/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS // OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS // BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY. // OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Notwithstanding the license granted herein, Licensee acknowledges that certain components // of the Software may be covered by so-called “open source” software licenses (“Open Source // Components”), which means any software licenses approved as open source licenses by the // Open Source Initiative or any substantially similar licenses, including without limitation any // license that, as a condition of distribution of the software licensed under such license, // requires that the distributor make the software available in source code format. Licensor shall // provide a list of Open Source Components for a particular version of the Software upon // Licensee’s request. Licensee will comply with the applicable terms of such licenses and to // the extent required by the licenses covering Open Source Components, the terms of such // licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the // licenses applicable to Open Source Components prohibit any of the restrictions in this // License Agreement with respect to such Open Source Component, such restrictions will not // apply to such Open Source Component. To the extent the terms of the licenses applicable to // Open Source Components require Licensor to make an offer to provide source code or // related information in connection with the Software, such offer is hereby made. Any request // for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk // Licensee acknowledges receipt of notices for the Open Source Components for the initial // delivery of the Software. // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// #include "stdafx.h" #include // OpenCV includes #include #include #include // Boost includes #include #include using namespace boost::filesystem; using namespace std; namespace LandmarkDetector { // Useful utility for creating directories for storing the output files void create_directory_from_file(string output_path) { // Creating the right directory structure // First get rid of the file auto p = path(path(output_path).parent_path()); if(!p.empty() && !boost::filesystem::exists(p)) { bool success = boost::filesystem::create_directories(p); if(!success) { cout << "Failed to create a directory... " << p.string() << endl; } } } // Useful utility for creating directories for storing the output files void create_directories(string output_path) { // Creating the right directory structure // First get rid of the file auto p = path(output_path); if(!p.empty() && !boost::filesystem::exists(p)) { bool success = boost::filesystem::create_directories(p); if(!success) { cout << "Failed to create a directory... " << p.string() << endl; } } } // Extracting the following command line arguments -f, -fd, -op, -of, -ov (and possible ordered repetitions) void get_video_input_output_params(vector &input_video_files, vector &depth_dirs, vector &output_files, vector &output_video_files, bool& world_coordinates_pose, vector &arguments) { bool* valid = new bool[arguments.size()]; for(size_t i = 0; i < arguments.size(); ++i) { valid[i] = true; } // By default use rotation with respect to camera (not world coordinates) world_coordinates_pose = false; string root = ""; // First check if there is a root argument (so that videos and outputs could be defined more easilly) for(size_t i = 0; i < arguments.size(); ++i) { if (arguments[i].compare("-root") == 0) { root = arguments[i + 1]; // Do not discard root as it might be used in other later steps i++; } } for(size_t i = 0; i < arguments.size(); ++i) { if (arguments[i].compare("-f") == 0) { input_video_files.push_back(root + arguments[i + 1]); valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-fd") == 0) { depth_dirs.push_back(root + arguments[i + 1]); valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-of") == 0) { output_files.push_back(root + arguments[i + 1]); create_directory_from_file(root + arguments[i + 1]); valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-ov") == 0) { output_video_files.push_back(root + arguments[i + 1]); create_directory_from_file(root + arguments[i + 1]); valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-world_coord") == 0) { world_coordinates_pose = true; } } for(int i=arguments.size()-1; i >= 0; --i) { if(!valid[i]) { arguments.erase(arguments.begin()+i); } } } void get_camera_params(int &device, float &fx, float &fy, float &cx, float &cy, vector &arguments) { bool* valid = new bool[arguments.size()]; for(size_t i=0; i < arguments.size(); ++i) { valid[i] = true; if (arguments[i].compare("-fx") == 0) { stringstream data(arguments[i+1]); data >> fx; valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-fy") == 0) { stringstream data(arguments[i+1]); data >> fy; valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-cx") == 0) { stringstream data(arguments[i+1]); data >> cx; valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-cy") == 0) { stringstream data(arguments[i+1]); data >> cy; valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-device") == 0) { stringstream data(arguments[i+1]); data >> device; valid[i] = false; valid[i+1] = false; i++; } } for(int i=arguments.size()-1; i >= 0; --i) { if(!valid[i]) { arguments.erase(arguments.begin()+i); } } } void get_image_input_output_params(vector &input_image_files, vector &input_depth_files, vector &output_feature_files, vector &output_pose_files, vector &output_image_files, vector> &input_bounding_boxes, vector &arguments) { bool* valid = new bool[arguments.size()]; string out_pts_dir, out_pose_dir, out_img_dir; for(size_t i = 0; i < arguments.size(); ++i) { valid[i] = true; if (arguments[i].compare("-f") == 0) { input_image_files.push_back(arguments[i + 1]); valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-fd") == 0) { input_depth_files.push_back(arguments[i + 1]); valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-fdir") == 0) { // parse the -fdir directory by reading in all of the .png and .jpg files in it path image_directory (arguments[i+1]); try { // does the file exist and is it a directory if (exists(image_directory) && is_directory(image_directory)) { vector file_in_directory; copy(directory_iterator(image_directory), directory_iterator(), back_inserter(file_in_directory)); // Sort the images in the directory first sort(file_in_directory.begin(), file_in_directory.end()); for (vector::const_iterator file_iterator (file_in_directory.begin()); file_iterator != file_in_directory.end(); ++file_iterator) { // Possible image extension .jpg and .png if(file_iterator->extension().string().compare(".jpg") == 0 || file_iterator->extension().string().compare(".png") == 0 || file_iterator->extension().string().compare(".bmp") == 0) { input_image_files.push_back(file_iterator->string()); // If there exists a .txt file corresponding to the image, it is assumed that it contains a bounding box definition for a face // [minx, miny, maxx, maxy] path current_file = *file_iterator; path bbox = current_file.replace_extension("txt"); // If there is a bounding box file push it to the list of bounding boxes if(exists(bbox)) { std::ifstream in_bbox(bbox.string().c_str(), ios_base::in); double min_x, min_y, max_x, max_y; in_bbox >> min_x >> min_y >> max_x >> max_y; in_bbox.close(); input_bounding_boxes.push_back(cv::Rect_(min_x, min_y, max_x - min_x, max_y - min_y)); } } } } } catch (const filesystem_error& ex) { cout << ex.what() << '\n'; } valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-ofdir") == 0) { out_pts_dir = arguments[i + 1]; create_directories(out_pts_dir); valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-opdir") == 0) { out_pose_dir = arguments[i + 1]; create_directories(out_pose_dir); valid[i] = false; valid[i + 1] = false; i++; } else if (arguments[i].compare("-oidir") == 0) { out_img_dir = arguments[i + 1]; create_directories(out_img_dir); valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-op") == 0) { output_pose_files.push_back(arguments[i + 1]); valid[i] = false; valid[i + 1] = false; i++; } else if (arguments[i].compare("-of") == 0) { output_feature_files.push_back(arguments[i + 1]); valid[i] = false; valid[i+1] = false; i++; } else if (arguments[i].compare("-oi") == 0) { output_image_files.push_back(arguments[i + 1]); valid[i] = false; valid[i+1] = false; i++; } } // If any output directories are defined populate them based on image names if(!out_img_dir.empty()) { for(size_t i=0; i < input_image_files.size(); ++i) { path image_loc(input_image_files[i]); path fname = image_loc.filename(); fname = fname.replace_extension("jpg"); output_image_files.push_back(out_img_dir + "/" + fname.string()); } if(!input_image_files.empty()) { create_directory_from_file(output_image_files[0]); } } if(!out_pts_dir.empty()) { for(size_t i=0; i < input_image_files.size(); ++i) { path image_loc(input_image_files[i]); path fname = image_loc.filename(); fname = fname.replace_extension("pts"); output_feature_files.push_back(out_pts_dir + "/" + fname.string()); } create_directory_from_file(output_feature_files[0]); } if (!out_pose_dir.empty()) { for (size_t i = 0; i < input_image_files.size(); ++i) { path image_loc(input_image_files[i]); path fname = image_loc.filename(); fname = fname.replace_extension("pose"); output_pose_files.push_back(out_pose_dir + "/" + fname.string()); } create_directory_from_file(output_pose_files[0]); } // Make sure the same number of images and bounding boxes is present, if any bounding boxes are defined if(input_bounding_boxes.size() > 0) { assert(input_bounding_boxes.size() == input_image_files.size()); } // Clear up the argument list for(int i=arguments.size()-1; i >= 0; --i) { if(!valid[i]) { arguments.erase(arguments.begin()+i); } } } //=========================================================================== // Fast patch expert response computation (linear model across a ROI) using normalised cross-correlation //=========================================================================== void crossCorr_m( const cv::Mat_& img, cv::Mat_& img_dft, const cv::Mat_& _templ, map >& _templ_dfts, cv::Mat_& corr) { // Our model will always be under min block size so can ignore this //const double blockScale = 4.5; //const int minBlockSize = 256; int maxDepth = CV_64F; cv::Size dftsize; dftsize.width = cv::getOptimalDFTSize(corr.cols + _templ.cols - 1); dftsize.height = cv::getOptimalDFTSize(corr.rows + _templ.rows - 1); // Compute block size cv::Size blocksize; blocksize.width = dftsize.width - _templ.cols + 1; blocksize.width = MIN( blocksize.width, corr.cols ); blocksize.height = dftsize.height - _templ.rows + 1; blocksize.height = MIN( blocksize.height, corr.rows ); cv::Mat_ dftTempl; // if this has not been precomputed, precompute it, otherwise use it if(_templ_dfts.find(dftsize.width) == _templ_dfts.end()) { dftTempl.create(dftsize.height, dftsize.width); cv::Mat_ src = _templ; cv::Mat_ dst(dftTempl, cv::Rect(0, 0, dftsize.width, dftsize.height)); cv::Mat_ dst1(dftTempl, cv::Rect(0, 0, _templ.cols, _templ.rows)); if( dst1.data != src.data ) src.convertTo(dst1, dst1.depth()); if( dst.cols > _templ.cols ) { cv::Mat_ part(dst, cv::Range(0, _templ.rows), cv::Range(_templ.cols, dst.cols)); part.setTo(0); } // Perform DFT of the template dft(dst, dst, 0, _templ.rows); _templ_dfts[dftsize.width] = dftTempl; } else { // use the precomputed version dftTempl = _templ_dfts.find(dftsize.width)->second; } cv::Size bsz(std::min(blocksize.width, corr.cols), std::min(blocksize.height, corr.rows)); cv::Mat src; cv::Mat cdst(corr, cv::Rect(0, 0, bsz.width, bsz.height)); cv::Mat_ dftImg; if(img_dft.empty()) { dftImg.create(dftsize); dftImg.setTo(0.0); cv::Size dsz(bsz.width + _templ.cols - 1, bsz.height + _templ.rows - 1); int x2 = std::min(img.cols, dsz.width); int y2 = std::min(img.rows, dsz.height); cv::Mat src0(img, cv::Range(0, y2), cv::Range(0, x2)); cv::Mat dst(dftImg, cv::Rect(0, 0, dsz.width, dsz.height)); cv::Mat dst1(dftImg, cv::Rect(0, 0, x2, y2)); src = src0; if( dst1.data != src.data ) src.convertTo(dst1, dst1.depth()); dft( dftImg, dftImg, 0, dsz.height ); img_dft = dftImg.clone(); } cv::Mat dftTempl1(dftTempl, cv::Rect(0, 0, dftsize.width, dftsize.height)); cv::mulSpectrums(img_dft, dftTempl1, dftImg, 0, true); cv::dft( dftImg, dftImg, cv::DFT_INVERSE + cv::DFT_SCALE, bsz.height ); src = dftImg(cv::Rect(0, 0, bsz.width, bsz.height)); src.convertTo(cdst, CV_32F); } //////////////////////////////////////////////////////////////////////////////////////////////////////// void matchTemplate_m( const cv::Mat_& input_img, cv::Mat_& img_dft, cv::Mat& _integral_img, cv::Mat& _integral_img_sq, const cv::Mat_& templ, map >& templ_dfts, cv::Mat_& result, int method ) { int numType = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 : method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED ? 1 : 2; bool isNormed = method == CV_TM_CCORR_NORMED || method == CV_TM_SQDIFF_NORMED || method == CV_TM_CCOEFF_NORMED; // Assume result is defined properly if(result.empty()) { cv::Size corrSize(input_img.cols - templ.cols + 1, input_img.rows - templ.rows + 1); result.create(corrSize); } LandmarkDetector::crossCorr_m( input_img, img_dft, templ, templ_dfts, result); if( method == CV_TM_CCORR ) return; double invArea = 1./((double)templ.rows * templ.cols); cv::Mat sum, sqsum; cv::Scalar templMean, templSdv; double *q0 = 0, *q1 = 0, *q2 = 0, *q3 = 0; double templNorm = 0, templSum2 = 0; if( method == CV_TM_CCOEFF ) { // If it has not been precomputed compute it now if(_integral_img.empty()) { integral(input_img, _integral_img, CV_64F); } sum = _integral_img; templMean = cv::mean(templ); } else { // If it has not been precomputed compute it now if(_integral_img.empty()) { integral(input_img, _integral_img, _integral_img_sq, CV_64F); } sum = _integral_img; sqsum = _integral_img_sq; meanStdDev( templ, templMean, templSdv ); templNorm = templSdv[0]*templSdv[0] + templSdv[1]*templSdv[1] + templSdv[2]*templSdv[2] + templSdv[3]*templSdv[3]; if( templNorm < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED ) { result.setTo(1.0); return; } templSum2 = templNorm + templMean[0]*templMean[0] + templMean[1]*templMean[1] + templMean[2]*templMean[2] + templMean[3]*templMean[3]; if( numType != 1 ) { templMean = cv::Scalar::all(0); templNorm = templSum2; } templSum2 /= invArea; templNorm = std::sqrt(templNorm); templNorm /= std::sqrt(invArea); // care of accuracy here q0 = (double*)sqsum.data; q1 = q0 + templ.cols; q2 = (double*)(sqsum.data + templ.rows*sqsum.step); q3 = q2 + templ.cols; } double* p0 = (double*)sum.data; double* p1 = p0 + templ.cols; double* p2 = (double*)(sum.data + templ.rows*sum.step); double* p3 = p2 + templ.cols; int sumstep = sum.data ? (int)(sum.step / sizeof(double)) : 0; int sqstep = sqsum.data ? (int)(sqsum.step / sizeof(double)) : 0; int i, j; for( i = 0; i < result.rows; i++ ) { float* rrow = result.ptr(i); int idx = i * sumstep; int idx2 = i * sqstep; for( j = 0; j < result.cols; j++, idx += 1, idx2 += 1 ) { double num = rrow[j], t; double wndMean2 = 0, wndSum2 = 0; if( numType == 1 ) { t = p0[idx] - p1[idx] - p2[idx] + p3[idx]; wndMean2 += t*t; num -= t*templMean[0]; wndMean2 *= invArea; } if( isNormed || numType == 2 ) { t = q0[idx2] - q1[idx2] - q2[idx2] + q3[idx2]; wndSum2 += t; if( numType == 2 ) { num = wndSum2 - 2*num + templSum2; num = MAX(num, 0.); } } if( isNormed ) { t = std::sqrt(MAX(wndSum2 - wndMean2,0))*templNorm; if( fabs(num) < t ) num /= t; else if( fabs(num) < t*1.125 ) num = num > 0 ? 1 : -1; else num = method != CV_TM_SQDIFF_NORMED ? 0 : 1; } rrow[j] = (float)num; } } } //=========================================================================== // Point set and landmark manipulation functions //=========================================================================== // Using Kabsch's algorithm for aligning shapes //This assumes that align_from and align_to are already mean normalised cv::Matx22d AlignShapesKabsch2D(const cv::Mat_& align_from, const cv::Mat_& align_to ) { cv::SVD svd(align_from.t() * align_to); // make sure no reflection is there // corr ensures that we do only rotaitons and not reflections double d = cv::determinant(svd.vt.t() * svd.u.t()); cv::Matx22d corr = cv::Matx22d::eye(); if(d > 0) { corr(1,1) = 1; } else { corr(1,1) = -1; } cv::Matx22d R; cv::Mat(svd.vt.t()*cv::Mat(corr)*svd.u.t()).copyTo(R); return R; } //============================================================================= // Basically Kabsch's algorithm but also allows the collection of points to be different in scale from each other cv::Matx22d AlignShapesWithScale(cv::Mat_& src, cv::Mat_ dst) { int n = src.rows; // First we mean normalise both src and dst double mean_src_x = cv::mean(src.col(0))[0]; double mean_src_y = cv::mean(src.col(1))[0]; double mean_dst_x = cv::mean(dst.col(0))[0]; double mean_dst_y = cv::mean(dst.col(1))[0]; cv::Mat_ src_mean_normed = src.clone(); src_mean_normed.col(0) = src_mean_normed.col(0) - mean_src_x; src_mean_normed.col(1) = src_mean_normed.col(1) - mean_src_y; cv::Mat_ dst_mean_normed = dst.clone(); dst_mean_normed.col(0) = dst_mean_normed.col(0) - mean_dst_x; dst_mean_normed.col(1) = dst_mean_normed.col(1) - mean_dst_y; // Find the scaling factor of each cv::Mat src_sq; cv::pow(src_mean_normed, 2, src_sq); cv::Mat dst_sq; cv::pow(dst_mean_normed, 2, dst_sq); double s_src = sqrt(cv::sum(src_sq)[0]/n); double s_dst = sqrt(cv::sum(dst_sq)[0]/n); src_mean_normed = src_mean_normed / s_src; dst_mean_normed = dst_mean_normed / s_dst; double s = s_dst / s_src; // Get the rotation cv::Matx22d R = AlignShapesKabsch2D(src_mean_normed, dst_mean_normed); cv::Matx22d A; cv::Mat(s * R).copyTo(A); cv::Mat_ aligned = (cv::Mat(cv::Mat(A) * src.t())).t(); cv::Mat_ offset = dst - aligned; double t_x = cv::mean(offset.col(0))[0]; double t_y = cv::mean(offset.col(1))[0]; return A; } //=========================================================================== // Visualisation functions //=========================================================================== void Project(cv::Mat_& dest, const cv::Mat_& mesh, double fx, double fy, double cx, double cy) { dest = cv::Mat_(mesh.rows,2, 0.0); int num_points = mesh.rows; double X, Y, Z; cv::Mat_::const_iterator mData = mesh.begin(); cv::Mat_::iterator projected = dest.begin(); for(int i = 0;i < num_points; i++) { // Get the points X = *(mData++); Y = *(mData++); Z = *(mData++); double x; double y; // if depth is 0 the projection is different if(Z != 0) { x = ((X * fx / Z) + cx); y = ((Y * fy / Z) + cy); } else { x = X; y = Y; } // Project and store in dest matrix (*projected++) = x; (*projected++) = y; } } void DrawBox(cv::Mat image, cv::Vec6d pose, cv::Scalar color, int thickness, float fx, float fy, float cx, float cy) { double boxVerts[] = {-1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1}; vector> edges; edges.push_back(pair(0,1)); edges.push_back(pair(1,2)); edges.push_back(pair(2,3)); edges.push_back(pair(0,3)); edges.push_back(pair(2,4)); edges.push_back(pair(1,5)); edges.push_back(pair(0,6)); edges.push_back(pair(3,7)); edges.push_back(pair(6,5)); edges.push_back(pair(5,4)); edges.push_back(pair(4,7)); edges.push_back(pair(7,6)); // The size of the head is roughly 200mm x 200mm x 200mm cv::Mat_ box = cv::Mat(8, 3, CV_64F, boxVerts).clone() * 100; cv::Matx33d rot = LandmarkDetector::Euler2RotationMatrix(cv::Vec3d(pose[3], pose[4], pose[5])); cv::Mat_ rotBox; // Rotate the box rotBox = cv::Mat(rot) * box.t(); rotBox = rotBox.t(); // Move the bounding box to head position rotBox.col(0) = rotBox.col(0) + pose[0]; rotBox.col(1) = rotBox.col(1) + pose[1]; rotBox.col(2) = rotBox.col(2) + pose[2]; // draw the lines cv::Mat_ rotBoxProj; Project(rotBoxProj, rotBox, fx, fy, cx, cy); cv::Rect image_rect(0,0,image.cols, image.rows); for (size_t i = 0; i < edges.size(); ++i) { cv::Mat_ begin; cv::Mat_ end; rotBoxProj.row(edges[i].first).copyTo(begin); rotBoxProj.row(edges[i].second).copyTo(end); cv::Point p1((int)begin.at(0), (int)begin.at(1)); cv::Point p2((int)end.at(0), (int)end.at(1)); // Only draw the line if one of the points is inside the image if(p1.inside(image_rect) || p2.inside(image_rect)) { cv::line(image, p1, p2, color, thickness); } } } vector> CalculateBox(cv::Vec6d pose, float fx, float fy, float cx, float cy) { double boxVerts[] = {-1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1}; vector> edges; edges.push_back(pair(0,1)); edges.push_back(pair(1,2)); edges.push_back(pair(2,3)); edges.push_back(pair(0,3)); edges.push_back(pair(2,4)); edges.push_back(pair(1,5)); edges.push_back(pair(0,6)); edges.push_back(pair(3,7)); edges.push_back(pair(6,5)); edges.push_back(pair(5,4)); edges.push_back(pair(4,7)); edges.push_back(pair(7,6)); // The size of the head is roughly 200mm x 200mm x 200mm cv::Mat_ box = cv::Mat(8, 3, CV_64F, boxVerts).clone() * 100; cv::Matx33d rot = LandmarkDetector::Euler2RotationMatrix(cv::Vec3d(pose[3], pose[4], pose[5])); cv::Mat_ rotBox; // Rotate the box rotBox = cv::Mat(rot) * box.t(); rotBox = rotBox.t(); // Move the bounding box to head position rotBox.col(0) = rotBox.col(0) + pose[0]; rotBox.col(1) = rotBox.col(1) + pose[1]; rotBox.col(2) = rotBox.col(2) + pose[2]; // draw the lines cv::Mat_ rotBoxProj; Project(rotBoxProj, rotBox, fx, fy, cx, cy); vector> lines; for (size_t i = 0; i < edges.size(); ++i) { cv::Mat_ begin; cv::Mat_ end; rotBoxProj.row(edges[i].first).copyTo(begin); rotBoxProj.row(edges[i].second).copyTo(end); cv::Point p1((int)begin.at(0), (int)begin.at(1)); cv::Point p2((int)end.at(0), (int)end.at(1)); lines.push_back(pair(p1,p2)); } return lines; } void DrawBox(vector> lines, cv::Mat image, cv::Scalar color, int thickness) { cv::Rect image_rect(0,0,image.cols, image.rows); for (size_t i = 0; i < lines.size(); ++i) { cv::Point p1 = lines.at(i).first; cv::Point p2 = lines.at(i).second; // Only draw the line if one of the points is inside the image if(p1.inside(image_rect) || p2.inside(image_rect)) { cv::line(image, p1, p2, color, thickness); } } } // Computing landmarks (to be drawn later possibly) vector CalculateLandmarks(const cv::Mat_& shape2D, cv::Mat_& visibilities) { int n = shape2D.rows/2; vector landmarks; for( int i = 0; i < n; ++i) { if(visibilities.at(i)) { cv::Point2d featurePoint(shape2D.at(i), shape2D.at(i +n)); landmarks.push_back(featurePoint); } } return landmarks; } // Computing landmarks (to be drawn later possibly) vector CalculateLandmarks(cv::Mat img, const cv::Mat_& shape2D) { int n; vector landmarks; if(shape2D.cols == 2) { n = shape2D.rows; } else if(shape2D.cols == 1) { n = shape2D.rows/2; } for( int i = 0; i < n; ++i) { cv::Point2d featurePoint; if(shape2D.cols == 1) { featurePoint = cv::Point2d(shape2D.at(i), shape2D.at(i +n)); } else { featurePoint = cv::Point2d(shape2D.at(i, 0), shape2D.at(i, 1)); } landmarks.push_back(featurePoint); } return landmarks; } // Computing landmarks (to be drawn later possibly) vector CalculateLandmarks(CLNF& clnf_model) { int idx = clnf_model.patch_experts.GetViewIdx(clnf_model.params_global, 0); // Because we only draw visible points, need to find which points patch experts consider visible at a certain orientation return CalculateLandmarks(clnf_model.detected_landmarks, clnf_model.patch_experts.visibilities[0][idx]); } // Drawing landmarks on a face image void Draw(cv::Mat img, const cv::Mat_& shape2D, const cv::Mat_& visibilities) { int n = shape2D.rows/2; // Drawing feature points if(n >= 66) { for( int i = 0; i < n; ++i) { if(visibilities.at(i)) { cv::Point featurePoint((int)shape2D.at(i), (int)shape2D.at(i +n)); // A rough heuristic for drawn point size int thickness = (int)std::ceil(3.0* ((double)img.cols) / 640.0); int thickness_2 = (int)std::ceil(1.0* ((double)img.cols) / 640.0); cv::circle(img, featurePoint, 1, cv::Scalar(0,0,255), thickness); cv::circle(img, featurePoint, 1, cv::Scalar(255,0,0), thickness_2); } } } else if(n == 28) // drawing eyes { for( int i = 0; i < n; ++i) { cv::Point featurePoint((int)shape2D.at(i), (int)shape2D.at(i +n)); // A rough heuristic for drawn point size int thickness = 1.0; int thickness_2 = 1.0; int next_point = i + 1; if(i == 7) next_point = 0; if(i == 19) next_point = 8; if(i == 27) next_point = 20; cv::Point nextFeaturePoint((int)shape2D.at(next_point), (int)shape2D.at(next_point+n)); if( i < 8 || i > 19) cv::line(img, featurePoint, nextFeaturePoint, cv::Scalar(255, 0, 0), thickness_2); else cv::line(img, featurePoint, nextFeaturePoint, cv::Scalar(0, 0, 255), thickness_2); //cv::circle(img, featurePoint, 1, Scalar(0,255,0), thickness); //cv::circle(img, featurePoint, 1, Scalar(0,0,255), thickness_2); } } else if(n == 6) { for( int i = 0; i < n; ++i) { cv::Point featurePoint((int)shape2D.at(i), (int)shape2D.at(i +n)); // A rough heuristic for drawn point size int thickness = 1.0; int thickness_2 = 1.0; //cv::circle(img, featurePoint, 1, Scalar(0,255,0), thickness); //cv::circle(img, featurePoint, 1, Scalar(0,0,255), thickness_2); int next_point = i + 1; if(i == 5) next_point = 0; cv::Point nextFeaturePoint((int)shape2D.at(next_point), (int)shape2D.at(next_point+n)); cv::line(img, featurePoint, nextFeaturePoint, cv::Scalar(255, 0, 0), thickness_2); } } } // Drawing landmarks on a face image void Draw(cv::Mat img, const cv::Mat_& shape2D) { int n; if(shape2D.cols == 2) { n = shape2D.rows; } else if(shape2D.cols == 1) { n = shape2D.rows/2; } for( int i = 0; i < n; ++i) { cv::Point featurePoint; if(shape2D.cols == 1) { featurePoint = cv::Point((int)shape2D.at(i), (int)shape2D.at(i +n)); } else { featurePoint = cv::Point((int)shape2D.at(i, 0), (int)shape2D.at(i, 1)); } // A rough heuristic for drawn point size int thickness = (int)std::ceil(5.0* ((double)img.cols) / 640.0); int thickness_2 = (int)std::ceil(1.5* ((double)img.cols) / 640.0); cv::circle(img, featurePoint, 1, cv::Scalar(0,0,255), thickness); cv::circle(img, featurePoint, 1, cv::Scalar(255,0,0), thickness_2); } } // Drawing detected landmarks on a face image void Draw(cv::Mat img, const CLNF& clnf_model) { int idx = clnf_model.patch_experts.GetViewIdx(clnf_model.params_global, 0); // Because we only draw visible points, need to find which points patch experts consider visible at a certain orientation Draw(img, clnf_model.detected_landmarks, clnf_model.patch_experts.visibilities[0][idx]); // If the model has hierarchical updates draw those too for(size_t i = 0; i < clnf_model.hierarchical_models.size(); ++i) { if(clnf_model.hierarchical_models[i].pdm.NumberOfPoints() != clnf_model.hierarchical_mapping[i].size()) { Draw(img, clnf_model.hierarchical_models[i]); } } } void DrawLandmarks(cv::Mat img, vector landmarks) { for(cv::Point p : landmarks) { // A rough heuristic for drawn point size int thickness = (int)std::ceil(5.0* ((double)img.cols) / 640.0); int thickness_2 = (int)std::ceil(1.5* ((double)img.cols) / 640.0); cv::circle(img, p, 1, cv::Scalar(0,0,255), thickness); cv::circle(img, p, 1, cv::Scalar(255,0,0), thickness_2); } } //=========================================================================== // Angle representation conversion helpers //=========================================================================== // Using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign cv::Matx33d Euler2RotationMatrix(const cv::Vec3d& eulerAngles) { cv::Matx33d rotation_matrix; double s1 = sin(eulerAngles[0]); double s2 = sin(eulerAngles[1]); double s3 = sin(eulerAngles[2]); double c1 = cos(eulerAngles[0]); double c2 = cos(eulerAngles[1]); double c3 = cos(eulerAngles[2]); rotation_matrix(0,0) = c2 * c3; rotation_matrix(0,1) = -c2 *s3; rotation_matrix(0,2) = s2; rotation_matrix(1,0) = c1 * s3 + c3 * s1 * s2; rotation_matrix(1,1) = c1 * c3 - s1 * s2 * s3; rotation_matrix(1,2) = -c2 * s1; rotation_matrix(2,0) = s1 * s3 - c1 * c3 * s2; rotation_matrix(2,1) = c3 * s1 + c1 * s2 * s3; rotation_matrix(2,2) = c1 * c2; return rotation_matrix; } // Using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign cv::Vec3d RotationMatrix2Euler(const cv::Matx33d& rotation_matrix) { double q0 = sqrt( 1 + rotation_matrix(0,0) + rotation_matrix(1,1) + rotation_matrix(2,2) ) / 2.0; double q1 = (rotation_matrix(2,1) - rotation_matrix(1,2)) / (4.0*q0) ; double q2 = (rotation_matrix(0,2) - rotation_matrix(2,0)) / (4.0*q0) ; double q3 = (rotation_matrix(1,0) - rotation_matrix(0,1)) / (4.0*q0) ; double t1 = 2.0 * (q0*q2 + q1*q3); double yaw = asin(2.0 * (q0*q2 + q1*q3)); double pitch= atan2(2.0 * (q0*q1-q2*q3), q0*q0-q1*q1-q2*q2+q3*q3); double roll = atan2(2.0 * (q0*q3-q1*q2), q0*q0+q1*q1-q2*q2-q3*q3); return cv::Vec3d(pitch, yaw, roll); } cv::Vec3d Euler2AxisAngle(const cv::Vec3d& euler) { cv::Matx33d rotMatrix = LandmarkDetector::Euler2RotationMatrix(euler); cv::Vec3d axis_angle; cv::Rodrigues(rotMatrix, axis_angle); return axis_angle; } cv::Vec3d AxisAngle2Euler(const cv::Vec3d& axis_angle) { cv::Matx33d rotation_matrix; cv::Rodrigues(axis_angle, rotation_matrix); return RotationMatrix2Euler(rotation_matrix); } cv::Matx33d AxisAngle2RotationMatrix(const cv::Vec3d& axis_angle) { cv::Matx33d rotation_matrix; cv::Rodrigues(axis_angle, rotation_matrix); return rotation_matrix; } cv::Vec3d RotationMatrix2AxisAngle(const cv::Matx33d& rotation_matrix) { cv::Vec3d axis_angle; cv::Rodrigues(rotation_matrix, axis_angle); return axis_angle; } //=========================================================================== //============================================================================ // Face detection helpers //============================================================================ bool DetectFaces(vector >& o_regions, const cv::Mat_& intensity) { cv::CascadeClassifier classifier("./classifiers/haarcascade_frontalface_alt.xml"); if(classifier.empty()) { cout << "Couldn't load the Haar cascade classifier" << endl; return false; } else { return DetectFaces(o_regions, intensity, classifier); } } bool DetectFaces(vector >& o_regions, const cv::Mat_& intensity, cv::CascadeClassifier& classifier) { vector face_detections; classifier.detectMultiScale(intensity, face_detections, 1.2, 2, 0, cv::Size(50, 50)); // Convert from int bounding box do a double one with corrections o_regions.resize(face_detections.size()); for( size_t face = 0; face < o_regions.size(); ++face) { // OpenCV is overgenerous with face size and y location is off // CLNF detector expects the bounding box to encompass from eyebrow to chin in y, and from cheeck outline to cheeck outline in x, so we need to compensate // The scalings were learned using the Face Detections on LFPW, Helen, AFW and iBUG datasets, using ground truth and detections from openCV // Correct for scale o_regions[face].width = face_detections[face].width * 0.8924; o_regions[face].height = face_detections[face].height * 0.8676; // Move the face slightly to the right (as the width was made smaller) o_regions[face].x = face_detections[face].x + 0.0578 * face_detections[face].width; // Shift face down as OpenCV Haar Cascade detects the forehead as well, and we're not interested o_regions[face].y = face_detections[face].y + face_detections[face].height * 0.2166; } return o_regions.size() > 0; } bool DetectSingleFace(cv::Rect_& o_region, const cv::Mat_& intensity_image, cv::CascadeClassifier& classifier, cv::Point preference) { // The tracker can return multiple faces vector > face_detections; bool detect_success = LandmarkDetector::DetectFaces(face_detections, intensity_image, classifier); if(detect_success) { bool use_preferred = (preference.x != -1) && (preference.y != -1); if(face_detections.size() > 1) { // keep the closest one if preference point not set double best = -1; int bestIndex = -1; for( size_t i = 0; i < face_detections.size(); ++i) { double dist; bool better; if(use_preferred) { dist = sqrt((preference.x) * (face_detections[i].width/2 + face_detections[i].x) + (preference.y) * (face_detections[i].height/2 + face_detections[i].y)); better = dist < best; } else { dist = face_detections[i].width; better = face_detections[i].width > best; } // Pick a closest face to preffered point or the biggest face if(i == 0 || better) { bestIndex = i; best = dist; } } o_region = face_detections[bestIndex]; } else { o_region = face_detections[0]; } } else { // if not detected o_region = cv::Rect_(0,0,0,0); } return detect_success; } bool DetectFacesHOG(vector >& o_regions, const cv::Mat_& intensity, std::vector& confidences) { dlib::frontal_face_detector detector = dlib::get_frontal_face_detector(); return DetectFacesHOG(o_regions, intensity, detector, confidences); } bool DetectFacesHOG(vector >& o_regions, const cv::Mat_& intensity, dlib::frontal_face_detector& detector, std::vector& o_confidences) { cv::Mat_ upsampled_intensity; double scaling = 1.3; cv::resize(intensity, upsampled_intensity, cv::Size((int)(intensity.cols * scaling), (int)(intensity.rows * scaling))); dlib::cv_image cv_grayscale(upsampled_intensity); std::vector face_detections; detector(cv_grayscale, face_detections, -0.2); // Convert from int bounding box do a double one with corrections o_regions.resize(face_detections.size()); o_confidences.resize(face_detections.size()); for( size_t face = 0; face < o_regions.size(); ++face) { // CLNF expects the bounding box to encompass from eyebrow to chin in y, and from cheeck outline to cheeck outline in x, so we need to compensate // The scalings were learned using the Face Detections on LFPW and Helen using ground truth and detections from the HOG detector // Move the face slightly to the right (as the width was made smaller) o_regions[face].x = (face_detections[face].rect.get_rect().tl_corner().x() + 0.0389 * face_detections[face].rect.get_rect().width())/scaling; // Shift face down as OpenCV Haar Cascade detects the forehead as well, and we're not interested o_regions[face].y = (face_detections[face].rect.get_rect().tl_corner().y() + 0.1278 * face_detections[face].rect.get_rect().height())/scaling; // Correct for scale o_regions[face].width = (face_detections[face].rect.get_rect().width() * 0.9611)/scaling; o_regions[face].height = (face_detections[face].rect.get_rect().height() * 0.9388)/scaling; o_confidences[face] = face_detections[face].detection_confidence; } return o_regions.size() > 0; } bool DetectSingleFaceHOG(cv::Rect_& o_region, const cv::Mat_& intensity_img, dlib::frontal_face_detector& detector, double& confidence, cv::Point preference) { // The tracker can return multiple faces vector > face_detections; vector confidences; bool detect_success = LandmarkDetector::DetectFacesHOG(face_detections, intensity_img, detector, confidences); if(detect_success) { bool use_preferred = (preference.x != -1) && (preference.y != -1); // keep the most confident one or the one closest to preference point if set double best_so_far; if(use_preferred) { best_so_far = sqrt((preference.x - (face_detections[0].width/2 + face_detections[0].x)) * (preference.x - (face_detections[0].width/2 + face_detections[0].x)) + (preference.y - (face_detections[0].height/2 + face_detections[0].y)) * (preference.y - (face_detections[0].height/2 + face_detections[0].y))); } else { best_so_far = confidences[0]; } int bestIndex = 0; for( size_t i = 1; i < face_detections.size(); ++i) { double dist; bool better; if(use_preferred) { dist = sqrt((preference.x - (face_detections[0].width/2 + face_detections[0].x)) * (preference.x - (face_detections[0].width/2 + face_detections[0].x)) + (preference.y - (face_detections[0].height/2 + face_detections[0].y)) * (preference.y - (face_detections[0].height/2 + face_detections[0].y))); better = dist < best_so_far; } else { dist = confidences[i]; better = dist > best_so_far; } // Pick a closest face if(better) { best_so_far = dist; bestIndex = i; } } o_region = face_detections[bestIndex]; confidence = confidences[bestIndex]; } else { // if not detected o_region = cv::Rect_(0,0,0,0); // A completely unreliable detection (shouldn't really matter what is returned here) confidence = -2; } return detect_success; } //============================================================================ // Matrix reading functionality //============================================================================ // Reading in a matrix from a stream void ReadMat(std::ifstream& stream, cv::Mat &output_mat) { // Read in the number of rows, columns and the data type int row,col,type; stream >> row >> col >> type; output_mat = cv::Mat(row, col, type); switch(output_mat.type()) { case CV_64FC1: { cv::MatIterator_ begin_it = output_mat.begin(); cv::MatIterator_ end_it = output_mat.end(); while(begin_it != end_it) { stream >> *begin_it++; } } break; case CV_32FC1: { cv::MatIterator_ begin_it = output_mat.begin(); cv::MatIterator_ end_it = output_mat.end(); while(begin_it != end_it) { stream >> *begin_it++; } } break; case CV_32SC1: { cv::MatIterator_ begin_it = output_mat.begin(); cv::MatIterator_ end_it = output_mat.end(); while(begin_it != end_it) { stream >> *begin_it++; } } break; case CV_8UC1: { cv::MatIterator_ begin_it = output_mat.begin(); cv::MatIterator_ end_it = output_mat.end(); while(begin_it != end_it) { stream >> *begin_it++; } } break; default: printf("ERROR(%s,%d) : Unsupported Matrix type %d!\n", __FILE__,__LINE__,output_mat.type()); abort(); } } void ReadMatBin(std::ifstream& stream, cv::Mat &output_mat) { // Read in the number of rows, columns and the data type int row, col, type; stream.read ((char*)&row, 4); stream.read ((char*)&col, 4); stream.read ((char*)&type, 4); output_mat = cv::Mat(row, col, type); int size = output_mat.rows * output_mat.cols * output_mat.elemSize(); stream.read((char *)output_mat.data, size); } // Skipping lines that start with # (together with empty lines) void SkipComments(std::ifstream& stream) { while(stream.peek() == '#' || stream.peek() == '\n'|| stream.peek() == ' ' || stream.peek() == '\r') { std::string skipped; std::getline(stream, skipped); } } }