A lot of changes:
- New AU recognition models trained on extra datasets - Bosphorus, UNBC, FERA2011 - Cleaner and clearer separation of static and dynamic AU models - AU training code cleaned up and instructions added - bug fixes with median feature computation - AU prediction correction (smoothing and shifting) with post processing
This commit is contained in:
parent
146dcd5e5b
commit
2128589309
384 changed files with 1273 additions and 606 deletions
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -28,3 +28,7 @@ exe/FeatureExtraction/out_bp4d/
|
|||
x64/Debug/
|
||||
matlab_runners/Action Unit Experiments/out_unbc/
|
||||
matlab_runners/Action Unit Experiments/out_bosph/
|
||||
matlab_runners/Action Unit Experiments/out_DISFA/
|
||||
matlab_runners/Action Unit Experiments/out_fera/
|
||||
matlab_runners/Demos/output_features_seq/
|
||||
matlab_runners/Demos/output_features_vid/
|
||||
|
|
|
@ -324,12 +324,9 @@ int main (int argc, char **argv)
|
|||
|
||||
// Used for image masking
|
||||
|
||||
cv::Mat_<int> triangulation;//TODO rem?
|
||||
string tri_loc;
|
||||
if(boost::filesystem::exists(path("model/tris_68_full.txt")))
|
||||
{
|
||||
std::ifstream triangulation_file("model/tris_68_full.txt");
|
||||
LandmarkDetector::ReadMat(triangulation_file, triangulation);
|
||||
tri_loc = "model/tris_68_full.txt";
|
||||
}
|
||||
else
|
||||
|
@ -337,12 +334,7 @@ int main (int argc, char **argv)
|
|||
path loc = path(arguments[0]).parent_path() / "model/tris_68_full.txt";
|
||||
tri_loc = loc.string();
|
||||
|
||||
if(exists(loc))
|
||||
{
|
||||
std::ifstream triangulation_file(loc.string());
|
||||
LandmarkDetector::ReadMat(triangulation_file, triangulation);
|
||||
}
|
||||
else
|
||||
if(!exists(loc))
|
||||
{
|
||||
cout << "Can't find triangulation files, exiting" << endl;
|
||||
return 0;
|
||||
|
|
|
@ -15,4 +15,21 @@ svm_combined/AU_23_static.dat AU23
|
|||
svm_combined/AU_25_dynamic.dat AU25
|
||||
svm_combined/AU_26_dynamic.dat AU26
|
||||
svm_combined/AU_28_static.dat AU28
|
||||
svm_combined/AU_45_dynamic.dat AU45
|
||||
svm_combined/AU_45_dynamic.dat AU45
|
||||
svr_combined/AU_1_dynamic_intensity_comb.dat AU01
|
||||
svr_combined/AU_2_dynamic_intensity_comb.dat AU02
|
||||
svr_combined/AU_4_static_intensity_comb.dat AU04
|
||||
svr_combined/AU_5_dynamic_intensity.dat AU05
|
||||
svr_combined/AU_6_static_intensity_comb.dat AU06
|
||||
svr_combined/AU_7_static_intensity_comb.dat AU07
|
||||
svr_combined/AU_9_dynamic_intensity.dat AU09
|
||||
svr_combined/AU_10_static_intensity_comb.dat AU10
|
||||
svr_combined/AU_12_static_intensity_comb.dat AU12
|
||||
svr_combined/AU_14_static_intensity.dat AU14
|
||||
svr_combined/AU_15_dynamic_intensity_comb.dat AU15
|
||||
svr_combined/AU_17_dynamic_intensity_comb.dat AU17
|
||||
svr_combined/AU_20_dynamic_intensity.dat AU20
|
||||
svr_combined/AU_23_dynamic_intensity_comb.dat AU23
|
||||
svr_combined/AU_25_dynamic_intensity_comb.dat AU25
|
||||
svr_combined/AU_26_dynamic_intensity_comb.dat AU26
|
||||
svr_combined/AU_45_dynamic_intensity_comb.dat AU45
|
|
@ -16,7 +16,7 @@ svm_combined/AU_25_static.dat AU25
|
|||
svm_combined/AU_26_static.dat AU26
|
||||
svm_combined/AU_28_static.dat AU28
|
||||
svm_combined/AU_45_static.dat AU45
|
||||
svr_combined/AU_1_static_intensity_comb.dat AU01
|
||||
svr_combined/AU_1_static_intensity.dat AU01
|
||||
svr_combined/AU_2_static_intensity_comb.dat AU02
|
||||
svr_combined/AU_4_static_intensity_comb.dat AU04
|
||||
svr_combined/AU_5_static_intensity.dat AU05
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -124,7 +124,7 @@ public:
|
|||
|
||||
// Identify if models are static or dynamic (useful for correction and shifting)
|
||||
std::vector<bool> GetDynamicAUClass() const; // Presence
|
||||
std::vector<bool> GetDynamicAUReg() const; // Intensity
|
||||
std::vector<std::pair<string, bool>> FaceAnalyser::GetDynamicAUReg() const; // Intensity
|
||||
|
||||
|
||||
void ExtractAllPredictionsOfflineReg(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps, bool dynamic);
|
||||
|
|
|
@ -89,6 +89,11 @@ public:
|
|||
return AU_names;
|
||||
}
|
||||
|
||||
std::vector<double> GetCutoffs() const
|
||||
{
|
||||
return cutoffs;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
// The names of Action Units this model is responsible for
|
||||
|
@ -101,6 +106,9 @@ private:
|
|||
cv::Mat_<double> support_vectors;
|
||||
cv::Mat_<double> biases;
|
||||
|
||||
// For AU callibration (see the OpenFace paper)
|
||||
std::vector<double> cutoffs;
|
||||
|
||||
};
|
||||
//===========================================================================
|
||||
}
|
||||
|
|
|
@ -92,12 +92,11 @@ FaceAnalyser::FaceAnalyser(vector<cv::Vec3d> orientation_bins, double scale, int
|
|||
align_height = height;
|
||||
|
||||
// Initialise the histograms that will represent bins from 0 - 1 (as HoG values are only stored as those)
|
||||
// Set the number of bins for the histograms
|
||||
num_bins_hog = 600;
|
||||
num_bins_hog = 1000;
|
||||
max_val_hog = 1;
|
||||
min_val_hog = 0;
|
||||
min_val_hog = -0.005;
|
||||
|
||||
// The geometry histogram ranges from -3 to 3
|
||||
// The geometry histogram ranges from -60 to 60
|
||||
num_bins_geom = 10000;
|
||||
max_val_geom = 60;
|
||||
min_val_geom = -60;
|
||||
|
@ -186,19 +185,19 @@ std::vector<bool> FaceAnalyser::GetDynamicAUClass() const
|
|||
return au_dynamic_class;
|
||||
}
|
||||
|
||||
std::vector<bool> FaceAnalyser::GetDynamicAUReg() const
|
||||
std::vector<std::pair<string, bool>> FaceAnalyser::GetDynamicAUReg() const
|
||||
{
|
||||
std::vector<bool> au_dynamic_reg;
|
||||
std::vector<std::pair<string, bool>> au_dynamic_reg;
|
||||
std::vector<std::string> au_reg_names_stat = AU_SVR_static_appearance_lin_regressors.GetAUNames();
|
||||
std::vector<std::string> au_reg_names_dyn = AU_SVR_dynamic_appearance_lin_regressors.GetAUNames();
|
||||
|
||||
for (size_t i = 0; i < au_reg_names_stat.size(); ++i)
|
||||
{
|
||||
au_dynamic_reg.push_back(false);
|
||||
au_dynamic_reg.push_back(std::pair<string, bool>(au_reg_names_stat[i], false));
|
||||
}
|
||||
for (size_t i = 0; i < au_reg_names_dyn.size(); ++i)
|
||||
{
|
||||
au_dynamic_reg.push_back(true);
|
||||
au_dynamic_reg.push_back(std::pair<string, bool>(au_reg_names_dyn[i], true));
|
||||
}
|
||||
|
||||
return au_dynamic_reg;
|
||||
|
@ -384,7 +383,7 @@ void FaceAnalyser::AddNextFrame(const cv::Mat& frame, const LandmarkDetector::CL
|
|||
// Extract HOG descriptor from the frame and convert it to a useable format
|
||||
cv::Mat_<double> hog_descriptor;
|
||||
Extract_FHOG_descriptor(hog_descriptor, aligned_face, this->num_hog_rows, this->num_hog_cols);
|
||||
|
||||
|
||||
// Store the descriptor
|
||||
hog_desc_frame = hog_descriptor;
|
||||
|
||||
|
@ -396,11 +395,23 @@ void FaceAnalyser::AddNextFrame(const cv::Mat& frame, const LandmarkDetector::CL
|
|||
bool update_median = true;
|
||||
|
||||
// TODO test if this would be useful or not
|
||||
//if(!this->AU_predictions.empty())
|
||||
//if(!this->AU_predictions_reg.empty())
|
||||
//{
|
||||
// for(size_t i = 0; i < this->AU_predictions.size(); ++i)
|
||||
// vector<pair<string, bool>> dyns = this->GetDynamicAUReg();
|
||||
|
||||
// for(size_t i = 0; i < this->AU_predictions_reg.size(); ++i)
|
||||
// {
|
||||
// if(this->AU_predictions[i].second > 1)
|
||||
// bool stat = false;
|
||||
// for (size_t n = 0; n < dyns.size(); ++n)
|
||||
// {
|
||||
// if (dyns[n].first.compare(AU_predictions_reg[i].first) == 0)
|
||||
// {
|
||||
// stat = !dyns[i].second;
|
||||
// }
|
||||
// }
|
||||
|
||||
// // If static predictor above 1.5 assume it's not a neutral face
|
||||
// if(this->AU_predictions_reg[i].second > 1.5 && stat)
|
||||
// {
|
||||
// update_median = false;
|
||||
// break;
|
||||
|
@ -417,7 +428,9 @@ void FaceAnalyser::AddNextFrame(const cv::Mat& frame, const LandmarkDetector::CL
|
|||
if(frames_tracking % 2 == 1)
|
||||
{
|
||||
UpdateRunningMedian(this->hog_desc_hist[orientation_to_use], this->hog_hist_sum[orientation_to_use], this->hog_desc_median, hog_descriptor, update_median, this->num_bins_hog, this->min_val_hog, this->max_val_hog);
|
||||
this->hog_desc_median.setTo(0, this->hog_desc_median < 0);
|
||||
}
|
||||
|
||||
// Geom descriptor and its median
|
||||
geom_descriptor_frame = clnf_model.params_local.t();
|
||||
|
||||
|
@ -608,7 +621,7 @@ void FaceAnalyser::PostprocessPredictions()
|
|||
int success_ind = 0;
|
||||
int all_ind = 0;
|
||||
int all_frames_size = timestamps.size();
|
||||
|
||||
|
||||
while(all_ind < all_frames_size && success_ind < max_init_frames)
|
||||
{
|
||||
|
||||
|
@ -619,13 +632,14 @@ void FaceAnalyser::PostprocessPredictions()
|
|||
this->geom_descriptor_frame = geom_descriptor_frames_init[success_ind];
|
||||
|
||||
// Perform AU prediction
|
||||
auto AU_predictions_reg = PredictCurrentAUs(views[success_ind]);
|
||||
auto AU_predictions_reg = PredictCurrentAUs(views[success_ind]);
|
||||
|
||||
// Modify the predictions to the historic data
|
||||
for (size_t au = 0; au < AU_predictions_reg.size(); ++au)
|
||||
{
|
||||
// Find the appropriate AU (if not found add it)
|
||||
AU_predictions_reg_all_hist[AU_predictions_reg[au].first][all_ind] = AU_predictions_reg[au].second;
|
||||
|
||||
}
|
||||
|
||||
auto AU_predictions_class = PredictCurrentAUsClass(views[success_ind]);
|
||||
|
@ -659,7 +673,10 @@ void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector<std::pair<std::string,
|
|||
vector<double> offsets;
|
||||
confidences = this->confidences;
|
||||
successes = this->valid_preds;
|
||||
|
||||
vector<string> dyn_au_names = AU_SVR_dynamic_appearance_lin_regressors.GetAUNames();
|
||||
|
||||
// Allow these AUs to be person calirated based on expected number of neutral frames (learned from the data)
|
||||
for(auto au_iter = AU_predictions_reg_all_hist.begin(); au_iter != AU_predictions_reg_all_hist.end(); ++au_iter)
|
||||
{
|
||||
vector<double> au_good;
|
||||
|
@ -685,11 +702,33 @@ void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector<std::pair<std::string,
|
|||
else
|
||||
{
|
||||
std::sort(au_good.begin(), au_good.end());
|
||||
offsets.push_back(au_good.at((int)au_good.size() / 4));
|
||||
// If it is a dynamic AU regressor we can also do some prediction shifting to make it more accurate
|
||||
// The shifting proportion is learned and is callen cutoff
|
||||
|
||||
// Find the current id of the AU and the corresponding cutoff
|
||||
int au_id = -1;
|
||||
for (int a = 0; a < dyn_au_names.size(); ++a)
|
||||
{
|
||||
if (au_name.compare(dyn_au_names[a]) == 0)
|
||||
{
|
||||
au_id = a;
|
||||
}
|
||||
}
|
||||
|
||||
if (au_id != -1 && AU_SVR_dynamic_appearance_lin_regressors.GetCutoffs()[au_id] != -1)
|
||||
{
|
||||
double cutoff = AU_SVR_dynamic_appearance_lin_regressors.GetCutoffs()[au_id];
|
||||
offsets.push_back(au_good.at((int)au_good.size() * cutoff));
|
||||
}
|
||||
else
|
||||
{
|
||||
offsets.push_back(0);
|
||||
}
|
||||
}
|
||||
|
||||
aus_valid.push_back(au_good);
|
||||
}
|
||||
|
||||
|
||||
// sort each of the aus and adjust the dynamic ones
|
||||
for(size_t au = 0; au < au_predictions.size(); ++au)
|
||||
{
|
||||
|
@ -708,7 +747,7 @@ void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector<std::pair<std::string,
|
|||
|
||||
if(au_predictions[au].second[frame] > 5)
|
||||
au_predictions[au].second[frame] = 5;
|
||||
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -728,7 +767,7 @@ void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector<std::pair<std::string,
|
|||
for (size_t i = (window_size - 1) / 2; i < au_iter->second.size() - (window_size - 1) / 2; ++i)
|
||||
{
|
||||
double sum = 0;
|
||||
for (int w = -(window_size - 1) / 2; w < (window_size - 1) / 2; ++w)
|
||||
for (int w = -(window_size - 1) / 2; w <= (window_size - 1) / 2; ++w)
|
||||
{
|
||||
sum += au_vals_tmp[i + w];
|
||||
}
|
||||
|
@ -739,7 +778,6 @@ void FaceAnalyser::ExtractAllPredictionsOfflineReg(vector<std::pair<std::string,
|
|||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
void FaceAnalyser::ExtractAllPredictionsOfflineClass(vector<std::pair<std::string, vector<double>>>& au_predictions, vector<double>& confidences, vector<bool>& successes, vector<double>& timestamps, bool dynamic)
|
||||
|
@ -763,7 +801,7 @@ void FaceAnalyser::ExtractAllPredictionsOfflineClass(vector<std::pair<std::strin
|
|||
for (size_t i = (window_size - 1)/2; i < au_vals.size() - (window_size - 1) / 2; ++i)
|
||||
{
|
||||
double sum = 0;
|
||||
for (int w = -(window_size - 1) / 2; w < (window_size - 1) / 2; ++w)
|
||||
for (int w = -(window_size - 1) / 2; w <= (window_size - 1) / 2; ++w)
|
||||
{
|
||||
sum += au_vals_tmp[i + w];
|
||||
}
|
||||
|
@ -856,7 +894,6 @@ void FaceAnalyser::UpdateRunningMedian(cv::Mat_<unsigned int>& histogram, int& h
|
|||
converted_descriptor.setTo(cv::Scalar(num_bins-1), converted_descriptor > num_bins - 1);
|
||||
converted_descriptor.setTo(cv::Scalar(0), converted_descriptor < 0);
|
||||
|
||||
// Only count the median till a certain number of frame seen?
|
||||
for(int i = 0; i < histogram.rows; ++i)
|
||||
{
|
||||
int index = (int)converted_descriptor.at<double>(i);
|
||||
|
@ -883,9 +920,9 @@ void FaceAnalyser::UpdateRunningMedian(cv::Mat_<unsigned int>& histogram, int& h
|
|||
for(int j = 0; j < histogram.cols; ++j)
|
||||
{
|
||||
cummulative_sum += histogram.at<unsigned int>(i, j);
|
||||
if(cummulative_sum > cutoff_point)
|
||||
if(cummulative_sum >= cutoff_point)
|
||||
{
|
||||
median.at<double>(i) = min_val + j * (length/num_bins) + (0.5*(length)/num_bins);
|
||||
median.at<double>(i) = min_val + ((double)j) * (length/((double)num_bins)) + (0.5*(length)/ ((double)num_bins));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -953,7 +990,7 @@ vector<pair<string, double>> FaceAnalyser::PredictCurrentAUs(int view)
|
|||
vector<string> svr_lin_dyn_aus;
|
||||
vector<double> svr_lin_dyn_preds;
|
||||
|
||||
AU_SVR_dynamic_appearance_lin_regressors.Predict(svr_lin_dyn_preds, svr_lin_dyn_aus, hog_desc_frame, geom_descriptor_frame, this->hog_desc_median, this->geom_descriptor_frame);
|
||||
AU_SVR_dynamic_appearance_lin_regressors.Predict(svr_lin_dyn_preds, svr_lin_dyn_aus, hog_desc_frame, geom_descriptor_frame, this->hog_desc_median, this->geom_descriptor_median);
|
||||
|
||||
for(size_t i = 0; i < svr_lin_dyn_preds.size(); ++i)
|
||||
{
|
||||
|
@ -996,7 +1033,6 @@ vector<pair<string, double>> FaceAnalyser::CorrectOnlineAUs(std::vector<std::pai
|
|||
for(size_t i = 0; i < predictions.size(); ++i)
|
||||
{
|
||||
// First establish presence (assume it is maximum as we have not seen max)
|
||||
// TODO this could be more robust by removing some outliers, or by doing it only for certain AUs?
|
||||
if(predictions[i].second > 1)
|
||||
{
|
||||
double scaling_curr = 5.0 / predictions[i].second;
|
||||
|
|
|
@ -249,7 +249,7 @@ namespace FaceAnalysis
|
|||
|
||||
for(size_t i = 0; i < aligned_face_channels.size(); ++i)
|
||||
{
|
||||
aligned_face_channels[i] = aligned_face_channels[i].mul(paw.pixel_mask);
|
||||
cv::multiply(aligned_face_channels[i], paw.pixel_mask, aligned_face_channels[i], 1.0, CV_8U);
|
||||
}
|
||||
|
||||
if(aligned_face.channels() == 3)
|
||||
|
|
|
@ -64,7 +64,13 @@ using namespace FaceAnalysis;
|
|||
|
||||
void SVR_dynamic_lin_regressors::Read(std::ifstream& stream, const std::vector<std::string>& au_names)
|
||||
{
|
||||
|
||||
// For person specific calibration in a video
|
||||
double cutoff;
|
||||
stream.read((char*)&cutoff, 8);
|
||||
cutoffs.push_back(cutoff);
|
||||
|
||||
// The feature normalization using the mean
|
||||
if(this->means.empty())
|
||||
{
|
||||
LandmarkDetector::ReadMatBin(stream, this->means);
|
||||
|
@ -115,7 +121,6 @@ void SVR_dynamic_lin_regressors::Predict(std::vector<double>& predictions, std::
|
|||
{
|
||||
if(AU_names.size() > 0)
|
||||
{
|
||||
|
||||
cv::Mat_<double> preds;
|
||||
if(fhog_descriptor.cols == this->means.cols)
|
||||
{
|
||||
|
@ -136,7 +141,7 @@ void SVR_dynamic_lin_regressors::Predict(std::vector<double>& predictions, std::
|
|||
{
|
||||
predictions.push_back(*pred_it);
|
||||
}
|
||||
|
||||
|
||||
names = this->AU_names;
|
||||
}
|
||||
}
|
|
@ -632,12 +632,6 @@ bool CLNF::DetectLandmarks(const cv::Mat_<uchar> &image, const cv::Mat_<float> &
|
|||
// Do the actual landmark detection
|
||||
hierarchical_models[part_model].DetectLandmarks(image, depth, hierarchical_params[part_model]);
|
||||
|
||||
// Reincorporate the models into main tracker
|
||||
for (size_t mapping_ind = 0; mapping_ind < mappings.size(); ++mapping_ind)
|
||||
{
|
||||
detected_landmarks.at<double>(mappings[mapping_ind].first) = hierarchical_models[part_model].detected_landmarks.at<double>(mappings[mapping_ind].second);
|
||||
detected_landmarks.at<double>(mappings[mapping_ind].first + pdm.NumberOfPoints()) = hierarchical_models[part_model].detected_landmarks.at<double>(mappings[mapping_ind].second + hierarchical_models[part_model].pdm.NumberOfPoints());
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -650,9 +644,28 @@ bool CLNF::DetectLandmarks(const cv::Mat_<uchar> &image, const cv::Mat_<float> &
|
|||
// Recompute main model based on the fit part models
|
||||
if(parts_used)
|
||||
{
|
||||
|
||||
for (int part_model = 0; part_model < hierarchical_models.size(); ++part_model)
|
||||
{
|
||||
vector<pair<int, int>> mappings = this->hierarchical_mapping[part_model];
|
||||
|
||||
if (!((hierarchical_model_names[part_model].compare("right_eye_28") == 0 ||
|
||||
hierarchical_model_names[part_model].compare("left_eye_28") == 0)
|
||||
&& !params.track_gaze))
|
||||
{
|
||||
// Reincorporate the models into main tracker
|
||||
for (size_t mapping_ind = 0; mapping_ind < mappings.size(); ++mapping_ind)
|
||||
{
|
||||
detected_landmarks.at<double>(mappings[mapping_ind].first) = hierarchical_models[part_model].detected_landmarks.at<double>(mappings[mapping_ind].second);
|
||||
detected_landmarks.at<double>(mappings[mapping_ind].first + pdm.NumberOfPoints()) = hierarchical_models[part_model].detected_landmarks.at<double>(mappings[mapping_ind].second + hierarchical_models[part_model].pdm.NumberOfPoints());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pdm.CalcParams(params_global, params_local, detected_landmarks);
|
||||
pdm.CalcShape2D(detected_landmarks, params_local, params_global);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Check detection correctness
|
||||
|
|
|
@ -384,7 +384,7 @@ void get_image_input_output_params(vector<string> &input_image_files, vector<str
|
|||
path image_loc(input_image_files[i]);
|
||||
|
||||
path fname = image_loc.filename();
|
||||
fname = fname.replace_extension("jpg");
|
||||
fname = fname.replace_extension("bmp");
|
||||
output_image_files.push_back(out_img_dir + "/" + fname.string());
|
||||
|
||||
}
|
||||
|
|
|
@ -1,11 +0,0 @@
|
|||
AU1 class, Precision - 0.470, Recall - 0.527, F1 - 0.497
|
||||
AU2 class, Precision - 0.371, Recall - 0.376, F1 - 0.373
|
||||
AU4 class, Precision - 0.422, Recall - 0.570, F1 - 0.485
|
||||
AU6 class, Precision - 0.845, Recall - 0.698, F1 - 0.765
|
||||
AU7 class, Precision - 0.719, Recall - 0.766, F1 - 0.742
|
||||
AU10 class, Precision - 0.811, Recall - 0.801, F1 - 0.806
|
||||
AU12 class, Precision - 0.902, Recall - 0.780, F1 - 0.837
|
||||
AU14 class, Precision - 0.513, Recall - 0.874, F1 - 0.647
|
||||
AU15 class, Precision - 0.406, Recall - 0.431, F1 - 0.418
|
||||
AU17 class, Precision - 0.638, Recall - 0.615, F1 - 0.626
|
||||
AU23 class, Precision - 0.357, Recall - 0.507, F1 - 0.419
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Reference in a new issue