Playful interface for the COCO dataset.
Go to file
Ruben van de Ven 7cab85653c style changes 2020-12-02 12:06:24 +01:00
coco WIP backgrounds 2020-03-10 08:44:19 +01:00
www style changes 2020-12-02 12:06:24 +01:00 Version with save option 2020-03-04 22:24:49 +01:00
coco.sql Version with save option 2020-03-04 22:24:49 +01:00 WIP backgrounds 2020-03-10 08:44:19 +01:00 First version 2019-12-16 12:19:48 +01:00
plottingdata_coco.service Systemd service file to new user and dir 2020-03-10 08:49:31 +01:00
requirements.txt publication changes 2020-11-23 15:22:58 +01:00 font-sizing 2020-03-10 15:27:30 +01:00 publication changes 2020-11-23 15:22:58 +01:00
Server for the web interface
Create an svg file per image, with classes on the shapes according to their classes
Create svg frames for a category. Ordered by the area of the shapes.
Find and download the images with only one object in them.
Turn a COCO json file (eg instances_val2017.json) into a database format (eg coco_train.db)

Build array of images sorted by size:

python --annotations ../../datasets/COCO/annotations/instances_train2017.json --output zoom --category_id 18

Turn into png

cd zoom/dog
for file in *.svg; do inkscape -z -f "${file}" -w 640 -e "../dog_png/${file}.png"; done

Turn png into mp4

cd ../dog_png
#ffmpeg -r 1 -i %d_*.png -pix_fmt yuv420p bloch2.mp4
ffmpeg -f image2 -pattern_type glob -i '*.png' ../dog.mp4

To run as server:

cp plottingdata_coco.service /etc/systemd/system/
systemctl daemon-reload
systemctl enable plottingdata_coco.service
systemctl start plottingdata_coco.service
rsync . --exclude zoom --exclude venv --exclude archive -av  --exclude shapes --exclude lonely --exclude .git --exclude __pycache__ --info progress2