1553 lines
45 KiB
C++
1553 lines
45 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////
|
|||
|
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
|
|||
|
// all rights reserved.
|
|||
|
//
|
|||
|
// THIS SOFTWARE IS PROVIDED <20>AS IS<49> FOR ACADEMIC USE ONLY AND ANY EXPRESS
|
|||
|
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|||
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|||
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
|
|||
|
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
|
|||
|
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|||
|
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|||
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|||
|
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|||
|
// POSSIBILITY OF SUCH DAMAGE.
|
|||
|
//
|
|||
|
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
|
|||
|
// of the Software may be covered by so-called <20>open source<63> software licenses (<28>Open Source
|
|||
|
// Components<74>), which means any software licenses approved as open source licenses by the
|
|||
|
// Open Source Initiative or any substantially similar licenses, including without limitation any
|
|||
|
// license that, as a condition of distribution of the software licensed under such license,
|
|||
|
// requires that the distributor make the software available in source code format. Licensor shall
|
|||
|
// provide a list of Open Source Components for a particular version of the Software upon
|
|||
|
// Licensee<65>s request. Licensee will comply with the applicable terms of such licenses and to
|
|||
|
// the extent required by the licenses covering Open Source Components, the terms of such
|
|||
|
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
|
|||
|
// licenses applicable to Open Source Components prohibit any of the restrictions in this
|
|||
|
// License Agreement with respect to such Open Source Component, such restrictions will not
|
|||
|
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
|
|||
|
// Open Source Components require Licensor to make an offer to provide source code or
|
|||
|
// related information in connection with the Software, such offer is hereby made. Any request
|
|||
|
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
|
|||
|
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
|
|||
|
// delivery of the Software.
|
|||
|
|
|||
|
// * Any publications arising from the use of this software, including but
|
|||
|
// not limited to academic journal and conference publications, technical
|
|||
|
// reports and manuals, must cite at least one of the following works:
|
|||
|
//
|
|||
|
// OpenFace: an open source facial behavior analysis toolkit
|
|||
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
|
|||
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|||
|
//
|
|||
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|||
|
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|||
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|||
|
//
|
|||
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|||
|
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
|
|||
|
// in Facial Expression Recognition and Analysis Challenge,
|
|||
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|||
|
//
|
|||
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|||
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
|
|||
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|||
|
//
|
|||
|
///////////////////////////////////////////////////////////////////////////////
|
|||
|
|
|||
|
#include "stdafx.h"
|
|||
|
|
|||
|
#include <LandmarkDetectorUtils.h>
|
|||
|
|
|||
|
// OpenCV includes
|
|||
|
#include <opencv2/core/core.hpp>
|
|||
|
#include <opencv2/imgproc.hpp>
|
|||
|
#include <opencv2/calib3d.hpp>
|
|||
|
|
|||
|
// Boost includes
|
|||
|
#include <filesystem.hpp>
|
|||
|
#include <filesystem/fstream.hpp>
|
|||
|
|
|||
|
using namespace boost::filesystem;
|
|||
|
|
|||
|
using namespace std;
|
|||
|
|
|||
|
namespace LandmarkDetector
|
|||
|
{
|
|||
|
|
|||
|
// Useful utility for creating directories for storing the output files
|
|||
|
void create_directory_from_file(string output_path)
|
|||
|
{
|
|||
|
|
|||
|
// Creating the right directory structure
|
|||
|
|
|||
|
// First get rid of the file
|
|||
|
auto p = path(path(output_path).parent_path());
|
|||
|
|
|||
|
if(!p.empty() && !boost::filesystem::exists(p))
|
|||
|
{
|
|||
|
bool success = boost::filesystem::create_directories(p);
|
|||
|
if(!success)
|
|||
|
{
|
|||
|
cout << "Failed to create a directory... " << p.string() << endl;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Useful utility for creating directories for storing the output files
|
|||
|
void create_directories(string output_path)
|
|||
|
{
|
|||
|
|
|||
|
// Creating the right directory structure
|
|||
|
|
|||
|
// First get rid of the file
|
|||
|
auto p = path(output_path);
|
|||
|
|
|||
|
if(!p.empty() && !boost::filesystem::exists(p))
|
|||
|
{
|
|||
|
bool success = boost::filesystem::create_directories(p);
|
|||
|
if(!success)
|
|||
|
{
|
|||
|
cout << "Failed to create a directory... " << p.string() << endl;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Extracting the following command line arguments -f, -fd, -op, -of, -ov (and possible ordered repetitions)
|
|||
|
void get_video_input_output_params(vector<string> &input_video_files, vector<string> &depth_dirs,
|
|||
|
vector<string> &output_files, vector<string> &output_video_files, bool& world_coordinates_pose, vector<string> &arguments)
|
|||
|
{
|
|||
|
bool* valid = new bool[arguments.size()];
|
|||
|
|
|||
|
for(size_t i = 0; i < arguments.size(); ++i)
|
|||
|
{
|
|||
|
valid[i] = true;
|
|||
|
}
|
|||
|
|
|||
|
// By default use rotation with respect to camera (not world coordinates)
|
|||
|
world_coordinates_pose = false;
|
|||
|
|
|||
|
string root = "";
|
|||
|
// First check if there is a root argument (so that videos and outputs could be defined more easilly)
|
|||
|
for(size_t i = 0; i < arguments.size(); ++i)
|
|||
|
{
|
|||
|
if (arguments[i].compare("-root") == 0)
|
|||
|
{
|
|||
|
root = arguments[i + 1];
|
|||
|
// Do not discard root as it might be used in other later steps
|
|||
|
i++;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for(size_t i = 0; i < arguments.size(); ++i)
|
|||
|
{
|
|||
|
if (arguments[i].compare("-f") == 0)
|
|||
|
{
|
|||
|
input_video_files.push_back(root + arguments[i + 1]);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-fd") == 0)
|
|||
|
{
|
|||
|
depth_dirs.push_back(root + arguments[i + 1]);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-of") == 0)
|
|||
|
{
|
|||
|
output_files.push_back(root + arguments[i + 1]);
|
|||
|
create_directory_from_file(root + arguments[i + 1]);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-ov") == 0)
|
|||
|
{
|
|||
|
output_video_files.push_back(root + arguments[i + 1]);
|
|||
|
create_directory_from_file(root + arguments[i + 1]);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-world_coord") == 0)
|
|||
|
{
|
|||
|
world_coordinates_pose = true;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for(int i=arguments.size()-1; i >= 0; --i)
|
|||
|
{
|
|||
|
if(!valid[i])
|
|||
|
{
|
|||
|
arguments.erase(arguments.begin()+i);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
void get_camera_params(int &device, float &fx, float &fy, float &cx, float &cy, vector<string> &arguments)
|
|||
|
{
|
|||
|
bool* valid = new bool[arguments.size()];
|
|||
|
|
|||
|
for(size_t i=0; i < arguments.size(); ++i)
|
|||
|
{
|
|||
|
valid[i] = true;
|
|||
|
if (arguments[i].compare("-fx") == 0)
|
|||
|
{
|
|||
|
stringstream data(arguments[i+1]);
|
|||
|
data >> fx;
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-fy") == 0)
|
|||
|
{
|
|||
|
stringstream data(arguments[i+1]);
|
|||
|
data >> fy;
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-cx") == 0)
|
|||
|
{
|
|||
|
stringstream data(arguments[i+1]);
|
|||
|
data >> cx;
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-cy") == 0)
|
|||
|
{
|
|||
|
stringstream data(arguments[i+1]);
|
|||
|
data >> cy;
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-device") == 0)
|
|||
|
{
|
|||
|
stringstream data(arguments[i+1]);
|
|||
|
data >> device;
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for(int i=arguments.size()-1; i >= 0; --i)
|
|||
|
{
|
|||
|
if(!valid[i])
|
|||
|
{
|
|||
|
arguments.erase(arguments.begin()+i);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void get_image_input_output_params(vector<string> &input_image_files, vector<string> &input_depth_files, vector<string> &output_feature_files, vector<string> &output_pose_files, vector<string> &output_image_files,
|
|||
|
vector<cv::Rect_<double>> &input_bounding_boxes, vector<string> &arguments)
|
|||
|
{
|
|||
|
bool* valid = new bool[arguments.size()];
|
|||
|
|
|||
|
string out_pts_dir, out_pose_dir, out_img_dir;
|
|||
|
|
|||
|
for(size_t i = 0; i < arguments.size(); ++i)
|
|||
|
{
|
|||
|
valid[i] = true;
|
|||
|
if (arguments[i].compare("-f") == 0)
|
|||
|
{
|
|||
|
input_image_files.push_back(arguments[i + 1]);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-fd") == 0)
|
|||
|
{
|
|||
|
input_depth_files.push_back(arguments[i + 1]);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-fdir") == 0)
|
|||
|
{
|
|||
|
|
|||
|
// parse the -fdir directory by reading in all of the .png and .jpg files in it
|
|||
|
path image_directory (arguments[i+1]);
|
|||
|
|
|||
|
try
|
|||
|
{
|
|||
|
// does the file exist and is it a directory
|
|||
|
if (exists(image_directory) && is_directory(image_directory))
|
|||
|
{
|
|||
|
|
|||
|
vector<path> file_in_directory;
|
|||
|
copy(directory_iterator(image_directory), directory_iterator(), back_inserter(file_in_directory));
|
|||
|
|
|||
|
// Sort the images in the directory first
|
|||
|
sort(file_in_directory.begin(), file_in_directory.end());
|
|||
|
|
|||
|
for (vector<path>::const_iterator file_iterator (file_in_directory.begin()); file_iterator != file_in_directory.end(); ++file_iterator)
|
|||
|
{
|
|||
|
// Possible image extension .jpg and .png
|
|||
|
if(file_iterator->extension().string().compare(".jpg") == 0 || file_iterator->extension().string().compare(".png") == 0 || file_iterator->extension().string().compare(".bmp") == 0)
|
|||
|
{
|
|||
|
|
|||
|
|
|||
|
input_image_files.push_back(file_iterator->string());
|
|||
|
|
|||
|
// If there exists a .txt file corresponding to the image, it is assumed that it contains a bounding box definition for a face
|
|||
|
// [minx, miny, maxx, maxy]
|
|||
|
path current_file = *file_iterator;
|
|||
|
path bbox = current_file.replace_extension("txt");
|
|||
|
|
|||
|
// If there is a bounding box file push it to the list of bounding boxes
|
|||
|
if(exists(bbox))
|
|||
|
{
|
|||
|
|
|||
|
std::ifstream in_bbox(bbox.string().c_str(), ios_base::in);
|
|||
|
|
|||
|
double min_x, min_y, max_x, max_y;
|
|||
|
|
|||
|
in_bbox >> min_x >> min_y >> max_x >> max_y;
|
|||
|
|
|||
|
in_bbox.close();
|
|||
|
|
|||
|
input_bounding_boxes.push_back(cv::Rect_<double>(min_x, min_y, max_x - min_x, max_y - min_y));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
catch (const filesystem_error& ex)
|
|||
|
{
|
|||
|
cout << ex.what() << '\n';
|
|||
|
}
|
|||
|
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-ofdir") == 0)
|
|||
|
{
|
|||
|
out_pts_dir = arguments[i + 1];
|
|||
|
create_directories(out_pts_dir);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-opdir") == 0)
|
|||
|
{
|
|||
|
out_pose_dir = arguments[i + 1];
|
|||
|
create_directories(out_pose_dir);
|
|||
|
valid[i] = false;
|
|||
|
valid[i + 1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-oidir") == 0)
|
|||
|
{
|
|||
|
out_img_dir = arguments[i + 1];
|
|||
|
create_directories(out_img_dir);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-op") == 0)
|
|||
|
{
|
|||
|
output_pose_files.push_back(arguments[i + 1]);
|
|||
|
valid[i] = false;
|
|||
|
valid[i + 1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-of") == 0)
|
|||
|
{
|
|||
|
output_feature_files.push_back(arguments[i + 1]);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
else if (arguments[i].compare("-oi") == 0)
|
|||
|
{
|
|||
|
output_image_files.push_back(arguments[i + 1]);
|
|||
|
valid[i] = false;
|
|||
|
valid[i+1] = false;
|
|||
|
i++;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// If any output directories are defined populate them based on image names
|
|||
|
if(!out_img_dir.empty())
|
|||
|
{
|
|||
|
for(size_t i=0; i < input_image_files.size(); ++i)
|
|||
|
{
|
|||
|
path image_loc(input_image_files[i]);
|
|||
|
|
|||
|
path fname = image_loc.filename();
|
|||
|
fname = fname.replace_extension("jpg");
|
|||
|
output_image_files.push_back(out_img_dir + "/" + fname.string());
|
|||
|
|
|||
|
}
|
|||
|
if(!input_image_files.empty())
|
|||
|
{
|
|||
|
create_directory_from_file(output_image_files[0]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if(!out_pts_dir.empty())
|
|||
|
{
|
|||
|
for(size_t i=0; i < input_image_files.size(); ++i)
|
|||
|
{
|
|||
|
path image_loc(input_image_files[i]);
|
|||
|
|
|||
|
path fname = image_loc.filename();
|
|||
|
fname = fname.replace_extension("pts");
|
|||
|
output_feature_files.push_back(out_pts_dir + "/" + fname.string());
|
|||
|
}
|
|||
|
create_directory_from_file(output_feature_files[0]);
|
|||
|
}
|
|||
|
|
|||
|
if (!out_pose_dir.empty())
|
|||
|
{
|
|||
|
for (size_t i = 0; i < input_image_files.size(); ++i)
|
|||
|
{
|
|||
|
path image_loc(input_image_files[i]);
|
|||
|
|
|||
|
path fname = image_loc.filename();
|
|||
|
fname = fname.replace_extension("pose");
|
|||
|
output_pose_files.push_back(out_pose_dir + "/" + fname.string());
|
|||
|
}
|
|||
|
create_directory_from_file(output_pose_files[0]);
|
|||
|
}
|
|||
|
|
|||
|
// Make sure the same number of images and bounding boxes is present, if any bounding boxes are defined
|
|||
|
if(input_bounding_boxes.size() > 0)
|
|||
|
{
|
|||
|
assert(input_bounding_boxes.size() == input_image_files.size());
|
|||
|
}
|
|||
|
|
|||
|
// Clear up the argument list
|
|||
|
for(int i=arguments.size()-1; i >= 0; --i)
|
|||
|
{
|
|||
|
if(!valid[i])
|
|||
|
{
|
|||
|
arguments.erase(arguments.begin()+i);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
//===========================================================================
|
|||
|
// Fast patch expert response computation (linear model across a ROI) using normalised cross-correlation
|
|||
|
//===========================================================================
|
|||
|
|
|||
|
void crossCorr_m( const cv::Mat_<float>& img, cv::Mat_<double>& img_dft, const cv::Mat_<float>& _templ, map<int, cv::Mat_<double> >& _templ_dfts, cv::Mat_<float>& corr)
|
|||
|
{
|
|||
|
// Our model will always be under min block size so can ignore this
|
|||
|
//const double blockScale = 4.5;
|
|||
|
//const int minBlockSize = 256;
|
|||
|
|
|||
|
int maxDepth = CV_64F;
|
|||
|
|
|||
|
cv::Size dftsize;
|
|||
|
|
|||
|
dftsize.width = cv::getOptimalDFTSize(corr.cols + _templ.cols - 1);
|
|||
|
dftsize.height = cv::getOptimalDFTSize(corr.rows + _templ.rows - 1);
|
|||
|
|
|||
|
// Compute block size
|
|||
|
cv::Size blocksize;
|
|||
|
blocksize.width = dftsize.width - _templ.cols + 1;
|
|||
|
blocksize.width = MIN( blocksize.width, corr.cols );
|
|||
|
blocksize.height = dftsize.height - _templ.rows + 1;
|
|||
|
blocksize.height = MIN( blocksize.height, corr.rows );
|
|||
|
|
|||
|
cv::Mat_<double> dftTempl;
|
|||
|
|
|||
|
// if this has not been precomputed, precompute it, otherwise use it
|
|||
|
if(_templ_dfts.find(dftsize.width) == _templ_dfts.end())
|
|||
|
{
|
|||
|
dftTempl.create(dftsize.height, dftsize.width);
|
|||
|
|
|||
|
cv::Mat_<float> src = _templ;
|
|||
|
|
|||
|
cv::Mat_<double> dst(dftTempl, cv::Rect(0, 0, dftsize.width, dftsize.height));
|
|||
|
|
|||
|
cv::Mat_<double> dst1(dftTempl, cv::Rect(0, 0, _templ.cols, _templ.rows));
|
|||
|
|
|||
|
if( dst1.data != src.data )
|
|||
|
src.convertTo(dst1, dst1.depth());
|
|||
|
|
|||
|
if( dst.cols > _templ.cols )
|
|||
|
{
|
|||
|
cv::Mat_<double> part(dst, cv::Range(0, _templ.rows), cv::Range(_templ.cols, dst.cols));
|
|||
|
part.setTo(0);
|
|||
|
}
|
|||
|
|
|||
|
// Perform DFT of the template
|
|||
|
dft(dst, dst, 0, _templ.rows);
|
|||
|
|
|||
|
_templ_dfts[dftsize.width] = dftTempl;
|
|||
|
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// use the precomputed version
|
|||
|
dftTempl = _templ_dfts.find(dftsize.width)->second;
|
|||
|
}
|
|||
|
|
|||
|
cv::Size bsz(std::min(blocksize.width, corr.cols), std::min(blocksize.height, corr.rows));
|
|||
|
cv::Mat src;
|
|||
|
|
|||
|
cv::Mat cdst(corr, cv::Rect(0, 0, bsz.width, bsz.height));
|
|||
|
|
|||
|
cv::Mat_<double> dftImg;
|
|||
|
|
|||
|
if(img_dft.empty())
|
|||
|
{
|
|||
|
dftImg.create(dftsize);
|
|||
|
dftImg.setTo(0.0);
|
|||
|
|
|||
|
cv::Size dsz(bsz.width + _templ.cols - 1, bsz.height + _templ.rows - 1);
|
|||
|
|
|||
|
int x2 = std::min(img.cols, dsz.width);
|
|||
|
int y2 = std::min(img.rows, dsz.height);
|
|||
|
|
|||
|
cv::Mat src0(img, cv::Range(0, y2), cv::Range(0, x2));
|
|||
|
cv::Mat dst(dftImg, cv::Rect(0, 0, dsz.width, dsz.height));
|
|||
|
cv::Mat dst1(dftImg, cv::Rect(0, 0, x2, y2));
|
|||
|
|
|||
|
src = src0;
|
|||
|
|
|||
|
if( dst1.data != src.data )
|
|||
|
src.convertTo(dst1, dst1.depth());
|
|||
|
|
|||
|
dft( dftImg, dftImg, 0, dsz.height );
|
|||
|
img_dft = dftImg.clone();
|
|||
|
}
|
|||
|
|
|||
|
cv::Mat dftTempl1(dftTempl, cv::Rect(0, 0, dftsize.width, dftsize.height));
|
|||
|
cv::mulSpectrums(img_dft, dftTempl1, dftImg, 0, true);
|
|||
|
cv::dft( dftImg, dftImg, cv::DFT_INVERSE + cv::DFT_SCALE, bsz.height );
|
|||
|
|
|||
|
src = dftImg(cv::Rect(0, 0, bsz.width, bsz.height));
|
|||
|
|
|||
|
src.convertTo(cdst, CV_32F);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|||
|
|
|||
|
void matchTemplate_m( const cv::Mat_<float>& input_img, cv::Mat_<double>& img_dft, cv::Mat& _integral_img, cv::Mat& _integral_img_sq, const cv::Mat_<float>& templ, map<int, cv::Mat_<double> >& templ_dfts, cv::Mat_<float>& result, int method )
|
|||
|
{
|
|||
|
|
|||
|
int numType = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 :
|
|||
|
method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED ? 1 : 2;
|
|||
|
bool isNormed = method == CV_TM_CCORR_NORMED ||
|
|||
|
method == CV_TM_SQDIFF_NORMED ||
|
|||
|
method == CV_TM_CCOEFF_NORMED;
|
|||
|
|
|||
|
// Assume result is defined properly
|
|||
|
if(result.empty())
|
|||
|
{
|
|||
|
cv::Size corrSize(input_img.cols - templ.cols + 1, input_img.rows - templ.rows + 1);
|
|||
|
result.create(corrSize);
|
|||
|
}
|
|||
|
LandmarkDetector::crossCorr_m( input_img, img_dft, templ, templ_dfts, result);
|
|||
|
|
|||
|
if( method == CV_TM_CCORR )
|
|||
|
return;
|
|||
|
|
|||
|
double invArea = 1./((double)templ.rows * templ.cols);
|
|||
|
|
|||
|
cv::Mat sum, sqsum;
|
|||
|
cv::Scalar templMean, templSdv;
|
|||
|
double *q0 = 0, *q1 = 0, *q2 = 0, *q3 = 0;
|
|||
|
double templNorm = 0, templSum2 = 0;
|
|||
|
|
|||
|
if( method == CV_TM_CCOEFF )
|
|||
|
{
|
|||
|
// If it has not been precomputed compute it now
|
|||
|
if(_integral_img.empty())
|
|||
|
{
|
|||
|
integral(input_img, _integral_img, CV_64F);
|
|||
|
}
|
|||
|
sum = _integral_img;
|
|||
|
|
|||
|
templMean = cv::mean(templ);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// If it has not been precomputed compute it now
|
|||
|
if(_integral_img.empty())
|
|||
|
{
|
|||
|
integral(input_img, _integral_img, _integral_img_sq, CV_64F);
|
|||
|
}
|
|||
|
|
|||
|
sum = _integral_img;
|
|||
|
sqsum = _integral_img_sq;
|
|||
|
|
|||
|
meanStdDev( templ, templMean, templSdv );
|
|||
|
|
|||
|
templNorm = templSdv[0]*templSdv[0] + templSdv[1]*templSdv[1] + templSdv[2]*templSdv[2] + templSdv[3]*templSdv[3];
|
|||
|
|
|||
|
if( templNorm < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED )
|
|||
|
{
|
|||
|
result.setTo(1.0);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
templSum2 = templNorm + templMean[0]*templMean[0] + templMean[1]*templMean[1] + templMean[2]*templMean[2] + templMean[3]*templMean[3];
|
|||
|
|
|||
|
if( numType != 1 )
|
|||
|
{
|
|||
|
templMean = cv::Scalar::all(0);
|
|||
|
templNorm = templSum2;
|
|||
|
}
|
|||
|
|
|||
|
templSum2 /= invArea;
|
|||
|
templNorm = std::sqrt(templNorm);
|
|||
|
templNorm /= std::sqrt(invArea); // care of accuracy here
|
|||
|
|
|||
|
q0 = (double*)sqsum.data;
|
|||
|
q1 = q0 + templ.cols;
|
|||
|
q2 = (double*)(sqsum.data + templ.rows*sqsum.step);
|
|||
|
q3 = q2 + templ.cols;
|
|||
|
}
|
|||
|
|
|||
|
double* p0 = (double*)sum.data;
|
|||
|
double* p1 = p0 + templ.cols;
|
|||
|
double* p2 = (double*)(sum.data + templ.rows*sum.step);
|
|||
|
double* p3 = p2 + templ.cols;
|
|||
|
|
|||
|
int sumstep = sum.data ? (int)(sum.step / sizeof(double)) : 0;
|
|||
|
int sqstep = sqsum.data ? (int)(sqsum.step / sizeof(double)) : 0;
|
|||
|
|
|||
|
int i, j;
|
|||
|
|
|||
|
for( i = 0; i < result.rows; i++ )
|
|||
|
{
|
|||
|
float* rrow = result.ptr<float>(i);
|
|||
|
int idx = i * sumstep;
|
|||
|
int idx2 = i * sqstep;
|
|||
|
|
|||
|
for( j = 0; j < result.cols; j++, idx += 1, idx2 += 1 )
|
|||
|
{
|
|||
|
double num = rrow[j], t;
|
|||
|
double wndMean2 = 0, wndSum2 = 0;
|
|||
|
|
|||
|
if( numType == 1 )
|
|||
|
{
|
|||
|
|
|||
|
t = p0[idx] - p1[idx] - p2[idx] + p3[idx];
|
|||
|
wndMean2 += t*t;
|
|||
|
num -= t*templMean[0];
|
|||
|
|
|||
|
wndMean2 *= invArea;
|
|||
|
}
|
|||
|
|
|||
|
if( isNormed || numType == 2 )
|
|||
|
{
|
|||
|
|
|||
|
t = q0[idx2] - q1[idx2] - q2[idx2] + q3[idx2];
|
|||
|
wndSum2 += t;
|
|||
|
|
|||
|
if( numType == 2 )
|
|||
|
{
|
|||
|
num = wndSum2 - 2*num + templSum2;
|
|||
|
num = MAX(num, 0.);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if( isNormed )
|
|||
|
{
|
|||
|
t = std::sqrt(MAX(wndSum2 - wndMean2,0))*templNorm;
|
|||
|
if( fabs(num) < t )
|
|||
|
num /= t;
|
|||
|
else if( fabs(num) < t*1.125 )
|
|||
|
num = num > 0 ? 1 : -1;
|
|||
|
else
|
|||
|
num = method != CV_TM_SQDIFF_NORMED ? 0 : 1;
|
|||
|
}
|
|||
|
|
|||
|
rrow[j] = (float)num;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
//===========================================================================
|
|||
|
// Point set and landmark manipulation functions
|
|||
|
//===========================================================================
|
|||
|
// Using Kabsch's algorithm for aligning shapes
|
|||
|
//This assumes that align_from and align_to are already mean normalised
|
|||
|
cv::Matx22d AlignShapesKabsch2D(const cv::Mat_<double>& align_from, const cv::Mat_<double>& align_to )
|
|||
|
{
|
|||
|
|
|||
|
cv::SVD svd(align_from.t() * align_to);
|
|||
|
|
|||
|
// make sure no reflection is there
|
|||
|
// corr ensures that we do only rotaitons and not reflections
|
|||
|
double d = cv::determinant(svd.vt.t() * svd.u.t());
|
|||
|
|
|||
|
cv::Matx22d corr = cv::Matx22d::eye();
|
|||
|
if(d > 0)
|
|||
|
{
|
|||
|
corr(1,1) = 1;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
corr(1,1) = -1;
|
|||
|
}
|
|||
|
|
|||
|
cv::Matx22d R;
|
|||
|
cv::Mat(svd.vt.t()*cv::Mat(corr)*svd.u.t()).copyTo(R);
|
|||
|
|
|||
|
return R;
|
|||
|
}
|
|||
|
|
|||
|
//=============================================================================
|
|||
|
// Basically Kabsch's algorithm but also allows the collection of points to be different in scale from each other
|
|||
|
cv::Matx22d AlignShapesWithScale(cv::Mat_<double>& src, cv::Mat_<double> dst)
|
|||
|
{
|
|||
|
int n = src.rows;
|
|||
|
|
|||
|
// First we mean normalise both src and dst
|
|||
|
double mean_src_x = cv::mean(src.col(0))[0];
|
|||
|
double mean_src_y = cv::mean(src.col(1))[0];
|
|||
|
|
|||
|
double mean_dst_x = cv::mean(dst.col(0))[0];
|
|||
|
double mean_dst_y = cv::mean(dst.col(1))[0];
|
|||
|
|
|||
|
cv::Mat_<double> src_mean_normed = src.clone();
|
|||
|
src_mean_normed.col(0) = src_mean_normed.col(0) - mean_src_x;
|
|||
|
src_mean_normed.col(1) = src_mean_normed.col(1) - mean_src_y;
|
|||
|
|
|||
|
cv::Mat_<double> dst_mean_normed = dst.clone();
|
|||
|
dst_mean_normed.col(0) = dst_mean_normed.col(0) - mean_dst_x;
|
|||
|
dst_mean_normed.col(1) = dst_mean_normed.col(1) - mean_dst_y;
|
|||
|
|
|||
|
// Find the scaling factor of each
|
|||
|
cv::Mat src_sq;
|
|||
|
cv::pow(src_mean_normed, 2, src_sq);
|
|||
|
|
|||
|
cv::Mat dst_sq;
|
|||
|
cv::pow(dst_mean_normed, 2, dst_sq);
|
|||
|
|
|||
|
double s_src = sqrt(cv::sum(src_sq)[0]/n);
|
|||
|
double s_dst = sqrt(cv::sum(dst_sq)[0]/n);
|
|||
|
|
|||
|
src_mean_normed = src_mean_normed / s_src;
|
|||
|
dst_mean_normed = dst_mean_normed / s_dst;
|
|||
|
|
|||
|
double s = s_dst / s_src;
|
|||
|
|
|||
|
// Get the rotation
|
|||
|
cv::Matx22d R = AlignShapesKabsch2D(src_mean_normed, dst_mean_normed);
|
|||
|
|
|||
|
cv::Matx22d A;
|
|||
|
cv::Mat(s * R).copyTo(A);
|
|||
|
|
|||
|
cv::Mat_<double> aligned = (cv::Mat(cv::Mat(A) * src.t())).t();
|
|||
|
cv::Mat_<double> offset = dst - aligned;
|
|||
|
|
|||
|
double t_x = cv::mean(offset.col(0))[0];
|
|||
|
double t_y = cv::mean(offset.col(1))[0];
|
|||
|
|
|||
|
return A;
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
//===========================================================================
|
|||
|
// Visualisation functions
|
|||
|
//===========================================================================
|
|||
|
void Project(cv::Mat_<double>& dest, const cv::Mat_<double>& mesh, double fx, double fy, double cx, double cy)
|
|||
|
{
|
|||
|
dest = cv::Mat_<double>(mesh.rows,2, 0.0);
|
|||
|
|
|||
|
int num_points = mesh.rows;
|
|||
|
|
|||
|
double X, Y, Z;
|
|||
|
|
|||
|
|
|||
|
cv::Mat_<double>::const_iterator mData = mesh.begin();
|
|||
|
cv::Mat_<double>::iterator projected = dest.begin();
|
|||
|
|
|||
|
for(int i = 0;i < num_points; i++)
|
|||
|
{
|
|||
|
// Get the points
|
|||
|
X = *(mData++);
|
|||
|
Y = *(mData++);
|
|||
|
Z = *(mData++);
|
|||
|
|
|||
|
double x;
|
|||
|
double y;
|
|||
|
|
|||
|
// if depth is 0 the projection is different
|
|||
|
if(Z != 0)
|
|||
|
{
|
|||
|
x = ((X * fx / Z) + cx);
|
|||
|
y = ((Y * fy / Z) + cy);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
x = X;
|
|||
|
y = Y;
|
|||
|
}
|
|||
|
|
|||
|
// Project and store in dest matrix
|
|||
|
(*projected++) = x;
|
|||
|
(*projected++) = y;
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
void DrawBox(cv::Mat image, cv::Vec6d pose, cv::Scalar color, int thickness, float fx, float fy, float cx, float cy)
|
|||
|
{
|
|||
|
double boxVerts[] = {-1, 1, -1,
|
|||
|
1, 1, -1,
|
|||
|
1, 1, 1,
|
|||
|
-1, 1, 1,
|
|||
|
1, -1, 1,
|
|||
|
1, -1, -1,
|
|||
|
-1, -1, -1,
|
|||
|
-1, -1, 1};
|
|||
|
|
|||
|
vector<std::pair<int,int>> edges;
|
|||
|
edges.push_back(pair<int,int>(0,1));
|
|||
|
edges.push_back(pair<int,int>(1,2));
|
|||
|
edges.push_back(pair<int,int>(2,3));
|
|||
|
edges.push_back(pair<int,int>(0,3));
|
|||
|
edges.push_back(pair<int,int>(2,4));
|
|||
|
edges.push_back(pair<int,int>(1,5));
|
|||
|
edges.push_back(pair<int,int>(0,6));
|
|||
|
edges.push_back(pair<int,int>(3,7));
|
|||
|
edges.push_back(pair<int,int>(6,5));
|
|||
|
edges.push_back(pair<int,int>(5,4));
|
|||
|
edges.push_back(pair<int,int>(4,7));
|
|||
|
edges.push_back(pair<int,int>(7,6));
|
|||
|
|
|||
|
// The size of the head is roughly 200mm x 200mm x 200mm
|
|||
|
cv::Mat_<double> box = cv::Mat(8, 3, CV_64F, boxVerts).clone() * 100;
|
|||
|
|
|||
|
cv::Matx33d rot = LandmarkDetector::Euler2RotationMatrix(cv::Vec3d(pose[3], pose[4], pose[5]));
|
|||
|
cv::Mat_<double> rotBox;
|
|||
|
|
|||
|
// Rotate the box
|
|||
|
rotBox = cv::Mat(rot) * box.t();
|
|||
|
rotBox = rotBox.t();
|
|||
|
|
|||
|
// Move the bounding box to head position
|
|||
|
rotBox.col(0) = rotBox.col(0) + pose[0];
|
|||
|
rotBox.col(1) = rotBox.col(1) + pose[1];
|
|||
|
rotBox.col(2) = rotBox.col(2) + pose[2];
|
|||
|
|
|||
|
// draw the lines
|
|||
|
cv::Mat_<double> rotBoxProj;
|
|||
|
Project(rotBoxProj, rotBox, fx, fy, cx, cy);
|
|||
|
|
|||
|
cv::Rect image_rect(0,0,image.cols, image.rows);
|
|||
|
|
|||
|
for (size_t i = 0; i < edges.size(); ++i)
|
|||
|
{
|
|||
|
cv::Mat_<double> begin;
|
|||
|
cv::Mat_<double> end;
|
|||
|
|
|||
|
rotBoxProj.row(edges[i].first).copyTo(begin);
|
|||
|
rotBoxProj.row(edges[i].second).copyTo(end);
|
|||
|
|
|||
|
cv::Point p1((int)begin.at<double>(0), (int)begin.at<double>(1));
|
|||
|
cv::Point p2((int)end.at<double>(0), (int)end.at<double>(1));
|
|||
|
|
|||
|
// Only draw the line if one of the points is inside the image
|
|||
|
if(p1.inside(image_rect) || p2.inside(image_rect))
|
|||
|
{
|
|||
|
cv::line(image, p1, p2, color, thickness);
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
vector<std::pair<cv::Point, cv::Point>> CalculateBox(cv::Vec6d pose, float fx, float fy, float cx, float cy)
|
|||
|
{
|
|||
|
double boxVerts[] = {-1, 1, -1,
|
|||
|
1, 1, -1,
|
|||
|
1, 1, 1,
|
|||
|
-1, 1, 1,
|
|||
|
1, -1, 1,
|
|||
|
1, -1, -1,
|
|||
|
-1, -1, -1,
|
|||
|
-1, -1, 1};
|
|||
|
|
|||
|
vector<std::pair<int,int>> edges;
|
|||
|
edges.push_back(pair<int,int>(0,1));
|
|||
|
edges.push_back(pair<int,int>(1,2));
|
|||
|
edges.push_back(pair<int,int>(2,3));
|
|||
|
edges.push_back(pair<int,int>(0,3));
|
|||
|
edges.push_back(pair<int,int>(2,4));
|
|||
|
edges.push_back(pair<int,int>(1,5));
|
|||
|
edges.push_back(pair<int,int>(0,6));
|
|||
|
edges.push_back(pair<int,int>(3,7));
|
|||
|
edges.push_back(pair<int,int>(6,5));
|
|||
|
edges.push_back(pair<int,int>(5,4));
|
|||
|
edges.push_back(pair<int,int>(4,7));
|
|||
|
edges.push_back(pair<int,int>(7,6));
|
|||
|
|
|||
|
// The size of the head is roughly 200mm x 200mm x 200mm
|
|||
|
cv::Mat_<double> box = cv::Mat(8, 3, CV_64F, boxVerts).clone() * 100;
|
|||
|
|
|||
|
cv::Matx33d rot = LandmarkDetector::Euler2RotationMatrix(cv::Vec3d(pose[3], pose[4], pose[5]));
|
|||
|
cv::Mat_<double> rotBox;
|
|||
|
|
|||
|
// Rotate the box
|
|||
|
rotBox = cv::Mat(rot) * box.t();
|
|||
|
rotBox = rotBox.t();
|
|||
|
|
|||
|
// Move the bounding box to head position
|
|||
|
rotBox.col(0) = rotBox.col(0) + pose[0];
|
|||
|
rotBox.col(1) = rotBox.col(1) + pose[1];
|
|||
|
rotBox.col(2) = rotBox.col(2) + pose[2];
|
|||
|
|
|||
|
// draw the lines
|
|||
|
cv::Mat_<double> rotBoxProj;
|
|||
|
Project(rotBoxProj, rotBox, fx, fy, cx, cy);
|
|||
|
|
|||
|
vector<std::pair<cv::Point, cv::Point>> lines;
|
|||
|
|
|||
|
for (size_t i = 0; i < edges.size(); ++i)
|
|||
|
{
|
|||
|
cv::Mat_<double> begin;
|
|||
|
cv::Mat_<double> end;
|
|||
|
|
|||
|
rotBoxProj.row(edges[i].first).copyTo(begin);
|
|||
|
rotBoxProj.row(edges[i].second).copyTo(end);
|
|||
|
|
|||
|
cv::Point p1((int)begin.at<double>(0), (int)begin.at<double>(1));
|
|||
|
cv::Point p2((int)end.at<double>(0), (int)end.at<double>(1));
|
|||
|
|
|||
|
lines.push_back(pair<cv::Point, cv::Point>(p1,p2));
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
return lines;
|
|||
|
}
|
|||
|
|
|||
|
void DrawBox(vector<pair<cv::Point, cv::Point>> lines, cv::Mat image, cv::Scalar color, int thickness)
|
|||
|
{
|
|||
|
cv::Rect image_rect(0,0,image.cols, image.rows);
|
|||
|
|
|||
|
for (size_t i = 0; i < lines.size(); ++i)
|
|||
|
{
|
|||
|
cv::Point p1 = lines.at(i).first;
|
|||
|
cv::Point p2 = lines.at(i).second;
|
|||
|
// Only draw the line if one of the points is inside the image
|
|||
|
if(p1.inside(image_rect) || p2.inside(image_rect))
|
|||
|
{
|
|||
|
cv::line(image, p1, p2, color, thickness);
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
// Computing landmarks (to be drawn later possibly)
|
|||
|
vector<cv::Point2d> CalculateLandmarks(const cv::Mat_<double>& shape2D, cv::Mat_<int>& visibilities)
|
|||
|
{
|
|||
|
int n = shape2D.rows/2;
|
|||
|
vector<cv::Point2d> landmarks;
|
|||
|
|
|||
|
for( int i = 0; i < n; ++i)
|
|||
|
{
|
|||
|
if(visibilities.at<int>(i))
|
|||
|
{
|
|||
|
cv::Point2d featurePoint(shape2D.at<double>(i), shape2D.at<double>(i +n));
|
|||
|
|
|||
|
landmarks.push_back(featurePoint);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return landmarks;
|
|||
|
}
|
|||
|
|
|||
|
// Computing landmarks (to be drawn later possibly)
|
|||
|
vector<cv::Point2d> CalculateLandmarks(cv::Mat img, const cv::Mat_<double>& shape2D)
|
|||
|
{
|
|||
|
|
|||
|
int n;
|
|||
|
vector<cv::Point2d> landmarks;
|
|||
|
|
|||
|
if(shape2D.cols == 2)
|
|||
|
{
|
|||
|
n = shape2D.rows;
|
|||
|
}
|
|||
|
else if(shape2D.cols == 1)
|
|||
|
{
|
|||
|
n = shape2D.rows/2;
|
|||
|
}
|
|||
|
|
|||
|
for( int i = 0; i < n; ++i)
|
|||
|
{
|
|||
|
cv::Point2d featurePoint;
|
|||
|
if(shape2D.cols == 1)
|
|||
|
{
|
|||
|
featurePoint = cv::Point2d(shape2D.at<double>(i), shape2D.at<double>(i +n));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
featurePoint = cv::Point2d(shape2D.at<double>(i, 0), shape2D.at<double>(i, 1));
|
|||
|
}
|
|||
|
|
|||
|
landmarks.push_back(featurePoint);
|
|||
|
}
|
|||
|
|
|||
|
return landmarks;
|
|||
|
}
|
|||
|
|
|||
|
// Computing landmarks (to be drawn later possibly)
|
|||
|
vector<cv::Point2d> CalculateLandmarks(CLNF& clnf_model)
|
|||
|
{
|
|||
|
|
|||
|
int idx = clnf_model.patch_experts.GetViewIdx(clnf_model.params_global, 0);
|
|||
|
|
|||
|
// Because we only draw visible points, need to find which points patch experts consider visible at a certain orientation
|
|||
|
return CalculateLandmarks(clnf_model.detected_landmarks, clnf_model.patch_experts.visibilities[0][idx]);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
// Drawing landmarks on a face image
|
|||
|
void Draw(cv::Mat img, const cv::Mat_<double>& shape2D, const cv::Mat_<int>& visibilities)
|
|||
|
{
|
|||
|
int n = shape2D.rows/2;
|
|||
|
|
|||
|
// Drawing feature points
|
|||
|
if(n >= 66)
|
|||
|
{
|
|||
|
for( int i = 0; i < n; ++i)
|
|||
|
{
|
|||
|
if(visibilities.at<int>(i))
|
|||
|
{
|
|||
|
cv::Point featurePoint((int)shape2D.at<double>(i), (int)shape2D.at<double>(i +n));
|
|||
|
|
|||
|
// A rough heuristic for drawn point size
|
|||
|
int thickness = (int)std::ceil(3.0* ((double)img.cols) / 640.0);
|
|||
|
int thickness_2 = (int)std::ceil(1.0* ((double)img.cols) / 640.0);
|
|||
|
|
|||
|
cv::circle(img, featurePoint, 1, cv::Scalar(0,0,255), thickness);
|
|||
|
cv::circle(img, featurePoint, 1, cv::Scalar(255,0,0), thickness_2);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else if(n == 28) // drawing eyes
|
|||
|
{
|
|||
|
for( int i = 0; i < n; ++i)
|
|||
|
{
|
|||
|
cv::Point featurePoint((int)shape2D.at<double>(i), (int)shape2D.at<double>(i +n));
|
|||
|
|
|||
|
// A rough heuristic for drawn point size
|
|||
|
int thickness = 1.0;
|
|||
|
int thickness_2 = 1.0;
|
|||
|
|
|||
|
int next_point = i + 1;
|
|||
|
if(i == 7)
|
|||
|
next_point = 0;
|
|||
|
if(i == 19)
|
|||
|
next_point = 8;
|
|||
|
if(i == 27)
|
|||
|
next_point = 20;
|
|||
|
|
|||
|
cv::Point nextFeaturePoint((int)shape2D.at<double>(next_point), (int)shape2D.at<double>(next_point+n));
|
|||
|
if( i < 8 || i > 19)
|
|||
|
cv::line(img, featurePoint, nextFeaturePoint, cv::Scalar(255, 0, 0), thickness_2);
|
|||
|
else
|
|||
|
cv::line(img, featurePoint, nextFeaturePoint, cv::Scalar(0, 0, 255), thickness_2);
|
|||
|
|
|||
|
//cv::circle(img, featurePoint, 1, Scalar(0,255,0), thickness);
|
|||
|
//cv::circle(img, featurePoint, 1, Scalar(0,0,255), thickness_2);
|
|||
|
|
|||
|
|
|||
|
}
|
|||
|
}
|
|||
|
else if(n == 6)
|
|||
|
{
|
|||
|
for( int i = 0; i < n; ++i)
|
|||
|
{
|
|||
|
cv::Point featurePoint((int)shape2D.at<double>(i), (int)shape2D.at<double>(i +n));
|
|||
|
|
|||
|
// A rough heuristic for drawn point size
|
|||
|
int thickness = 1.0;
|
|||
|
int thickness_2 = 1.0;
|
|||
|
|
|||
|
//cv::circle(img, featurePoint, 1, Scalar(0,255,0), thickness);
|
|||
|
//cv::circle(img, featurePoint, 1, Scalar(0,0,255), thickness_2);
|
|||
|
|
|||
|
int next_point = i + 1;
|
|||
|
if(i == 5)
|
|||
|
next_point = 0;
|
|||
|
|
|||
|
cv::Point nextFeaturePoint((int)shape2D.at<double>(next_point), (int)shape2D.at<double>(next_point+n));
|
|||
|
cv::line(img, featurePoint, nextFeaturePoint, cv::Scalar(255, 0, 0), thickness_2);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Drawing landmarks on a face image
|
|||
|
void Draw(cv::Mat img, const cv::Mat_<double>& shape2D)
|
|||
|
{
|
|||
|
|
|||
|
int n;
|
|||
|
|
|||
|
if(shape2D.cols == 2)
|
|||
|
{
|
|||
|
n = shape2D.rows;
|
|||
|
}
|
|||
|
else if(shape2D.cols == 1)
|
|||
|
{
|
|||
|
n = shape2D.rows/2;
|
|||
|
}
|
|||
|
|
|||
|
for( int i = 0; i < n; ++i)
|
|||
|
{
|
|||
|
cv::Point featurePoint;
|
|||
|
if(shape2D.cols == 1)
|
|||
|
{
|
|||
|
featurePoint = cv::Point((int)shape2D.at<double>(i), (int)shape2D.at<double>(i +n));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
featurePoint = cv::Point((int)shape2D.at<double>(i, 0), (int)shape2D.at<double>(i, 1));
|
|||
|
}
|
|||
|
// A rough heuristic for drawn point size
|
|||
|
int thickness = (int)std::ceil(5.0* ((double)img.cols) / 640.0);
|
|||
|
int thickness_2 = (int)std::ceil(1.5* ((double)img.cols) / 640.0);
|
|||
|
|
|||
|
cv::circle(img, featurePoint, 1, cv::Scalar(0,0,255), thickness);
|
|||
|
cv::circle(img, featurePoint, 1, cv::Scalar(255,0,0), thickness_2);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
// Drawing detected landmarks on a face image
|
|||
|
void Draw(cv::Mat img, const CLNF& clnf_model)
|
|||
|
{
|
|||
|
|
|||
|
int idx = clnf_model.patch_experts.GetViewIdx(clnf_model.params_global, 0);
|
|||
|
|
|||
|
// Because we only draw visible points, need to find which points patch experts consider visible at a certain orientation
|
|||
|
Draw(img, clnf_model.detected_landmarks, clnf_model.patch_experts.visibilities[0][idx]);
|
|||
|
|
|||
|
// If the model has hierarchical updates draw those too
|
|||
|
for(size_t i = 0; i < clnf_model.hierarchical_models.size(); ++i)
|
|||
|
{
|
|||
|
if(clnf_model.hierarchical_models[i].pdm.NumberOfPoints() != clnf_model.hierarchical_mapping[i].size())
|
|||
|
{
|
|||
|
Draw(img, clnf_model.hierarchical_models[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void DrawLandmarks(cv::Mat img, vector<cv::Point> landmarks)
|
|||
|
{
|
|||
|
for(cv::Point p : landmarks)
|
|||
|
{
|
|||
|
// A rough heuristic for drawn point size
|
|||
|
int thickness = (int)std::ceil(5.0* ((double)img.cols) / 640.0);
|
|||
|
int thickness_2 = (int)std::ceil(1.5* ((double)img.cols) / 640.0);
|
|||
|
|
|||
|
cv::circle(img, p, 1, cv::Scalar(0,0,255), thickness);
|
|||
|
cv::circle(img, p, 1, cv::Scalar(255,0,0), thickness_2);
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
//===========================================================================
|
|||
|
// Angle representation conversion helpers
|
|||
|
//===========================================================================
|
|||
|
|
|||
|
// Using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign
|
|||
|
cv::Matx33d Euler2RotationMatrix(const cv::Vec3d& eulerAngles)
|
|||
|
{
|
|||
|
cv::Matx33d rotation_matrix;
|
|||
|
|
|||
|
double s1 = sin(eulerAngles[0]);
|
|||
|
double s2 = sin(eulerAngles[1]);
|
|||
|
double s3 = sin(eulerAngles[2]);
|
|||
|
|
|||
|
double c1 = cos(eulerAngles[0]);
|
|||
|
double c2 = cos(eulerAngles[1]);
|
|||
|
double c3 = cos(eulerAngles[2]);
|
|||
|
|
|||
|
rotation_matrix(0,0) = c2 * c3;
|
|||
|
rotation_matrix(0,1) = -c2 *s3;
|
|||
|
rotation_matrix(0,2) = s2;
|
|||
|
rotation_matrix(1,0) = c1 * s3 + c3 * s1 * s2;
|
|||
|
rotation_matrix(1,1) = c1 * c3 - s1 * s2 * s3;
|
|||
|
rotation_matrix(1,2) = -c2 * s1;
|
|||
|
rotation_matrix(2,0) = s1 * s3 - c1 * c3 * s2;
|
|||
|
rotation_matrix(2,1) = c3 * s1 + c1 * s2 * s3;
|
|||
|
rotation_matrix(2,2) = c1 * c2;
|
|||
|
|
|||
|
return rotation_matrix;
|
|||
|
}
|
|||
|
|
|||
|
// Using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign
|
|||
|
cv::Vec3d RotationMatrix2Euler(const cv::Matx33d& rotation_matrix)
|
|||
|
{
|
|||
|
double q0 = sqrt( 1 + rotation_matrix(0,0) + rotation_matrix(1,1) + rotation_matrix(2,2) ) / 2.0;
|
|||
|
double q1 = (rotation_matrix(2,1) - rotation_matrix(1,2)) / (4.0*q0) ;
|
|||
|
double q2 = (rotation_matrix(0,2) - rotation_matrix(2,0)) / (4.0*q0) ;
|
|||
|
double q3 = (rotation_matrix(1,0) - rotation_matrix(0,1)) / (4.0*q0) ;
|
|||
|
|
|||
|
double t1 = 2.0 * (q0*q2 + q1*q3);
|
|||
|
|
|||
|
double yaw = asin(2.0 * (q0*q2 + q1*q3));
|
|||
|
double pitch= atan2(2.0 * (q0*q1-q2*q3), q0*q0-q1*q1-q2*q2+q3*q3);
|
|||
|
double roll = atan2(2.0 * (q0*q3-q1*q2), q0*q0+q1*q1-q2*q2-q3*q3);
|
|||
|
|
|||
|
return cv::Vec3d(pitch, yaw, roll);
|
|||
|
}
|
|||
|
|
|||
|
cv::Vec3d Euler2AxisAngle(const cv::Vec3d& euler)
|
|||
|
{
|
|||
|
cv::Matx33d rotMatrix = LandmarkDetector::Euler2RotationMatrix(euler);
|
|||
|
cv::Vec3d axis_angle;
|
|||
|
cv::Rodrigues(rotMatrix, axis_angle);
|
|||
|
return axis_angle;
|
|||
|
}
|
|||
|
|
|||
|
cv::Vec3d AxisAngle2Euler(const cv::Vec3d& axis_angle)
|
|||
|
{
|
|||
|
cv::Matx33d rotation_matrix;
|
|||
|
cv::Rodrigues(axis_angle, rotation_matrix);
|
|||
|
return RotationMatrix2Euler(rotation_matrix);
|
|||
|
}
|
|||
|
|
|||
|
cv::Matx33d AxisAngle2RotationMatrix(const cv::Vec3d& axis_angle)
|
|||
|
{
|
|||
|
cv::Matx33d rotation_matrix;
|
|||
|
cv::Rodrigues(axis_angle, rotation_matrix);
|
|||
|
return rotation_matrix;
|
|||
|
}
|
|||
|
|
|||
|
cv::Vec3d RotationMatrix2AxisAngle(const cv::Matx33d& rotation_matrix)
|
|||
|
{
|
|||
|
cv::Vec3d axis_angle;
|
|||
|
cv::Rodrigues(rotation_matrix, axis_angle);
|
|||
|
return axis_angle;
|
|||
|
}
|
|||
|
|
|||
|
//===========================================================================
|
|||
|
|
|||
|
//============================================================================
|
|||
|
// Face detection helpers
|
|||
|
//============================================================================
|
|||
|
bool DetectFaces(vector<cv::Rect_<double> >& o_regions, const cv::Mat_<uchar>& intensity)
|
|||
|
{
|
|||
|
cv::CascadeClassifier classifier("./classifiers/haarcascade_frontalface_alt.xml");
|
|||
|
if(classifier.empty())
|
|||
|
{
|
|||
|
cout << "Couldn't load the Haar cascade classifier" << endl;
|
|||
|
return false;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
return DetectFaces(o_regions, intensity, classifier);
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
bool DetectFaces(vector<cv::Rect_<double> >& o_regions, const cv::Mat_<uchar>& intensity, cv::CascadeClassifier& classifier)
|
|||
|
{
|
|||
|
|
|||
|
vector<cv::Rect> face_detections;
|
|||
|
classifier.detectMultiScale(intensity, face_detections, 1.2, 2, 0, cv::Size(50, 50));
|
|||
|
|
|||
|
// Convert from int bounding box do a double one with corrections
|
|||
|
o_regions.resize(face_detections.size());
|
|||
|
|
|||
|
for( size_t face = 0; face < o_regions.size(); ++face)
|
|||
|
{
|
|||
|
// OpenCV is overgenerous with face size and y location is off
|
|||
|
// CLNF detector expects the bounding box to encompass from eyebrow to chin in y, and from cheeck outline to cheeck outline in x, so we need to compensate
|
|||
|
|
|||
|
// The scalings were learned using the Face Detections on LFPW, Helen, AFW and iBUG datasets, using ground truth and detections from openCV
|
|||
|
|
|||
|
// Correct for scale
|
|||
|
o_regions[face].width = face_detections[face].width * 0.8924;
|
|||
|
o_regions[face].height = face_detections[face].height * 0.8676;
|
|||
|
|
|||
|
// Move the face slightly to the right (as the width was made smaller)
|
|||
|
o_regions[face].x = face_detections[face].x + 0.0578 * face_detections[face].width;
|
|||
|
// Shift face down as OpenCV Haar Cascade detects the forehead as well, and we're not interested
|
|||
|
o_regions[face].y = face_detections[face].y + face_detections[face].height * 0.2166;
|
|||
|
|
|||
|
|
|||
|
}
|
|||
|
return o_regions.size() > 0;
|
|||
|
}
|
|||
|
|
|||
|
bool DetectSingleFace(cv::Rect_<double>& o_region, const cv::Mat_<uchar>& intensity_image, cv::CascadeClassifier& classifier, cv::Point preference)
|
|||
|
{
|
|||
|
// The tracker can return multiple faces
|
|||
|
vector<cv::Rect_<double> > face_detections;
|
|||
|
|
|||
|
bool detect_success = LandmarkDetector::DetectFaces(face_detections, intensity_image, classifier);
|
|||
|
|
|||
|
if(detect_success)
|
|||
|
{
|
|||
|
|
|||
|
bool use_preferred = (preference.x != -1) && (preference.y != -1);
|
|||
|
|
|||
|
if(face_detections.size() > 1)
|
|||
|
{
|
|||
|
// keep the closest one if preference point not set
|
|||
|
double best = -1;
|
|||
|
int bestIndex = -1;
|
|||
|
for( size_t i = 0; i < face_detections.size(); ++i)
|
|||
|
{
|
|||
|
double dist;
|
|||
|
bool better;
|
|||
|
|
|||
|
if(use_preferred)
|
|||
|
{
|
|||
|
dist = sqrt((preference.x) * (face_detections[i].width/2 + face_detections[i].x) +
|
|||
|
(preference.y) * (face_detections[i].height/2 + face_detections[i].y));
|
|||
|
better = dist < best;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
dist = face_detections[i].width;
|
|||
|
better = face_detections[i].width > best;
|
|||
|
}
|
|||
|
|
|||
|
// Pick a closest face to preffered point or the biggest face
|
|||
|
if(i == 0 || better)
|
|||
|
{
|
|||
|
bestIndex = i;
|
|||
|
best = dist;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
o_region = face_detections[bestIndex];
|
|||
|
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
o_region = face_detections[0];
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// if not detected
|
|||
|
o_region = cv::Rect_<double>(0,0,0,0);
|
|||
|
}
|
|||
|
return detect_success;
|
|||
|
}
|
|||
|
|
|||
|
bool DetectFacesHOG(vector<cv::Rect_<double> >& o_regions, const cv::Mat_<uchar>& intensity, std::vector<double>& confidences)
|
|||
|
{
|
|||
|
dlib::frontal_face_detector detector = dlib::get_frontal_face_detector();
|
|||
|
|
|||
|
return DetectFacesHOG(o_regions, intensity, detector, confidences);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
bool DetectFacesHOG(vector<cv::Rect_<double> >& o_regions, const cv::Mat_<uchar>& intensity, dlib::frontal_face_detector& detector, std::vector<double>& o_confidences)
|
|||
|
{
|
|||
|
|
|||
|
cv::Mat_<uchar> upsampled_intensity;
|
|||
|
|
|||
|
double scaling = 1.3;
|
|||
|
|
|||
|
cv::resize(intensity, upsampled_intensity, cv::Size((int)(intensity.cols * scaling), (int)(intensity.rows * scaling)));
|
|||
|
|
|||
|
dlib::cv_image<uchar> cv_grayscale(upsampled_intensity);
|
|||
|
|
|||
|
std::vector<dlib::full_detection> face_detections;
|
|||
|
detector(cv_grayscale, face_detections, -0.2);
|
|||
|
|
|||
|
// Convert from int bounding box do a double one with corrections
|
|||
|
o_regions.resize(face_detections.size());
|
|||
|
o_confidences.resize(face_detections.size());
|
|||
|
|
|||
|
for( size_t face = 0; face < o_regions.size(); ++face)
|
|||
|
{
|
|||
|
// CLNF expects the bounding box to encompass from eyebrow to chin in y, and from cheeck outline to cheeck outline in x, so we need to compensate
|
|||
|
|
|||
|
// The scalings were learned using the Face Detections on LFPW and Helen using ground truth and detections from the HOG detector
|
|||
|
|
|||
|
// Move the face slightly to the right (as the width was made smaller)
|
|||
|
o_regions[face].x = (face_detections[face].rect.get_rect().tl_corner().x() + 0.0389 * face_detections[face].rect.get_rect().width())/scaling;
|
|||
|
// Shift face down as OpenCV Haar Cascade detects the forehead as well, and we're not interested
|
|||
|
o_regions[face].y = (face_detections[face].rect.get_rect().tl_corner().y() + 0.1278 * face_detections[face].rect.get_rect().height())/scaling;
|
|||
|
|
|||
|
// Correct for scale
|
|||
|
o_regions[face].width = (face_detections[face].rect.get_rect().width() * 0.9611)/scaling;
|
|||
|
o_regions[face].height = (face_detections[face].rect.get_rect().height() * 0.9388)/scaling;
|
|||
|
|
|||
|
o_confidences[face] = face_detections[face].detection_confidence;
|
|||
|
|
|||
|
|
|||
|
}
|
|||
|
return o_regions.size() > 0;
|
|||
|
}
|
|||
|
|
|||
|
bool DetectSingleFaceHOG(cv::Rect_<double>& o_region, const cv::Mat_<uchar>& intensity_img, dlib::frontal_face_detector& detector, double& confidence, cv::Point preference)
|
|||
|
{
|
|||
|
// The tracker can return multiple faces
|
|||
|
vector<cv::Rect_<double> > face_detections;
|
|||
|
vector<double> confidences;
|
|||
|
|
|||
|
bool detect_success = LandmarkDetector::DetectFacesHOG(face_detections, intensity_img, detector, confidences);
|
|||
|
|
|||
|
if(detect_success)
|
|||
|
{
|
|||
|
|
|||
|
bool use_preferred = (preference.x != -1) && (preference.y != -1);
|
|||
|
|
|||
|
// keep the most confident one or the one closest to preference point if set
|
|||
|
double best_so_far;
|
|||
|
if(use_preferred)
|
|||
|
{
|
|||
|
best_so_far = sqrt((preference.x - (face_detections[0].width/2 + face_detections[0].x)) * (preference.x - (face_detections[0].width/2 + face_detections[0].x)) +
|
|||
|
(preference.y - (face_detections[0].height/2 + face_detections[0].y)) * (preference.y - (face_detections[0].height/2 + face_detections[0].y)));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
best_so_far = confidences[0];
|
|||
|
}
|
|||
|
int bestIndex = 0;
|
|||
|
|
|||
|
for( size_t i = 1; i < face_detections.size(); ++i)
|
|||
|
{
|
|||
|
|
|||
|
double dist;
|
|||
|
bool better;
|
|||
|
|
|||
|
if(use_preferred)
|
|||
|
{
|
|||
|
dist = sqrt((preference.x - (face_detections[0].width/2 + face_detections[0].x)) * (preference.x - (face_detections[0].width/2 + face_detections[0].x)) +
|
|||
|
(preference.y - (face_detections[0].height/2 + face_detections[0].y)) * (preference.y - (face_detections[0].height/2 + face_detections[0].y)));
|
|||
|
better = dist < best_so_far;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
dist = confidences[i];
|
|||
|
better = dist > best_so_far;
|
|||
|
}
|
|||
|
|
|||
|
// Pick a closest face
|
|||
|
if(better)
|
|||
|
{
|
|||
|
best_so_far = dist;
|
|||
|
bestIndex = i;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
o_region = face_detections[bestIndex];
|
|||
|
confidence = confidences[bestIndex];
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// if not detected
|
|||
|
o_region = cv::Rect_<double>(0,0,0,0);
|
|||
|
// A completely unreliable detection (shouldn't really matter what is returned here)
|
|||
|
confidence = -2;
|
|||
|
}
|
|||
|
return detect_success;
|
|||
|
}
|
|||
|
|
|||
|
//============================================================================
|
|||
|
// Matrix reading functionality
|
|||
|
//============================================================================
|
|||
|
|
|||
|
// Reading in a matrix from a stream
|
|||
|
void ReadMat(std::ifstream& stream, cv::Mat &output_mat)
|
|||
|
{
|
|||
|
// Read in the number of rows, columns and the data type
|
|||
|
int row,col,type;
|
|||
|
|
|||
|
stream >> row >> col >> type;
|
|||
|
|
|||
|
output_mat = cv::Mat(row, col, type);
|
|||
|
|
|||
|
switch(output_mat.type())
|
|||
|
{
|
|||
|
case CV_64FC1:
|
|||
|
{
|
|||
|
cv::MatIterator_<double> begin_it = output_mat.begin<double>();
|
|||
|
cv::MatIterator_<double> end_it = output_mat.end<double>();
|
|||
|
|
|||
|
while(begin_it != end_it)
|
|||
|
{
|
|||
|
stream >> *begin_it++;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
case CV_32FC1:
|
|||
|
{
|
|||
|
cv::MatIterator_<float> begin_it = output_mat.begin<float>();
|
|||
|
cv::MatIterator_<float> end_it = output_mat.end<float>();
|
|||
|
|
|||
|
while(begin_it != end_it)
|
|||
|
{
|
|||
|
stream >> *begin_it++;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
case CV_32SC1:
|
|||
|
{
|
|||
|
cv::MatIterator_<int> begin_it = output_mat.begin<int>();
|
|||
|
cv::MatIterator_<int> end_it = output_mat.end<int>();
|
|||
|
while(begin_it != end_it)
|
|||
|
{
|
|||
|
stream >> *begin_it++;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
case CV_8UC1:
|
|||
|
{
|
|||
|
cv::MatIterator_<uchar> begin_it = output_mat.begin<uchar>();
|
|||
|
cv::MatIterator_<uchar> end_it = output_mat.end<uchar>();
|
|||
|
while(begin_it != end_it)
|
|||
|
{
|
|||
|
stream >> *begin_it++;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
default:
|
|||
|
printf("ERROR(%s,%d) : Unsupported Matrix type %d!\n", __FILE__,__LINE__,output_mat.type()); abort();
|
|||
|
|
|||
|
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void ReadMatBin(std::ifstream& stream, cv::Mat &output_mat)
|
|||
|
{
|
|||
|
// Read in the number of rows, columns and the data type
|
|||
|
int row, col, type;
|
|||
|
|
|||
|
stream.read ((char*)&row, 4);
|
|||
|
stream.read ((char*)&col, 4);
|
|||
|
stream.read ((char*)&type, 4);
|
|||
|
|
|||
|
output_mat = cv::Mat(row, col, type);
|
|||
|
int size = output_mat.rows * output_mat.cols * output_mat.elemSize();
|
|||
|
stream.read((char *)output_mat.data, size);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
// Skipping lines that start with # (together with empty lines)
|
|||
|
void SkipComments(std::ifstream& stream)
|
|||
|
{
|
|||
|
while(stream.peek() == '#' || stream.peek() == '\n'|| stream.peek() == ' ' || stream.peek() == '\r')
|
|||
|
{
|
|||
|
std::string skipped;
|
|||
|
std::getline(stream, skipped);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
}
|