . size ( ) > 0 ;
}
bool DetectSingleFaceHOG ( cv : : Rect_ < double > & o_region , const cv : : Mat_ < uchar > & intensity_img , dlib : : frontal_face_detector & detector , double & confidence , cv : : Point preference )
{
// The tracker can return multiple faces
vector < cv : : Rect_ < double > > face_detections ;
vector < double > confidences ;
bool detect_success = LandmarkDetector : : DetectFacesHOG ( face_detections , intensity_img , detector , confidences ) ;
if ( detect_success )
{
bool use_preferred = ( preference . x ! = - 1 ) & & ( preference . y ! = - 1 ) ;
// keep the most confident one or the one closest to preference point if set
double best_so_far ;
if ( use_preferred )
{
best_so_far = sqrt ( ( preference . x - ( face_detections [ 0 ] . width / 2 + face_detections [ 0 ] . x ) ) * ( preference . x - ( face_detections [ 0 ] . width / 2 + face_detections [ 0 ] . x ) ) +
( preference . y - ( face_detections [ 0 ] . height / 2 + face_detections [ 0 ] . y ) ) * ( preference . y - ( face_detections [ 0 ] . height / 2 + face_detections [ 0 ] . y ) ) ) ;
}
else
{
best_so_far = confidences [ 0 ] ;
}
int bestIndex = 0 ;
for ( size_t i = 1 ; i < face_detections . size ( ) ; + + i )
{
double dist ;
bool better ;
if ( use_preferred )
{
dist = sqrt ( ( preference . x - ( face_detections [ 0 ] . width / 2 + face_detections [ 0 ] . x ) ) * ( preference . x - ( face_detections [ 0 ] . width / 2 + face_detections [ 0 ] . x ) ) +
( preference . y - ( face_detections [ 0 ] . height / 2 + face_detections [ 0 ] . y ) ) * ( preference . y - ( face_detections [ 0 ] . height / 2 + face_detections [ 0 ] . y ) ) ) ;
better = dist < best_so_far ;
}
else
{
dist = confidences [ i ] ;
better = dist > best_so_far ;
}
// Pick a closest face
if ( better )
{
best_so_far = dist ;
bestIndex = i ;
}
}
o_region = face_detections [ bestIndex ] ;
confidence = confidences [ bestIndex ] ;
}
else
{
// if not detected
o_region = cv : : Rect_ < double > ( 0 , 0 , 0 , 0 ) ;
// A completely unreliable detection (shouldn't really matter what is returned here)
confidence = - 2 ;
}
return detect_success ;
}
//============================================================================
// Matrix reading functionality
//============================================================================
// Reading in a matrix from a stream
void ReadMat ( std : : ifstream & stream , cv : : Mat & output_mat )
{
// Read in the number of rows, columns and the data type
int row , col , type ;
stream > > row > > col > > type ;
output_mat = cv : : Mat ( row , col , type ) ;
switch ( output_mat . type ( ) )
{
case CV_64FC1 :
{
cv : : MatIterator_ < double > begin_it = output_mat . begin < double > ( ) ;
cv : : MatIterator_ < double > end_it = output_mat . end < double > ( ) ;
while ( begin_it ! = end_it )
{
stream > > * begin_it + + ;
}
}
break ;
case CV_32FC1 :
{
cv : : MatIterator_ < float > begin_it = output_mat . begin < float > ( ) ;
cv : : MatIterator_ < float > end_it = output_mat . end < float > ( ) ;
while ( begin_it ! = end_it )
{
stream > > * begin_it + + ;
}
}
break ;
case CV_32SC1 :
{
cv : : MatIterator_ < int > begin_it = output_mat . begin < int > ( ) ;
cv : : MatIterator_ < int > end_it = output_mat . end < int > ( ) ;
while ( begin_it ! = end_it )
{
stream > > * begin_it + + ;
}
}
break ;
case CV_8UC1 :
{
cv : : MatIterator_ < uchar > begin_it = output_mat . begin < uchar > ( ) ;
cv : : MatIterator_ < uchar > end_it = output_mat . end < uchar > ( ) ;
while ( begin_it ! = end_it )
{
stream > > * begin_it + + ;
}
}
break ;
default :
printf ( " ERROR(%s,%d) : Unsupported Matrix type %d! \n " , __FILE__ , __LINE__ , output_mat . type ( ) ) ; abort ( ) ;
}
}
void ReadMatBin ( std : : ifstream & stream , cv : : Mat & output_mat )
{
// Read in the number of rows, columns and the data type
int row , col , type ;
stream . read ( ( char * ) & row , 4 ) ;
stream . read ( ( char * ) & col , 4 ) ;
stream . read ( ( char * ) & type , 4 ) ;
output_mat = cv : : Mat ( row , col , type ) ;
int size = output_mat . rows * output_mat . cols * output_mat . elemSize ( ) ;
stream . read ( ( char * ) output_mat . data , size ) ;
}
// Skipping lines that start with # (together with empty lines)
void SkipComments ( std : : ifstream & stream )
{
while ( stream . peek ( ) = = ' # ' | | stream . peek ( ) = = ' \n ' | | stream . peek ( ) = = ' ' | | stream . peek ( ) = = ' \r ' )
{
std : : string skipped ;
std : : getline ( stream , skipped ) ;
}
}
}