trap/test_model.ipynb
2024-12-06 08:29:42 +01:00

1079 lines
488 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from argparse import Namespace\n",
"import logging\n",
"import os\n",
"from pathlib import Path\n",
"import random\n",
"\n",
"logger = logging.getLogger('model_test')\n",
"\n",
"model_path = Path('EXPERIMENTS/models/models_20241203_15_18_45_hof3-2024-12-03/')\n",
"eval_data = Path('EXPERIMENTS/trajectron-data/hof3-nostep-2024-12-03_test.pkl')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"\n",
"from trap.frame_emitter import Camera\n",
"\n",
"maps = None\n",
"\n",
"path = Path(\"EXPERIMENTS/raw/hof3/\")\n",
"calibration_path = Path(\"../DATASETS/hof3/calibration.json\")\n",
"homography_path = Path(\"../DATASETS/hof3/homography.json\")\n",
"camera = Camera.from_paths(calibration_path, homography_path, 12)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2682"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from trap.tracker import FinalDisplacementFilter, TrackReader\n",
"\n",
"\n",
"reader = TrackReader(path, camera.fps, exclude_whitelisted = False, include_blacklisted=False)\n",
"tracks = [t for t in reader]\n",
"filter = FinalDisplacementFilter(2) # people don't just (disappear) out of nowhere\n",
"tracks = filter.apply(tracks, camera)\n",
"len(tracks)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scene: Duration: 31556.25s, Nodes: 94, Map: No. 0.08333333333333333\n",
"\n",
"Loading from EXPERIMENTS/models/models_20241203_15_18_45_hof3-2024-12-03/model_registrar-100.pt\n",
"Loaded!\n",
"\n"
]
}
],
"source": [
"# Choose one of the model directory names under the experiment/*/models folders.\n",
"# Possibilities are 'vel_ee', 'int_ee', 'int_ee_me', or 'robot'\n",
"# model_dir = os.path.join(self.config.log_dir, 'int_ee')\n",
"# model_dir = 'models/models_04_Oct_2023_21_04_48_eth_vel_ar3'\n",
"\n",
"# Load hyperparameters from json\n",
"import json\n",
"import dill\n",
"from trajectron.utils import prediction_output_to_trajectories\n",
"from trajectron.model.online.online_trajectron import OnlineTrajectron\n",
"from trajectron.model.model_registrar import ModelRegistrar\n",
"from trap.prediction_server import create_online_env\n",
"\n",
"eval_device = \"cuda:0\"\n",
"config_file = model_path / 'config.json'\n",
"if not os.path.exists(config_file):\n",
" raise ValueError('Config json not found!')\n",
"with open(config_file, 'r') as conf_json:\n",
" logger.info(f\"Load config from {config_file}\")\n",
" hyperparams = json.load(conf_json)\n",
"\n",
"logger.info(f\"Use hyperparams: {hyperparams=}\")\n",
"\n",
"with open(eval_data, 'rb') as f:\n",
" eval_env = dill.load(f, encoding='latin1')\n",
"\n",
"logger.info('Loaded data from %s' % (eval_data,))\n",
"\n",
"# Creating a dummy environment with a single scene that contains information about the world.\n",
"# When using this code, feel free to use whichever scene index or initial timestep you wish.\n",
"scene_idx = 0\n",
"\n",
"# You need to have at least acceleration, so you want 2 timesteps of prior data, e.g. [0, 1],\n",
"# so that you can immediately start incremental inference from the 3rd timestep onwards.\n",
"init_timestep = 2\n",
"\n",
"eval_scene = eval_env.scenes[scene_idx]\n",
"print(eval_scene, eval_scene.dt)\n",
"online_env = create_online_env(eval_env, hyperparams, scene_idx, init_timestep)\n",
"\n",
"# auto-find highest iteration\n",
"model_registrar = ModelRegistrar(model_path, eval_device)\n",
"model_iterations = model_path.glob('model_registrar-*.pt')\n",
"highest_iter = max([int(p.stem.split('-')[-1]) for p in model_iterations])\n",
"logger.info(f\"Loading model {highest_iter}\")\n",
"\n",
"model_registrar.load_models(iter_num=highest_iter)\n",
"\n",
"trajectron = OnlineTrajectron(model_registrar,\n",
" hyperparams,\n",
" eval_device)\n",
"\n",
"# If you want to see what different robot futures do to the predictions, uncomment this line as well as\n",
"# related \"... += adjustment\" lines below.\n",
"# adjustment = np.stack([np.arange(13)/float(i*2.0) for i in range(6, 12)], axis=1)\n",
"\n",
"# Here's how you'd incrementally run the model, e.g. with streaming data.\n",
"trajectron.set_environment(online_env, init_timestep)\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"track = tracks[9]\n",
"track = tracks[20]\n",
"track = tracks[21]"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"139"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(track.history)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"from trap.tracker import Smoother\n",
"\n",
"\n",
"t = track.get_with_interpolated_history()\n",
"# node = t.to_trajectron_node(camera, online_env)\n",
"\n",
"smoother = Smoother()\n",
"track_s = smoother.smooth_track(t)\n",
"track_s.track_id += \"smooth\"\n"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"input_tracks =[\n",
" t,\n",
" track_s\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{PEDESTRIAN/97903: array([[ 2.1625, 7.7215, 0.894, 0.45824, -0.52067, -1.0788]])}"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eval_scene.get_clipped_input_dict(238525, hyperparams['state'])\n",
"# eval_scene.nodes[0].first_timestep"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/nn/modules/rnn.py:769: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters(). (Triggered internally at ../aten/src/ATen/native/cudnn/RNN.cpp:968.)\n",
" result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n",
"/home/ruben/suspicion/trap/.venv/lib/python3.10/site-packages/torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.\n",
" warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIw0lEQVR4nO39ebTddX0v/j/3PvM5OTkhwUySQBgkzJOQIlZRqYhWsYPaXtta26utxVbLHZT1u061LR2sy1XrwrarDr3Ofpdor97qtciggkwBBREETAHFQALkjMmZ9uf3x4GEQ6Yz7JM9nMdjrb1W9md4f17s9WFnvz/PvN/vUlEURQAAAAAAABpcudYFAAAAAAAAVIPQAwAAAAAAaApCDwAAAAAAoCkIPQAAAAAAgKYg9AAAAAAAAJqC0AMAAAAAAGgKQg8AAAAAAKApCD0AAAAAAICmIPQAAAAAAACagtADAAAAAABoCrMOPa677rq88pWvzNq1a1MqlfLlL395977x8fG84x3vyCmnnJKenp6sXbs2v/M7v5OHH364mjUDAADULX0mAAConVmHHsPDwznttNPykY98ZK99IyMj2bx5c971rndl8+bN+dKXvpR77rknr3rVq6pSLAAAQL3TZwIAgNopFUVRzPnkUilXXnllXv3qV+/3mJtvvjnnnHNOHnjggaxfv36ulwIAAGg4+kwAAHBotS70Bfr7+1MqlbJs2bJ97h8dHc3o6Oju95VKJY8//nhWrFiRUqm00OUBAEDNFUWRwcHBrF27NuWyZfcWm4P1mRL9JgAAFrfZ9JkWNPTYtWtX3vGOd+Q3f/M3s3Tp0n0ec/nll+d973vfQpYBAAAN4aGHHsoRRxxR6zI4hGbSZ0r0mwAAIJlZn2nBprcaHx/Pr/3ar+WnP/1prrnmmv3+gH/mv1jq7+/P+vXr89BDDx3wRz8AADSLgYGBrFu3Ljt27EhfX1+ty6GKqtFnSvSbAABY3GbTZ1qQkR7j4+N57WtfmwceeCDf+ta3DvgjvKOjIx0dHXttX7p0qR/vAAAsKqYpWjxm02dK9JsAACCZWZ+p6qHHUz/e77333lx99dVZsWJFtS8BAADQsPSZAABg4cw69BgaGsp99923+/2WLVty++23Z/ny5VmzZk1+/dd/PZs3b85Xv/rVTE5OZuvWrUmS5cuXp729vXqVAwAA1CF9JgAAqJ1Zr+lxzTXX5EUvetFe29/whjfkve99bzZs2LDP866++uqcf/75B21/YGAgfX196e/vN0wbAIBFwW/g5rLQfabEPQMAwOIym9+/sx7pcf755+dAOck81kUHAABoePpMAABQO+VaFwAAAAAAAFANQg8AAAAAAKApCD0AAAAAAICmIPQAAAAAAACagtADAAAAAABoCkIPAAAAAACgKQg9AAAAAACApiD0AAAAAAAAmoLQAwAAAAAAaApCDwAAAAAAoCkIPQAAAAAAgKYg9AAAAAAAAJqC0AMAAAAAAGgKQg8AAAAAAKApCD0AAAAAAICmIPQAAAAAAACagtADAAAAAABoCkIPAAAAAACgKQg9AAAAAACApiD0AAAAAAAAmoLQAwAAAAAAaApCDwAAAAAAoCkIPQAAAAAAgKYg9AAAAAAAAJqC0AMAAAAAAGgKQg8AAAAAAKApCD0AAAAAAICmIPQAAAAAAACagtADAAAAAABoCkIPAAAAAACgKQg9AAAAAACApiD0AAAAAAAAmoLQAwAAAAAAaApCDwAAAAAAoCkIPQAAAAAAgKYg9AAAAAAAAJqC0AMAAAAAAGgKQg8AAAAAAKApCD0AAAAAAICmIPQAAAAAAACagtADAAAAAABoCkIPAAAAAACgKQg9AAAAAACApiD0AAAAAAAAmoLQAwAAAAAAaApCDwAAAAAAoCkIPQAAAAAAgKYg9AAAAAAAAJqC0AMAAAAAAGgKQg8AAAAAAKApCD0AAAAAAICmIPQAAAAAAACagtADAAAAAABoCrMOPa677rq88pWvzNq1a1MqlfLlL3952v6iKPLud787a9asSVdXVy644ILce++91aoXAACgrukzAQBA7cw69BgeHs5pp52Wj3zkI/vc/zd/8zf5+7//+3z0ox/NjTfemJ6enlx44YXZtWvXvIsFAACod/pMAABQO62zPeGiiy7KRRddtM99RVHkQx/6UP7X//pfufjii5Mk//qv/5pVq1bly1/+cn7jN35jftUCAADUOX0mAAConaqu6bFly5Zs3bo1F1xwwe5tfX192bRpU2644YZ9njM6OpqBgYFpLwAAgGY0lz5Tot8EAAAzVdXQY+vWrUmSVatWTdu+atWq3fue6fLLL09fX9/u17p166pZEgAAQN2YS58p0W8CAICZqmroMReXXXZZ+vv7d78eeuihWpcEAABQV/SbAABgZqoaeqxevTpJ8sgjj0zb/sgjj+ze90wdHR1ZunTptBcAAEAzmkufKdFvAgCAmapq6LFhw4asXr06V1111e5tAwMDufHGG3PuuedW81IAAAANR58JAAAWVutsTxgaGsp99923+/2WLVty++23Z/ny5Vm/fn3e/va358///M9z3HHHZcOGDXnXu96VtWvX5tWvfnU16wYAAKhL+kwAAFA7sw49brnllrzoRS/a/f7SSy9NkrzhDW/IJz7xifzP//k/Mzw8nDe/+c3ZsWNHnv/85+frX/96Ojs7q1c1AABAndJnAgCA2ikVRVHUuoinGxgYSF9fX/r7+81TCwDAouA3MLPlngEAYDGZze/fqq7pAQAAAAAAUCtCDwAAAAAAoCkIPQAAAAAAgKYg9AAAAAAAAJqC0AMAAAAAAGgKQg8AAAAAAKApCD0AAAAAAICmIPQAAAAAAACagtADAAAAAABoCkIPAAAAAACgKQg9AAAAAACApiD0AAAAAAAAmoLQAwAAAAAAaApCDwAAAAAAoCkIPQAAAAAAgKYg9AAAAAAAAJqC0AMAAAAAAGgKQg8AAAAAqCOPPvqFWpcA0LCEHgAAAABQR4pivNYlADQsoQcAAAAAANAUhB4AAAAAAEBTEHoAAAAAQB0piqLWJQA0LKEHAAAAANSRUqlU6xIAGpbQAwAAAAAAaApCDwAAAAAAoCkIPQAAAACgjljTA2DuhB4AAAAAUEes6QEwd0IPAAAAAKgr5VQqlVoXAdCQhB4AAAAAUEdKpfZUKiO1LgOgIQk9AAAAAKCOlMsdqVTGal0GQEMSegAAAABAHZkKPXbVugyAhiT0AAAAAIA6Uip1pFLZWesyABqS0AMAAAAA6oiRHgBzJ/QAAAAAgDpSLnekKMZrXQZAQxJ6AAAAAEAdmRrpMVrrMgAaktADAAAAAOpIudwp9ACYI6EHAAAAANQRC5kDzJ3QAwAAAADqSLncaU0PgDkSegAAAABAHZma3mpXrcsAaEhCDwAAAACoI0Z6AMyd0AMAAAAA6ki5XE5RTNa6DICGJPQAAAAAgCbw4IO1rgCg9oQeAAAAANAEtm2rdQUAtSf0AAAAAAAAmoLQAwAAAAAAaApCDwAAAACoM6VSqdYlADQkoQcAAAAAANAUhB4AAAAA0AQMDgEQegAAAABA3SmKYpbHT70AFjuhBwAAAADUmdmu6TE6mnR2LlAxAA1E6AEAAAAADW5oKOnpqXUVALUn9AAAAACABjc8nCxZUusqAGpP6AEAAAAAdWa2a3oMDQk9AJIFCD0mJyfzrne9Kxs2bEhXV1eOOeaYvP/975/1FzUAAEAz0mcCYCGMjiYdHbWuAqD2Wqvd4F//9V/niiuuyCc/+cmcdNJJueWWW/LGN74xfX19+ZM/+ZNqXw4AAKCh6DMBsBCKIpnl2ucATanqocf111+fiy++OK94xSuSJEcddVQ++9nP5qabbqr2pQAAABqOPhMAACycqk9v9bznPS9XXXVVfvzjHydJvv/97+c73/lOLrroompfCgAAoOHoMwGwEIzyAJhS9ZEe73znOzMwMJCNGzempaUlk5OT+Yu/+Iu8/vWv3+fxo6OjGR0d3f1+YGCg2iUBAADUjdn2mRL9JgAAmKmqj/T4whe+kE9/+tP5zGc+k82bN+eTn/xkPvCBD+STn/zkPo+//PLL09fXt/u1bt26apcEAABQN2bbZ0r0mwAAYKZKRVEU1Wxw3bp1eec735lLLrlk97Y///M/z6c+9ancfffdex2/r3+xtG7duvT392fp0qXVLA0AAOrSwMBA+vr6/AZeJGbbZ0r0mwAWo61bP5XVq39rxsffemty1lkLWBBADc2mz1T16a1GRkZSLk8fQNLS0pJKpbLP4zs6OtLR0VHtMgAAAOrSbPtMiX4TAADMVNVDj1e+8pX5i7/4i6xfvz4nnXRSbrvttnzwgx/M7/3e71X7UgAAAA1HnwmAhWAhc4ApVQ89PvzhD+dd73pX/uiP/iiPPvpo1q5dmz/4gz/Iu9/97mpfCgAAoOHoMwEwE6VZphjVncAeoHFVfU2P+TKfMQAAi43fwMyWewag+T3yyKezatXrZ3y8NT2AZjab37/lA+4FAAAAAA652fw75fHxpK1tAYsBaCBCDwAAAACoM7OZ3mp4OFmyZAGLAWggQg8AAAAAaGBDQ0IPgKcIPQAAAACggQ0NJT09ta4CoD4IPQAAAACgzsxmTY+RkaS7ewGLAWggQg8AAAAAqKHNm+d3flEks1gCBKCpCT0AAAAAoIZmMahjnwQeAHsIPQAAAAAAgKYg9AAAAACAGprvSI35jhQBaCZCDwAAAAAAoCkIPQAAAAAAgKYg9AAAAACAOlMqlVKpVGpdBkDDEXoAAAAAQJ0pldpSFGO1LgOg4Qg9AAAAAKCG2tqSsWfkG1Ohx0RtCgJoYEIPAAAAAKihpUuTgYHp20qltlQqRnoAzJbQAwAAAABqaP+hx66Dnjs5mbS0LFBhAA1I6AEAAAAANdTbmwwOTt9WLnekKMYPeu7wcNLTs0CFATQgoQcAAAAA1FBr69SIjacrlVpntJD50FCyZMkCFQbQgIQeAAAAAFBjRTH9fanUMaM1PYaHhR4ATyf0AAAAAIA6Uy63zXh6q+7uQ1AQQIMQegAAAABAnZlayPzgoYeFzAGmE3oAAAAAQJ0pl9uTHHx6q/manNyVsbHtC34dgENF6AEAAAAAdaZUap/RSI/52rHj6hmtHQLQKIQeAAAAAFBnSqWZrekxX+Pjj6Wzc+2CXwfgUBF6AAAAAMAhNjExlMnJkf3uL5dbZzTSo1SqZlUAjU/oAQAAAACHWKlUyq5dDzzt/TP3tydZ2JEeExNDKZc7F/QaAIea0AMAAAAADrGWlp5UKntGerS2JuNPyzjK5c4ZjfQoirnX8MQT38xhh10w9wYA6pDQAwAAAABqbOnSZHBwz/tSqX1Ga3rMZ3qriYnBtLUtm3sDAHVI6AEAAAAANdbbmwwM7HlfLpeTVA563nxGegA0I6EHAAAAAIvarl0/TaVy8IBhIfX2Th/psdDGxh5NW9vyQ3dBgENE6AEAAADAolYud2bbti/W7PqVykRaWnZmbGx25xVFUp7j070dO67JsmUvntvJAHVM6AEAAADAotbefngqlV2ZmBg5+MFV1NLSm4mJqeEdO3feu9f6HMVB5q4aGUm6u+d27cnJXWltnePJAHVM6AEAAADAordy5esO+WiP9vY1GRvbmnK5dZ+LlpcOskr50FCyZMlCVQfQmIQeAAAAACx6LS2dKZc7Mzb2+CG85pJMTj61enlpr0XJDzbSY3g46emZ/XV37XowHR1rZn8iQAMQegAAAABAkmc96zXZvv1Lh+x600dyHDjg2Je5jvTo7/92li174exPBGgAQg8AAAAASFIul9Pe/qzs2vVgrUuZkYmJpLV19udVKpMpl9urXxBAHRB6AAAAAMCTli9/ZR5//P8dwiseeN0OAGZH6AEAAAAATyqXy+noWJeRkXsP0RX3TGt1kHXL9z5z9jNiZWTk3nR2HjX7ExvArl0/rXUJQB0QegAAAADA06xYcWF27Lj2kFyrVGpNpTKRfS1kfvBzZ3+9gYEb09f3/NmfWOeGh3+UuayLAjQfoQcAAAAAPENX17EZGvrhgl+nre1ZGR/flmQqxJhN8DGXkR7J1GiWZjI8/KO0tPSks3NdrUsB6kBzfcMBAAAAQBUcdtj5GRi4YcGv81ToUSq1prt7PCMjC3u9oqgs7AUOseHhu9PS0p3OzvW1LgWoE0IPAAAAANiH7u6NGRy8fUGvUS63pSjG09ral+7ugQwOzvzc2U5vNTR0Z7q7j5/dSXVsZOSelMud6ew8stalAHVE6AEAAAAA+7Bs2fMzOHjLIbhSKS0tS9Pd3T+r0GO201sNDd2e3t6zZ3dSnRoZuTelUnu6uo6qdSlAnRF6AAAAAMB+9PSckMHBzQt8lSKtrUvT3j6Q4eGFvVIzrOcxMnJfSqWWdHVtqHUpQB1q/G85AAAAAFggfX3nHYLQo5RSqSWl0mQmJxfmCpVKpSnW89i58ydJkq6uo2tcCVCvhB4AAAAAcAALv7bHLOepytTUVrNZ02N4+PYsWXLyrK9TT3bu3JKimEh397G1LgWoY0IPAAAAADiAZcuen6GhWxes/VKpLZXK+KzOGR1NOjtnfvzQ0J3p6Tl9doXVkV27HkhRjKW7+zm1LgWoc0IPAAAAADiIzs5jMjT0wwVpu63tWRkf3z6rc4aGkiVLZnedRl3PY9euhzI5OZLu7uNrXQrQABrzmw4AAAAADqHDDjs/AwM3LEjbbW2HZ3x8W5LpU1aVDjB/1WxCj0qlcdfyGB19OBMT/enpOaHWpQANQugBAAAAADPQ0fHsjIzcX/V2y+W2FMXspreaTegxNLQ5S5acOofKamt0dGvGx7c1/FokwKEl9AAAAACAGTjssAvT33/Ngl6jmOGa5qOjSVvbzI4dHr4rPT2NFXqMjW3P2NjPs2TJabUuBWgwQg8AAAAAmIFyuZzW1uXZtevhBbvG02e0Kg6SgBxg9qu9NNJ6HuPjj2d09IH09p5R61KABtQ433YAAAAAUGMrVlycJ5749wVqvZRKZWZDPWYaeDTaeh4TEwPZufPe9PaeVetSgAa1IKHHz372s/zWb/1WVqxYka6urpxyyim55ZZbFuJSAAAADUefCaBxlcvllMtLMjExUPW2W1qWJBma8RRXM9FI63lMTg5nePjOLF26qdalAA2s6qHHE088kfPOOy9tbW3593//99x11135u7/7uxx22GHVvhQAAEDD0WcCaHzPetavZNu2L1e93XJ5STo6BjM6OvW+NJv5q/ajUdbzmJzclcHBzVm69NxalwI0uNZqN/jXf/3XWbduXT7+8Y/v3rZhw4ZqXwYAAKAh6TMBNL5yuT1JkUplIuVydR6vtbQsSalUTnd3fwYHk87OA6/pMdPRIKVSue7X86hUxjM4eFP6+n6xKkEPsLhV/Rvv3/7t3/Lc5z43r3nNa7Jy5cqcccYZ+ed//udqXwYAAKAh6TMBNIfDD78427d/qWrttbU9K5OTI+nsHMnQ0NS2AwUAM8kGKpVKiqK+1/QoiskMDFyfvr7zBB5AVVQ99PjJT36SK664Iscdd1y+8Y1v5C1veUv+5E/+JJ/85Cf3efzo6GgGBgamvQAAAJrVbPtMiX4TQD1qa1uWycnBqi0U3tq6LJOT/enqquwOPeZrePgH6ek5ca/tO3duqc4F5qkoivT3fydLlz4vpVJLrcsBmkTVQ49KpZIzzzwzf/mXf5kzzjgjb37zm/OmN70pH/3oR/d5/OWXX56+vr7dr3Xr1lW7JAAAgLox2z5Tot8EUK/6+s7Pjh1XVaWtUqmcpJK2tmR8/ODHz2R6q+HhO7NkyZnTto2NPfrktWrrqcCjt3dTyuW2WpcDNJGqf8OtWbMmJ544PUE+4YQT8uCDD+7z+Msuuyz9/f27Xw899FC1SwIAAKgbs+0zJfpNAPWqu/uYjI7u//t7rp4KNA60psfM2qnstZ7Hrl0PpKNj/bzarYaBgRuyZMkZaWnprHUpQJOp+kLm5513Xu65555p23784x/nyCOP3OfxHR0d6ejoqHYZAAAAdWm2faZEvwmgnnV1HZ+hoR9myZKTqtbmU0tbzHdNj/2fW9u1MwYGbk5398a0ti6paR1Ac6r6SI8//dM/zfe+97385V/+Ze6777585jOfyT/90z/lkksuqfalAAAAGo4+E0BzWbbs+RkcvOmQXnNsLGlvP/AxQ0M/zPbtx03bNj7+WNraVixgZQc3NPSDdHauT1vb8prWATSvqoceZ599dq688sp89rOfzcknn5z3v//9+dCHPpTXv/711b4UAABAw9FnAmg+LS29GR/fUbX2Djar1dBQ0tNz4GOeeOK2FMWmadt27vxJOjs3zLO6uRsevjutrYelvX1VzWoAml/Vp7dKkl/+5V/OL//yLy9E0wAAAA1PnwmguRx++KvyyCOfy5o1v3NIrjc0lCw5yMxQ27dXctxxe/9751pNbbVz509SLrels3NdTa4PLB5VH+kBAAAAAItJudyeZDKVSmVe7ZRKbSmKiYMeN5PQY3S0PO2Y8fEdaW1dNq/65mp09GepVEbT1XVMTa4PLC5CDwAAAACYp8MOe0meeOIb82qjtXV5JiYGDnrczp1JZ+eB9j+QUmnNM7bdl66uY+dV31yMjW3P2Ni29PSccMivDSxOQg8AAAAAmKfOzvUZG3t4Xm20tR2WycmdScYOeFypNPXan4GB61Mu/+IzthaHfGqriYnB7Nx5X3p7Tz+k1wUWN6EHAAAAAFRBR8f6jIzcP+fzy+XuJ4OJoSRJsZ8VzQ+20HmlMpmWlvbd7ycmBtPScpD5sKqsUhnL0NDtWbp008EPBqgioQcAAAAAVMGyZS9Jf/91cz6/VCqlXO5OpTKw+/1c7NhRyZqnzW61c+eP0919/Jzrmq2iqKS///r09Z1Xs4XTgcVL6AEAAAAAVVAul5O0pFI5+GLk+9PS0p3W1qGMHXiGq/0aG9uegYFlWb16z7aiqKRUOjSPAYuiSH//d9PX97xDdk2Ap/PNAwAAAABVsmLFy7N9+1fmfH6p1JaurrEMDR3omP3v27HjmpTLL959zOTkzpTLXXOuZ7YGB2/JkiWnp1xuP/jBAAtA6AEAAAAAVdLefngmJwfmfH6pVEpXV5GRkf2v6XEgk5MjKZf3rN8xMvKjdHdvnHM9szE0dGc6O49Ma2vvIbkewL4IPQAAAACgijo6jsjIyL1zPr+rKxke3v/+2WQhRTGZcrl1zrXM1M6d96elZUna21cu+LUADkToAQAAAABVNLWg+XfmeHYpnZ3JyMgBjtjP9FaTk7uyc2dHli2bel+pjB2SaaZGR3+eSmU0XV1HLfi1AA5G6AEAAAAAVTS1oHk5lUplzm0caDTH/vbt2HF1BgbOy7p1U+9HRu5Od/cJc65hJiYmBjI6+tP09Jy4oNcBmCmhBwAAAABU2WGHvSSPP/71WZ9XLnenUtk5p2uOjz+Wyckj0v7k4I5KZXRBR3pUKuMZGvp+enufu2DXAJgtoQcAAAAAVFln5xEZH9826/NaW5dlcnJov6M5JiaS1hks0VGpTKRUapn19WeqKIoMDNyQvr7npbS/+bYAakDoAQAAAAALoKWlJ+PjO2Z1zlToMbjfdTuGh5MlS/be/syptHbuvCfd3cfP6tqzMTh4U3p7z1rQYAVgLoQeAAAAALAAVqz45Tz22FdndU653JFKZXS/+4eG9h16DA//IK2tG9PRMfV+cnIkLS09s7r2TA0N3ZnOzg0L1j7AfAg9AAAAAGABtLR0pigmZ3XOU1NF7W96q6GhpGcfWcPw8J159NEzs2HD1NRTycJMObVr1wNpaelOe/vKBWkfYL6EHgAAAACwQDo7j8zw8D2zPq8oin2ulTEysu/Qoygq2bmznJ6eZOfO+9PVdcxcyj2g8fHHMz7+RLq6jq562wDVIvQAAAAAgAXS1/eCDAx8b1bnlEptScb2ua8ost/1Pp4yMfFE2toOm9U1D6ZSGcvw8F3p7T29qu0CVJvQAwAAAADm4e67k8n9zGJVLs/+8dvUWhlDMz5+bGx72tqWzfo6M1UURQYGvpe+vnMX7BoA1SL0AAAAAIB5OPro5JZb9r9/yZLT0t9/44zbK5e7kozsc9++1vro7/92liw5Py0tyejoz9LR8ewZX2smhoY2Z8mSM1IqtVS1XYCFIPQAAAAAgHlob09WrUoeemjf+3t7T8/IyN0zbq9c7kxRzHykx+TkcLZuXZojjkhGRx9OR8faGZ97MCMj96WtbVVaW3ur1ibAQhJ6AAAAAMA8HXXUVOixv2mukqRSqcyoranQY9c+9+1vPY/t25MVK5LkIAt+zMLY2PZUKrvS2XlE1doEWGhCDwAAAACoguc+d//TXC1d+gvp779uRu2USqW0tRWZmNh73zOnt3oqSCmVkomJHWlt7ZtNyftVqYxn5857smTJyVVpD+BQEXoAAAAAQBW0t0+Ntti6de99PT3HZ9euB2bUTqnUlo6O8YyNHfzY4eEfpKdnKpjYufO+dHUdO5uS92tg4HtZuvQXqtIWwKEk9AAAAACAKjn22OT++/e94HgysymuWlp6094+nNHRvRt55vRWw8N3prv71Kftn//0VoODt6en5xQLlwMNSegBAAAAAFV06qnJHXfsvX2mU1y1tvamrW044+OlGYUk27aVs3LlaMrl9rmUO82uXQ+ltXVp2tqWzbstgFoQegAAAABAFfX2Ti1oPjIyfftMp7hqaelNW9tIRkdbk0wPPfY1guThh5O+vnvS3b1xHlUnk5M7Mza2NV1dR8+rHYBaEnoAAAAAQJWdfnpy++1zO7dcbk+5PJ6JiVKKYs9q5kWRlJ/2NG9iYiTlcvuTQcj8RnoURZHBwZvT2/vcObcBUA+EHgAAAABQZaVSsmbN1CiMp1uy5LT09988wzbKKYo9Iz1GRpLu7j37+/u/naVLn5eiKJLMby2PoaHbsmTJGVVZEwSgloQeAAAAALAANmxI/vM/p2/r7T09IyN3zbCFljx9equhoWTJkj17x8e3pbPziBTFlnlNSbVr10/T2tqX1tbeObcBUC+EHgAAAACwQI4/Prn77rmdWxQt06a3Gh5OenqmHzMwkHR3P562tuVzukalMprR0Z+mq+uYuRUJUGeEHgAAAACwQFasSJ54YvoC5B0dR2Tnzi0HPG9qmqnytNDjmSM9kuSBB6am0ZqrgYGbs3TpOXNvAKDOCD0AAAAAYAGddlry/e/veb9s2YvS3//dA55TFEVKpenTW42PJ62tT/15R1pbezM62p/Ozr451TU8fFe6uzemVPKIEGgevtEAAAAAYAF1d08FFhNPDtool6cvUL5vpRRFKZXKxD739vd/J0uXnpdK5b45TU01Pv5EimIi7e2Hz/pcgHom9AAAAACABfbM0R7lckcmJkb2e3y53J5kMk8f6VEq7dk/MbHjycCimPVIjaIoMjx8R5YsOXVW5wE0AqEHAAAAACyw9vakUpka8ZEky5dfmCee+MZ+jy+XO5NMpCgm93vM6GglbW2l/e7fn6GhzentPWvW5wE0AqEHAAAAADNy333JrbcmDz00fWFuZub00/eM9mhrW5aJicH9Hlsud6YoxvL0kR7P9JOf3J8jjzx2VjWMjT2alpYlaWnpmdV5AI2itdYFAAAAANAYjn3y+fqjjyabN0/9uSiSZz87Wb16+vRL7K2tberzmpiYWpD8QNNS7RnpsSf0eCpompgYSLnclcHBHTnhhONmfP2iKDIy8uMsW/b8uf4nANQ9oQcAAAAAs7Jy5dQrmXoQ//DDUyNAngo9NmxIli+vXX317NRTkzvvnBr10dV1XIaG7sySJSfvdVy53JWiGE1R7L2QeX//DVm69NwkD8/q2lPTWj13jpUDNAahBwAAAABzVipNjfR49rOn3hdFsmVL8pOfTL1vbU2OOy7pMZtSkqSjIxkdnfqcenvPzqOPfmafoUdr69Iku/YZeoyPb0tb27IkT8z4umNj256c1qpz7sUDNAChBwAAAABVUyolRx899UqmFu6+775kZGTqQX9Pz1QI0rqIn0qdeGLyox8lJ55YnjZ91dO1tPSkVJpMsu/FU0ZG7k25fMKMrlcURXbu/HH6+s6ba8kADWMR//UCAAAAwEJra0tOeNqz+aGhqemdxsenApJVq5Ijjlhc64H09iaDT65hXi63pFKZSLk8/TFdudyVZHKfIz2S5PHHx7NqVfuMrjc8/IP09Jw2n5IBGobQAwAAAIBDZsmSqfUsnrJ169R6IElSLk+NAuntrUlph9QRRyQ//Wly+OG/mB07rs7y5b80bX+53J1SaSyVyvTQo1KppFQqZdu25IwzDn6diYnBJKW0ti6pYvUA9UvoAQAAAEDNrF499UqSiYmpqbCeGgXR15cce+xUGNJsnv3s5MYbkyOOWJ8nnrhmr/3lckfK5cmMjk4mScbGkvb2qVEb7e3rUhR9aWk5+HWGh+94ctFzgMVB6AEAAABAXWhtTTZu3PO+vz+57baptUBKpakApK+vdvVVW1dXsnPnvveVSqW0tZUyPj615sfIyNR6KCMjP0xn53NSKh190PZ37vxJOjuPTmkxzR0GLHpCDwAAAADqUl9fctZZU3+uVKZGgdx779T75cuTDRsaey2Qk06aCnXWrevIxMRIWlu7p+1vbS1n166pkR5DQ1NTg1UqRUqlUkqlAw/zKIpKxsYeSV+fUR7A4iL0AAAAAKDulcvJc56z5/3jj0+tBVIUSUfH1AiR9pmt6103WlqSycnksMNelB07vpXDD//lafvb2sq7R3oMDyeHHTY19dfERCltbQdue2jotvT2nrlQpQPULaEHAAAAAA1n+fKpVzK13sXddyejo1MjP447rnGmwTryyGTr1pVpb9+x177W1paMjEwtZD4yMjUdVn//zmzbtiTr1u2/zYmJwZRKbSmXOxaoaoD6JfQAAAAAoKG1tyennjr156KYmgLrxz+een/kkcnKlbWr7WBWr05uuilZv37vfW1tLRkbm5reqlJJKpWRTEz0Z3Dw6GmjXp5pePjOLF36CwtUMUB9E3oAAAAA0DRKpT3TYBVF8uCDyc03T70/4ohkzZra1bY/LS1J0pZKZSzlcvu07ZOTUyM9SqVkePi2dHZuSKnUtt+1TEZHf5729jUWLwcWrXKtCwAAAACAhVAqTY30OPvsqdfk5FQAcvPNySOP1Lq6PTZuTB599BeyY8e3n7GnJcnk7ne7dv1n2tsPMK9Vkl27tqSr66iq1wjQKIz0AAAAAGBROOKIqVcyfQTIscdOLRJeKz09yejokRkb2zv0KIrxJFOjVoqikpaW/T/O27nz/nR1HbuAlQLUP6EHAAAAAIvO+vVTr6JI7rtv6tXSkpx0UtJRg/W/y+WpdTumbyunVNoz0mN8/LEUxZHp6tr7/KIoMjb2aPr6jlngSgHqm9ADAAAAgEWrVEqOO27qzxMTyV13JaOjybJlUyNADtXSGBs3Jj/6UbJ27dO3tqRSmdj9bnJyMFu3rsi6fcxwNTJyT7q7Ny54nQD1bsHX9Pirv/qrlEqlvP3tb1/oSwEAADQcfSaA+tHampx66tT6H4cfPjX91U03JYODC3/tnp5kfHxDhofv2b2tXO5KsitJUnlyGMjgYNLbO/3coigyOdmftrYaztEFUCcWdKTHzTffnH/8x3/MqaeeupCXAQAAaEj6TAD167DDknPOmZr+6u67k4GBqSDkmAWcPaqlZVMGBz+fnp7jkyStrV0plaYSl1JpS9rbV+7zvJGRu43yAHjSgo30GBoayutf//r88z//cw6r5UpQAAAAdUifCaAxlErJCSckmzYlfX3JjTcmt902NRVWtW3Y0Jrt24unXbtj90LmExPfT1fXvoONycmBtLb2Vb8ggAa0YKHHJZdckle84hW54IILDnjc6OhoBgYGpr0AAACa3Uz7TIl+E0C9OPzwqfDjpJOS739/auqrkZHqtf+sZyWDg3tWMy+V2naHHkXxUHp6TtjrnJGRe9PVdVz1igBocAsyvdXnPve5bN68OTfffPNBj7388svzvve9byHKAAAAqEuz6TMl+k0A9aa9PTnrrKRSSe68M9m5MznxxL3X2piLomjJf/7nRB57rDVtbZ1JRp/cPpCieFba2qYfPzHxeLq7hR4AT6n6SI+HHnoob3vb2/LpT386nZ2dBz3+sssuS39//+7XQw89VO2SAAAA6sZs+0yJfhNAvSqXpxY+P+ec5IEHku99Lxkaml+bnZ2nZ8mSW3PWWcmSJUsyMLAzk5NT02xt3VrK2rV7jt2166fp6DhifhcEaDJVH+lx66235tFHH82ZZ565e9vk5GSuu+66/MM//ENGR0fT0tKye19HR0c6OjqqXQYAAEBdmm2fKdFvAqh3pVJy8slTi57fcUeya1dy+ulTI0Jma+PGE3LXXZ/J4Ydvypo1S/KDH4xnZCRpa0u2b0/Wr99z7NjYz7J06aaq/XcANIOqhx4veclLcscdd0zb9sY3vjEbN27MO97xjr1+vAMAACwm+kwAzatUmhr5MTExtdh5R0dyyilT22equ7uc8fGn2utIuTyZkZGpAGV8fE9bExNDaWlZUv3/CIAGV/XQo7e3NyeffPK0bT09PVmxYsVe2wEAABYbfSaA5tfampx9djI4mFx/fXL00cmaNTM//6lgo1zuSDKegYHhtLd3ZGJizzEjIz9Kb+9zq1o3QDOo+poeAAAAAMDUwubnnZeMjCQ33TS18PlMlErJ2Fgl5XJnkokMDt6SZctOTlFM7S+KIkmR0myGkAAsElUf6bEv11xzzaG4DAAAQEPSZwJobscck6xbl9xwQ3LcccnKlQc+ft2643LvvT/KCSccl2Qyu3bdlsMO++387GdT+3fu/HG6u49f8LoBGpGRHgAAAACwwNrbp0Z9PPZY8sMfHvjY1avPyODgnSmV2lIqTaYoBjMxsSLd3VP7Jyb6MznZl5tvTm69Ndm8eWrxdAAO0UgPAAAAACA54YRk27apUR+/8Av7XuS8XG5PMp5SqZRSKSmKZOvWqXVBKpXRTEx05vbbk+c/PymXk8nJTFvvA2AxM9IDAAAAAA6hZz0rOeOM5LrrkvHxAx9bKhVJStmxI+nrS4aHf5S77jpxd+CRJC0tSUfHQlcN0BiEHgAAAABwiHV2To3U+O53k7GxvfeXy1OjN8rlUiqVqRXMS6XkkUfGc+SRrbsDDwCm8/UIAAAAADXQ0pK84AXJ9dfvPT3VihVtefDBpxbqmJoDa3JyV7Zt68y6dYe2ToBGIvQAAAAAgBopl/eM+CiKPdtXrjwh27bdmSS7R3o8+ujdOeywjbUoE6BhCD0AAAAAoIZaW5Ozz05uvnnPtp6eE1MU9z65psfU1FYPPDCR449vq1GVAI1B6AEAAAAANdbdnTz72clPfjL1vlxuTTL55KsjRbEn/ABg/4QeAAAAAFAHnv3sZPv2Zy5svjO7dvWmKB7IsmVH1agygMYh9AAAAACAOvHc5ya33bbnfaUynDvuWJkdO7bn+OMPr11hAA1C6AEAAAAAdaJcTpYuTZ54IunsTEZGRlIUK9PTU8rwcHL77UmlUusqAepXa60LAAAAAACmjIyM5MyzD8+u9p1Je578J8vfSD6QZCw5buXpueSS2/L7v58sWVLbWgHqkdADAAAAAGpsZGQkPSt7ko4kpyfZlGTpMw56OLn3O7fn7e8r5dL/X2cmh3Ye8joB6p3QAwAAAABq6Prrr895F52XnJupV8t+Dlyb5LVJdiaVL+9KaWkpxUBxyOoEaATW9AAAAACAGtm+fftU4PGyJM/P/gOPp+tK8rokxyWl3tKC1gfQaIQeAAAAAFAjzzrmWcl5SU6c5YnlJL+cZE2yYtWK6hcG0KCEHgAAAABQA9dff/3UGh7nzLGBJ4OPx8cer2JVAI1N6AEAAAAANXDeBeclZyWZzwxVfUkOS377t3+7SlUBNDahBwAAAADUQmeSM6rQznnJp77yqSo0BND4hB4AAAAAcIjdfffdSU+mprear6OTtFahHYAmIPQAAAAAgEPsAx/4QNJdpcbKSVqq1BZAgxN6AAAAAMAhduONN9a6BICmJPQAAAAAgENsbGwsGalSY0WSySq1BdDghB4AAAAAcIitWrUqGU4yWoXGtiSZSIaGqtAWQIMTegAAAADAIfbyl798aqTH96vQ2HeSjCTf/GYV2gJocEIPAAAAADjE3vnOd0794ZZMTU81VwNJHk/SlgwPz78ugEYn9AAAAACAWign2ZVk8xzPL5J8LcmO5Euf+VIqlWoVBtC4hB4AAAAAUANXffWqpJLk2iT3zPLkIsm/J/lZkr7kV37lV9Lbm+zYUeUiARqM0AMAAAAAauDFL37x1NO5ozI1YuN7mQpBDmY0yf+X5EdJliQvPP2FSZKXvCS5+uqFqRWgUbTWugAAAAAAWKyGfz6cnjU9yTlJvpvkpiSnJjk7Sc8zDn7kyWMeylTwsTLpfKIz11xzTZJk6VLregAIPQAAAACgRrq7u/PAHQ/kyFOOTE5J8twkVyT5fpKOTI0EKZJMJhl78s+vT3Jl0vFER3bu2FmjygHqk9ADAAAAAGpo/fr1Gf75cJYcviTFj4pkY5LnJ1n1tIMmMjWd1Q1JPpOcefSZufXWW/dqq6UlmZhIWj31AxYpX38AAAAAUGPd3d2pjEwt6LFx48bc89l7pkZ5tGTaSI+/+7O/y6WXXrrfds48M7nxxuS88w5F1QD1x0LmAAAAAFBHXvOa12RpZWnyePL21789xbYixeNFiqHigIFHkhx/fLJlyyEqFKAOCT0AAAAAoI4MDAxkYGAgSbJhw4YaVwPQWIQeAAAAAFBH1q5dmyQ57bTT8ou/+Is1rgagsQg9AAAAAKCOPPvZz06SrFixImecccasz+/qSp4cKAKw6Ag9AAAAAKCOPBV6/OxnP5vT+eedl3znO9WsCKBxCD0AAAAAoI6Mjo4mSR566KE5nb96dfL449WsCKBxCD0AAAAAoI5897vfTZKMjIxkcHCwxtUANBahBwAAAADUkRtuuCFJcuSRRwo9AGZJ6AEAAAAAdWJwcDDXXXddkuT//b//l7Vr186pnc7OZGiompUBNAahBwAAAADUiauuuirj4+M55phjctxxx825nec9L3lyliyARUXoAQAAAAB14mtf+1qS5OUvf3lKpVKKophTO2vXJtu2VbMygMYg9AAAAACAOvD444/ns5/9bJKkp6cnGzZsyJve9KYaVwXQWIQeAAAAAFAHrrnmmuzcuTOnnXZaTjnllPznf/5n7r333lqXBdBQWmtdAAAAAACQ/Oqv/mruu+++bNu2LZVKJUnyk5/8ZM7ttbQkY2NJe3u1KgSof0Z6AAAAAECd2LBhQ84666x8+tOfTpL87Gc/y+jo6JzaOvXU5NZbq1kdQP0TegAAAABADW3ZsiXXX3/97vd/9Ed/lH/4h39IkqxatSotLS1zaveEE5L7769KiQANQ+gBAAAAADVSFEXe9KY35fnPf36uuOKKfPvb384//dM/pVQq5cMf/nDuuuuutLbObYb6sid/wCJkTQ8AAAAAqJGPf/zjueqqq9LZ2Zlf+qVfyoYNG/J3f/d32bZtW9761rfWujyAhiP0AAAAAIAauPvuu/O2t70tSfJnf/ZnOfbYY5Mkl156aVWvU6kY9QEsHr7uAAAAAOAQGx4ezq//+q9naGgoL3zhC/Onf/qnC3KdI45ItmxZkKYB6lLVQ4/LL788Z599dnp7e7Ny5cq8+tWvzj333FPtywAAADQkfSYAiqLIH/7hH+aHP/xhVq9enc997nNzXrfjYH7hF5Jbb12QpgHqUtVDj2uvvTaXXHJJvve97+Wb3/xmxsfH89KXvjTDw8PVvhQAAEDD0WcC4Nprr82nPvWptLS05HOf+1xWr169YNfq7EzGxhaseYC6U/UI+etf//q095/4xCeycuXK3HrrrXnBC15Q7csBAAA0FH0mAM4///z8y7/8S/r7+/PCF76w1uUANJUFX8i8v78/SbJ8+fJ97h8dHc3o6Oju9wMDAwtdEgAAQN04WJ8p0W8CaEa/93u/V+sSAJrSgi5kXqlU8va3vz3nnXdeTj755H0ec/nll6evr2/3a926dQtZEgAAQN2YSZ8p0W8CYH56ehJ5ObBYlIqiKBaq8be85S3593//93znO9/JEUccsc9j9vUvltatW5f+/v4sXbp0oUoDAIC6MTAwkL6+Pr+BF6GZ9JkS/SYA5ufhh5M77kguvLDWlQDMzWz6TAs2vdVb3/rWfPWrX8111113wB/vHR0d6ejoWKgyAAAA6tJM+0yJfhMA87N2bfKtb9W6CoBDo+qhR1EU+eM//uNceeWVueaaa7Jhw4ZqXwIAAKBh6TMBAMDCqXrocckll+Qzn/lMvvKVr6S3tzdbt25NkvT19aWrq6valwMAAGgo+kwAALBwqr6Q+RVXXJH+/v6cf/75WbNmze7X5z//+WpfCgAAoOHoMwFQK5VKrSsAWHgLMr0VAAAA+6bPBEAtbNyY/OAHyemn17oSgIVV9ZEeAAAAAEB9OfPM5Ic/rHUVAAtP6AEAAAAATa5cTgw2BBYDoQcAAAAAANAUhB4AAAAAAEBTEHoAAAAAwCKwYkXy8MO1rgJgYbXWugAAAAAAYOG96EXJxEStqwBYWEIPAAAAAFgEOjtrXQHAwjO9FQAAAAAA0BSEHgAAAAAAQFMQegAAAAAAAE1B6AEAAAAAADQFoQcAAAAAANAUhB4AAAAAAEBTEHoAAAAAAABNQegBAAAAAAA0BaEHAAAAAADQFIQeAAAAAABAUxB6AAAAAAAATUHoAQAAAAAANAWhBwAAAAAA0BSEHgAAAAAAQFMQegAAAAAAAE1B6AEAAAAAADQFoQcAAAAAANAUhB4AAAAAAEBTEHoAAAAAAABNQegBAAAAAAA0BaEHAAAAAADQFIQeAAAAAABAUxB6AAAAAAAATUHoAQAAAAAANAWhBwAAAAAA0BSEHgAAAAAAQFMQegAAAAAAAE1B6AEAAAAAADQFoQcAAAAAANAUhB4AAAAAAEBTEHoAAAAAAABNQegBAAAAAAA0BaEHAAAAAADQFIQeAAAAAABAUxB6AAAAAAAATUHoAQAAAAAANAWhBwAAAAAA0BSEHgAAAAAAQFMQegAAAAAAAE1B6AEAAAAAADQFoQcAAAAAANAUhB4AAAAAAEBTEHoAAAAAAABNQegBAAAAAAA0BaEHAAAAAADQFIQeAAAAAABAU1iw0OMjH/lIjjrqqHR2dmbTpk256aabFupSAAAADUefCQAAqm9BQo/Pf/7zufTSS/Oe97wnmzdvzmmnnZYLL7wwjz766EJcDgAAoKHoMwEAwMJYkNDjgx/8YN70pjfljW98Y0488cR89KMfTXd3dz72sY8txOUAAAAaij4TAAAsjNZqNzg2NpZbb701l1122e5t5XI5F1xwQW644Ya9jh8dHc3o6Oju9/39/UmSgYGBapcGAAB16anfvkVR1LgSDoXZ9pkS/SYAABa32fSZqh56bN++PZOTk1m1atW07atWrcrdd9+91/GXX3553ve+9+21fd26ddUuDQAA6tpjjz2Wvr6+WpfBApttnynRbwIAgCQZHBw8aJ+p6qHHbF122WW59NJLd7/fsWNHjjzyyDz44IM6fMzIwMBA1q1bl4ceeihLly6tdTk0APcMs+WeYbbcM8xWf39/1q9fn+XLl9e6FOrUM/tNlUoljz/+eFasWJFSqXRIa/EdNz8+v/nzGc6Pz29+fH7z4/ObH5/f/PkM56eWn19RFBkcHMzatWsPemzVQ4/DDz88LS0teeSRR6Ztf+SRR7J69eq9ju/o6EhHR8de2/v6+tx4zMrSpUvdM8yKe4bZcs8wW+4ZZqtcXpAl96gzs+0zJfvuNy1btmyhSpwR33Hz4/ObP5/h/Pj85sfnNz8+v/nx+c2fz3B+avX5zXSQRNV7Ve3t7TnrrLNy1VVX7d5WqVRy1VVX5dxzz6325QAAABqKPhMAACycBZne6tJLL80b3vCGPPe5z80555yTD33oQxkeHs4b3/jGhbgcAABAQ9FnAgCAhbEgocfrXve6bNu2Le9+97uzdevWnH766fn617++10J9+9LR0ZH3vOc9+5zyCvbFPcNsuWeYLfcMs+WeYbbcM4vPfPpMteZ+nR+f3/z5DOfH5zc/Pr/58fnNj89v/nyG89Mon1+pKIqi1kUAAAAAAADMl5USAQAAAACApiD0AAAAAAAAmoLQAwAAAAAAaApCDwAAAAAAoCnUXejxkY98JEcddVQ6OzuzadOm3HTTTbUuiTr13ve+N6VSadpr48aNtS6LOnLdddflla98ZdauXZtSqZQvf/nL0/YXRZF3v/vdWbNmTbq6unLBBRfk3nvvrU2x1IWD3TO/+7u/u9f3zste9rLaFEvNXX755Tn77LPT29ublStX5tWvfnXuueeeacfs2rUrl1xySVasWJElS5bk137t1/LII4/UqGJqbSb3zPnnn7/X98wf/uEf1qhiFqOZ3KfP9IlPfGKv+7azs/MQVVx/5tJP+eIXv5iNGzems7Mzp5xySv7v//2/h6ja+nPUUUft9fmVSqVccskl+zx+sd9/C9XnWSzPZg70+Y2Pj+cd73hHTjnllPT09GTt2rX5nd/5nTz88MMHbHMxPatYqP7TYrn/koN/hvv6PiyVSvnbv/3b/ba5WO7BheqPLaZnRQf7DB9//PH88R//cY4//vh0dXVl/fr1+ZM/+ZP09/cfsN16eHZSV6HH5z//+Vx66aV5z3vek82bN+e0007LhRdemEcffbTWpVGnTjrppPz85z/f/frOd75T65KoI8PDwznttNPykY98ZJ/7/+Zv/iZ///d/n49+9KO58cYb09PTkwsvvDC7du06xJVSLw52zyTJy172smnfO5/97GcPYYXUk2uvvTaXXHJJvve97+Wb3/xmxsfH89KXvjTDw8O7j/nTP/3T/J//83/yxS9+Mddee20efvjh/Oqv/moNq6aWZnLPJMmb3vSmad8zf/M3f1OjilmMZnqfPtPSpUun3bcPPPDAIaq4Ps2mn3L99dfnN3/zN/P7v//7ue222/LqV786r371q3PnnXceworrx8033zzts/vmN7+ZJHnNa16z33MW8/23EH2exfRs5kCf38jISDZv3px3vetd2bx5c770pS/lnnvuyate9aqDtrtYnlUsRP9pMd1/ycE/w6d/dj//+c/zsY99LKVSKb/2a792wHYXwz24UP2xxfSs6GCf4cMPP5yHH344H/jAB3LnnXfmE5/4RL7+9a/n93//9w/ads2fnRR15JxzzikuueSS3e8nJyeLtWvXFpdffnkNq6Jevec97ylOO+20WpdBg0hSXHnllbvfVyqVYvXq1cXf/u3f7t62Y8eOoqOjo/jsZz9bgwqpN8+8Z4qiKN7whjcUF198cU3qof49+uijRZLi2muvLYpi6julra2t+OIXv7j7mB/96EdFkuKGG26oVZnUkWfeM0VRFC984QuLt73tbbUrCp5hX/fpM3384x8v+vr6Dl1RdW62/ZTXvva1xSte8Ypp2zZt2lT8wR/8QZUra0xve9vbimOOOaaoVCr73O/+26NafZ7F+mxmX7//n+mmm24qkhQPPPDAfo9ZrM8qqtV/Wqz3X1HM7B68+OKLixe/+MUHPGax3oPV6I8t9mdFM/nd94UvfKFob28vxsfH93tMPTw7qZuRHmNjY7n11ltzwQUX7N5WLpdzwQUX5IYbbqhhZdSze++9N2vXrs3RRx+d17/+9XnwwQdrXRINYsuWLdm6deu075y+vr5s2rTJdw4HdM0112TlypU5/vjj85a3vCWPPfZYrUuiTjw1xHf58uVJkltvvTXj4+PTvmc2btyY9evX+54hyd73zFM+/elP5/DDD8/JJ5+cyy67LCMjI7UoD5Ls/z59pqGhoRx55JFZt25dLr744vzwhz88FOXVrdn0U2644YZpf1ckyYUXXujvikw9J/jUpz6V3/u930upVNrvce6/fZtLn8ezmQPr7+9PqVTKsmXLDnicZxV7zKb/5P47sEceeSRf+9rXZvSv7BfjPViN/thif1Y0k999/f39Wbp0aVpbWw/YVq2fndRN6LF9+/ZMTk5m1apV07avWrUqW7durVFV1LNNmzbtHlZ1xRVXZMuWLfnFX/zFDA4O1ro0GsBT3yu+c5iNl73sZfnXf/3XXHXVVfnrv/7rXHvttbnooosyOTlZ69KosUqlkre//e0577zzcvLJJyeZ+p5pb2/fq1Pse4Zk3/dMkvyX//Jf8qlPfSpXX311Lrvssvzv//2/81u/9Vs1rJTFbH/36TMdf/zx+djHPpavfOUr+dSnPpVKpZLnPe95+elPf3oIq60fs+2nbN261W/S/fjyl7+cHTt25Hd/93f3e4z7b//m0ufxbGb/du3alXe84x35zd/8zSxdunS/x3lWscds+0/uvwP75Cc/md7e3oNOz7QY78Fq9ccW87Oimfzu2759e97//vfnzW9+8wHbqodnJweOZKCOXXTRRbv/fOqpp2bTpk058sgj84UvfGFGqTfAbP3Gb/zG7j+fcsopOfXUU3PMMcfkmmuuyUte8pIaVkatXXLJJbnzzjubcq5cFsb+7pmndyBOOeWUrFmzJi95yUty//3355hjjjnUZbLIzfS77dxzz8255567+/3znve8nHDCCfnHf/zHvP/971/oMuuOfkr1/Mu//EsuuuiirF27dr/HuP84FMbHx/Pa1742RVHkiiuuOOCxvgP20H+qro997GN5/etfn87OzgMetxjvQf2x+TvYZzgwMJBXvOIVOfHEE/Pe9773gG3Vw//7dTPS4/DDD09LS0seeeSRadsfeeSRrF69ukZV0UiWLVuW5zznObnvvvtqXQoN4KnvFd85zMfRRx+dww8/3PfOIvfWt741X/3qV3P11VfniCOO2L199erVGRsby44dO6Yd73uG/d0z+7Jp06Yk8T3DITeb+/SZ2tracsYZZ7hvn3Swfsrq1av9Jt2HBx54IP/xH/+R//pf/+usznP/7TGXPo9nM3t7KvB44IEH8s1vfvOAozz2xbOKPQ7Wf3L/7d+3v/3t3HPPPbP+Tkya/x6sZn9ssT4rOtjvvsHBwbzsZS9Lb29vrrzyyrS1tc2q/Vo8O6mb0KO9vT1nnXVWrrrqqt3bKpVKrrrqqmn/agP2Z2hoKPfff3/WrFlT61JoABs2bMjq1aunfecMDAzkxhtv9J3DjP30pz/NY4895ntnkSqKIm9961tz5ZVX5lvf+lY2bNgwbf9ZZ52Vtra2ad8z99xzTx588EHfM4vUwe6Zfbn99tuTxPcMh8xc7tNnmpyczB133OG+fdLB+innnnvutL8rkuSb3/zmov+74uMf/3hWrlyZV7ziFbM6z/23x1z6PJ7NTPdU4HHvvffmP/7jP7JixYpZt+FZxR4H6z+5//bvX/7lX3LWWWfltNNOm/W5zXoPLkR/bLE9K5rJ776BgYG89KUvTXt7e/7t3/7toCON9qUmz05quYr6M33uc58rOjo6ik984hPFXXfdVbz5zW8uli1bVmzdurXWpVGH/tt/+2/FNddcU2zZsqX47ne/W1xwwQXF4YcfXjz66KO1Lo06MTg4WNx2223FbbfdViQpPvjBDxa33XZb8cADDxRFURR/9Vd/VSxbtqz4yle+UvzgBz8oLr744mLDhg3Fzp07a1w5tXKge2ZwcLD47//9vxc33HBDsWXLluI//uM/ijPPPLM47rjjil27dtW6dGrgLW95S9HX11dcc801xc9//vPdr5GRkd3H/OEf/mGxfv364lvf+lZxyy23FOeee25x7rnn1rBqaulg98x9991X/Nmf/Vlxyy23FFu2bCm+8pWvFEcffXTxghe8oMaVs5jM5Lvtt3/7t4t3vvOdu9+/733vK77xjW8U999/f3HrrbcWv/Ebv1F0dnYWP/zhD2vxn1BzB+unPPPz++53v1u0trYWH/jAB4of/ehHxXve856ira2tuOOOO2r1n1Bzk5OTxfr164t3vOMde+1z/01XjT7Pi1/84uLDH/7w7veL6dnMgT6/sbGx4lWvelVxxBFHFLfffvu078TR0dHdbTzz81tMzyqq0X9azPdfURz8/+GiKIr+/v6iu7u7uOKKK/bZxmK9B6vVHzv++OOLL33pS7vfL6ZnRQf7DPv7+4tNmzYVp5xySnHfffdNO2ZiYmJ3O0//DOvl2UldhR5FURQf/vCHi/Xr1xft7e3FOeecU3zve9+rdUnUqde97nXFmjVrivb29uLZz3528brXva647777al0WdeTqq68ukuz1esMb3lAURVFUKpXiXe96V7Fq1aqio6OjeMlLXlLcc889tS2amjrQPTMyMlK89KUvLZ71rGcVbW1txZFHHlm86U1vatof3xzcvu6VJMXHP/7x3cfs3Lmz+KM/+qPisMMOK7q7u4tf+ZVfKX7+85/Xrmhq6mD3zIMPPli84AUvKJYvX150dHQUxx57bPE//sf/KPr7+2tbOIvKTL7bXvjCF+7+PVUURfH2t799dx9u1apVxctf/vJi8+bNh774OnGwfsozP7+iKIovfOELxXOe85yivb29OOmkk4qvfe1rh7jq+vKNb3yjSLLP3+buv+mq0ec58sgji/e85z3Tti2WZzMH+vy2bNmy3+/Eq6++encbz/z8FtOzimr0nxbz/VcUB/9/uCiK4h//8R+Lrq6uYseOHftsY7Heg9Xqjz3znMX0rOhgn+H+7s8kxZYtW6a189Q59fLspPRkYQAAAAAAAA2tbtb0AAAAAAAAmA+hBwAAAAAA0BSEHgAAAAAAQFMQegAAAAAAAE1B6AEAAAAAADQFoQcAAAAAANAUhB4AAAAAAEBTEHoAAAAAAABNQegBAAAAAAA0BaEHAAAAAADQFIQeAAAAAABAUxB6AAAAAAAATeH/DxFVs0SX/gJ1AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIe0lEQVR4nO3deZhldX0n/ve591bdqt6q6YbeoLtpXEAEEUE7aNwi4xJjxOyOmRjNYDQ40TiLIc+gMSYhJpk8ThwfTPKLS0aDy4xoEhMzBgWNIrIZRaUFbaBladau6u7q2u49vz8KCqq7eq1bdW/der2e5z7WOed7zvl4nsPlfs+b7/kWZVmWAQAAAAAAWOAq7S4AAAAAAACgFYQeAAAAAABAVxB6AAAAAAAAXUHoAQAAAAAAdAWhBwAAAAAA0BWEHgAAAAAAQFcQegAAAAAAAF1B6AEAAAAAAHQFoQcAAAAAANAVhB4AAAAAAEBXOOrQ48tf/nJe8YpXZMOGDSmKIp/5zGemto2Pj+ftb397zjzzzCxdujQbNmzIr/zKr+Tuu+9uZc0AAAAdS58JAADa56hDj7179+ass87K+9///gO2DQ8P58Ybb8wll1ySG2+8MZ/+9Kezbdu2/PRP/3RLigUAAOh0+kwAANA+RVmW5THvXBS54oorcsEFFxy0zXXXXZdnPetZueOOO7Jp06ZjPRUAAMCCo88EAADzqzbXJxgcHExRFFm5cuWM20dHRzM6Ojq13Gw289BDD2X16tUpimKuywMAgLYryzK7d+/Ohg0bUqmYdm+xOVyfKdFvAgBgcTuaPtOchh4jIyN5+9vfnle/+tVZsWLFjG0uvfTSvOtd75rLMgAAYEHYsWNHTjrppHaXwTw6kj5Tot8EAADJkfWZ5uz1VuPj4/nZn/3Z/OhHP8pVV1110B/w+/8XS4ODg9m0aVN27NhxyB/9AADQLYaGhrJx48bs2rUrAwMD7S6HFmpFnynRbwIAYHE7mj7TnIz0GB8fzy/8wi/kjjvuyBe/+MVD/giv1+up1+sHrF+xYoUf7wAALCpeU7R4HE2fKdFvAgCA5Mj6TC0PPR798X7rrbfmS1/6UlavXt3qUwAAACxY+kwAADB3jjr02LNnT2677bap5e3bt+eb3/xmVq1alfXr1+fnfu7ncuONN+Yf/uEf0mg0cu+99yZJVq1ald7e3tZVDgAA0IH0mQAAoH2Oek6Pq666Ki984QsPWP/a1742v/u7v5stW7bMuN+XvvSlvOAFLzjs8YeGhjIwMJDBwUHDtAEAWBT8Bu4uc91nStwzAAAsLkfz+/eoR3q84AUvyKFyklnMiw4AALDg6TMBAED7VNpdAAAAAAAAQCsIPQAAAAAAgK4g9AAAAAAAALqC0AMAAAAAAOgKQg8AAAAAAKArCD0AAAAAAICuIPQAAAAAAAC6gtADAAAAAADoCkIPAAAAAACgKwg9AAAAAACAriD0AAAAAAAAuoLQAwAAAAAA6ApCDwAAAAAAoCsIPQAAAAAAgK4g9AAAAAAAALqC0AMAAAAAAOgKQg8AAAAAAKArCD0AAAAAAICuIPQAAAAAAAC6gtADAAAAAADoCkIPAAAAAACgKwg9AAAAAACAriD0AAAAAAAAuoLQAwAAAAAA6ApCDwAAAAAAoCsIPQAAAAAAgK4g9AAAAAAAALqC0AMAAAAAAOgKQg8AAAAAAKArCD0AAAAAAICuIPQAAAAAAAC6gtADAAAAAADoCkIPAAAAAACgKwg9AAAAAACAriD0AAAAAAAAuoLQAwAAAAAA6ApCDwAAAAAAoCsIPQAAAAAAgK4g9AAAAAAAALqC0AMAAAAAAOgKQg8AAAAAAKArCD0AAAAAYJ4ND/8gw8O3trsMgK4j9AAAAACAeVYUlYyO3tXuMgC6jtADAAAAAOZZT8/qTEw83O4yALqO0AMAAAAA5lmlsizN5nC7ywDoOkIPAAAAAJhnlUolZVm2uwyAriP0AAAAAIA2KIqi3SUAdB2hBwAAAAAA0BWEHgAAAADQBl5vBdB6Qg8AAAAAAKArCD0AAAAAoA3M6QHQekIPAAAAAGgDr7cCaD2hBwAAAAAA0BWOOvT48pe/nFe84hXZsGFDiqLIZz7zmWnby7LMO97xjqxfvz79/f05//zzc+utt7aqXgAAgI6mzwQAAO1z1KHH3r17c9ZZZ+X973//jNv/+I//OH/+53+eD3zgA7n22muzdOnSvOQlL8nIyMisiwUAAOh0+kwAHClzegC0Xu1od3jZy16Wl73sZTNuK8sy733ve/Pf//t/zytf+cokyd/8zd9k7dq1+cxnPpNf+qVfml21AAAAHU6fCQAA2qelc3ps37499957b84///ypdQMDA9m6dWuuueaaGfcZHR3N0NDQtA8AAEA3OpY+U6LfBAAAR6qloce9996bJFm7du209WvXrp3atr9LL700AwMDU5+NGze2siQAAICOcSx9pkS/CaBblWXZ7hIAuk5LQ49jcfHFF2dwcHDqs2PHjnaXBAAA0FH0mwC6U6XSl0bDnE4ArdTS0GPdunVJkp07d05bv3Pnzqlt+6vX61mxYsW0DwAAQDc6lj5Tot8E0K1qtYGMjz/U7jIAukpLQ48tW7Zk3bp1ufLKK6fWDQ0N5dprr815553XylMBAAAsOPpMADxetboyExMPt7sMgK5SO9od9uzZk9tuu21qefv27fnmN7+ZVatWZdOmTXnrW9+a3//938+TnvSkbNmyJZdcckk2bNiQCy64oJV1AwAAdCR9JgCOVE/PyoyN7Tx8QwCO2FGHHtdff31e+MIXTi2/7W1vS5K89rWvzYc//OH8t//237J379684Q1vyK5du/LjP/7j+fznP5++vr7WVQ0AANCh9JkAOFK12nEZHt7W7jIAukpRlmXZ7iIeb2hoKAMDAxkcHPSeWgAAFgW/gTla7hmA7tBsNnP//Z/I2rWvbncpAB3taH7/tnRODwAAAADgyFQqlSTNdpcB0FWEHgAAAADQJh32EhaABU/oAQAAAADHYGJicNbHKIqiBZUA8CihBwAAAAAcg337bmt3CQDsR+gBAAAAAAB0BaEHAAAAALSJOT0AWkvoAQAAAADHoFpdMet5PczpAdBaQg8AAAAAOAZ9fZszMnJnu8sA4HGEHgAAAABwDCqV3pTlWLvLAOBxhB4AAAAA0Cbm9ABoLaEHAAAAAADQFYQeAAAAAHDMqmk2J455bxOZA7SW0AMAAAAAjlG9flJGR3/U7jIAeITQAwAAAACOUU/P6kxMPHjM+5vTA6C1hB4AAAAAcIxm+3qqouiZ1euxAJhO6AEAAAAAbVKtLs3ExFC7ywDoGkIPAAAAAGiTWm1lJiYebncZAF1D6AEAAAAAs1CtrsjExOAs9hV6ALSK0AMAAAAAZqGvb1NGRnYc0749PSvTaOxpcUUAi5fQAwAAAABmoVKppyxHj2nfWm1lGo1jGyUCwIGEHgAAAADQJpXKMiM9AFpI6AEAAAAAx2Dfvh/M+hiVSiVlWbagGgASoQcAAAAAHJOJiV2PWypSls1jOk5RFC2pBwChBwAAAAAco2rKspEk6e1dl7GxnW2uBwChBwAAAAAcg76+jRkZuTPJo6HHvTO2azaPbZJzAI6e0AMAAAAAjkFPz+pMTDyUJCmKSpKZX2+1d+93Dnkcc3oAtI7QAwAAAADmlFADYL4IPQAAAAAAgK4g9AAAAACAY1QUPWk2xw74G4D2EHoAAAAAwDHq69uSkZHtSZJ6/aSMjv7ogDaVSl8ajZH5Lg1gURJ6AAAAAMAxqtWWZ2Ji9yN/H5eJiYcPaNPTsybj4/cf9BhFUcxZfQCLjdADAAAAAGbh0dDiYOFFT8+qjI8/OJ8lASxaQg8AAAAAmENFUU3SaHcZAIuC0AMAAAAAZmFyzo59h2l18FdYlWXZ2oIAFjGhBwAAAADMwuMnM69U+o8gAJnOnB4ArSP0AAAAAIBZqFaXpNmcDDrq9Y0ZHb1zhlZGcwDMB6EHAAAAALRIrbY8jcaeo96v2WzOQTUAi4/QAwAAAADmWFHU0mxOzLitWl2WRmNonisC6E5CDwAAAACYpcm5PIYPur2n5/iMjz9wkH2FHgCtIvQAAAAAgFnq6zsl+/b98KDbe3pOyPj4/UmShx76QsbGHpraVq2uyMTE7jmvEWAxEHoAAAAAwCxVq30py9EkSaWyJI3G3mnbK5XelOVYkqS3d0P27fvB1LZabYWRHgAtIvQAAAAAgBaq1zdmZGTHQbf39z8ho6N3TC1Xq8szMSH0AGgFoQcAAAAAtFCttizN5t6Dbn/8qJDJ9ivSaOyZ05qGh7fN6fEBOoXQAwAAAABaoFLpO+Rk5klxkP2WpNncNzdFJY+MIpn53ADdRugBAAAAAC3Q17clIyO3H/V+lcrcPqIbGbk9fX0nz+k5ADqF0AMAAAAAWqBaPfyIjbIs56max59zPJVK77yfF6AdhB4AAAAA0GKVSn8ajekBSLW6bGrujv3Dj6Lw+imAVhB6AAAAAECL1esbMzr6o2nrenpOyPj4/W2qCGBxEHoAAAAAQIsURT3N5mhqteVpNIambavVVmZiYleSpFLpTaMxMuf1NBr7Uqn0zfl5ADqF0AMAAAAAWqSvb3NGRu6YcdvkK6wmX2tVr2/MyMj2qW1zNdeHScyBxUboAQAAAAAtMjnCY/dh2/X3PyEjI7fPeT3N5nCq1aVzfh6ATiH0AAAAAIB5Vqsdn/HxB9tdBkDXEXoAAAAAwBwoip40m2MzbqtUKvu1LeajJICu1/LQo9Fo5JJLLsmWLVvS39+fJzzhCXn3u989Z+8lBAAAWEj0mQAWg2qazYn09m7I6OjdR7THXPx7oNkcT1H0tPy4AJ2s1uoDvuc978lll12Wj3zkI3nqU5+a66+/Pq973esyMDCQ3/zN32z16QAAABYUfSaA7levn5TR0R+lr29zRkfvSHLy47YWKcvygJEdczHSY2TkjvT1bW75cQE6WctDj6997Wt55StfmZe//OVJkpNPPjmXX355vvGNb7T6VAAAAAuOPhNA9+vpWZ3R0TtSFCcfsK1WW5mJiYfT07Nqzl9p1WgMplZ74pyeA6DTtPz1Vs9+9rNz5ZVX5vvf/36S5N/+7d/yr//6r3nZy17W6lMBAAAsOPpMAN3vUGFGT88JGR9/4ID1XnMI0BotH+nx27/92xkaGsppp52WarWaRqORP/iDP8hrXvOaGduPjo5mdHR0anloaKjVJQEAAHSMo+0zJfpNAN2kWl2WRmN3u8sA6FotH+nxyU9+Mh/72Mfyt3/7t7nxxhvzkY98JH/6p3+aj3zkIzO2v/TSSzMwMDD12bhxY6tLAgAA6BhH22dK9JsAFqrJ0RvFtFEcjx8FUhT1TEwMH7C+NeduZg4e/QF0vKJs8di5jRs35rd/+7dz0UUXTa37/d///Xz0ox/NLbfcckD7mf6LpY0bN2ZwcDArVqxoZWkAANCRhoaGMjAw4DfwInG0faZEvwlgIRoZ2ZFKpS/N5r5UKv3p7T1hatvu3Tdm+fJnZHDw2lSry7Js2VOzc+fHsnbtwUf9Hdv56+ntXdOyYwK0y9H0mVr+eqvh4eFUKtNT5Gq1mmazOWP7er2eer3e6jIAAAA60tH2mRL9JoCFqF7fkD17vp2lS5+a4eHvTgs9HtXXtzl79tyUZcue2vLzj4/fl2XLntHy4wJ0upaHHq94xSvyB3/wB9m0aVOe+tSn5qabbsqf/dmf5fWvf32rTwUAALDg6DMBLA5FUU3SSKXSk7Kc2G/r5ItXenrWZHz8wam1zWbzgGB8djW09pVZAAtBy0OP973vfbnkkkvyG7/xG7nvvvuyYcOG/Pqv/3re8Y53tPpUAAAAC44+EwCPqlQqU8FEpbIkzeZwKpVlba4KYGFreeixfPnyvPe978173/veVh8aAABgwdNnAuDRyc0fPxKjWl2WiYmh1GqzDz1aPIUvwILSuvFyAAAAAMCUSqU/jca+JNNfM1WrDaTRGEryWEBRrS5Jo7G7JecdH78/PT0mMAcWJ6EHAAAAAMyBvr7NGRm5I5VKPY3GyNT6Wm11xscfmNa2UlnastBjdPSu1OsntuRYAAuN0AMAAAAA5kC1ujTN5t709m7I2NjdU+trtYFMTAzu13Z5Go3hFp25maLw2A9YnHz7AQAAAMAcqtVWZmLi4anlx8/l8Vib5Wk2985nWQBdSegBAAAAAHNoppDj8ZrNZqrVFWk0hB4AsyX0AAAAAIA59Ohk5TOp1VZkYmJXiqI3ZTk663NNTAylWl0+6+MALFRCDwAAAACYIz09azM+ft9Bt9frJ2V09M5UKq15TDcyckf6+k5uybEAFiKhBwAAAADMkXp9fUZHJycxnz7io3xk+6aMjv6oZecry7FUKr0tOx7AQiP0AAAAAIA5UhTVJM1HJjMfPGB7rbYqExO75r0ugG4l9AAAAACAOdbbuyFjY3dNLRdFPY3GyLTXWh1q7g8AjozQAwAAAADmWLXan2ZzZGq5p2d1JiYemtamKIpZnaPZHE1R1Gd1DICFTugBAAAAAHOoKHrSbI5NW9fTsyrj4w8dZI9jMzJye/r6Nrf0mAALjdADAAAAAOZQvb7xgMnKK5V6ynK0pedpNPakVlve0mMCLDRCDwAAAACYQ5OTmD982Hbm9ACYPaEHAAAAAMyhx+bqKPYLNoqDtAPgWAk9AAAAAGAe1GqrDpi8vFXKspn9QxSAxUjoAQAAAADzoF5fn9HRew5YXxRFms3mrI49Onp36vWTZnUMgG4g9AAAAACAOVap9KcsmzNOXj45AuSBWc3pMT6+Mz09J8ymRICuIPQAAAAAgDlWr2/M6Oid+60tU5ZlenvXZ3T0R7Oe08OcIABCDwAAAACYc7Xa8jQae6atq1SWpNncl3p9Q8bGdrapMoDuIvQAAAAAgDao1Y7LxMTDqdWOz8TErnaXA9AVhB4AAAAAMI8enbujp2dVxscfSqVSSdI85jk9xscfTq12XAsrBFi4hB4AAAAAME8mR3fsSpJUKr0py7Gpbcc6J8fo6I7U6xtbUR7Agif0AAAAAIB5UKksSbW6ImNj9x6w7VhHeUzuO55KpWc2pQF0DaEHAAAAAMyDen1jJiYeTLM5fMC2Yx3lAcB0Qg8AAAAAmAe12rI0GnsOun02oz0AmCT0AAAAAIAONTJy6O3N5liKwqutAB4l9AAAAACADlCp9KbZHJu27v/+30PvMzJyR/r6Ns9hVQALi9ADAAAAANqsLMtUKkvSaEyf76NWS8bGDrJTkkZjKLXawBxXB7BwCD0AAAAAYJ4URW+SWhqNfY8s19JsTiRJKpX+A+b86OtLhg+c9xyAgxB6AAAAAHBMGo2RDA/fZgLuo1Cvn5ikmbGxnUmSWm1lJiZ2pVLpT1kmjcbeae17ew8/rwcAjxF6AAAAAHBMqtW+9PSsyu7d12do6LqMjOxod0kdr1Y7LmXZyMTEQ1PLExMPp7d3bRqN4TSb+6a17+9P9u2b6UgRNgHMoNbuAgAAAABYuHp6VqWnZ1WSZHT0ngwNXZck6evbkt7e49tZWkcqiiJFUSSZDCyq1eVpNG5LT88JGR390Yyhx8FGeoyPP5ieHtcY4PGEHgAAAAC0RL2+PvX6+pRlmZGR2zM0tD1FUcmSJaelWl3a7vI60qMBSG/v2jSbwwdMZF6vH3ykx+joj7J06RlzXyTAAiL0AAAAAKCliqJIf/+W9PdvSVk2Mzz8vTQaw6lU6lmy5PRUKh5J7a9aXZFmc3zGkR4PPXSwvRquJcB+fCsCAAAAMGeKopKlS5+aJGk09mXv3n9LWTbS27s2fX2b21xd++w/H0elUklR9KbZnP4uq76+g4/0AOBAQg8AAAAA5kW12p/ly89JkoyN7czQ0DeSFFmy5Cmp1Za1t7h51NOzJsPDt6Qsy0debzWpKKopy9Fpbfv7k9HR/Y8AwMEIPQAAAACYd729a9PbuzZlWWZ4+LsZHt6banV5liw5bVoQ0I16e9dl795vZ2Li4alJ4JPJUTH76+ubeSLzZnMsRdEzl2UCLEhCDwAAAADapiiKqddfTUwMZffu65OUWbLk1NRqA+0tbo5UKj2p1QYyNrZzWuiRHPjaq76+ZGzswGOMjv4o9frGuSwTYEESegAAAADQEWq1FVmx4pmPjP7YluHhbanVjkt//xO7bvRHpdJ3wKTlSQ74/9nbm4yPH7j/xMTD6evbMlflASxYQg8AAAAAOsrk6I/TkiTj4w9l9+5vpChqWbr0zFQqvW2urvWKopZmc+Kgwc7B8p5uC4IAWkHoAQAAAEDH6ulZlZ6erWk2J7J377dTlmPp739yenqOa3dps1QkmXyVVbU6kEZj6ICJzR+13xuvADgEoQcAAAAAHa9SqWX58rNTlmX27ft+9u27NfX6ianXT2x3acekKHrSaAwnSWq1lZmYeCjJgXN6TLad19IAFrRKuwsAAAAAgCNVFEWWLDk1K1Y8K2VZZmjo2uzb94N2l3XUenvXZ3z8/iRJrbY8ExNDKYriiEZ6TEzsTrW6fD7KBFhwhB4AAAAALEh9fSdlxYqtqVZXZHDw6xke3tbuko5YT8/qNBqDj7zSqpqkMeMoj+TAkR6jo3emXt8090UCLEBCDwAAAAAWtN7eEzIw8GPp6TnhkfDj1naXdFhFUaRaXTH1WqtHNZsHBh/7ZyHN5kiq1b65LA9gwRJ6AAAAANAVenpWZWDgx1KrHZfBwWuyb9/t7S7pkHp6VmVs7L6p5VpteZrNvQe0M6cHwJETegAAAADQVXp7j8/AwHmpVOoZHLxmWrDQSSqVvjSb+6aWa7XVaTQODD0O8tYrAGYg9AAAAACgK9Xr6zMwcF4ajd0ZHLxmxkCh/R5LNGq149Js7jmgxeNHehxs3g8AJtXaXQAAAAAAzKX+/iekr++U7Nnzb0maWbbs7BQd8M6ooqin0dg9tdzTszoTE4ce6TEx8VBqtVXzUR7AgmSkBwAAAABdryiKLF/+9CxZ8pQMDV2TkZE7211SenvXTZvIvKdn1YyjUR6fz4yO3pV6/cT5KA9gQRJ6AAAAALBoVKv9GRh4dpIig4NfS7M52rZaenpWZ3x819RypdKbpHFAu8eP9CjL8UfaATATr7cCAAAAYNHp69uYev3E7N59Q2q1lVmy5EnzXsPkK7bKlGWZouhNszl2kHbzWxfAQjYnIz3uuuuu/PIv/3JWr16d/v7+nHnmmbn++uvn4lQAAAALjj4TQGcoikpWrHhmqtVlGRz86kFDh7lUrS5Jo7E3tdpAJiaGZmxj7nKAI9fykR4PP/xwnvOc5+SFL3xh/umf/iknnHBCbr311hx33HGtPhUAAMCCo88E0Hnq9fXp7V2b3buvS2/vhvT1bZy3c9dqx2V8/P709KzK+PgDSQ4c1vHoSI9S+gFwWC0PPd7znvdk48aN+dCHPjS1bsuWLa0+DQAAwIKkzwTQmSZHfWzNvn23Z2jouixffu4jr5+aW9Xq8kxM7Epf3+bs27c9yYHBxqNZx8TEw6nVVs15TQALWctfb/V3f/d3Offcc/PzP//zWbNmTc4+++z81V/9VatPAwAAsCDpMwF0tv7+k7N06ekZHPxKGo29c36+oqilLCdSFJUkzUO2HR29K/X6iXNeE8BC1vLQ44c//GEuu+yyPOlJT8o///M/501velN+8zd/Mx/5yEdmbD86OpqhoaFpHwAAgG51tH2mRL8JYL5Vq0szMPDc7N17c0ZH75rTc/X2npCJicEjaluWY6lUeue0HoCFruWhR7PZzDOe8Yz84R/+Yc4+++y84Q1vyIUXXpgPfOADM7a/9NJLMzAwMPXZuHH+3pkIAAAw3462z5ToNwG0Q1EUWbFiaxqNPdm793tzdp6enjWPzOWRzPRqq8la5uz0AF2n5aHH+vXrc/rpp09b95SnPCV33nnnjO0vvvjiDA4OTn127NjR6pIAAAA6xtH2mRL9JoB2WrLk1NRqKzM0dN2cTCReqfSkLCceWSoy00Tm5i8HOHItn8j8Oc95TrZt2zZt3fe///1s3rx5xvb1ej31er3VZQAAAHSko+0zJfpNAO1Wr69Ptbosg4NfycDAjz8y/8ZckXAAzEbLv6F/67d+K1//+tfzh3/4h7ntttvyt3/7t/nLv/zLXHTRRa0+FQAAwIKjzwSwMNVqy7NixY9l164vp9kca+mxi6JIWTZzqMCj0dibSmVJS88L0I1aHno885nPzBVXXJHLL788Z5xxRt797nfnve99b17zmte0+lQAAAALjj4TwMJVqfRm5crnZmjomjQaIy07brW6IhMTDz+yVKTZbE7bXhTJ6OhdqddPatk5AbpVy19vlSQ/9VM/lZ/6qZ+ai0MDAAAsePpMAAtXUVQzMPC8DA7+a5YvPyfV6uxHX9RqKx+ZzLxIUfSk2RyZNqqjLJNGY3dqtSfP+lwA3W4uX0AIAAAAAF2nKIoMDPx4du++MY3G8KyPV62uzPj4w0nKFEU1zeb0USTFgXObA3AQQg8AAAAAOEqTwcdzsnv3DbN+1VW9vjbj4w+mKOopit5MTDw0bXtpbnOAIyb0AAAAAIBj8OiIj6Ghr6fZHD/m4/T0rE6jMZRabUUqlb6MjT2w33lmWynA4iH0AAAAAIBjVBRFVq58bgYHv5ryGIdkFEU1STPV6vJUKr0ZH79v2vbJ40o+AI6E0AMAAAAAZqEoqlmx4scyOPjVYz5GWZaPhB79mZh4eNq2SuXB1GqrZlsmwKIg9AAAAACAWapW+7J06RnZvfvGYz5GpVJLrTaQ8fEH91t/b+r1DbMtEWBREHoAAAAAQAv09KxMT8+aDA/fetT7FkXxyGiPgUxM7Jq2rVodTdLbmiIBupzQAwAAAABapK/vpDSboxkbu/+o9qtWl2diYjC12qo0GnumbavVkpGRVlYJ0L2EHgAAAADQQsuWnZHh4W1pNsePeJ9abVXGxnamVluSshzbb1syNnaQHQGYRugBAAAAAC02MHBehoauPeL29fqmjI7uSKXSk7JsTNvW0yP0ADhSQg8AAAAAaLGiqGbJktOyd+93jqh9b++aTEw8lKSctn5yng+hB8CREnoAAAAAwBzo7T0+ZdnM+Piuw7atVvtSlge+Duv739+TkZHlGR2dgwIBupDQAwAAAADmyLJlZ2bv3ptTluXhG89gZOTe3H//ukxMtLgwgC4l9AAAAACAObRs2dOzZ8+/HcUexdRfK1fuzu7dyzN+5HOiAyxqQg8AAAAAmEO12rIURTUTE4NH0LrI4+f1WLmyzPBwYaQHwBESegAAAADAHHv0NVeHUpZliqKapDm1rlJJiiLm9AA4QkIPAAAAAJgH/f1PzPDwrQfdXhS1JD0py+nDOiqVGOkBcISEHgAAAAAwD3p712Z8/IGUZXPG7T09q9Ns7kuzOT3hqFaTRmM+KgRY+IQeAAAAADBPli07O3v23DTjtnp9cyYmHkxZjk1bX6slzZlzEgD2I/QAAAAAgHlSrfYlKdJojBywrV4/KePju1KWk8M6Go2RFEU9STI+Pp9VAixcQg8AAAAAmEfLlj09e/f+2wHra7Ulj4zyKJMkExMPpqfn+FSrRnoAHCmhBwAAAADMo6KopFLpS6Ox95DtxscfTE/PqhSF0APgSAk9AAAAAGCeLV36tOzde/Mh25TleCqV3lQqSVnOU2EAC5zQAwAAAADmWVEUKYreNJuj+2/Jo6+3eqytkR4AR0roAQAAAABtsGzZ07Jnz7dm2FJMXypmaALAjIQeAAAAANAGRVFNkpTT3l1VpigqaTRGHltTLt6RHl7rBRwtoQcAAAAAtMnSpadn797vTC1PBiE9aTT2TGtXWURP8coy2bYtufba5K672l0NsNDU2l0AAAAAACxW1erSNJvDU8s9PSekLCcyMTE4ta4sx5LsSzIw/wXOo8HB5Pvfn/z7yU9OTj21vfUAC5PQAwAAAADaqKfn+IyNPZDe3uPT17c5zeZYGo3dSZLR0bvS23t3arWVGRqaTASWLj091erSdpbcMmWZfO97yZ49ycBAcu655jABZkfoAQAAAABt1Ne3Jbt3X5fe3uNTr29MWY5mYmJ3arWlGR39UYaHt6YokhUrJuf/GB+/b8GHHg89lNx222TAcdppyfLl7a4I6BZCDwAAAABoo6IokhQpyzLVal+KopKxsftTrfamVjsutdpjox+Kokhv79q21nusGo3ku99N9u1LjjsueeYzjeoAWk/oAQAAAABt1t9/SkZGtqe//5QURX/Gxu5Krdaf5cvPTVFMvgZqobrvvuT22ycnYz/99GTJknZXBHQzoQcAAAAAtFlPz+rs2/fD9PefklptZUZH78myZaenKKopy6TZbHeFR2diIrn55mRsLFmzJnnWs9pdEbBYCD0AAAAAoEOUZZmenmWZmHgwlUr/I+uSer3NhR2hu+6a/FSryRlnLJy6ge4h9AAAAACADtDXtzmjoztSrQ5kZOTuFEVvksnREj09bS7uEEZHJ0d1NBrJiSca1QG0l9ADAAAAADpAb++aDA1dn1ptZZrN4UcmOE+Gh2eeB2NoaHJExdKl81xoJkefbN+ePPBA0tubnHVWUvOkEegAvooAAAAAoIPUasvSbO5LUk0yOdJjptDjhz+cfIXUfNq9O7nllsm/t2xJTjllfs8PcDhCDwAAAADoEL/zO/8zX/ziVdm1676cfvp/yu/93nvSbD47lcqBbRuN+Rld0Wwm3/ve5IiTZcuSc89NHhmEAtBxhB4AAAAA0EZf+9rX8pwXPSfpT7I6yUCSFck99/1rrnzVc5KR5J/+6bm57rovz2tdd989OSl5USRPeUp7XqMFcLSEHgAAAADQBsPDw1m6fmlST/LCJE9P8r+T3JbJAKRMMpLk5OT6oa+kOK7Ir17wq/nQhz6UspycV6PV9u6dfH1Vo5Fs2JA885mtPwfAXBJ6AAAAAMA8mwo8np7kzCR/meSaJGuT/EweCz2Gk/xbkvuT7Ek+/PEP51vf+lb+8R9vyNq1rallYmLy9VUjI0l/f3L22ZnxdVoAC4HQAwAAAADm2dL1S5MfS/LtJN9K8uNJzk0y0yuknp5kMMm1Sb6T3PitG/Nrv/a6/P3ff+iYz1+WyW23Jbt2TQYcp58+GXgALHRCDwAAAACYR0tXLE1OyeTIjv4kr0+y4jA7DSR5cZKzk1yefO6fPpyiOLrQoyyTO+5I7r9/cvmJT0ye9KSjLB6gwwk9AAAAAGAeDVeHk12ZnMvjV5MsOYqdT0jyH5J8JNm0aVPuvPPOQzYvy+T225MHHphc3rzZPB1AdxN6AAAAAMA8+fmf//lkVZKHkvxyji7weNRxSV6R7Pjsjhk3T0wk3//+5KTkSbJly+QHYDEQegAAAADAPPk//+//JGsy+bqq42dxoFOS1JMPfOADeeMb35j77kt27EiazaRaTU49NVk60/wgAF1O6AEAAAAA86WaZGeSV8zyOEWSc5M3vfVNOffcN2bNmuQZz0iKYvYlAixkQg8AAAAAmE+9SZ7YguM8Pcm1ybnntuBYAF2i0u4CAAAAAGBR6UtrnsrV4z9pBtiP0AMAAAAA5stwJl9x1SpeZwUwjdADAAAAAOZJpagkjRYesGzhsQC6gNADAAAAAObJd276TjKa1oQVY0kmWnAcgC4i9AAAAACAeXLaaadNhh7bW3CwbyfZ14LjAHQRoQcAAAAAzKMnrn1i8q+zPEiZ5BvJpz/26VaUBNA15jz0+KM/+qMURZG3vvWtc30qAACABUefCWDxufXWW5OHM/k5VjuSjCSvetWrWlQVQHeY09Djuuuuy1/8xV/kaU972lyeBgAAYEHSZwJYvLY+eWtyeZKRY9h5KMkVyRtf/cYWVwWw8M1Z6LFnz5685jWvyV/91V/luOOOm6vTAAAALEj6TACL29e//vUMlAPJR5LsPYodH07yN8kztjwjl1122RxVB7BwzVnocdFFF+XlL395zj///EO2Gx0dzdDQ0LQPAABAtzvSPlOi3wTQrXbdtyub+jcl/1+SazM5wfnBDCf5cpKPJC855yW54YYb5qVGgIWmNhcH/fjHP54bb7wx11133WHbXnrppXnXu941F2UAAAB0pKPpMyX6TQDd7I4f3JEvfvGLedFPvSj5epJNSU5P0p/Jycr3Jflmkp1JdaSaz13xw5x33qb2FQzQ4Vo+0mPHjh15y1veko997GPp6+s7bPuLL744g4ODU58dO3a0uiQAAICOcbR9pkS/CaDb/cRP/ETK4TLlQ2VOHjw5uSLJ/3nk8+nk3GXn5m/+Z5nxvRN58Ys3Zdu29tYL0MmKsizLVh7wM5/5TF71qlelWq1OrWs0GimKIpVKJaOjo9O27W9oaCgDAwMZHBzMihUrWlkaAAB0JL+BF5fZ9pkS9wzAYvCNb3wjW7duTZLcdNNNGR5+eo47LnnKU5LrrkvOPTcpijYXCTBPjub3b8tfb/WiF70o3/72t6ete93rXpfTTjstb3/72w/74x0AAKCb6TMBcCRuv/32qb9vvfXWXHDB0/OpT02GHlu2JLffPvm/AEzX8tBj+fLlOeOMM6atW7p0aVavXn3AegAAgMVGnwmAI1Gv16f+XrVqVXp6kmZzcvn445Pt24UeADNp+ZweAAAAAMDsnHPOOVNzP23YsOGA7ZXKYyEIAI9p+UiPmVx11VXzcRoAAIAFSZ8JgP2ddNJJ2bx5c7Zt25adO3fmKU95SiqVZGIiqdWS005Ltm2bfN0VAI8x0gMAAAAAOtCaNWuSJDt37kwyGXTcfPPktqVLkz172lUZQOcSegAAAABAB1q2bFmS5JZbbkmSnHHG5OiOR9VqkyM/AHiM0AMAAAAAOtCDDz6YJNm3b1+SpLc3GR9/bPtTnpJ897vtqAygcwk9AAAAAKADPf/5z0+S7N27d8btfX3J6Oh8VgTQ+YQeAAAAANCBTj/99CTJ9773val1RZGU5WNtenuTsbH5rgygcwk9AAAAAKADbdq0KUnyzW9+c2rdqlXJI/OaJ/GKK4D9CT0AAAAAoAMNDg4mmZzb49G/165Ndux4rM3+83wALHZCDwAAAADoQCeeeOLU34++4mrduuShh6a3q9eTkZH5rAygcwk9AAAAAKADrVy5curvW2+9NUmyZs2BocfppyePm/YDYFETegAAAABABxoYGJj6e+vWrUmSWi1pNKa3q9Umgw8AhB4AAAAA0JGWLFky9ffGjRun/i6KpNmc3rZen6+qADqb0AMAAAAAOlBfX9/U3/v27Zv6e9WqZOfOdlQE0PmEHgAAAADQgXp6elKtVpMkX/nKV6bWH3+80APgYIQeAAAAANChXvWqVyVJ/vzP/3xqXaVy4LweAEwSegAAAABAh/qVX/mVJMnu3bun1lUqB87pAcAkoQcAAAAAdKgVK1YkSfbs2TO17rjjksctAvA4Qg8AAAAA6FB33HFHkmTv3r1T61avTnbtalNBAB1O6AEAAAAAHagsy7z+9a9PMj30WLZsck6Px60C4BFCDwAAAADoQPv27UvjkRnLR0ZGptYXRXLCCcndd7erMoDOJfQAAAAAgA40NDQ09fe+fftSluXU8tKlyeM2A/AIoQcAAAAAdKBHQ4/+/v584AMfmBZ6FEW7qgLobLV2FwAAAAAAHOiBBx5Ikqxbty4XXnhhm6sBWBiM9AAAAACADtNoNPKHf/iHSSZDj/0Z6QEwM6EHAAAAAHSYyy+/PJ/73OeSJKtXrz5g++PedAXA4wg9AAAAAKCDlGWZP/iDP0iSPP/5z8+rX/3qA9pUq0l/f7Jnz3xXB9DZzOkBAAAAAB3k+9//fm655Zb09vbm7/7u77JixYoD2gwMTL7i6p57kic9qQ1FAnQoIz0AAAAAoIP80z/9U5LJUR4zBR5JctxxSaORDA3NZ2UAnU/oAQAAAAAd5POf/3yS5NRTT813v/vdjI2NHdBmxYpk9+75rgyg8wk9AAAAAKBDTExM5Oqrr06SfPCDH8xTn/rU/PCHPzygXaWSNJvzXR1A5xN6AAAAAECHKIoi69evz9lnn53h4eEkyaZNm9pcFcDCYSJzAAAAAOgQ1Wo1P/zhD/Otb30rZ511VlavXp0lS5a0uyyABcNIDwAAAADoMDt27EiSbNy48aBtyjLp60tGRuarKoDOJ/QAAAAAgA5z++23J0lOPvnkQ7Zbty659965rwdgoRB6AAAAAEAHueSSS/I7v/M7SQ4dehRFsmpV8tBD81QYwAIg9AAAAACADjI0NJShoaEkyZYtWw7ariwngw8AHiP0AAAAAIAOsmHDhiTJWWedlec+97mHbFuWkx8AJgk9AAAAAKCDnHjiiUmS1atX5+yzzz5ou/7+ZHR0vqoCWBiEHgAAAADQQR4NPe66665DthsYSAYH56MigIVD6AEAAAAAHWT0keEbO3bsOGS7FSsmQ49aLZmYmI/KADqf0AMAAAAAOshXv/rVJMnw8HB279590HbLliV79iRr1iT33Tdf1QF0NqEHAAAAAHSQa665JkmyefPmQ4YeRTE5ifkJJyT33z9f1QF0NqEHAAAAAHSI3bt358tf/nKS5P/9v/+XDRs2HHYfr7cCeIzQAwAAAAA6xJVXXpnx8fE84QlPyJOe9KR2lwOw4Ag9AAAAAKBDfO5zn0uS/ORP/mSKokhZlm2uCGBhEXoAAAAAQAd46KGHcvnllydJli5dmi1btuTCCy9sc1UAC4vQAwAAAAA6wFVXXZV9+/blrLPOyplnnpnbb789t9566xHtWxRJsznHBQIsALV2FwAAAAAAJD/zMz+T2267Lffff3+ajyQYP/zhDw+5T1FM/u8JJyQPPJCsWTPXVQJ0NiM9AAAAAKBDbNmyJeecc04+9rGPJUnuuuuujI6OHrT9o1N+rF2b7Nw5HxUCdDahBwAAAAC00fbt2/O1r31tavk3fuM38r/+1/9KkqxduzbVavWQ+5dl0tubjI3NaZkAC4LQAwAAAADapCzLXHjhhfnxH//xXHbZZfnKV76Sv/zLv0xRFHnf+96X7373u6nVDv6G+mXLkuHheSwYoMOZ0wMAAAAA2uRDH/pQrrzyyvT19eXf/bt/ly1btuR//I//kfvvvz9vfvObD7v/8uXJ0FCydOk8FAuwAAg9AAAAAKANbrnllrzlLW9Jkvze7/1envjEJyZJ3va2tx3xMZYvT+65J1m/fk5KBFhwvN4KAAAAAObZ3r1783M/93PZs2dPnv/85+e3fuu3juk4S5cme/c+tvzoxOYAi1XLQ49LL700z3zmM7N8+fKsWbMmF1xwQbZt29bq0wAAACxI+kwAlGWZN77xjfnOd76TdevW5eMf//gh5+04lEolaTYn/169OnnwwRYWCrAAtTz0uPrqq3PRRRfl61//er7whS9kfHw8L37xi7P38ZEzAADAIqXPBMDVV1+dj370o6lWq/n4xz+edevWzep4RTH5v+vXJ/fe24ICARawls/p8fnPf37a8oc//OGsWbMmN9xwQ573vOe1+nQAAAALij4TAC94wQvy13/91xkcHMzzn//8lh23Xk9GR1t2OIAFac4nMh8cHEySrFq1asbto6OjGX3ct/HQ0NBclwQAANAxDtdnSvSbALrR61//+pYdyzweAI+Z04nMm81m3vrWt+Y5z3lOzjjjjBnbXHrppRkYGJj6bNy4cS5LAgAA6BhH0mdK9JsAAOBIzWnocdFFF+Xmm2/Oxz/+8YO2ufjiizM4ODj12bFjx1yWBAAA0DGOpM+U6DcBAMCRmrPXW735zW/OP/zDP+TLX/5yTjrppIO2q9frqdfrc1UGAABARzrSPlOi3wTAkSuKydddPTq5OcBi0/KRHmVZ5s1vfnOuuOKKfPGLX8yWLVtafQoAAIAFS58JgFZ7fMBx/PHJAw+0rxaAdmv5SI+LLroof/u3f5vPfvazWb58ee69994kycDAQPr7+1t9OgAAgAVFnwmAVnv8RObr1iW33JKccEL76gFop5aP9LjssssyODiYF7zgBVm/fv3U5xOf+ESrTwUAALDg6DMB0GrVajIxMfl3b28yPt7eegDaqeUjPcrHR8sAAABMo88EQKstX57s3ZsMDEwum88DWMxaPtIDAAAAAJg/y5cnu3c/tixfBxYzoQcAAAAALGD7hx4Ai5nQAwAAAAAWsL6+ZHj4seXHz/EBsNgIPQAAAABgAdt/Do+1a5P7729PLQDtJvQAAAAAgC6yZk2yc2e7qwBoD6EHAAAAAHSRajVpNNpdBUB7CD0AAAAAAICuIPQAAAAAAAC6gtADAAAAAADoCkIPAAAAAOgy9XoyOtruKgDmn9ADAAAAALrMhg3J3Xe3uwqA+Sf0AAAAAIAFriimLx93XPLQQ+2pBaCdhB4AAAAAsMBVKkmj8djy/iEIwGIh9AAAAACABW7ZsmTPnnZXAdB+Qg8AAAAAWOCWLxd6ACRCDwAAAABY8JYtS3bvPnB9Wc5/LQDtJPQAAAAAgAVuyZJkeHj6uoGBZGioPfUAtIvQAwAAAAAWuKI4cFTHiScmd93VnnoA2kXoAQAAAABdqL8/2bev3VUAzC+hBwAAAAAA0BWEHgAAAADQpU45pd0VAMwvoQcAAAAAdKnjjmt3BQDzS+gBAAAAAAB0BaEHAAAAAADQFYQeAAAAAABAVxB6AAAAAAAAXUHoAQAAAABdoCiSsmx3FQDtJfQAAAAAgC6wdGmyd2+7qwBoL6EHAAAAAHSB5cuT3bvbXQVAewk9AAAAAKALLF+e7NnT7ioA2kvoAQAAAABdwOutAIQeAAAAANAVKpWk0Wh3FQDtJfQAAAAAAAC6gtADAAAAAADoCkIPAAAAAACgKwg9AAAAAKBLFEW7KwBoL6EHAAAAAADQFYQeAAAAANAlyrLdFQC0l9ADAAAAAADoCkIPAAAAAACgKwg9AAAAAKCLeMUVsJgJPQAAAACgSyxZkoyOtrsKgPYRegAAAABAl1i2LNm9u91VALSP0AMAAAAAusTy5UIPYHETegAAAABAl1i2LNmzp91VALSP0AMAAAAAukStlkxMtLsKgPYRegAAAABAFynLdlcA0D5CDwAAAADoIkXR7goA2kfoAQAAAABdxEgPYDETegAAAAAAAF1B6AEAAAAAAHQFoQcAAAAAANAVhB4AAAAA0EVOOqndFQC0z5yFHu9///tz8sknp6+vL1u3bs03vvGNuToVAADAgqPPBMBcWbu23RUAtM+chB6f+MQn8ra3vS3vfOc7c+ONN+ass87KS17yktx3331zcToAAIAFRZ8JAADmxpyEHn/2Z3+WCy+8MK973ety+umn5wMf+ECWLFmSD37wg3NxOgAAgAVFnwkAAOZGrdUHHBsbyw033JCLL754al2lUsn555+fa6655oD2o6OjGR0dnVoeHBxMkgwNDbW6NAAA6EiP/vYty7LNlTAfjrbPlOg3AQCwuB1Nn6nloccDDzyQRqORtfu9PHDt2rW55ZZbDmh/6aWX5l3vetcB6zdu3Njq0gAAoKM9+OCDGRgYaHcZzLGj7TMl+k0AAJAku3fvPmyfqeWhx9G6+OKL87a3vW1qedeuXdm8eXPuvPNOHT6OyNDQUDZu3JgdO3ZkxYoV7S6HBcA9w9Fyz3C03DMcrcHBwWzatCmrVq1qdyl0qP37Tc1mMw899FBWr16doijmtRbfcbPj+s2eazg7rt/suH6z4/rNjus3e67h7LTz+pVlmd27d2fDhg2Hbdvy0OP4449PtVrNzp07p63fuXNn1q1bd0D7er2eer1+wPqBgQE3HkdlxYoV7hmOinuGo+We4Wi5ZzhalcqcTLlHhznaPlMyc79p5cqVc1XiEfEdNzuu3+y5hrPj+s2O6zc7rt/suH6z5xrOTruu35EOkmh5r6q3tzfnnHNOrrzyyql1zWYzV155Zc4777xWnw4AAGBB0WcCAIC5Myevt3rb296W1772tTn33HPzrGc9K+9973uzd+/evO51r5uL0wEAACwo+kwAADA35iT0+MVf/MXcf//9ecc73pF77703T3/60/P5z3/+gIn6ZlKv1/POd75zxldewUzcMxwt9wxHyz3D0XLPcLTcM4vPbPpM7eZ+nR3Xb/Zcw9lx/WbH9Zsd1292XL/Zcw1nZ6Fcv6Isy7LdRQAAAAAAAMyWmRIBAAAAAICuIPQAAAAAAAC6gtADAAAAAADoCkIPAAAAAACgK3Rc6PH+978/J598cvr6+rJ169Z84xvfaHdJdKjf/d3fTVEU0z6nnXZau8uig3z5y1/OK17ximzYsCFFUeQzn/nMtO1lWeYd73hH1q9fn/7+/px//vm59dZb21MsHeFw98yv/uqvHvC989KXvrQ9xdJ2l156aZ75zGdm+fLlWbNmTS644IJs27ZtWpuRkZFcdNFFWb16dZYtW5af/dmfzc6dO9tUMe12JPfMC17wggO+Z974xje2qWIWoyO5T/f34Q9/+ID7tq+vb54q7jzH0k/51Kc+ldNOOy19fX0588wz84//+I/zVG3nOfnkkw+4fkVR5KKLLpqx/WK//+aqz7NYns0c6vqNj4/n7W9/e84888wsXbo0GzZsyK/8yq/k7rvvPuQxF9OzirnqPy2W+y85/DWc6fuwKIr8yZ/8yUGPuVjuwbnqjy2mZ0WHu4YPPfRQ/tN/+k859dRT09/fn02bNuU3f/M3Mzg4eMjjdsKzk44KPT7xiU/kbW97W975znfmxhtvzFlnnZWXvOQlue+++9pdGh3qqU99au65556pz7/+67+2uyQ6yN69e3PWWWfl/e9//4zb//iP/zh//ud/ng984AO59tprs3Tp0rzkJS/JyMjIPFdKpzjcPZMkL33pS6d971x++eXzWCGd5Oqrr85FF12Ur3/96/nCF76Q8fHxvPjFL87evXun2vzWb/1W/v7v/z6f+tSncvXVV+fuu+/Oz/zMz7SxatrpSO6ZJLnwwgunfc/88R//cZsqZjE60vt0fytWrJh2395xxx3zVHFnOpp+yte+9rW8+tWvzq/92q/lpptuygUXXJALLrggN9988zxW3Dmuu+66adfuC1/4QpLk53/+5w+6z2K+/+aiz7OYns0c6voNDw/nxhtvzCWXXJIbb7wxn/70p7Nt27b89E//9GGPu1ieVcxF/2kx3X/J4a/h46/dPffckw9+8IMpiiI/+7M/e8jjLoZ7cK76Y4vpWdHhruHdd9+du+++O3/6p3+am2++OR/+8Ifz+c9/Pr/2a7922GO3/dlJ2UGe9axnlRdddNHUcqPRKDds2FBeeumlbayKTvXOd76zPOuss9pdBgtEkvKKK66YWm42m+W6devKP/mTP5lat2vXrrJer5eXX355Gyqk0+x/z5RlWb72ta8tX/nKV7alHjrffffdVyYpr7766rIsJ79Tenp6yk996lNTbb73ve+VScprrrmmXWXSQfa/Z8qyLJ///OeXb3nLW9pXFOxnpvt0fx/60IfKgYGB+Suqwx1tP+UXfuEXype//OXT1m3durX89V//9RZXtjC95S1vKZ/whCeUzWZzxu3uv8e0qs+zWJ/NzPT7f3/f+MY3yiTlHXfccdA2i/VZRav6T4v1/ivLI7sHX/nKV5Y/8RM/ccg2i/UebEV/bLE/KzqS332f/OQny97e3nJ8fPygbTrh2UnHjPQYGxvLDTfckPPPP39qXaVSyfnnn59rrrmmjZXRyW699dZs2LAhp5xySl7zmtfkzjvvbHdJLBDbt2/PvffeO+07Z2BgIFu3bvWdwyFdddVVWbNmTU499dS86U1vyoMPPtjukugQjw7xXbVqVZLkhhtuyPj4+LTvmdNOOy2bNm3yPUOSA++ZR33sYx/L8ccfnzPOOCMXX3xxhoeH21EeJDn4fbq/PXv2ZPPmzdm4cWNe+cpX5jvf+c58lNexjqafcs0110z7d0WSvOQlL/Hvikw+J/joRz+a17/+9SmK4qDt3H8zO5Y+j2czhzY4OJiiKLJy5cpDtvOs4jFH039y/x3azp0787nPfe6I/iv7xXgPtqI/ttifFR3J777BwcGsWLEitVrtkMdq97OTjgk9HnjggTQajaxdu3ba+rVr1+bee+9tU1V0sq1bt04Nq7rsssuyffv2PPe5z83u3bvbXRoLwKPfK75zOBovfelL8zd/8ze58sor8573vCdXX311Xvayl6XRaLS7NNqs2WzmrW99a57znOfkjDPOSDL5PdPb23tAp9j3DMnM90yS/Pt//+/z0Y9+NF/60pdy8cUX53//7/+dX/7lX25jpSxmB7tP93fqqafmgx/8YD772c/mox/9aJrNZp797GfnRz/60TxW2zmOtp9y7733+k16EJ/5zGeya9eu/Oqv/upB27j/Du5Y+jyezRzcyMhI3v72t+fVr351VqxYcdB2nlU85mj7T+6/Q/vIRz6S5cuXH/b1TIvxHmxVf2wxPys6kt99DzzwQN797nfnDW94wyGP1QnPTg4dyUAHe9nLXjb199Oe9rRs3bo1mzdvzic/+ckjSr0BjtYv/dIvTf195pln5mlPe1qe8IQn5KqrrsqLXvSiNlZGu1100UW5+eabu/JducyNg90zj+9AnHnmmVm/fn1e9KIX5Qc/+EGe8IQnzHeZLHJH+t123nnn5bzzzptafvazn52nPOUp+Yu/+Iu8+93vnusyO45+Suv89V//dV72spdlw4YNB23j/mM+jI+P5xd+4RdSlmUuu+yyQ7b1HfAY/afW+uAHP5jXvOY16evrO2S7xXgP6o/N3uGu4dDQUF7+8pfn9NNPz+/+7u8e8lid8M9+x4z0OP7441OtVrNz585p63fu3Jl169a1qSoWkpUrV+bJT35ybrvttnaXwgLw6PeK7xxm45RTTsnxxx/ve2eRe/Ob35x/+Id/yJe+9KWcdNJJU+vXrVuXsbGx7Nq1a1p73zMc7J6ZydatW5PE9wzz7mju0/319PTk7LPPdt8+4nD9lHXr1vlNOoM77rgj//Iv/5L/+B//41Ht5/57zLH0eTybOdCjgccdd9yRL3zhC4cc5TETzyoec7j+k/vv4L7yla9k27ZtR/2dmHT/PdjK/thifVZ0uN99u3fvzktf+tIsX748V1xxRXp6eo7q+O14dtIxoUdvb2/OOeecXHnllVPrms1mrrzyymn/1QYczJ49e/KDH/wg69evb3cpLABbtmzJunXrpn3nDA0N5dprr/WdwxH70Y9+lAcffND3ziJVlmXe/OY354orrsgXv/jFbNmyZdr2c845Jz09PdO+Z7Zt25Y777zT98widbh7Zibf/OY3k8T3DPPmWO7T/TUajXz729923z7icP2U8847b9q/K5LkC1/4wqL/d8WHPvShrFmzJi9/+cuPaj/332OOpc/j2cx0jwYet956a/7lX/4lq1evPupjeFbxmMP1n9x/B/fXf/3XOeecc3LWWWcd9b7deg/ORX9ssT0rOpLffUNDQ3nxi1+c3t7e/N3f/d1hRxrNpC3PTto5i/r+Pv7xj5f1er388Ic/XH73u98t3/CGN5QrV64s77333naXRgf6z//5P5dXXXVVuX379vKrX/1qef7555fHH398ed9997W7NDrE7t27y5tuuqm86aabyiTln/3Zn5U33XRTeccdd5RlWZZ/9Ed/VK5cubL87Gc/W37rW98qX/nKV5Zbtmwp9+3b1+bKaZdD3TO7d+8u/8t/+S/lNddcU27fvr38l3/5l/IZz3hG+aQnPakcGRlpd+m0wZve9KZyYGCgvOqqq8p77rln6jM8PDzV5o1vfGO5adOm8otf/GJ5/fXXl+edd1553nnntbFq2ulw98xtt91W/t7v/V55/fXXl9u3by8/+9nPlqecckr5vOc9r82Vs5gcyXfbf/gP/6H87d/+7anld73rXeU///M/lz/4wQ/KG264ofylX/qlsq+vr/zOd77Tjv8LbXe4fsr+1++rX/1qWavVyj/90z8tv/e975XvfOc7y56envLb3/52u/4vtF2j0Sg3bdpUvv3tbz9gm/tvulb0eX7iJ36ifN/73je1vJiezRzq+o2NjZU//dM/XZ500knlN7/5zWnfiaOjo1PH2P/6LaZnFa3oPy3m+68sD//PcFmW5eDgYLlkyZLysssum/EYi/UebFV/7NRTTy0//elPTy0vpmdFh7uGg4OD5datW8szzzyzvO2226a1mZiYmDrO469hpzw76ajQoyzL8n3ve1+5adOmsre3t3zWs55Vfv3rX293SXSoX/zFXyzXr19f9vb2lieeeGL5i7/4i+Vtt93W7rLoIF/60pfKJAd8Xvva15ZlWZbNZrO85JJLyrVr15b1er180YteVG7btq29RdNWh7pnhoeHyxe/+MXlCSecUPb09JSbN28uL7zwwq798c3hzXSvJCk/9KEPTbXZt29f+Ru/8RvlcccdVy5ZsqR81ateVd5zzz3tK5q2Otw9c+edd5bPe97zylWrVpX1er184hOfWP7X//pfy8HBwfYWzqJyJN9tz3/+86d+T5VlWb71rW+d6sOtXbu2/Mmf/MnyxhtvnP/iO8Th+in7X7+yLMtPfvKT5ZOf/OSyt7e3fOpTn1p+7nOfm+eqO8s///M/l0lm/G3u/puuFX2ezZs3l+985zunrVssz2YOdf22b99+0O/EL33pS1PH2P/6LaZnFa3oPy3m+68sD//PcFmW5V/8xV+U/f395a5du2Y8xmK9B1vVH9t/n8X0rOhw1/Bg92eScvv27dOO8+g+nfLspHikMAAAAAAAgAWtY+b0AAAAAAAAmA2hBwAAAAAA0BWEHgAAAAAAQFcQegAAAAAAAF1B6AEAAAAAAHQFoQcAAAAAANAVhB4AAAAAAEBXEHoAAAAAAABdQegBAAAAAAB0BaEHAAAAAADQFYQeAAAAAABAVxB6AAAAAAAAXeH/B5qPoTQ1ENp4AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLqElEQVR4nO39e5hdZX03/r/3nvMhM0MSkhBIQkTkbIqgFFDRQlWkKtW21sc+Uu2DPWA99Wkt11U8VC21tV59tH617ddTHxVrv7+iVlstIqByEDmpKCBgCOGQhBAyk8x5Zq/fHwMDSSaHIXtmz+x5va5rLmevde+1PrNcbve93rnvu1QURREAAAAAAIB5rlzrAgAAAAAAAKpB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1IVphx7f/e5384pXvCIrV65MqVTKV77ylcl9o6Ojede73pWTTjopHR0dWblyZd7whjfkoYceqmbNAAAAc5Y+EwAA1M60Q4/+/v6sW7cuH//4x/fYNzAwkFtuuSWXXHJJbrnllvz7v/977rrrrrzyla+sSrEAAABznT4TAADUTqkoiuJpv7lUyuWXX57zzz9/r21++MMf5nnPe142bNiQ1atXP91TAQAAzDv6TAAAMLsaZ/oEvb29KZVK6enpmXL/8PBwhoeHJ19XKpVs27YtS5YsSalUmunyAACg5oqiyI4dO7Jy5cqUy5bdW2j212dK9JsAAFjYptNnmtHQY2hoKO9617vyute9Ll1dXVO2ufTSS/O+971vJssAAIB5YePGjTniiCNqXQaz6ED6TIl+EwAAJAfWZ5qx6a1GR0fzmte8Jg888ECuvvrqvX6B3/1fLPX29mb16tXZuHHjPr/0AwBAvejr68uqVauyffv2dHd317ocqqgafaZEvwkAgIVtOn2mGRnpMTo6mt/6rd/Khg0b8p3vfGefX8JbWlrS0tKyx/auri5f3gEAWFBMU7RwTKfPlOg3AQBAcmB9pqqHHk98eb/77rtz1VVXZcmSJdU+BQAAwLylzwQAADNn2qHHzp07c88990y+Xr9+fW677bYsXrw4hx12WH7jN34jt9xyS77+9a9nfHw8mzZtSpIsXrw4zc3N1ascAABgDtJnAgCA2pn2mh5XX311XvziF++x/YILLsh73/verF27dsr3XXXVVXnRi1603+P39fWlu7s7vb29hmkDALAg+A5cX2a6z5S4ZwAAWFim8/132iM9XvSiF2VfOclBrIsOAAAw7+kzAQBA7ZRrXQAAAAAAAEA1CD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLkw79Pjud7+bV7ziFVm5cmVKpVK+8pWv7LK/KIq8+93vzmGHHZa2tracc845ufvuu6tVLwAAwJymzwQAALUz7dCjv78/69aty8c//vEp9//N3/xNPvrRj+aTn/xkfvCDH6SjoyMvfelLMzQ0dNDFAgAAzHX6TAAAUDuN033Dueeem3PPPXfKfUVR5O///u/zF3/xF3nVq16VJPmXf/mXLF++PF/5ylfy27/92wdXLQAAwBynzwQAALVT1TU91q9fn02bNuWcc86Z3Nbd3Z3TTjst119//ZTvGR4eTl9f3y4/AAAA9ejp9JkS/SYAADhQVQ09Nm3alCRZvnz5LtuXL18+uW93l156abq7uyd/Vq1aVc2SAAAA5oyn02dK9JsAnmpkZEuGhh6odRkAzFFVDT2ejosvvji9vb2TPxs3bqx1SQAAAHOKfhPAkxobl+axx75V6zIAmKOqGnqsWLEiSbJ58+Zdtm/evHly3+5aWlrS1dW1yw8AAEA9ejp9pkS/CeCpyuVyyuXWjI3trHUpAMxBVQ091q5dmxUrVuTKK6+c3NbX15cf/OAHOf3006t5KgAAgHlHnwmgOpYufU22bv1KrcsAYA5qnO4bdu7cmXvuuWfy9fr163Pbbbdl8eLFWb16dd7+9rfnAx/4QI4++uisXbs2l1xySVauXJnzzz+/mnUDAADMSfpMADOvoaE1RTGcSqWScrnms7cDMIdMO/S46aab8uIXv3jy9Tvf+c4kyQUXXJDPfvaz+bM/+7P09/fnzW9+c7Zv357nP//5+eY3v5nW1tbqVQ0AADBH6TMBzI5DDnlptm37zyxd+mu1LgWAOaRUFEVR6yKeqq+vL93d3ent7TVPLQAAC4LvwEyXewZgwsMPfyqHHfZ7tS4DgBk2ne+/xv8BAAAAMC91dKxLb+8Pa10GAHOI0AMAAACAeamr69QMDPy41mUAMIcIPQAAAACYt5qalmdo6KFalwHAHCH0AAAAAGDeWrz45XnssW/VugwA5gihBwAAAADzVrlcTtKQ8fGhWpcCwBwg9AAAAABgXjv00Fdn69av1roMAOYAoQcAAAAA81pjY2cqlZ21LgOAOUDoAQAAAMC81939wmzbdmWtywCgxoQeAAAAAMx77e1HZ3j4vlqXAUCNCT0AAAAAqAstLaszMHB3rcsAoIaEHgAAAADUhZ6es9Pb+91alwFADQk9AAAAAKgL5XI55XJrxsYsag6wUAk9AAAAAKgbS5b8eh599Ku1LgOAGhF6AAAAAFA3GhvbU6kMpVKp1LoUAGpA6AEAAABAXenufmG2b7+q1mUAUANCDwAAAADqSnv70Rkevr/WZQBQA0IPAAAAAOpOc/PKDA5uqHUZAMwyoQcAAAAAdeeQQ34127d/p9ZlADDLhB4AAAAA1J1yuZxSqSnj40O1LgWAWST0AAAAAKAuLVnya3n00a+lUhlNf/8dtS4HgFkg9AAAAACgLjU19WR8vD/lclPGx3fWuhwAZoHQAwAAAIC61dm5Lr29P0hjY09GRx+rdTkAzDChBwAAAAB1a9Gi52Rg4Gdpa3tmBgfvqXU5AMwwoQcAAAAAda2hYVHGxnqTJEVR1LgaAGaS0AMAAACAurZ06SuzdevX0t5+bAYG7qx1OQDMIKEHAAAAAHWtXG5OMp5yuSPj4ztqXQ4AM0joAQAAAEDd6+5+YbZvvzINDZ0ZG9tZ63IAmCFCDwAAAADqXnv7URkefiDt7cdlYOCOWpcDwAwRegAAAACwIDQ1Lcnw8MNJLGgOUK+EHgAAAAAsCIsX/1oee+yKtLauzdDQ+lqXA8AMEHoAAAAAsCCUy+UklTQ2Ls7o6NZalwPADBB6AAAAALBgHHLI2XnssW+lVGpOpTJS63IAqDKhBwAAAAALRmvr6oyMbEpHxwnp7/9prcsBoMqEHgAAAAAsKE1Nh2ZkZHOKYqzWpQBQZUIPAAAAABaUxYtfnsceu/Lx8GNLrcsBoIqEHgAAAAAsKBMLmictLaszNLShxtUAUE1CDwAAAAAWnJ6eF+Wxx76VJCmKosbVAFAtQg8AAAAAFpy2tjUZGdmU9vZjMjj481qXA0CVCD0AAAAAWJAaG3tSqQxlbKyv1qUAUCVCDwAAAAAWpCVLXpFHH/2vlMstGR8fqnU5AFSB0AMAAACABalcbkyStLcfn4GBn9W4GgCqQegBAAAAwIK1aNGp6eu7IUUxXutSAKgCoQcAAAAAC1Zn5wkZHLw3TU1LMjKytdblAHCQhB4AAAAA1KXh4U0pisp+25XLrWlsPDRDQ+tnoSoAZpLQAwAAAIC61NjYkx07bt5vuyVLzsu2bf+ZJCmKYqbLAmAGCT0AAAAAqEsNDa1paOjM6Oij+2zX2NiZSmUobW3PMNoDYJ4TegAAAABQtzo6jsvAwJ37bdfauiYjI1v3G5AAMLcJPQAAAACoa+3tx6W//2f7bNPd/cL09d2QUqmcohifpcoAqDahBwAAAAB1ralpccbHBzI+PrTXNuXyxGOy1tZj099/x2yVBkCVCT0AAAAAqHuLFj0nO3fess82PT0vSl/f91OpDM5SVQBUm9ADAAAAgLpXKpXT3Lwyw8MP7rVNW9uajIxsSrncus9RIQDMXUIPAAAAABaEtrYjMzS0IUVR7LVNudyalpZVGRjY9xogAMxNQg8AAAAAFoyOjmenv/8ne92/ZMkrsm3btyxmDjBPVT30GB8fzyWXXJK1a9emra0tRx11VN7//vfvM0EHAABYKPSZAGqrsbEzRTG21+mrGhvbU6kMpbGxK2NjvbNcHQAHq7HaB/zQhz6UT3ziE/nc5z6XE044ITfddFPe+MY3pru7O29961urfToAAIB5RZ8JoPY6O09OX98N6e4+fcr9LS0rkzRlYODudHWdOrvFAXBQqh56XHfddXnVq16V8847L0ly5JFH5rLLLsuNN95Y7VMBAADMO/pMALVXKpXS3Lwiw8MPp6XlsD329/Scnc2b/286Oo6vQXUAHIyqT291xhln5Morr8zPf/7zJMmPfvSjfP/738+5555b7VMBAADMO/pMAHNDW9vaDA2tn3JfuTzxyKyp6dCMjDwym2UBcJCqPtLjz//8z9PX15djjz02DQ0NGR8fzwc/+MG8/vWvn7L98PBwhoeHJ1/39fVVuyQAAIA5Y7p9pkS/CWCmtLcfl/7+O9LRcdwe+zo7T87w8KaUyw1pbj60BtUB8HRUfaTHl7/85XzhC1/IF7/4xdxyyy353Oc+lw9/+MP53Oc+N2X7Sy+9NN3d3ZM/q1atqnZJAAAAc8Z0+0yJfhPATGlqOiTj432pVMb22Ldo0bMzOHhXDaoC4GCUiqIoqnnAVatW5c///M9z0UUXTW77wAc+kM9//vO5884792g/1b9YWrVqVXp7e9PV1VXN0gAAYE7q6+tLd3e378ALxHT7TIl+E8BMqlRGsnPnj9LV9dw99j388OfS0/MrKZfLaWk5vAbVAZBMr89U9emtBgYGJuc9fEJDQ0MqlcqU7VtaWtLS0lLtMgAAAOak6faZEv0mgJlULjenXG7J2NjONDZ27rLvkEN+NTt33pbm5kOFHgDzRNVDj1e84hX54Ac/mNWrV+eEE07Irbfemo985CN505veVO1TAQAAzDv6TAB7Nz4+lIaG1lk/b0fHSenruyHd3afvsr21dWUee+wKa3oAzCNVDz0+9rGP5ZJLLskf/dEfZcuWLVm5cmV+//d/P+9+97urfSoAAIB5R58JYO9GRx/Jzp0b09FxQhobu2ftvKVSKc3NyzIysiXNzct22Vcut6axcWmGhu5Pa+vqWasJgKen6mt6HCzzGQMAsND4Dsx0uWeAelYURfr7f5pKZSCdnc9JuVz1f7O7V7291+8x2mNsrC/btv13WlvXTLnuBwAzbzrff8v73AsAAAAAs6hUKqWz88R0dp6cnTtvSX//HbN27tbWNRkcvG+XbY2NXRkf708yEcgAMLcJPQAAAACYc8rlpnR1PS/NzcvT23tdRka2zPg5W1pWZmTkoT22NzZ2pVzuyvDw/TNeAwAHR+gBAAAAwJzV1LQ43d1nZGysN729N6RSGZ3R87W3H5uBgbt22bZ48bnp779pVoIXAA6O0AMAAACAOa+9/egsWnRqdu68JQMDd8/YeZqaFmdsbPsuU1k1NLSmUhmbsXMCUD1CDwAAAADmhXK5MV1dp6WxsSvbt39/cq2NamtvPz79/T/dZVtT05IkTRka2jgj5wSgOoQeAAAAAMwrzc3L0919ZgYGfp7+/p9V/fiNjYtSqfTvMtpj8eKXZWDg9oyMbKr6+QCoHqEHAAAAAPNOqVTKokUnp7l5RbZv/37GxnZW9fgdHSelv/8nk6/L5cYUxXhVzwFA9Qk9AAAAAJi3JhY6PzODg3fvsQD5wWhoaE+lMrjLaI+WlpUpikqGhx+q2nkAqC6hBwAAAADz2hOjPhobe9Lbe20qlZGqHLej49np7//x5OuenrMzMHBXhocfrMrxAag+oQcAAAAAdaG5eXm6un45O3bcVJXRGA0NbalUhiZHe5TL5STFvt8EQE0JPQAAAACoG6VSQ7q7z8j4+M7s3Pmjgz5eR8eJu6zt0dJyRMbGdmZkZOtBHxuA6hN6AAAAAFB32tuflZaW1dm+/XupVEaf9nEaGjp2Wdujp+fFGRrakKGh9dUqFYAqEnoAAAAAUJeamg5Jd/cZ2bHjxoyObnvax2lvPy4DA3cmmZjiqlQqVatEAKpM6AEAAABA3ZqY7urMDA9vzODgfU/rGI2NXRkf75t83dJyREZHt2VsbEeVqgSgWoQeAAAAANS9zs51SSrZufMn+207ldbWozI4eG+SiSmuhocfzuDgz6tYIQDVIPQAAAAAYEFoa3tGmpuXp6/vB5NrdByo5ualGR2dWLz8iSmupnsMAGae0AMAAACABaO5eVna249Pb++1TyP4WJnh4YeSJC0tKzMy8kgqlZGZKBOAp0noAQAAAMCC0ti4KIsWnZrt269JpTJ2wO9rbV2V4eGNSZKenrMzPPzQ5ALnAMwNQg8AAAAAFpyGhtZ0dz8/vb3fT6UyOo33LcrY2I6Uy+WUy41GegDMMUIPAAAAABakcrkxPT0vSG/vtQccXrS3H5eBgZ8lSZqaDs3IyFZrewDMIUIPAAAAABasUqnh8eDjugMa8VEqlVIqNaZSGcvixS/J8PCGDA7eMwuVAnAghB4AAAAALGhPBh/XpijG99u+o+PE9PffnnK5MeVya8bGts98kQAcEKEHAAAAAAteqdSQ7u4z09v7/f1OV1Uut6QohpMkjY1dGR3tnY0SATgAQg8AAAAASFIuN2XRotPS23vtftu2th6ZwcH7snjxuRkcvCMjI1tmoUIA9kfoAQAAAACPa2hoTUfHidmx4+Z9tmtuXp7R0c1paGhNubwoQ0P3z1KFAOyL0AMAAAAAnqKpqSfNzYelv/+OfbYrlzsyPt6fhoa2jI8PzFJ1AOyL0AMAAAAAdtPSsjKlUkOGhx/ca5uOjuPT3/+zLFlybnbsuCnj40OzWCEAUxF6AAAAAMAU2tufleHhhzI2tnPK/aVSOUmRhoZFaWzsyeDgXbNbIAB7EHoAAAAAwF4sWnRqdu68JUVRTLm/re2ZGRy8J+VysymuAOYAoQcAAAAA7EWpVMqiRc/Ljh03Trm/qWlxxsa2p6fnV9LXd+NewxEAZofQAwAAAAD2oaGhNS0tR2Rg4J4p95fLbWlq6kmp1JShofWzXB0ATyX0AAAAAID9aGk5POPjvVOu79HRcVz6+3+WhobOjIxsrUF1ADxB6AEAAAAAB6Cz8znZufPWPaawKpUaklTS1fXc9Pf/uDbFAZBE6AEAAAAAB6RUKqWz89np7//JHvtaWo5IQ0NnRke3ZWystwbVAZAIPQAAAADggDU2dicpZ3R02y7bW1pWZmRkU5qalmVwcOq1PwCYeUIPAAAAAJiGzs4T09//symmuSqnre0ZGRy0mDlArTTWugAAAACAuWB8vD9jY31pbOxOudyWUqlU65KSJJs3/2uKYjSlUinNzYelre1ZaW5emXLZv2Wtpc7Ok9Lf/5N0dj57clt7+7EZGPhFtm+/KkXx64+v9QHAbBJ6AAAAACQplZqSFBka2pBKZTBJkaT0+H/u0ToNDR1paOhKY2NPyuXWGQtJli9/bZKkUqlkZOSBDAzcld7ea5JkipEGTWltPTLt7cekqalnRuphQmNjd4qikvHx/jQ0dCRJGho6UhRDaW5enoGBu9PRcWyNqwRYeIQeAAAAAEnK5ea0tKxMS8vK/bYtiiKVykDGxnozNHRfKpWBKVo9EYJMhCcNDYvS2Njz+EiS5qdRXzmtravT2rp6r23Gx4cyOHhvenuvydjYjokqdgtjGhq609Z2dNra1j6tOnhSZ+e69PVdn+7uMya3lcutaWo6NENDG4QeADUg9AAAAACYplLpiZEeHQcckoyP78jYWG8GBjalKEb31vLx4zc/HpD0pKGh84BHkTQ0tKaz84R0dp6w1zYjI1szOHh3HnnktinrMFrkwJVKpbS2rsnQ0Ia0tq5JkrS3H5fx8f489th/Z8mSl9a4QoCFR+gBAAAAMMNKpVIaG7vS2NiVZNV+21cqIxkb68vIyKaMj+/Mk1Ns7T7VVilJOY2N3ZOjSEqlfa/10dy8NM3NS9Pdffpez737aJHd/5bm5sPT3n5smpqWLfi1RVpaDk9v73VpaVmdUqmUcrkxpVJDSqW2jIxsTXPz0lqXCLCgCD0AAAAA5phyuXkynNifohjP2FhvxsYey9DQhiSVqVolKaVUakxj4yH7HEFSLjeno+O4dHQcN+X5KpVKhoc3ZufOWzM6+uge+0ulUlpa1qS9/fg0Ny/eb/31oLNzXXbu/FEWLfqlJHn8Gh+SgYE709z8/NoWB7DACD0AAAAA5rFSqSFNTYvT1LT/gKFSGc3YWG9GRh7ebQTJHkd9fPTI4j1Gj5TL5bS1rUlb25q9nKOSoaF709f3/YyN9e2xv6GhIx0dJ6a19ai6GSUysZD5eCqV4ZTLLWlrOyqDg/elr++69PQIPQBmk9ADAAAAYIEol5sOaARJURSPjx7ZlqGh+zIxemT3USHF4yNHFqepaUkaGtofP0c57e1Hp7396CmPPTq6Pf39t6ev7wd77JsIRJ6d1ta18y4Q6ew8OTt2/DBdXaelVCqlqak74+NDqVRGUy431bo8gAVD6AEAAADALiYe2vfsdyHzSmVsclqtSmXw8a27jx5pSFPT0jQ1LU1DQ2uamnoeH/2w5wiI0dHt2bnzx+nru36PfW1tR6ezc10aGlqf1t8000qlchoaOjM21pvGxu60tKxMqdSa/v47smjRs2tdHsCCIfQAAAAA4GkplxvT3HxompsP3WubiWDk0QwO3pOiGJ6iRSmNjYvT3LwiTU09OeSQF05xjEoGBu7I1q1fTVGMPvnOUlM6Ok5Me/txc2JkSHv78enruyHd3aenpeXwtLcfnd7e78+b0GP79qSnp9ZVABwcoQcAAAAAM2YiGFme5ublU+6fmEprW4aG7k2lMjTF+zvS0rIyHR3Hp7PzhF32VSoj2bHj1mzZ8sVdtre3H5vOzufMehBSKpXS3LwsIyNb0ty8LK2tR2Tnzh/Nag1P16OPJg8+KPQA5j+hBwAAAAA1MzGV1pI0NS2Zcv/4eH+Ghx/K+Pjdu78zzc3L09V1arq7T5vcWqlU0t9/ex555LIURZGiqKShoT09PS9Mc/OyGfxLJrS1HZXe3hseDz3WpijGMzz8UFpaVs74uZ+ukZHkzjuTM8+sdSUAB0/oAQAAAMCc1dDQMeWi6EVRycjI5uzc+eNMLLQ+oVRqSmvrql2mlBob25nt26/O2Nj2FEUl5XJLDjnkxTMWgrS0HDYZdLS3PzOPPfadrFjxOzNyroNVFMkNNyTP33OJFYB5SegBAAAAwLxTKpXT0nJYWloO22V7pTKa4eGNGRr6xVPaNqan54VpbOxKkoyPD+Wxx76d0dFtSSZCip6es6s2HVZr65r09l7/+LRcJ2Tr1q9X5bgz4aabkpNPTubAkigAVSH0AAAAAKBulMtNaWt7xi7bKpXRDA2tz8DAz1MqlVIURRYtOjnNzStTKpUyOLghW7Z8MUUxnsbGrixZcl7K5eaDqqOl5fAMDz+Y9vZjMjb2hYyPD6Shof2gjlltd9+dHHZYsmhRrSsBqB6hBwAAAAB1rVxuSnv7syZfF0WRkZFN2bHj5iQT64osWfLyNDUtzsjI1mzZ8uUUxXhaW1elu/tFT2sESGvr6vT23pDu7l9OW9vaPPbYVVm69Lyq/U0Ha8uWZHg4OXrPmcMA5jWhBwAAAAALSqlU2mVqrKIoMjh4bwYH701SSlfXmWlrOzKDg/dk8+b/myRZsuS8NDcvndZ5mptXZHh4U7q6zsijj35tzoQeQ0PJPfckZ5xR60oAqm9GZut78MEH8zu/8ztZsmRJ2tractJJJ+Wmm26aiVMBAADMO/pMAHNLqVRKe/sz09X13HR1nZrh4fuzefPn09d3fZqaDk1Hxwl59NH/yMMPfyr9/Xcc8HHb2o7M8PCGdHaemJGRR1IU4zP4VxyYokhuvDE5/fRaVwIwM6o+0uOxxx7LmWeemRe/+MX5r//6rxx66KG5++67c8ghh1T7VAAAAPOOPhPA3HfIIWdN/j48/FCGhjaksfGQNDUty2OPXZXNm7+YxYvPTU/P/odKNDYuTqXSn9bWVentvS49PS+YydL368Ybk1NPTUqlmpYBMGOqHnp86EMfyqpVq/KZz3xmctvatWurfRoAAIB5SZ8JYH5paVmZlpaVKYrx9Pf/NF1dp6alZU22bfvvPProf6S7+wXp6Xl+Ghu7pnx/e/vR6e29IYsXvyxbt15e09DjjjuS1auT9rm1njpAVVV9equvfe1rOfXUU/Obv/mbWbZsWU4++eT88z//c7VPAwAAMC/pMwHMT6VSQzo7n52uruelUhlIe/vRWbnyLRkf78+DD34i27dfn+HhB6d876OPdqatbe3jU1wVs1z5hIceSsrl5LDDanJ6gFlT9dDjF7/4RT7xiU/k6KOPzre+9a384R/+Yd761rfmc5/73JTth4eH09fXt8sPAABAvZpunynRbwKYa9ra1qa7+5eTjKa19fAceuhrsnPnrenvvyO9vddldHTbLu23bTshg4M/T0vLsuzY8eNZr7e/P3nggeSYY2b91ACzrlRUOV5ubm7Oqaeemuuuu25y21vf+tb88Ic/zPXXX79H+/e+97153/vet8f23t7edHVNPSwQAADqSV9fX7q7u30HXiCm22dK9JsA5rr+/jsyPt6XkZFtGR/fnvb2k5KMpbNzXUqlUh58MBkZuTVLllSydevlecYzPjBrtY2PJ9dem7zgBdbxAOav6fSZqj7S47DDDsvxxx+/y7bjjjsu999//5TtL7744vT29k7+bNy4sdolAQAAzBnT7TMl+k0Ac11Hx3Hp7Dwlzc2L09q6Nr29V6WxcUl6e7+XSmUkK1cmjz56UoqikuHhTbNa2/XXJ7/8ywIPYOGo+kLmZ555Zu66665dtv385z/PmjVrpmzf0tKSlpaWapcBAAAwJ023z5ToNwHMB+VyY7q6TsvQ0AOpVMazbdt/pKfn7PT1/SCdneuSdKVUKtLScmj6++9KR8fMzzV1223JCSckzc0zfiqAOaPqIz3e8Y535IYbbshf/dVf5Z577skXv/jF/NM//VMuuuiiap8KAABg3tFnAqhvra1HpLv7uenoeHb6+q5N0pL+/p8m6Utb24np6np+Hn74UzNex733JoccMvEDsJBUPfR47nOfm8svvzyXXXZZTjzxxLz//e/P3//93+f1r399tU8FAAAw7+gzAdS/crk5PT3Pz6JFp2Rg4CepVMayYsWPs359Oc3NS/dY6LzatmxJBgeTfQwiBKhbVZ/eKkl+7dd+Lb/2a782E4cGAACY9/SZABaGzs51KZc7sn37VenoODYPPHBD1qw5IeVya/r6fpSurnVVP2d/f/KLX0ys4wGwEFV9pAcAAAAAMKG9/ZlZvPjc7Nx5c4qiOcPDv8jSpedn06Z/qvq5xseTm25KTjut6ocGmDeEHgAAAAAwA4aHH0xf300ZHd2ctrajUypdkeHhIuVyU0ZHt1f1XEWRXHttcsYZSalU1UMDzCtCDwAAAACookplOL2916YoKunqOjWLFp2SJUtenrVrT8/dd382SdLUdEgeffSbaW5uTqlUSqmjlFJLKaVSKaeeeuq0z3nTTcnJJydNTVX+YwDmmRlZ0wMAAAAAFqKxsR3ZufNH6e4+M6WnDLkolUpZvvwluffehvw//8978xfvuzrp/HhybJKjk7QlGU+yI7n5tptTOqSUbE/6+/vT3t6+z3PefnuyenWyaNHM/V0A84XQAwAAAACqYHx8IP39P05Pz/P32ubMF56TdCc5O8nJSVqmaPTcJFuSXJt0rOzIuWecm//8z/+c8nj33JN0dibLlx98/QD1wPRWAAAAAHCQiqLIjh0/TFfXGXttU2orJSuTvDnJL2fqwOMJy5L8epLzk/+67r+ybt26PZps3DixePmRRx5M5QD1RegBAAAAAAdpx44bs2jRabtMafVUpaZSsiTJG5K0TuPAa5P8RvLj+36cv/iLv5jcvGlTsn17cswxB1E0QB0yvRUAAADAHLZpU/Ltb0+9r1RKiiJpbk6WLp2Y4mj58mTx4qTsn7rOmqGhDWluPiwNDftIMzqTvD7J01lofFWSM5MPfuSD+cAHPpBHHpm4L37pl55WuQB1TegBAAAAMIetWJH8zu/su83QULJlS7J5c3Ljjcljj02EIU/1RECyu56e5NBDk2XLJgKT/ayZfcCKYuKc9a5SGcvw8MPp7v7lvbZpaWlJjk9yMNf2OUluSG6++f4kq3PKKQdxLIA6JvQAAAAAmOdaW5PVqyd+pqNSmZgiafPmZMOG5OabJwKU3T0RXjwRZBRF0tQ0MaJk+fKJwGTZsl1Hl9x7b9Lbu+sxWluTww9PurrqJxDZufOWLFq07wRipH0kOfMgT9SU5BnJqaeuSTFVegVAEqEHAAAAwIJVLk8EF4sXJ8cdN733joxMjC7ZtCm59daJ8GR8fN/vGR6eaFcUEyNMFi9OliyZGF3S1ZWsXJksWvQ0/5ga+MEPHssJJ3SmXN77nFXXXXdd0pbk0Cqc8PQk91bhOAB1TOgBAAAAUAMDA0+OnHjiJ5n696na1Fpzc3LEERM/07VzZ/LwwxOhyZYtycaNyeDgxLRcw8O7ti2VJs7V05N0diaHHPLkdFzLlk2MHqmVVavuyB13nJHnPnfvbd797ncnh1TphIuTzIH/7gHmMqEHAAAAQA089FAyNvbkOhtF8eRPMjH11FO37/77/uxrTY3prrfx1PZTrRXydI/Z1vbklFxTvfeJYw4MJI88kuzYkaxfn9x228TvfX0TbTo7k46OXYOh3WtubEy6uydGlixfPvGfHR0T2xsaJn4aGydGvzzx+xPbGxr2XBh+ePihLF58eBoakttvT048ceq/80c/+lEyzWnH9qr8+A8AeyX0AAAAAKiBZz6z1hXUhyem2dq6derptTo6JkaEdHZOTMW1efOTa5gMD0+ES2NjE23Hx588xhOB1Pj4k2FTuTwR1HR0JD099yf55XR0JNu2TayHctRRE22eeN/ISHLoocdl69D3qvPHFkkq1TkUQL0SegAAAAAwb+1vmq3+/olQZMOGiTCioWFi7ZDDDpsYCdLQMDFl1hNri+xrtEqlMjG65NFHH8zOnYdnaGji+EuXJg8+mNxyy8SxS6WJ8KOlJXnDGy7OxR+rUujRm4ngA4C9EnoAAAAAULc6OpK1a/e+f2xsYnH1+++fmEZrd09dR+WJBdc7Oh7I2rWn7THl1UMPTYQfp5765Pte/vJzc/GHkmzLxJocB+MHSbYf5DEA6pzQAwAAAIAFq7FxYqTG0qX7blcUE6M6Hntsa3buXJpNm3adTqtUmmgzPJx8+tMTa5UsfjzkKPeVU7m+kpx3EIWOJbkrufnmmw/iIAD1T+gBAAAAAPtRKk2sC1Kp3JtVq07bZ9vnPz+5557ksccmps/6yU925ITndyTDSVqeZgE/TTKcPOc5z3maBwBYGIQeAAAAAHAAxscHUy63HVDbJxaqr1SSbdvak74klyX5n0kapnnizUm+k1zwGxdM840AC095/00AAAAAgP7+29PRceK03lMuT0ydVYwVyZZMBB+j0zjAQxPvWd29Op/97GendW6AhUjoAQAAAAD7URRFkiKl0tN/nFb0F8kDSf4pyU8ysU7H3vQluSLJvybr1qzLhg0bnvZ5ARYS01sBAAAAwH4MDNyV9vZjDvo4xWCRCy+8MP/vF/7f5DtJjk1yVJLWJONJdia5Ocm2JNuTDRs2ZPXq1Qd9XoCFwkgPAAAAANiP8fHeNDZ2V+VY//zP/5xioEj/A/3J9Un+f0m+nOT/S/LVJL9IXvGCV6QoCoEHwDQZ6QEAAAAA+zA2tiMNDV1VP257e3uKosjNNyennDKx7XOf+1yGhoby8pe/vOrnA1gIhB4AAAAAsA8DA3dm0aJTZ+VcF1xwwaycB6Bemd4KAAAAAPajVCrN6vnGx8ezY8eOWT0nQD0QegAAAADAXgwO3pfW1jWzdr7R0dG8/e1vT1tbW/7sz/5s1s4LUC+EHgAAAACwF6Ojj6S5edmsnW9wcDD/5//8n4yOjubWW2+dtfMC1AuhBwAAAABMoSjGUyrN7uOzrq6utLW1JUl++tOfzuq5AeqB0AMAAAAApjAwcGfa24+d8fPsvlzIihUrkiQ7d+5Mb2/vjJ8foJ4IPQAAAABgCuPjA2lo6Jjx8xTFrq+fCD2SZOPGjTN+foB6IvQAAAAAgN1UKiMplZpqcu5ly55cQ0ToATA9Qg8AAAAA2E1//8/S0XF8Tc7d2dk5+bvQA2B6hB4AAAAAsJuiGE253Dwr59p9TY/29vYkyfHHH58jjjhiVmoAqBeNtS4AAAAAAOaSSmU45XLLrJxrbCxpaNh12+tf//o897nPzamnnpqTTz55VuoAqBdCDwAAAAB4iv7+O9LRccKsnGtwMHl8YMeks846K0cffXSam2dnpAlAPTG9FQAAAAA8xcTUVrOziPngYNLWtuu2P/mTP8nhhx+ev/u7v8ujjz46K3UA1AuhBwAAAAA8RUvL7K2jMTCwa+hxyy235CMf+UiS5EMf+lDe8Y53zFotAPVA6AEAAAAAT9HSctisnWv36a2uvfbayd/f/OY351/+5V9mrRaAeiD0AAAAAIAaGRpKWluffF2pVGpXDEAdEHoAAAAAQI1UKkmpNPW+8fHx2S0GoA4IPQAAAABgjmhoaJj8XegBMH1CDwAAAACYI1auXJmenp4kyfDwcG2LAZiHhB4AAAAAUCO7T2316le/On/1V3+VJBkcHKxBRQDzm9ADAAAAAGqkKPbc1tbWliQZGhqa5WoA5r/GWhcAAAAAAAvVVIuYP+95z8vf/d3f5ZnPfObsFwQwzwk9AAAAAGAOecc73pGf//znueKKK2pdCsC8Y3orAAAAAKiRqaa3Wr9+fe677748+OCDs18QwDwn9AAAAACAOWTNmjVJkv/4j/+ocSUA84/QAwAAAABqZKo1PVavXp0k+chHPpJiqqEgAOyV0AMAAAAAamSqTOPZz3724/uK9Pb2znJFAPOb0AMAAAAA5pATTzxx8vetW7fWsBKA+UfoAQAAAABzyDHHHDP5+6ZNm2pYCcD8I/QAAAAAgBqoVJLyFE/nDj/88LS0tCRJ1q9fP8tVAcxvMx56/PVf/3VKpVLe/va3z/SpAAAA5h19JoCFa2goaW3dc3upVMrZZ5+dJBkdHZ3lqgDmtxkNPX74wx/mH//xHycXXwIAAOBJ+kwAC9vgYNLWNvW+ZcuWJUm2bNkyixUBzH8zFnrs3Lkzr3/96/PP//zPOeSQQ2bqNAAAAPOSPhMAg4NJe/vU+37zN38zH/7wh/PiF794dosCmOdmLPS46KKLct555+Wcc87ZZ7vh4eH09fXt8gMAAFDvDrTPlOg3AdSrfY30aGtry0c/+tH86Z/+6ewWBTDPNc7EQb/0pS/llltuyQ9/+MP9tr300kvzvve9bybKAAAAmJOm02dK9JsA6tXAwN5Dj56entx///0ZGBiY3aIA5rmqj/TYuHFj3va2t+ULX/hCWqdaiWk3F198cXp7eyd/Nm7cWO2SAAAA5ozp9pkS/SaAejU2ljTu5Z8kr1y5MkmydevW9Pb2zmJVAPNb1Ud63HzzzdmyZUue85znTG4bHx/Pd7/73fzDP/xDhoeH09DQMLmvpaUlLS0t1S4DAABgTppunynRbwJYiDZs2DD5+/r16/NLv/RLtSsGYB6peuhx9tln5yc/+cku2974xjfm2GOPzbve9a49vrwDAAAsJPpMAByI++67b/L3u+++W+gBcICqHnosWrQoJ5544i7bOjo6smTJkj22AwAALDT6TAAciKeO8Fu8eHENKwGYX6q+pgcAAAAAsH+l0t73nXLKKZNrPz2xvgcA+1f1kR5Tufrqq2fjNAAAAPOSPhMAuzviiCOyZs2a3HXXXdm8eXOOO+64WpcEMC8Y6QEAAAAANVAU+96/bNmyJMnmzZtnoRqA+iD0AAAAAIAa2Nf0VknS2dmZJLnzzjtnoRqA+iD0AAAAAIA56NFHH02SDA4O1rgSgPlD6AEAAAAANbC/6a3OOuusJEl/f/8sVANQH4QeAAAAAFAD+5ve6vjjj0+S3HHHHbNQDUB9EHoAAAAAQA3sb6TH6tWrkyS33XbbzBcDUCeEHgAAAABQA/sb6dHb25tkYm2PJ34HYN+EHgAAAAAwBx1++OGTv5viCuDACD0AAAAAYJaNjyfl/TyZ6+npmfz97rvvntmCAOqE0AMAAAAAZtnQUNLWtu823d3dk7+fdtppM1wRQH0QegAAAADALBsc3H/o0d7ePvn7qlWrZrgigPog9AAAAACAWTY4mLS27rtN61MaDA4OznBFAPVB6AEAAAAAs2xgYP8jPZqamtLQ0JAk+d73vjcLVQHMf0IPAAAAAJhlBzK9VZL8+q//epLkox/96AxXBFAfhB4AAAAAMMvGx5PGxv23e8Mb3pAk2bFjxwxXBFAfhB4AAAAAMEd1dXUlSXbu3FnjSgDmB6EHAAAAAMxRGzZsSJL09/fXuBKA+UHoAQAAAACzrFTaf5uiKPKmN70pidAD4EAJPQAAAABglhXF/tsMDg5mfHw8STI0NDTDFQHUB6EHAAAAAMyyAxnp0dfXN/n74OBgigNJSgAWOKEHAAAAAMxBT4QebW1t+eQnPyn0ADgAjbUuAAAAAAAWmgPJL7Zu3ZokWbFiRS688MIZrgigPhjpAQAAAACzbH/TW42Pj+ev/uqvkkyEHgAcGKEHAAAAAMwxl112Wb7xjW8kSZYsWVLjagDmD6EHAAAAAMyyfU1vVRRFPvjBDyZJzjrrrLzuda+bpaoA5j9regAAAADALNvX9FY///nPc+edd6a5uTlf+9rX0tXVNXuFAcxzRnoAAAAAwCzb10iP//qv/0oyMcpD4AEwPUIPAAAAAJhl+xrp8c1vfjNJcswxx+RnP/tZRkZGZqkqgPlP6AEAAAAAs6go9h56jI2N5ZprrkmSfPrTn84JJ5yQX/ziF7NYHcD8JvQAAAAAgFk0NJS0tEy9r1Qq5bDDDsvJJ5+cgYGBJMnq1atnsTqA+c1C5gAAAAAwiwYHk7a2qfc1NDTkF7/4RX784x9n3bp1WbJkSdrb22e3QIB5zEgPAAAAAJhF+wo9nrBx48YkyapVq2ahIoD6IfQAAAAAgFk0NLT/0OO+++5Lkhx55JEzXg9APTG9FQAAAADMov2N9Ljkkkvy0Y9+NInQA2C6jPQAAAAAgFk0MpI0Ne19f19fX/r6+pIka9eunaWqAOqD0AMAAAAAZlmptPd9K1euTJKsW7cuL3jBC2apIoD6IPQAAAAAgDnk8MMPT5IsWbIkJ598co2rAZhfhB4AAAAAMIuKYt/7nwg9HnzwwVmoBqC+CD0AAAAAYBbta2qrJBkeHk6SbNy4cRaqAagvQg8AAAAAmEOuvfbaJMnAwEB27NhR42oA5hehBwAAAADMov1Nb3X99dcnSdasWSP0AJgmoQcAAAAAzKJ9TW+1Y8eOfPe7302S/Pd//3dWrlw5S1UB1AehBwAAAADMon2N9LjyyiszOjqao446KkcfffTsFQVQJ4QeAAAAADBHfOMb30iSvPzlL0+pVEqxv7mwANiF0AMAAAAA5oBt27blsssuS5J0dHRk7dq1ufDCC2tcFcD8IvQAAAAAgDng6quvzuDgYNatW5eTTjop9913X+6+++5alwUwrzTWugAAAAAAWEj2tpD5q1/96txzzz155JFHUqlUkiS/+MUvZrEygPnPSA8AAAAAmCPWrl2bU045JV/4wheSJA8++GCGh4drXBXA/CH0AAAAAIBZtPva5OvXr8911103+fqP/uiP8g//8A9JkuXLl6ehoWE2ywOY14QeAAAAADBLxsaSpqYnXxdFkQsvvDDPf/7z84lPfCLf+9738k//9E8plUr52Mc+lp/97GdpbDRDPcCB8okJAAAAALNkcDBpbX3y9Wc+85lceeWVaW1tza/+6q9m7dq1+bu/+7s88sgjectb3lK7QgHmKaEHAAAAAMySwcGkrW3i9zvvvDNve9vbkiR/+Zd/mWc+85lJkne+8521Kg9g3jO9FQAAAADMkqGhidCjv78/v/Ebv5GdO3fmrLPOyjve8Y5alwZQF6oeelx66aV57nOfm0WLFmXZsmU5//zzc9ddd1X7NAAAAPOSPhPAwjY4mLS0FPmDP/iD/PSnP82KFSvypS99ybodAFVS9dDjmmuuyUUXXZQbbrghV1xxRUZHR/OSl7wk/f391T4VAADAvKPPBLCwDQ4mN954TT7/+c+noaEhX/rSl7JixYpalwVQN6oeIX/zm9/c5fVnP/vZLFu2LDfffHNe+MIXVvt0AAAA84o+E8DCVqkkZ5/9onzqU59Kb29vzjrrrFqXBFBXZnzcXG9vb5Jk8eLFU+4fHh7O8PDw5Ou+vr6ZLgkAAGDO2F+fKdFvAqgnRTHxn29605tqWwhAnZrRhcwrlUre/va358wzz8yJJ544ZZtLL7003d3dkz+rVq2ayZIAAADmjAPpMyX6TQD1pFSqdQUA9W1GQ4+LLroot99+e770pS/ttc3FF1+c3t7eyZ+NGzfOZEkAAABzxoH0mRL9JoB68sRIDwBmxoxNb/WWt7wlX//61/Pd7343RxxxxF7btbS0pKWlZabKAAAAmJMOtM+U6DcBAMCBqnroURRF/viP/ziXX355rr766qxdu7bapwAAAJi39JkAAGDmVD30uOiii/LFL34xX/3qV7No0aJs2rQpSdLd3Z22trZqnw4AAGBe0WcCAICZUyqK6s4kWNrLakyf+cxn8ru/+7v7fX9fX1+6u7vT29ubrq6uapYGAABzku/AC8vB9pkS9wzAfHbzzckpp9S6CoD5ZTrff2dkeisAAACmps8EAAAzp1zrAgAAAAAAAKpB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAMEtKpVpXAFDfhB4AAAAAAEBdEHoAAAAAwCxZvLjWFQDUN6EHAAAAAMySI4+sdQUA9U3oAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF2Ys9Pj4xz+eI488Mq2trTnttNNy4403ztSpAAAA5h19JgAAqL4ZCT3+9V//Ne985zvznve8J7fcckvWrVuXl770pdmyZctMnA4AAGBe0WcCAICZMSOhx0c+8pFceOGFeeMb35jjjz8+n/zkJ9Pe3p5Pf/rTM3E6AACAeUWfCQAAZkZjtQ84MjKSm2++ORdffPHktnK5nHPOOSfXX3/9Hu2Hh4czPDw8+bq3tzdJ0tfXV+3SAABgTnriu29RFDWuhNkw3T5Tot8EAMDCNp0+U9VDj61bt2Z8fDzLly/fZfvy5ctz55137tH+0ksvzfve9749tq9atarapQEAwJz26KOPpru7u9ZlMMOm22dK9JsAACBJduzYsd8+U9VDj+m6+OKL8853vnPy9fbt27NmzZrcf//9OnwckL6+vqxatSobN25MV1dXrcthHnDPMF3uGabLPcN09fb2ZvXq1Vm8eHGtS2GO2r3fVKlUsm3btixZsiSlUmlWa/EZd3Bcv4PnGh4c1+/guH4Hx/U7OK7fwXMND04tr19RFNmxY0dWrly537ZVDz2WLl2ahoaGbN68eZftmzdvzooVK/Zo39LSkpaWlj22d3d3u/GYlq6uLvcM0+KeYbrcM0yXe4bpKpdnZMk95pjp9pmSqftNPT09M1XiAfEZd3Bcv4PnGh4c1+/guH4Hx/U7OK7fwXMND06trt+BDpKoeq+qubk5p5xySq688srJbZVKJVdeeWVOP/30ap8OAABgXtFnAgCAmTMj01u9853vzAUXXJBTTz01z3ve8/L3f//36e/vzxvf+MaZOB0AAMC8os8EAAAzY0ZCj9e+9rV55JFH8u53vzubNm3KL/3SL+Wb3/zmHgv1TaWlpSXvec97ppzyCqbinmG63DNMl3uG6XLPMF3umYXnYPpMteZ+PTiu38FzDQ+O63dwXL+D4/odHNfv4LmGB2e+XL9SURRFrYsAAAAAAAA4WFZKBAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLow50KPj3/84znyyCPT2tqa0047LTfeeGOtS2KOeu9735tSqbTLz7HHHlvrsphDvvvd7+YVr3hFVq5cmVKplK985Su77C+KIu9+97tz2GGHpa2tLeecc07uvvvu2hTLnLC/e+Z3f/d39/jcednLXlabYqm5Sy+9NM997nOzaNGiLFu2LOeff37uuuuuXdoMDQ3loosuypIlS9LZ2ZnXvOY12bx5c40qptYO5J550YtetMfnzB/8wR/UqGIWogO5T3f32c9+do/7trW1dZYqnnueTj/l3/7t33LsscemtbU1J510Uv7zP/9zlqqde4488sg9rl+pVMpFF100ZfuFfv/NVJ9noTyb2df1Gx0dzbve9a6cdNJJ6ejoyMqVK/OGN7whDz300D6PuZCeVcxU/2mh3H/J/q/hVJ+HpVIpf/u3f7vXYy6Ue3Cm+mML6VnR/q7htm3b8sd//Mc55phj0tbWltWrV+etb31rent793ncufDsZE6FHv/6r/+ad77znXnPe96TW265JevWrctLX/rSbNmypdalMUedcMIJefjhhyd/vv/979e6JOaQ/v7+rFu3Lh//+Men3P83f/M3+ehHP5pPfvKT+cEPfpCOjo689KUvzdDQ0CxXylyxv3smSV72spft8rlz2WWXzWKFzCXXXHNNLrrootxwww254oorMjo6mpe85CXp7++fbPOOd7wj//Ef/5F/+7d/yzXXXJOHHnoor371q2tYNbV0IPdMklx44YW7fM78zd/8TY0qZiE60Pt0d11dXbvctxs2bJiliuem6fRTrrvuurzuda/L7/3e7+XWW2/N+eefn/PPPz+33377LFY8d/zwhz/c5dpdccUVSZLf/M3f3Ot7FvL9NxN9noX0bGZf129gYCC33HJLLrnkktxyyy3593//99x111155Stfud/jLpRnFTPRf1pI91+y/2v41Gv38MMP59Of/nRKpVJe85rX7PO4C+EenKn+2EJ6VrS/a/jQQw/loYceyoc//OHcfvvt+exnP5tvfvOb+b3f+739Hrvmz06KOeR5z3tecdFFF02+Hh8fL1auXFlceumlNayKueo973lPsW7dulqXwTyRpLj88ssnX1cqlWLFihXF3/7t305u2759e9HS0lJcdtllNaiQuWb3e6YoiuKCCy4oXvWqV9WkHua+LVu2FEmKa665piiKic+Upqam4t/+7d8m29xxxx1FkuL666+vVZnMIbvfM0VRFGeddVbxtre9rXZFwW6muk9395nPfKbo7u6evaLmuOn2U37rt36rOO+883bZdtpppxW///u/X+XK5qe3ve1txVFHHVVUKpUp97v/nlStPs9CfTYz1ff/3d14441FkmLDhg17bbNQn1VUq/+0UO+/ojiwe/BVr3pV8Su/8iv7bLNQ78Fq9McW+rOiA/ne9+Uvf7lobm4uRkdH99pmLjw7mTMjPUZGRnLzzTfnnHPOmdxWLpdzzjnn5Prrr69hZcxld999d1auXJlnPOMZef3rX5/777+/1iUxT6xfvz6bNm3a5TOnu7s7p512ms8c9unqq6/OsmXLcswxx+QP//AP8+ijj9a6JOaIJ4b4Ll68OEly8803Z3R0dJfPmWOPPTarV6/2OUOSPe+ZJ3zhC1/I0qVLc+KJJ+biiy/OwMBALcqDJHu/T3e3c+fOrFmzJqtWrcqrXvWq/PSnP52N8uas6fRTrr/++l3+vyJJXvrSl/r/ikw8J/j85z+fN73pTSmVSntt5/6b2tPp83g2s2+9vb0plUrp6enZZzvPKp40nf6T+2/fNm/enG984xsH9K/sF+I9WI3+2EJ/VnQg3/t6e3vT1dWVxsbGfR6r1s9O5kzosXXr1oyPj2f58uW7bF++fHk2bdpUo6qYy0477bTJYVWf+MQnsn79+rzgBS/Ijh07al0a88ATnys+c5iOl73sZfmXf/mXXHnllfnQhz6Ua665Jueee27Gx8drXRo1VqlU8va3vz1nnnlmTjzxxCQTnzPNzc17dIp9zpBMfc8kyf/4H/8jn//853PVVVfl4osvzv/9v/83v/M7v1PDSlnI9naf7u6YY47Jpz/96Xz1q1/N5z//+VQqlZxxxhl54IEHZrHauWO6/ZRNmzb5TroXX/nKV7J9+/b87u/+7l7buP/27un0eTyb2buhoaG8613vyute97p0dXXttZ1nFU+abv/J/bdvn/vc57Jo0aL9Ts+0EO/BavXHFvKzogP53rd169a8//3vz5vf/OZ9HmsuPDvZdyQDc9i55547+fuzn/3snHbaaVmzZk2+/OUvH1DqDTBdv/3bvz35+0knnZRnP/vZOeqoo3L11Vfn7LPPrmFl1NpFF12U22+/vS7nymVm7O2eeWoH4qSTTsphhx2Ws88+O/fee2+OOuqo2S6TBe5AP9tOP/30nH766ZOvzzjjjBx33HH5x3/8x7z//e+f6TLnHP2U6vnUpz6Vc889NytXrtxrG/cfs2F0dDS/9Vu/laIo8olPfGKfbX0GPEn/qbo+/elP5/Wvf31aW1v32W4h3oP6Ywdvf9ewr68v5513Xo4//vi8973v3eex5sL/9ufMSI+lS5emoaEhmzdv3mX75s2bs2LFihpVxXzS09OTZz3rWbnnnntqXQrzwBOfKz5zOBjPeMYzsnTpUp87C9xb3vKWfP3rX89VV12VI444YnL7ihUrMjIyku3bt+/S3ucMe7tnpnLaaaclic8ZZt107tPdNTU15eSTT3bfPm5//ZQVK1b4TjqFDRs25Nvf/nb+1//6X9N6n/vvSU+nz+PZzJ6eCDw2bNiQK664Yp+jPKbiWcWT9td/cv/t3fe+973cdddd0/5MTOr/Hqxmf2yhPiva3/e+HTt25GUve1kWLVqUyy+/PE1NTdM6fi2encyZ0KO5uTmnnHJKrrzyysltlUolV1555S7/agP2ZufOnbn33ntz2GGH1boU5oG1a9dmxYoVu3zm9PX15Qc/+IHPHA7YAw88kEcffdTnzgJVFEXe8pa35PLLL893vvOdrF27dpf9p5xySpqamnb5nLnrrrty//33+5xZoPZ3z0zltttuSxKfM8yap3Of7m58fDw/+clP3LeP218/5fTTT9/l/yuS5Iorrljw/1/xmc98JsuWLct55503rfe5/570dPo8ns3s6onA4+677863v/3tLFmyZNrH8KziSfvrP7n/9u5Tn/pUTjnllKxbt27a763Xe3Am+mML7VnRgXzv6+vry0te8pI0Nzfna1/72n5HGk2lJs9OarmK+u6+9KUvFS0tLcVnP/vZ4mc/+1nx5je/uejp6Sk2bdpU69KYg/7kT/6kuPrqq4v169cX1157bXHOOecUS5cuLbZs2VLr0pgjduzYUdx6663FrbfeWiQpPvKRjxS33nprsWHDhqIoiuKv//qvi56enuKrX/1q8eMf/7h41ateVaxdu7YYHBysceXUyr7umR07dhT/+3//7+L6668v1q9fX3z7298unvOc5xRHH310MTQ0VOvSqYE//MM/LLq7u4urr766ePjhhyd/BgYGJtv8wR/8QbF69eriO9/5TnHTTTcVp59+enH66afXsGpqaX/3zD333FP85V/+ZXHTTTcV69evL7761a8Wz3jGM4oXvvCFNa6cheRAPtv+5//8n8Wf//mfT75+3/veV3zrW98q7r333uLmm28ufvu3f7tobW0tfvrTn9biT6i5/fVTdr9+1157bdHY2Fh8+MMfLu64447iPe95T9HU1FT85Cc/qdWfUHPj4+PF6tWri3e961177HP/7aoafZ5f+ZVfKT72sY9Nvl5Iz2b2df1GRkaKV77ylcURRxxR3Hbbbbt8Jg4PD08eY/frt5CeVVSj/7SQ77+i2P//houiKHp7e4v29vbiE5/4xJTHWKj3YLX6Y8ccc0zx7//+75OvF9Kzov1dw97e3uK0004rTjrppOKee+7Zpc3Y2NjkcZ56DefKs5M5FXoURVF87GMfK1avXl00NzcXz3ve84obbrih1iUxR732ta8tDjvssKK5ubk4/PDDi9e+9rXFPffcU+uymEOuuuqqIskePxdccEFRFEVRqVSKSy65pFi+fHnR0tJSnH322cVdd91V26KpqX3dMwMDA8VLXvKS4tBDDy2ampqKNWvWFBdeeGHdfvlm/6a6V5IUn/nMZybbDA4OFn/0R39UHHLIIUV7e3vx67/+68XDDz9cu6Kpqf3dM/fff3/xwhe+sFi8eHHR0tJSPPOZzyz+9E//tOjt7a1t4SwoB/LZdtZZZ01+nyqKonj7298+2Ydbvnx58fKXv7y45ZZbZr/4OWJ//ZTdr19RFMWXv/zl4lnPelbR3NxcnHDCCcU3vvGNWa56bvnWt75VJJnyu7n7b1fV6POsWbOmeM973rPLtoXybGZf12/9+vV7/Uy86qqrJo+x+/VbSM8qqtF/Wsj3X1Hs/3/DRVEU//iP/1i0tbUV27dvn/IYC/UerFZ/bPf3LKRnRfu7hnu7P5MU69ev3+U4T7xnrjw7KT1eGAAAAAAAwLw2Z9b0AAAAAAAAOBhCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6sL/HwTD1pNr5HssAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEcUlEQVR4nO3deZgddZ0v/vfpvbN0hySQBZIQFkEghk0ygIqOXBW9Cu5ymRE3vDq4IPObYbjPIO6MDvqM20WdK7jg/oy4js4gsiibQEBRWQKEJAIJBEh31u5Od/3+aNIkkK1Jd+qc06/X85wn59SpU/Xp4svp+tS7q6pSFEURAAAAAACAGtdQdgEAAAAAAAAjQegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANSFYYce11xzTV75yldm5syZqVQq+dGPfjT0Xl9fX84555zMmzcv48ePz8yZM/PmN785Dz744EjWDAAAULX0TAAAUJ5hhx5r167N/Pnz88UvfvFp761bty4LFy7Meeedl4ULF+aHP/xh7rrrrrzqVa8akWIBAACqnZ4JAADKUymKonjGH65Uctlll+WUU07Z5jw33XRTjjnmmCxZsiSzZ89+pqsCAACoOXomAADYvZpGewVdXV2pVCqZNGnSVt/v6elJT0/P0OuBgYE89thjmTJlSiqVymiXBwAApSuKIqtXr87MmTPT0OC2e2PNjnqmRN8EAMDYNpyeaVRDjw0bNuScc87Jqaeemo6Ojq3Oc8EFF+TDH/7waJYBAAA1YdmyZdlnn33KLoPdaGd6pkTfBAAAyc71TKN2eau+vr689rWvzV/+8pdcddVV29yBf+pfLHV1dWX27NlZtmzZdnf6AQCgXnR3d2fWrFlZtWpVOjs7yy6HETQSPVOibwIAYGwbTs80Kmd69PX15Q1veEOWLFmSX//619vdCW9tbU1ra+vTpnd0dNh5BwBgTHGZorFjOD1Tom8CAIBk53qmEQ89Nu28L1q0KFdeeWWmTJky0qsAAACoWXomAAAYPcMOPdasWZN77rln6PXixYtz2223ZfLkyZkxY0Ze97rXZeHChfnZz36W/v7+LF++PEkyefLktLS0jFzlAAAAVUjPBAAA5Rn2PT2uuuqqvOhFL3ra9NNPPz0f+tCHMnfu3K1+7sorr8wLX/jCHS6/u7s7nZ2d6erqcpo2AABjgn3g+jLaPVNizAAAMLYMZ/932Gd6vPCFL8z2cpJduC86AABAzdMzAQBAeRrKLgAAAAAAAGAkCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgw79Ljmmmvyyle+MjNnzkylUsmPfvSjLd4viiIf/OAHM2PGjLS3t+fEE0/MokWLRqpeAACAqqZnAgCA8gw79Fi7dm3mz5+fL37xi1t9/1Of+lQ+97nP5Utf+lJuvPHGjB8/Pi996UuzYcOGXS4WAACg2umZAACgPE3D/cBJJ52Uk046aavvFUWRf/u3f8s///M/5+STT06SfOMb38i0adPyox/9KG9605t2rVoAAIAqp2cCAIDyjOg9PRYvXpzly5fnxBNPHJrW2dmZBQsW5Prrr9/qZ3p6etLd3b3FAwAAoB49k54p0TcBAMDOGtHQY/ny5UmSadOmbTF92rRpQ+891QUXXJDOzs6hx6xZs0ayJAAAgKrxTHqmRN8EAAA7a0RDj2fi3HPPTVdX19Bj2bJlZZcEAABQVfRNAACwc0Y09Jg+fXqSZMWKFVtMX7FixdB7T9Xa2pqOjo4tHgAAAPXomfRMib4JAAB21oiGHnPnzs306dNzxRVXDE3r7u7OjTfemGOPPXYkVwUAAFBz9EwAADC6mob7gTVr1uSee+4Zer148eLcdtttmTx5cmbPnp2zzjorH/vYx3LggQdm7ty5Oe+88zJz5syccsopI1k3AABAVdIzAQBAeYYdetx888150YteNPT67LPPTpKcfvrp+drXvpZ//Md/zNq1a/POd74zq1atyvOe97z88pe/TFtb28hVDQAAUKX0TAAAUJ5KURRF2UVsrru7O52dnenq6nKdWgAAxgT7wAyXMQMAwFgynP3fEb2nBwAAAAAAQFmEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAKVYtarsCgCoN0IPAAAAAEpx551JUZRdBQD1ROgBAAAAQCnmzUv++MeyqwCgngg9AAAAACjF+PHJunVJf3/ZlQBQL4QeAAAAAJTm8MOT224ruwoA6oXQAwAAAIDStLYO3tejt7fsSgCoB0IPAAAAAEp1xBHO9gBgZAg9AAAAAChVY2PS1pasXVt2JQDUOqEHAAAAAKWbNy/5wx/KrgKAWif0AAAAAKB0lUqyxx7JY4+VXQkAtUzoAQAAAEBVOPjg5K67yq4CgFom9AAAAACgasyYkTz0UNlVAFCrhB4AAAAAVI19902WLCm7CgBqldADAAAAgKoyZ05y//1lVwFALRJ6AAAAAFBVXOIKgGdK6AEAAABA1TnoIDc1B2D4hB4AAAAAVJ3Jk5PHH0+KouxKAKglQg8AAAAAqtJhhyW33152FQDUEqEHAAAAAFVpwoRk/fqkv7/sSgCoFUIPAAAAAKrWEUckt91WdhUA1AqhBwAAAEAdWrfurhR1cEOMlpbBf3t7y60DgNog9AAAAACoQy0tM9LdfX16eh4ou5RddvjhzvYAYOcIPQAAAADqUFNTRzo7j8vAQF+6uq5Lf/+6skt6xhobk/b2ZM2asisBoNoJPQAAAADqWHv7vunoODbr1t2V1atvq9lLXh12WHL77WVXAUC1E3oAAAAA1LlKpZKJE4/IuHEHprv7+mzYsKzskoatUkkmT04efbTsSgCoZkIPAAAAgDGisXF8OjuPS5InLnm1tuSKhuegg5K77y67CgCqmdADAAAAYIxpa5v1xCWvFtXcJa9mzkweqP17swMwSoQeAAAAAGPQ4CWvDq+5S17NmZMsXVp2FQBUK6EHAAAAwBj25CWviicuebW+7JJ2aL/9kvvuK7sKAKqR0AMAAACAtLXNfuKSV3dkzZo/VPUlr6ZNS5YvT6q4RABKIvQAAAAAIMmmS14dmba2fdPdfV16epaXXdI2HXpocscdZVcBQLURegAAAACwhaamjnR2Hp/+/jXp6rohAwN9ZZf0NJ2dyerVycBA2ZUAUE2EHgAAAABs1bhxB2TixKOzZs2tWbfu7rLLeZr585Pf/77sKgCoJiMeevT39+e8887L3Llz097env333z8f/ehHq/o6kAAAALuLngmoNQ0NTenoOCZNTXukq+vabNzYVXZJQ9rakv7+pLe37EoAqBZNI73AT37yk7nooovy9a9/PYceemhuvvnmvPWtb01nZ2fe9773jfTqAAAAaoqeCahVLS17prl5atau/VOK4t5MmHBEKpVK2WXl8MOTW29NnvvcsisBoBqMeOhx3XXX5eSTT84rXvGKJMm+++6b73znO/nd73430qsCAACoOXomoJZVKpVMmHBY+vvXprv7+rS1zU1r64xSa2pqSlpbk7Vrk/HjSy0FgCow4pe3Ou6443LFFVfk7rsHr/P4+9//Pr/97W9z0kknjfSqAAAAao6eCagHjY3j09l5XAYG1qe7+8YMDGwstZ5585Lbby+1BACqxIif6fFP//RP6e7uzsEHH5zGxsb09/fn4x//eE477bStzt/T05Oenp6h193d3SNdEgAAQNUYbs+U6JuA6tXevl9aW2dnzZpb0ty8Z9rb9yuljkol2WOP5NFHkylTSikBgCox4md6fP/738+3vvWtfPvb387ChQvz9a9/PRdeeGG+/vWvb3X+Cy64IJ2dnUOPWbNmjXRJAAAAVWO4PVOibwKq2+CNzhekoaE9XV3Xpr9/fSl1HHRQ8sRJdACMYZWiKIqRXOCsWbPyT//0TznzzDOHpn3sYx/LpZdemjvvvPNp82/tL5ZmzZqVrq6udHR0jGRpAABQlbq7u9PZ2WkfeIwYbs+U6JuA2lEURdasWZiGhnEZP/7Zu339S5cmDQ3JPvvs9lUDMIqG0zON+OWt1q1bl4aGLU8gaWxszMDAwFbnb21tTWtr60iXAQAAUJWG2zMl+iagdlQqlUyceFR6e1dm1arfZsKE+Wlqmrjb1j97dnLddUIPgLFsxEOPV77ylfn4xz+e2bNn59BDD82tt96az3zmM3nb29420qsCAACoOXomYCxoaZma5ubjs3btH5I0ZMKEebtt3c96VrJoUXLggbttlQBUkRG/vNXq1atz3nnn5bLLLsvDDz+cmTNn5tRTT80HP/jBtLS07PDzTu0HAGCssQ88tuxqz5QYM0Bt2bixK2vW3J7x4w9Lc/Ok3bLO669P/uqvBm9wDkDtG87+74iHHrvKzjsAAGONfWCGy5gBatGaNX9MMpDx4+elMsppxJo1yX33Jc95zqiuBoDdZDj7vw3bfRcAAAAARsCECYelrW1OurquzcaNXaO8rmTDhmTjxlFdDQBVSOgBAAAAwG7R1NSZSZOelw0blmbNmttHdV2HH57ceuuorgKAKiT0AAAAAGC3mjBhXlpbZ2XVqt9k48bVo7KOlpakuTlZt25UFg9AlRJ6AAAAALDbNTdPSmfn87J+/b1Zu/aOUVnH/PnJ738/KosGoEoJPQAAAAAoRaVSycSJh6e5ec+sWvXb9PdvGOHlJ5MnJytXjuhiAahiQg8AAAAAStXSMjWdncdn7drbs379fSO67IMOSu6+e0QXCUAVE3oAAAAAULpKpZKOjuemUmlJV9f1KYr+EVv2nDnJ0qUjtjgAqpjQAwAAAICq0da2TyZOPDrd3Temt3fFiCxz772Tv/wlKYoRWRwAVUzoAQAAAEBVaWhoTmfncdm4cVVWr74txQikFYccktx55wgUB0BVE3oAAAAAUJXGjTso7e37pavrN+nvX7tLy5o0KenuTvpH7qpZAFQhoQcAAAAAVaupqSOdnc/P2rV37PJNzo84IrnttpGpC4DqJPQAAAAAoKoN3uT86FQqzenuvvEZX+6qpSVpbEzWrRvhAgGoGkIPAAAAAGpCW9usjB8/P11dv8nGjV3PaBnz5ye///0IFwZA1RB6AAAAAFAzGhvbMmnSC7Jhw/1Zt+6eYX++UkmmTk0efngUigOgdEIPAAAAAGrOhAnz09jY/owud3Xggck9w89LAKgBQg8AAAAAalJr696bXe5q9bA+e8ABgg+AeiT0AAAAAKBmNTa2pbPz+Vm//u5s2LBkpz+3116Dl7h6hvdEB6BKCT0AAAAAqGmVSiUTJx6VohjI6tULd/pzRxyR3HrrKBYGwG4n9AAAAACgLrS3z017+/5ZteqaDAz07sT8gzc2X79+NxQHwG4h9AAAAACgbjQ1daaz8/h0d/8uvb0rdzj/4Ycnt9026mUBsJsIPQAAAACoK5VKYyZNel56ex/M+vX37WDeZNq05KGHdlNxAIwqoQcAAAAAdWnChOekUmnc4X0+9tsvuW/72QgANULoAQAAAEDdamubk7a2/bJq1W8yMLBxm/Mdckjy5z/vxsIAGBVCDwAAAADqWnPzpHR0/FW6u6/Lxo1rtjrPHnska9cmfX27ubgkN96YXHPN7l8vQD0SegAAAABQ9xoamtPZ+fysW/fn9PQs3+o8RxyRLNz+lbBG1IYNyVe/Ohi0vOAFu2+9APWsqewCAAAAgLHpgQe+lDVr/pCk2GxqZbPnxWavi83eL9LQ0Jqmpj3S2Dg5LS1T0ty8Z1papqW5eWaamialqckhD56uUqmko+OYrF375/T3r8m4cQds8X5T0+AZHw8/nOy11+jWcuONye9/n7z5zUlb2+iuC2AssQcAAAAAlGLvvd/1jD/b17cqPT0PpK/v0fT2PpwNG+7N6tU3ZOPG7vT3b/3yRVu37ZCloWFcmpsnp7l5Spqb90pLy4y0tc1KU9N0oUqNGz/+kGzYsCRr1vwhEyY8Z4v3nvWs5NprRy/06O1NvvnN5KCDkne+c3TWATCW+Q0NAAAAjLp16+5NX9/DSZrS0NCYpCmVSmMqlabNHk993ZSGhpYnPrPlFbqbmyeluXnSqNW7cePGbNy4Kr29S9Pb+3D6+h5Od/d1efTRR7Nx46on5tr87JNNr7cVojz5ulJpTnPz5DQ1TU1r64y0ts5Ka+usNDVNFabsRm1tc9LbuzJdXTeko2NBKpUn/1sdckjypz8lhx46suv84x+T3/wm+du/TSZMGNllAzDIb1IAAABg1DU1TUxRbHzi0Zei6M3AQJFkY4qif7Ppg6+T/gwMbEzS/8T0YuigdFEMhg2bH6Te/P2tvd7atNWrb82GDUs2vTuMn6aSpCENDc1paGhPpdKexsZxaWxsT0PD+DQ2Tkhj4/gnXrekUmlNQ8OTj4GBZOPGR9PbuzI9Pcuzdu2f09f3eIpiXXYcmjy1jqShoSUtLdPT0jIzra37pL19vzQ37yNA2QktLVPT2Nierq7fpKPjuDQ0DG6zPfZI7r138J4bI3HpqYGB5Ac/SDo6kne/e9eXB8C2+e0HAAAAjLqWlr3S0jLKN0kYpmnTTnvGn+3v709/f1f6+lZm48ZVTzxflYGBtenvX50NG5amKHqeCHT6Ngt2Nm4W7PRlYGAw4CmKjdl+yNGYhoaWNDSMS2PjuDQ0TEhj47gnwqSmbNy4MqtX35rHHvt1+vsfz8DA2jz9niiVDJ410/zEmTTNTzxa09jY9sRZJ3PS3n5gxo9/9qieSVNNGhvHp6PjuHR3X5uJExeksXEw5TjyyOSGG5Ljjtu15a9aNXg5q5NPTmbP3vV6Adg+oQcAAADAMDU2Nj5xE/XJu2V9gyHLY+ntXZm+vkeeuHfJqmzc+HgGBh5PpZK0tEx5op7Bm70PejL0GBjYFMD0ZGCgNwMDPSmKvgwM9KanZ3V6ex9KV9cNKYre9Pf3pFJpeOLMh61dxitD66lUWtPcPC3jxj0rEyc+N+3tc9LUNCVNTZOedlmyatXQ0JTOzhekq+vaTJgwL01NnWloSGbNSpYufeZhxW23Jbfckpx5ZlIjmwKg5gk9AAAAAKrcYMiyZ1pa9kzy7BFffn//+vT2Lk9Pz4onzl5Zmb6+RzMwsP6JObZ+aa2kSH//2qxfvzyPP35FVqz4Xoqib+j+LA0NLWlsHPfEZcU2hSRNaWqanvb2fdPaOjeNjU1papqU1tbBy3M1NU0tJSypVCqZNOl56e6+KW1tc9LSsldmzUquuy7ZZ5/hhxa/+MXgv29/+8jXCsC2CT0AAAAAxrjGxva0t89Ne/vcXV7Wxo1rsmHDsvT2/iU9PQ+kt3dFiqI3m0KP/v716el5IKtX35DHHvvvFEVfBu/h0pdKpfLEfVAG75HS2jo748cf+kTYMxhMtLTsnfb2Z6WlZfqohCMdHc/NmjV/SFH0pbV17xx9dHLzzckxx+z8Mr73vWT//ZOjjx7x8gDYAaEHAAAAACOmqWlCJkx4doZ7Rkp/f3/Wr78769cvyvr196Sv79GsX39fVq68bOiMk6IoUhS9GRjYmKamcRk37pBMnHjM0P1HKpXmjBt3YMaPPywNDS3P+GeYMOE5Wbv2jgwM9Ka9fW722CNZvjyZPn3Hn/3GN5IFC5KDDnrGqwdgFwg9AAAAAChdY2NjJkx49hOByfb19CzPY49dm8cf/2kefvi7KYqeJIOhyGBA0pw99vgf6eiYnyRpaGjJhAlHpa1t7k6fHTJ+/LOzbt09WbduUQ488MBce20ybVpSqWz7M9/7nsADoGxCDwAAAABqSmvr9MyY8drMmPHap73X39+fxx+/Ig8++IV0d1+VJCmK/vT3r0t7+36ZPPnVaW5uT1PTpOyxx4lpbGzb5nrGjTsg69ffn7Vr78hRRz07t9yy7UtWXXVVsu++Ag+Asgk9AAAAgDFp7drkrruefF0Ug3/FXzxxz+5Nf9G/afrmWloGH62tT/676XlT0/bPBmB0NTY2ZurUl2Tq1JdsMb2npyfLln04K1b8e5IiAwO9KYr/k732OjVtbXtn/PhD0tHx9ESjvX3fbNiwLBs3/jGdnYdt9TJXa9YkS5Ykp58+ij8YADtF6AEAAACMSePHJ0ceOfzPFUXS15f09Aw+enuT7u4nX/f1bf1zm4coW5u+6b2nhi2bQpW2tifDlU0Byyjcx7tutba25oADPpHkE0PTHn3011my5CPp71+djRvXpK1t70ybdlrGjz8snZ0LhuZra5uVnp7GzJjxh/z+98/JnnsmjY1PLvs//iM59dTd+MMAsE1CDwAAAIBh2BREtLQkEyeO7ro2BSwbNgyGKz09yerVTz5fvDjp7x+sY/z4wTBk08H4rQUomy930+tKZctQpb39ydebH9ivR1Om/HWmTPnrJMnGjRuzdOnH88ADX8zGjWvT3Dw1M2e+PVOnnpKWlslpbZ2ZpJJDDrktN910eP7qrwaXMTAw+O+cOTOyfMPywReVJE+EW9Pbpuehhx7arT8XwFgm9AAAAACoUpsHLFuzxx7J8uXJqlXJihWD4Uiy5aW6Nr9k16ZlPvVsk97ewXClr2/wvebmwUdb22CYMn58Mm7c4Ott1fnU9ba0DAYo7e2Dnx03bnBatV76q6mpKfvtd3722+/8JMmSJZ/MX/7y+SxZ8pHssccrsu++56StbXYqlYZMnXpb7rvv8KxatTBHHX9U0p5k3yTHJpmSpDFJf5JHk+XXL09lciVZn9xy7S058pmcXgTATqsUxVN/zZWru7s7nZ2d6erqSkdHR9nlAADAqLMPzHAZM8Bo2nS5rtWrk66uwftVbHq96dJdTw1UthasbApRNl3yq6dn8KyUtrZkwoTBs1MmThx8PmHC4FklTz075ZFHkvXrnwxN2tu3PENl03zPRHv7YGg0Zcq2Q6Uk6elZmz/96dXp6bk7bW0H5dBDv5WkP2ed9fFc9K3PJ8cnOSLJdpaR3iS3Jrk2+fT5n87ZZ5/9zIoGGKOGs//rTA8AAAAAhrS0JFOnDoYBRTEYVGx6DAwMPvr7k40bn5y2+eunPoriyWCiKAZDlE1ByooVyb33Dt5UftN8m58J0t//5Fkom98vpVIZXG9r65PhSUfHYDDS2Dj478SJg6HGxIlPnnEyfvxg6FKpDIYpjz2W3Hnn0+/D0tiYzJkz+PnW1vE58sj/TpL8+c/vyM03H57/+q89c9G3b0ten2TWzmzUJAuSzEz+/iN/n4kTJ+aMM87Ytf9QAGyVMz0AAKBk9oEZLmMGRt+mA/CbH9Tf/PnmB/+f+nx703Z00/KRfG9HP9+OlrnpniGNjYM3TG9oGHxeqTz5b1PTltM2zbPp303vbevo01Nr3Vb9W6u3KAYv5/Xoo4OX93r88cEwpSgGa1+/fvCxKdDYVENTUzJtWjJjxuBjypTBQGSTSZOSPfccPMvk8cefnD5r1uDnkqTSWUlek8FLWg3X/Ul+mBRdVXVIDqCqOdMDAAAAIMn99w/+Nf8mwwkMNj/Qv/m/mx/Qb2x88sD/juav1ntZbM+xx5Zdwa7bPATZsCFZuTJZtChZsiS58cbBoGTzYKS3d/C/1+zZyWGHJTNnDr5eunTwM89/fnsyL88s8MgTnzswaW1tTU9Pz4j8jAA8SegBAAAA1K199x18MHZVKoOXtNp0E/YZM5J587Y9/8BAsmxZct11yc03D57tMTCQrFs3eEZI77gNyXG7WNRxSe+9vbu4EAC2RugBAAAAAE9oaBi8n8ecOVtOHxhIXvOadyQTk0zZxZVMSTIhecc73pH/9//+3y4uDIDNNZRdAAAAAABUu4aG5Mc/+Wpy5Agt8Kjkqxd/dYQWBsAmQg8AAAAA2BntSbZ//9ydNzFJ2wgtC4AhQg8AAAAA2BkNSRpHaFlNceF5gFEg9AAAAACAndGbZMMILWt9kp4RWhYAQ4QeAAAAALAzepPcO0LLuu+J5QEwooQeAAAAALATfvrTnyb3JOnbxQX1JbknufTSS0egKgA2J/QAAAAAgJ3wP//n/xy8vNUfd3FBf0yyITnttNNGoCoANjcqoccDDzyQv/mbv8mUKVPS3t6eefPm5eabbx6NVQEAANQcPRNA7Tp4zsHJtXnml6bqTXJtsu+0fUeuKACGNI30Ah9//PEcf/zxedGLXpRf/OIX2XPPPbNo0aLsscceI70qAACAmqNnAqhtd9xxRyotleR7Sf5XksZhfLg/g5/rShY/snhU6gMY60Y89PjkJz+ZWbNm5ZJLLhmaNnfu3JFeDQAAQE3SMwHUvrWr1mb8nuOTbyY5NUnrTnyoJ8m3kzySPPLgI6NaH8BYNuKXt/rJT36So48+Oq9//euz11575Ygjjsi///u/j/RqAAAAapKeCaD2jRs3Lo8seSRZluRLSX6ZZNU2Zl6V5BdPzPeX5JElj2Tq1Km7pU6AsWjEz/S47777ctFFF+Xss8/O//k//yc33XRT3ve+96WlpSWnn3760+bv6elJT0/P0Ovu7u6RLgkAAKBqDLdnSvRNANVo6tSpKTYWmTt3bu6/4f7kriQTkkxO0pbBG54/lmRNkseTWbNmZeljS8srGGCMqBRFUYzkAltaWnL00UfnuuuuG5r2vve9LzfddFOuv/76p83/oQ99KB/+8IefNr2rqysdHR0jWRoAAFSl7u7udHZ22gceI4bbMyX6JoBa8PWvfz1vectbnjb9C1/4Qs4888wkycqVK3P11VfnWc96VubNm7ebKwSoXcPpmUb88lYzZszIIYccssW0Zz/72Vm6dOtJ9rnnnpuurq6hx7Jly0a6JAAAgKox3J4p0TcB1ILTTz89RVE87bEp8EiS5z73uXnd616Xd7zjHSVWClDfRvzyVscff3zuuuuuLabdfffdmTNnzlbnb21tTWvrztztCQAAoPYNt2dK9E0A9eJ5z3te7r///tx000156KGHMmPGjLJLAqg7I36mxwc+8IHccMMN+cQnPpF77rkn3/72t/OVr3xli1QbAABgrNIzAYxd733ve5MkRVHkoosuKrkagPo04vf0SJKf/exnOffcc7No0aLMnTs3Z599ds4444yd+qzrGQMAMNbYBx57dqVnSowZgFpVFEWmT5+ehx9+OFOnTs2KFSvS0DDif5MMUHeGs/87KqHHrrDzDgDAWGMfmOEyZgBq1z//8z/n4x//eJLk17/+dV70oheVXBFA9Sv1RuYAAAAAwNa95S1vGXr+f//v/y2vEIA6JfQAAAAAgN3kgAMOyCGHHJIk+elPf5q1a9eWXBFAfRF6AAAAAMBu9M1vfjPnnntubr311owfP77scgDqSlPZBQAAAADAWHLkkUfmyCOPLLsMgLrkTA8AAAAAKMnAwEDZJQDUFaEHAAAAAOxmt99+e4499tjsvffeufDCC8suB6BuCD0AAAAAYDebMGFCbrjhhixfvjxf+cpXUhRF2SUB1AWhBwAAAADsZnPnzs38+fOTJIsWLcqtt95ackUA9UHoAQAAAAAleOMb3zj0/Jvf/GaJlQDUD6EHAAAAAJTgjW98YxoaBg/PXXrppW5qDjAChB4AAAAAUIL99tsv73rXu5IkK1euzG9/+9uSKwKofUIPAAAAACjJxz72sbS0tCRJLrzwwpKrAah9Qg8AAAAAKMkee+yRd73rXZkzZ05e8pKXlF0OQM1rKrsAAAAAABjLPvvZz+azn/1s2WUA1AVnegAAAAAAAHVB6AEAAAAAJSuKIu94xzsyZ86cPPTQQ2WXA1CzhB4AAAAAULKHHnooX/3qV7N06dJcccUVZZcDULOEHgAAAABQshkzZmT8+PFJkv/4j/8ouRqA2iX0AAAAAICSVSqVHHHEEUmSq6++OkVRlFwRQG0SegAAAABAFXj1q1+dJHn88cdz9913l1wNQG0SegAAAABAFXjBC14w9PynP/1piZUA1C6hBwAAAABUgcMOOywNDYOH6/7zP/+z5GoAapPQAwAAAACqQFtbW+bOnZskmTBhQsnVANSmprILAAAAAAAGnXfeedmwYUNe/vKXl10KQE0SegAAAABAlTj99NPLLgGgprm8FQAAAABUmf7+/qxevbrsMgBqjtADAAAAAKpEX19fzjrrrLS3t+cf//Efyy4HoOa4vBUAAAAAVIn169fns5/9bJLk1ltvLbkagNrjTA8AAAAAqBIdHR1pb29PkvzpT38quRqA2iP0AAAAAIAqMn369CTJmjVr0tXVVXI1ALVF6AEAAAAAVWRT6JEky5YtK7ESgNoj9AAAAACAKrLXXnsNPRd6AAyP0AMAAAAAqsiECROGngs9AIZH6AEAAAAAVWTcuHFJkkMOOST77LNPydUA1JamsgsAAAAAAJ502mmn5bnPfW6OPvroHHHEEWWXA1BThB4AAAAAUEVOOOGEHHjggWlpaSm7FICa4/JWAAAAAFBF/v7v/z577713Pv3pT+fRRx8tuxyAmiL0AAAAAIAqsXDhwnzmM59Jknzyk5/MBz7wgZIrAqgtQg8AAAAAqBLXXnvt0PN3vvOd+cY3vlFiNQC1R+gBAAAAAFViYGCg7BIAaprQAwAAAACqUH9/f9klANQcoQcAAAAAVInGxsah50IPgOETegAAAABAlZg5c2YmTZqUJOnp6Sm3GIAaJPQAAAAAgCrxmte8Jp/4xCeSJOvXry+5GoDaI/QAAAAAgCrS3t6eJNmwYUPJlQDUnqayCwAAAAAAnnTMMcfk05/+dA444ICySwGoOUIPAAAAAKgiH/jAB3L33Xfn8ssvL7sUgJrj8lYAAAAAUEUWL16c+++/Pw888EDZpQDUHKEHAAAAAFSROXPmJEl++tOfllwJQO0RegAAAABAFZk9e3aS5DOf+UyKoii5GoDaIvQAAAAAgCrynOc8J0lSFEW6urpKrgagtgg9AAAAAKCKHHbYYUPPV65cWWIlALVH6AEAAAAAVeSggw4aer58+fISKwGoPUIPAAAAAKgie++9d1pbW5MkixcvLrkagNoy6qHHv/zLv6RSqeSss84a7VUBAADUHD0TAE9VqVTy4he/OEnS19dXcjUAtWVUQ4+bbropX/7yl4duvgQAAMCT9EwAbMtee+2VJHn44YdLrgSgtoxa6LFmzZqcdtpp+fd///fsscceo7UaAACAmqRnAmB7Xv/61+fCCy/Mi170orJLAagpoxZ6nHnmmXnFK16RE088cbvz9fT0pLu7e4sHAABAvdvZninRNwGMRe3t7fnc5z6Xf/iHfyi7FICa0jQaC/3ud7+bhQsX5qabbtrhvBdccEE+/OEPj0YZAAAAVWk4PVOibwIYiyZNmpSlS5dm3bp1ZZcCUFNG/EyPZcuW5f3vf3++9a1vpa2tbYfzn3vuuenq6hp6LFu2bKRLAgAAqBrD7ZkSfRPAWDRz5swkycqVK9PV1VVyNQC1Y8TP9Ljlllvy8MMP58gjjxya1t/fn2uuuSZf+MIX0tPTk8bGxqH3Wltb09raOtJlAAAAVKXh9kyJvglgLFqyZMnQ88WLF+fwww8vrxiAGjLioceLX/zi3H777VtMe+tb35qDDz4455xzztN23gEAAMYSPRMAO+P+++8fer5o0SKhB8BOGvHQY+LEiTnssMO2mDZ+/PhMmTLladMBAADGGj0TADtj8zP8Jk+eXGIlALVlxO/pAQAAAADsmqOOOmro3k+b7u8BwI6N+JkeW3PVVVftjtUAAADUJD0TAE+1zz77ZM6cObnrrruyYsWKPPvZzy67JICa4EwPAAAAAKhCe+21V5JkxYoVJVcCUDuEHgAAAABQhSZMmJAkufPOO0uuBKB2CD0AAAAAoAo9+uijSZL169eXXAlA7RB6AAAAAEAVOuGEE5Ika9euLbkSgNoh9AAAAACAKnTIIYckSe64446SKwGoHUIPAAAAAKhCs2fPTpLcdttt5RYCUEOEHgAAAABQhbq6upIM3ttj03MAtk/oAQAAAABVaO+99x567hJXADtH6AEAAAAAVWjSpElDzxctWlReIQA1ROgBAAAAAFWos7Nz6PmCBQtKrASgdgg9AAAAAKAKjRs3buj5rFmzSqwEoHYIPQAAAACgCrW1tQ09X79+fYmVANQOoQcAAAAAVKHm5uY0NjYmSX7zm9+UXA1AbRB6AAAAAECVevWrX50k+dznPldyJQC1QegBAAAAAFXqzW9+c5Jk9erVJVcCUBuEHgAAAABQpTo6OpIka9asKbkSgNog9AAAAACAKrVkyZIkydq1a0uuBKA2CD0AAAAAoAoVRZG3ve1tSYQeADtL6AEAAAAAVWj9+vXp7+9PkmzYsKHkagBqg9ADAAAAAKpQd3f30PP169enKIoSqwGoDUIPAAAAAKhCm0KP9vb2fOlLXxJ6AOyEprILAAAAAACebuXKlUmS6dOn54wzzii5GoDa4EwPAAAAAKgy/f39+cQnPpFkMPQAYOcIPQAAAACgynznO9/Jz3/+8yTJlClTSq4GoHYIPQAAAACgihRFkY9//ONJkhNOOCGnnnpqyRUB1A739AAAAACAKnL33XfnzjvvTEtLS37yk5+ko6Oj7JIAaoYzPQAAAACgivziF79IMniWh8ADYHiEHgAAAABQRX75y18mSQ466KD8+c9/Tm9vb8kVAdQOoQcAAAAAVImNGzfm6quvTpJcfPHFOfTQQ3PfffeVXBVA7RB6AAAAAECVqFQqmTFjRo444oisW7cuSTJ79uySqwKoHW5kDgAAAABVorGxMffdd1/+8Ic/ZP78+ZkyZUrGjRtXdlkANcOZHgAAAABQZZYtW5YkmTVrVsmVANQWoQcAAAAAVJn7778/SbLvvvuWWgdArXF5KwAAAACoIuedd14+97nPJRF6AAyXMz0AAAAAoIp0d3enu7s7STJ37tySqwGoLUIPAAAAAKgiM2fOTJLMnz8/z3/+80uuBqC2CD0AAAAAoIrsvffeSZIpU6bkiCOOKLkagNoi9AAAAACAKrIp9HjggQdKrgSg9gg9AAAAAKCK9PT0JEmWLVtWciUAtUfoAQAAAABV5Nprr02SrFu3LqtXry65GoDaIvQAAAAAgCpy/fXXJ0nmzJkj9AAYJqEHAAAAAFSJ1atX55prrkmS/Pd//3dmzpxZckUAtUXoAQAAAABV4oorrkhfX1/233//HHjggWWXA1BzhB4AAAAAUCV+/vOfJ0le/vKXp1KppCiKkisCqC1CDwAAAACoAo899li+853vJEnGjx+fuXPn5owzzii5KoDaIvQAAAAAgCpw1VVXZf369Zk/f37mzZuX+++/P4sWLSq7LICa0lR2AQAAAABA8prXvCb33HNPHnnkkQwMDCRJ7rvvvpKrAqgtzvQAAAAAgCoxd+7cHHXUUfnWt76VJHnggQfS09NTclUAtUPoAQAAAAAlWrx4ca677rqh13/3d3+XL3zhC0mSadOmpbGxsazSAGqO0AMAAAAASlIURc4444w873nPy0UXXZTf/OY3+cpXvpJKpZLPf/7z+fOf/5ymJleoB9hZvjEBAAAAoCSXXHJJrrjiirS1teV//I//kblz5+bTn/50HnnkkbznPe8puzyAmiP0AAAAAIAS3HnnnXn/+9+fJPnIRz6SAw44IEly9tlnl1kWQE1zeSsAAAAA2M3Wrl2b173udVmzZk1OOOGEfOADHyi7JIC6MOKhxwUXXJDnPve5mThxYvbaa6+ccsopueuuu0Z6NQAAADVJzwRAURR517velT/96U+ZPn16vvvd77pvB8AIGfHQ4+qrr86ZZ56ZG264IZdffnn6+vrykpe8JGvXrh3pVQEAANQcPRMAV199dS699NI0Njbmu9/9bqZPn152SQB1o1IURTGaK3jkkUey11575eqrr84LXvCCHc7f3d2dzs7OdHV1paOjYzRLAwCAqmAfeGwbbs+UGDMA9eDiiy9OV1eXy1oB7ITh7P+O+nlzXV1dSZLJkydv9f2enp709PQMve7u7h7tkgAAAKrGjnqmRN8EUI/e9ra3lV0CQF0a1RuZDwwM5Kyzzsrxxx+fww47bKvzXHDBBens7Bx6zJo1azRLAgAAqBo70zMl+iYAANhZo3p5q3e/+935xS9+kd/+9rfZZ599tjrP1v5iadasWU7TBgBgzHCporFrZ3qmRN8EAMDYVhWXt3rPe96Tn/3sZ7nmmmu2u/Pe2tqa1tbW0SoDAACgKu1sz5TomwAAYGeNeOhRFEXe+9735rLLLstVV12VuXPnjvQqAAAAapaeCQAARs+Ihx5nnnlmvv3tb+fHP/5xJk6cmOXLlydJOjs7097ePtKrAwAAqCl6JgAAGD0jfk+PSqWy1emXXHJJ3vKWt+zw865nDADAWGMfeGzZ1Z4pMWYAABhbSr2nxyjeFx0AAKDm6ZkAAGD0NJRdAAAAAAAAwEgQegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdGLXQ44tf/GL23XfftLW1ZcGCBfnd7343WqsCAACoOXomAAAYeaMSenzve9/L2WefnfPPPz8LFy7M/Pnz89KXvjQPP/zwaKwOAACgpuiZAABgdIxK6PGZz3wmZ5xxRt761rfmkEMOyZe+9KWMGzcuF1988WisDgAAoKbomQAAYHQ0jfQCe3t7c8stt+Tcc88dmtbQ0JATTzwx119//dPm7+npSU9Pz9Drrq6uJEl3d/dIlwYAAFVp075vURQlV8LuMNyeKdE3AQAwtg2nZxrx0GPlypXp7+/PtGnTtpg+bdq03HnnnU+b/4ILLsiHP/zhp02fNWvWSJcGAABV7dFHH01nZ2fZZTDKhtszJfomAABIktWrV++wZxrx0GO4zj333Jx99tlDr1etWpU5c+Zk6dKlGj52Snd3d2bNmpVly5alo6Oj7HKoAcYMw2XMMFzGDMPV1dWV2bNnZ/LkyWWXQpV6at80MDCQxx57LFOmTEmlUtmttfiO2zW2366zDXeN7bdrbL9dY/vtGttv19mGu6bM7VcURVavXp2ZM2fucN4RDz2mTp2axsbGrFixYovpK1asyPTp0582f2tra1pbW582vbOz08BjWDo6OowZhsWYYbiMGYbLmGG4GhpG5ZZ7VJnh9kzJ1vumSZMmjVaJO8V33K6x/XadbbhrbL9dY/vtGttv19h+u8423DVlbb+dPUlixLuqlpaWHHXUUbniiiuGpg0MDOSKK67IscceO9KrAwAAqCl6JgAAGD2jcnmrs88+O6effnqOPvroHHPMMfm3f/u3rF27Nm9961tHY3UAAAA1Rc8EAACjY1RCjze+8Y155JFH8sEPfjDLly/P4Ycfnl/+8pdPu1Hf1rS2tub888/f6iWvYGuMGYbLmGG4jBmGy5hhuIyZsWdXeqayGa+7xvbbdbbhrrH9do3tt2tsv11j++0623DX1Mr2qxRFUZRdBAAAAAAAwK5yp0QAAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC1UXenzxi1/Mvvvum7a2tixYsCC/+93vyi6JKvWhD30olUpli8fBBx9cdllUkWuuuSavfOUrM3PmzFQqlfzoRz/a4v2iKPLBD34wM2bMSHt7e0488cQsWrSonGKpCjsaM295y1ue9r3zspe9rJxiKd0FF1yQ5z73uZk4cWL22muvnHLKKbnrrru2mGfDhg0588wzM2XKlEyYMCGvfe1rs2LFipIqpmw7M2Ze+MIXPu175l3veldJFTMW7cw4faqvfe1rTxu3bW1tu6ni6vNM+pQf/OAHOfjgg9PW1pZ58+blP//zP3dTtdVn3333fdr2q1QqOfPMM7c6/1gff6PV84yVYzPb2359fX0555xzMm/evIwfPz4zZ87Mm9/85jz44IPbXeZYOlYxWv3TWBl/yY634da+DyuVSv71X/91m8scK2NwtPqxsXSsaEfb8LHHHst73/veHHTQQWlvb8/s2bPzvve9L11dXdtdbjUcO6mq0ON73/tezj777Jx//vlZuHBh5s+fn5e+9KV5+OGHyy6NKnXooYfmoYceGnr89re/LbskqsjatWszf/78fPGLX9zq+5/61Kfyuc99Ll/60pdy4403Zvz48XnpS1+aDRs27OZKqRY7GjNJ8rKXvWyL753vfOc7u7FCqsnVV1+dM888MzfccEMuv/zy9PX15SUveUnWrl07NM8HPvCB/PSnP80PfvCDXH311XnwwQfzmte8psSqKdPOjJkkOeOMM7b4nvnUpz5VUsWMRTs7Tp+qo6Nji3G7ZMmS3VRxdRpOn3Ldddfl1FNPzdvf/vbceuutOeWUU3LKKafkj3/8426suHrcdNNNW2y7yy+/PEny+te/fpufGcvjbzR6nrF0bGZ722/dunVZuHBhzjvvvCxcuDA//OEPc9ddd+VVr3rVDpc7Vo5VjEb/NJbGX7Ljbbj5tnvooYdy8cUXp1Kp5LWvfe12lzsWxuBo9WNj6VjRjrbhgw8+mAcffDAXXnhh/vjHP+ZrX/tafvnLX+btb3/7Dpdd+rGTooocc8wxxZlnnjn0ur+/v5g5c2ZxwQUXlFgV1er8888v5s+fX3YZ1IgkxWWXXTb0emBgoJg+fXrxr//6r0PTVq1aVbS2thbf+c53SqiQavPUMVMURXH66acXJ598cin1UP0efvjhIklx9dVXF0Ux+J3S3Nxc/OAHPxia54477iiSFNdff31ZZVJFnjpmiqIoTjjhhOL9739/eUXBU2xtnD7VJZdcUnR2du6+oqrccPuUN7zhDcUrXvGKLaYtWLCg+N//+3+PcGW16f3vf3+x//77FwMDA1t93/h70kj1PGP12MzW9v+f6ne/+12RpFiyZMk25xmrxypGqn8aq+OvKHZuDJ588snFX//1X293nrE6BkeiHxvrx4p2Zr/v+9//ftHS0lL09fVtc55qOHZSNWd69Pb25pZbbsmJJ544NK2hoSEnnnhirr/++hIro5otWrQoM2fOzH777ZfTTjstS5cuLbskasTixYuzfPnyLb5zOjs7s2DBAt85bNdVV12VvfbaKwcddFDe/e5359FHHy27JKrEplN8J0+enCS55ZZb0tfXt8X3zMEHH5zZs2f7niHJ08fMJt/61rcyderUHHbYYTn33HOzbt26MsqDJNsep0+1Zs2azJkzJ7NmzcrJJ5+cP/3pT7ujvKo1nD7l+uuv3+J3RZK89KUv9bsig8cJLr300rztbW9LpVLZ5nzG39Y9k57HsZnt6+rqSqVSyaRJk7Y7n2MVTxpO/2T8bd+KFSvy85//fKf+yn4sjsGR6MfG+rGindnv6+rqSkdHR5qamra7rLKPnVRN6LFy5cr09/dn2rRpW0yfNm1ali9fXlJVVLMFCxYMnVZ10UUXZfHixXn+85+f1atXl10aNWDT94rvHIbjZS97Wb7xjW/kiiuuyCc/+clcffXVOemkk9Lf3192aZRsYGAgZ511Vo4//vgcdthhSQa/Z1paWp7WFPueIdn6mEmS//W//lcuvfTSXHnllTn33HPzzW9+M3/zN39TYqWMZdsap0910EEH5eKLL86Pf/zjXHrppRkYGMhxxx2Xv/zlL7ux2uox3D5l+fLl9km34Uc/+lFWrVqVt7zlLducx/jbtmfS8zg2s20bNmzIOeeck1NPPTUdHR3bnM+xiicNt38y/rbv61//eiZOnLjDyzONxTE4Uv3YWD5WtDP7fStXrsxHP/rRvPOd79zusqrh2Mn2IxmoYieddNLQ8+c85zlZsGBB5syZk+9///s7lXoDDNeb3vSmoefz5s3Lc57znOy///656qqr8uIXv7jEyijbmWeemT/+8Y91ea1cRse2xszmDcS8efMyY8aMvPjFL869996b/ffff3eXyRi3s99txx57bI499tih18cdd1ye/exn58tf/nI++tGPjnaZVUefMnK++tWv5qSTTsrMmTO3OY/xx+7Q19eXN7zhDSmKIhdddNF25/Ud8CT908i6+OKLc9ppp6WtrW27843FMagf23U72obd3d15xStekUMOOSQf+tCHtrusavh/v2rO9Jg6dWoaGxuzYsWKLaavWLEi06dPL6kqasmkSZPyrGc9K/fcc0/ZpVADNn2v+M5hV+y3336ZOnWq750x7j3veU9+9rOf5corr8w+++wzNH369Onp7e3NqlWrtpjf9wzbGjNbs2DBgiTxPcNuN5xx+lTNzc054ogjjNsn7KhPmT59un3SrViyZEl+9atf5R3veMewPmf8PemZ9DyOzTzdpsBjyZIlufzyy7d7lsfWOFbxpB31T8bftv3mN7/JXXfdNezvxKT+x+BI9mNj9VjRjvb7Vq9enZe97GWZOHFiLrvssjQ3Nw9r+WUcO6ma0KOlpSVHHXVUrrjiiqFpAwMDueKKK7b4qw3YljVr1uTee+/NjBkzyi6FGjB37txMnz59i++c7u7u3Hjjjb5z2Gl/+ctf8uijj/reGaOKosh73vOeXHbZZfn1r3+duXPnbvH+UUcdlebm5i2+Z+66664sXbrU98wYtaMxszW33XZbkvieYbd5JuP0qfr7+3P77bcbt0/YUZ9y7LHHbvG7Ikkuv/zyMf+74pJLLslee+2VV7ziFcP6nPH3pGfS8zg2s6VNgceiRYvyq1/9KlOmTBn2MhyreNKO+ifjb9u++tWv5qijjsr8+fOH/dl6HYOj0Y+NtWNFO7Pf193dnZe85CVpaWnJT37ykx2eabQ1pRw7KfMu6k/13e9+t2htbS2+9rWvFX/+85+Ld77zncWkSZOK5cuXl10aVejv//7vi6uuuqpYvHhxce211xYnnnhiMXXq1OLhhx8uuzSqxOrVq4tbb721uPXWW4skxWc+85ni1ltvLZYsWVIURVH8y7/8SzFp0qTixz/+cfGHP/yhOPnkk4u5c+cW69evL7lyyrK9MbN69eri//v//r/i+uuvLxYvXlz86le/Ko488sjiwAMPLDZs2FB26ZTg3e9+d9HZ2VlcddVVxUMPPTT0WLdu3dA873rXu4rZs2cXv/71r4ubb765OPbYY4tjjz22xKop047GzD333FN85CMfKW6++eZi8eLFxY9//ONiv/32K17wgheUXDljyc58t/3t3/5t8U//9E9Drz/84Q8X//Vf/1Xce++9xS233FK86U1vKtra2oo//elPZfwIpdtRn/LU7XfttdcWTU1NxYUXXljccccdxfnnn180NzcXt99+e1k/Qun6+/uL2bNnF+ecc87T3jP+tjQSPc9f//VfF5///OeHXo+lYzPb2369vb3Fq171qmKfffYpbrvtti2+E3t6eoaW8dTtN5aOVYxE/zSWx19R7Pj/4aIoiq6urmLcuHHFRRddtNVljNUxOFL92EEHHVT88Ic/HHo9lo4V7WgbdnV1FQsWLCjmzZtX3HPPPVvMs3HjxqHlbL4Nq+XYSVWFHkVRFJ///OeL2bNnFy0tLcUxxxxT3HDDDWWXRJV64xvfWMyYMaNoaWkp9t577+KNb3xjcc8995RdFlXkyiuvLJI87XH66acXRVEUAwMDxXnnnVdMmzataG1tLV784hcXd911V7lFU6rtjZl169YVL3nJS4o999yzaG5uLubMmVOcccYZdbvzzY5tbawkKS655JKhedavX1/83d/9XbHHHnsU48aNK1796lcXDz30UHlFU6odjZmlS5cWL3jBC4rJkycXra2txQEHHFD8wz/8Q9HV1VVu4YwpO/PddsIJJwztTxVFUZx11llDPdy0adOKl7/85cXChQt3f/FVYkd9ylO3X1EUxfe///3iWc96VtHS0lIceuihxc9//vPdXHV1+a//+q8iyVb3zY2/LY1EzzNnzpzi/PPP32LaWDk2s73tt3jx4m1+J1555ZVDy3jq9htLxypGon8ay+OvKHb8/3BRFMWXv/zlor29vVi1atVWlzFWx+BI9WNP/cxYOla0o224rfGZpFi8ePEWy9n0mWo5dlJ5ojAAAAAAAICaVjX39AAAAAAAANgVQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOrC/w+srn6Vie8K9QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABS80lEQVR4nO3deZxddX0//tedfbJNSAJZIIGwr0ZARMAiKopoVVyp1YobVotVtIvyexSXtkqty6O1+sXl61a1bq27rX4pCiiiIIuAQggQQlhC2DKTyWTWe35/3GTIJCHJkJmcmTvP5+NxH3Pvueee857D4c75nFc+n0+lKIoiAAAAAAAAk1xD2QUAAAAAAACMBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXRh16XHHFFXnhC1+YRYsWpVKp5Hvf+97wewMDA3n3u9+dY445JtOnT8+iRYvy2te+Nvfdd99Y1gwAADBhaTMBAEB5Rh16bNiwIcuWLcunPvWpbd7r6enJddddlwsvvDDXXXddvvOd72T58uV50YteNCbFAgAATHTaTAAAUJ5KURTFE/5wpZLvfve7Oeussx53nWuuuSZPfepTs2rVqixZsuSJ7goAAGDS0WYCAIA9q2m8d9DZ2ZlKpZLZs2dv9/2+vr709fUNv65Wq3nkkUcyd+7cVCqV8S4PAABKVxRF1q9fn0WLFqWhwbR7U83O2kyJdhMAAFPbaNpM4xp69Pb25t3vfnde9apXZdasWdtd56KLLsoHPvCB8SwDAAAmhdWrV2e//fYruwz2oF1pMyXaTQAAkOxam2nchrcaGBjIy172stxzzz257LLLHvcCfut/sdTZ2ZklS5Zk9erVO7zoBwCAetHV1ZXFixdn3bp16ejoKLscxtBYtJkS7SYAAKa20bSZxqWnx8DAQF75yldm1apV+dnPfrbDi/DW1ta0trZus3zWrFku3gEAmFIMUzR1jKbNlGg3AQBAsmttpjEPPTZfvK9YsSI///nPM3fu3LHeBQAAwKSlzQQAAONn1KFHd3d3br/99uHXK1euzA033JA5c+Zk4cKFefnLX57rrrsuP/rRjzI0NJQ1a9YkSebMmZOWlpaxqxwAAGAC0mYCAIDyjHpOj8suuyzPfOYzt1l+zjnn5P3vf3+WLl263c/9/Oc/z2mnnbbT7Xd1daWjoyOdnZ26aQMAMCW4Bq4v491mSpwzAABMLaO5/h11T4/TTjstO8pJdmNedAAAgElPmwkAAMrTUHYBAAAAAAAAY0HoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVh1KHHFVdckRe+8IVZtGhRKpVKvve97414vyiKvPe9783ChQvT3t6e008/PStWrBiregEAACY0bSYAACjPqEOPDRs2ZNmyZfnUpz613ff/+Z//OZ/4xCfy6U9/Or/5zW8yffr0nHHGGent7d3tYgEAACY6bSYAAChP02g/cOaZZ+bMM8/c7ntFUeRf/uVf8nd/93d58YtfnCT593//98yfPz/f+9738id/8ie7Vy0AAMAEp80EAADlGdM5PVauXJk1a9bk9NNPH17W0dGRE088MVddddV2P9PX15eurq4RDwAAgHr0RNpMiXYTAADsqjENPdasWZMkmT9//ojl8+fPH35vaxdddFE6OjqGH4sXLx7LkgAAACaMJ9JmSrSbAABgV41p6PFEXHDBBens7Bx+rF69uuySAAAAJhTtJgAA2DVjGnosWLAgSfLAAw+MWP7AAw8Mv7e11tbWzJo1a8QDAACgHj2RNlOi3QQAALtqTEOPpUuXZsGCBbn00kuHl3V1deU3v/lNTjrppLHcFQAAwKSjzQQAAOOrabQf6O7uzu233z78euXKlbnhhhsyZ86cLFmyJOeff37+8R//MYccckiWLl2aCy+8MIsWLcpZZ501lnUDAABMSNpMAABQnlGHHr/97W/zzGc+c/j1u971riTJOeecky996Uv527/922zYsCFvfvObs27dujz96U/PT37yk7S1tY1d1QAAABOUNhMAAJSnUhRFUXYRW+rq6kpHR0c6OzuNUwsAwJTgGpjRcs4AADCVjOb6d0zn9AAAAAAAACiL0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAACAXXDzzclXv5oMDpZdCQDweJrKLgAAAABgMjj66GS//ZIvfCE59NDktNPKrggA2JqeHgAAAAC7aPbs5M1vrv28+OLk7rvLrggA2JLQAwAAAGCUnvzk5M//PLn22uTLXzbkFQBMFIa3AgAAAHgCGhqSl7wk6epKvvSl5MADk2c9q+yqAGBq09MDAAAAYDfMmpW86U3JvHnJZz6TrFpVdkUAMHUJPQAAAADGwJOeVBvy6ne/qw151dtbdkUAMPUY3goAAABgDL3oRUl3d/K1ryX77ZeccUbZFQHA1KGnBwAAAMAYmzEjeeMbkyVLkosvTpYvL7siAJgahB4AAAAA4+SII5K3vjW5887k859PenrKrggA6pvhrQAAAADG2Zln1ub4+PrXk733Tv74j8uuCADqk54eAAAAAHtAW1vy+tfXen985jPJjTeWXREA1B+hBwAAAMAedNBByZ//efLQQ8lnP5usW1d2RQBQPwxvBQAAAFCCZz0rOfXU5BvfqPUCeelLkwb/PBUAdos/pQAAAAAlaWpKXvOa5OlPTz73ueSqq8quCAAmtzEPPYaGhnLhhRdm6dKlaW9vz0EHHZR/+Id/SFEUY70rAACASUebCdieBQtqQ141NdXm+7jvvrIrAoDJacyHt/rwhz+ciy++OF/+8pdz1FFH5be//W1e//rXp6OjI29/+9vHencAAACTijYT7NiGDbekWu3Z9KqS1tb90ty8dyqVSql17SknnJAcf3zy/e8nXV3Jq16VtLSUXRUATB5jHnr86le/yotf/OK84AUvSJIccMAB+frXv56rr756rHcFAAAw6WgzwY5Nn37E8POiqKav7950d1+3xRr1H4Q0NCQveUnS3Z185SvJokXJmWeWXRUATA5jPrzVySefnEsvvTS33XZbkuR3v/tdfvnLX+ZMf50BAAC0mWAUKpWGtLUtzsyZxw8/Zsx4cqrV/nR3X5f166/d9Lgu/f1r626YuBkzkje+MTn44NqQVzfeWHZFADDxjXlPj/e85z3p6urK4YcfnsbGxgwNDeWDH/xgXv3qV293/b6+vvT19Q2/7urqGuuSAAAAJozRtpkS7SbYUi0I2S9tbfsNL9t+j5DGtLUtSXPznD1f5Bg75JDa47LLks9+NnnpS5N588quCgAmpjEPPb71rW/la1/7Wv7jP/4jRx11VG644Yacf/75WbRoUc4555xt1r/ooovygQ98YKzLAAAAmJBG22ZKtJtgZzb3CGlrWzy8rFodTF/f6vT2rtxivea0tS1NU9PMMsrcbaedlpx6avLtbyeDg8nZZ9cmPgcAHlMpxrjv5+LFi/Oe97wn55133vCyf/zHf8xXv/rV3Hrrrdusv71/sbR48eJ0dnZm1qxZY1kaAABMSF1dXeno6HANPEWMts2UaDfBWKlW+9Pbe1cGB7uG5wNpaJiWtralaWxsK7m60Vm3LvnP/0wWL07OOKPsagBgfI2mzTTm/x6gp6cnDQ0jpwppbGxMtVrd7vqtra1pbW0d6zIAAAAmpNG2mRLtJtgd1epAGhqakyQNDS2ZNu3QEe8PDfVk48bbUxS1YLEoijQ3z01b25JUKo17vN5dNXt28qY3JcuX1+b7OPHE5MlPLrsqACjfmIceL3zhC/PBD34wS5YsyVFHHZXrr78+H//4x/OGN7xhrHcFAAAw6WgzwZ7V07M8RdGXoihSqVTS2NiRtrYD0tBQuyXS2DgtM2YcPeIzAwMPp7v7xhTF0KYeIZW0ti5Oc/O84R4iE8Vhh9UeV1xRCz9e+MJk0aKyqwKA8oz58Fbr16/PhRdemO9+97tZu3ZtFi1alFe96lV573vfm5aWlp1+Xtd+AACmGtfAU8vutpkS5wzsjoGBdenrW5WiGBxe1tw8L62ti1OpNGz3M7WJ0lenv//B4WUNDW1pbz94Qg2LVa0m3/1u0t2dvOIVybRpZVcEAGNjNNe/Yx567C4X7wAATDWugRkt5wyMnaIoMjDwcPr6VifZPMxcJS0ti9LSMv9xe3YMDW3Mxo13pFrtHV7W2rowLS2LSu8N0tubfPObyfTpyUtfmjRsP8sBgEmj1Dk9AAAAACaLSqWSlpZ5aWmZN7ysKIr099+X7u7rtlizMe3tS9PU1FF71dg+Ylis2mfWDH+mKIrSeoO0tSXnnJOsWZP83/+bLF2aPOc5e7QEACiN0AMAAABgC5VKJa2t+6a1dd/hZdXqYHp7V6anZ8VwT46Ghmlpbz8wDQ2tmz6zMK2tC4c/MzTUm97erXuDLE5z8957pDfIggXJm9+c/P73tfk+jj8+ecpTxn23AFAqoQcAAADATjQ0NGXatENGLBsa2pCenttSFP1Jar07Wlrmp7V1v02Tprdl+vSjhtcviiJ9ffeM6EHS2DgrbW1LhydWHw9HHVV7XHVVLfw47bTa5OcAUI+EHgAAAABPQGPj9MyYcczw69oQVw+MCDUqlaa0tR2YpqaZqVQqaWtbnLa2xcPvDw52ZsOGm1MUg6lUKqlUmtPeflAaG6ePeb0nnVR7/PSnyeWXJ3/8x8miRWO+GwAoldADAAAAYBdt2PD7JJW0te2/TTBRG+JqQVpbFwwvq1YH0tt7Z3p61g8va26ek7a2/VOpNKapqSMzZz55i/X7N02Q3jO8rK3tgDQ3zx2z3+GMM5JqNfn+95NHHkle9rJk9uwx2zwAlEroAQAAALCLpk8/KkNDPentvTvV6oYR7zU375PW1n1TqTQML2toaM60aSPHkhoYeCTd3TcmqW5a8tgk6Q0NLZk+/YjhdYuimt7eVentvWt4WUvLwrS0LNyteUEaGpKXvCQZHEz+67+S3t5a+DFjxhPeJABMCEIPAAAAgFFobJyW6dMPH7GsKIoMDDyY7u7f5bEwI2loaEtb2wEjeoU0N89Jc/Oc4de1SdLvysaNtw8va2raa7g3SHv70iRLh/fT378m3d3XpSiKVCqVNDXN3bTu6EOQpqbk7LNrocd//metB8jLX55MmzbqTQHAhCD0AAAAANhNlUolLS37pKVlnxHLh4Y2prd31Va9QippaVmUlpb5qVQqmyZJP3jE52q9QW5KMrRpSWPa2w9KU9PMtLYuTGvrwuF1+/sfGg5BkqSpqSPt7QemUmnc5frb2pLXvCbp6amFHw0NtfCjrW00RwEAyif0AAAAABgnjY3t2+kVUk1///0jJjxPar07WluXpKGhaTu9QWpzg2zc2D28rLl5Xlpbl6SlZV5aWuYNLx8c7Ex3940piqFN252ZtraD0tCw89tA06Ylr31t0t2dfOtbtWV6fgAwmQg9AAAAAPagSqUhra37prV13xHLBwYeTU/P71MUg8NDVzU0tG8aHmvaNnOD1Hp4XJ+iqA2n1dDQkvb2gzdNjn7s8HqDg+uzYcPNKYrBJElj44y0tx88HIL09SWtrSNrnDGjFn709CTf+U4yNGTODwAmB6EHAAAAwATQ3LxXmpv3GrGsNmn6qlSrPcPLKpWm7fbwqFb7snHjHalWNw4va2lZkJaWRZk588nDywYHu7Nhw81JhlIURe67b3q6uw/O8cc3Z+tpQaZNqw171d9fm/C8pyd54QuTfUaO4gUAE4bQAwAAAGCCqk2afsSIZdXqQPr6Vqe3987hHiFJ0tKyKNOmHTH8estJzzerTax+0IgQZPr0DXn00T/kF78YyMEHJx0d7WlvPyQNDS3D67S0JK96VW2i8+98J1m3LnnmM5ODDhq/3x0AngihBwAAAExS1Wo1a9f+x/DrhoaWNDS0plKp/aw9b01DQ9vw69rzaZt+ui0wGTU0NKe9/cARyx6bJ+T6JMXw8qamOZk+fdnwf+uhod709t6RoaHHeoO0ti7M3LlPyqmnVnLjjckjj/TkgANuTbXav2l/bZk27ZBN509tjo9qNbnkkuSyy5Ijj0xOOmncf+0n5LrrrsvxJx2fTN9iYSVJT5LB5I9O+qNcccUVJVUHwHioFEVR7Hy1PaerqysdHR3p7OzMrFmzyi4HAADGnWtgRss5w/ZUq9UURX+q1d7hn9VqX4aGNo54Xa1uTFEMbLqhXZvjYXNvge3dIti8vLLFuEdbv97esi1fF0WxKZCZloaG9jQ2bv45PQ0N09PYOC2NjTOEMGOsKIoMDj6Svr57hufzSDJinpDNvUH6++8b/u/f1dWclSsPzPHHz8y0acnQ0MZs3Hh7iqJ/+L9le/shaWxsT5LccENy7bXJnDnJi1+cNDSU8duO9MpXvjLf/sm3k9YkxyY5Ksnmydg3JrktyTVJ+pJ0JbPmzkrng53lFAvATo3m+tfVBAAAANSBhoaGJG1pbGwru5RtbBnIDA11Z2hoQ6rVDRkYWJuhoZ5Uqxs39TwYHPG5x/t3mluGKVsu2zaMaUpj4/RNIcvMNDXNSGPjzDQ1zd4UwEyAu/PjqFKppLl5bpqb545Yvr15QpKGtLXtm+bmvTNjxkD22mtlbr65O9OmJfvvnzQ0TMu0aYemoaE11Wp/Nm5cMdxb5KCDGnP00QflkUdm5StfqW3tjDOSBQv20C+6ldaZremf1p+cleTA1Hp2bKklyQlJnpLk3iT/k3Q92pXKjEqK7gn1b4MBeAKEHgAAAMC42jKQaW6evcf2W60ObgpZujI4uD6Dg13p67snQ0PdqVZ7tumNstmOerVs2SumoaE9TU2z0tg4O83Ns9PU1JGmpjkTvsfK9uYJKYqh9PXdN2J4rCOOSNatm5Ybbtg/y5YV6em5LUXRP/yZpqZZaWs7IElDenvvTHv7irz0pbWhry6/fN88/PD8LFlSyTOfued6f7R0tGRg7kDyp6n18tiRSpL9krw+yX8luTupzKykWC/4AJjMJvZfYQAAAIAnqKGhKQ0Ns8claKlWq6lWezM4+EgGBzszMLA2GzfensHBrmw5bNiObD2kWFPTrDQ1zUlT016bemjMGTGZ+HiqVBrT1rY4bW2LRyyfNm1D9tprVW69tScNDcnBByeVStLUNDuNjbPS03NrimJgeP2Ghmlpb98/Z5zxaPr7r8vddydf/3qSzMhppx2YffdtTlHUtjHWli1bloHpA8mrU+vNsauakrwiyVeT3JMcdNBBueOOO8a+QAD2CHN6AABAyVwDM1rOGag/1Wo1Q0NdGRh4OAMDj2wKU9alKAZ22vNkS42N09PUVBvSqqVl7zQ1zRuzYbzWr09uuilZvLjIggWdm+YK6dtqrYYUxWAqlYYRyyqVGfnFLzbk0UcHc//9yZ/9WSUdHYvS0rJgm/lhnqjKXpXktUnmPMENbEzy2SRFUjw6oW6XAUx55vQAAAAAmEQaGhq26JVy0BPaRq33SXf6+x/MwMAjWb/+2gwOrktS3eHwXVsua2zsSHPz3mlunpeWlvlpapoxvO7MmcnJJyerV1fy29/OziGHzM68eSNrGBzsTn//vRka6t5iH4Pp7789J5wwlObmOXn00dZ85StF9t33xkyffmNOOmlOWlsbklTS0rIoLS3zRx2E/PVf/3UyK0888EiS9iSLktyavO9978sHPvCB3dgYAGXR0wMAAErmGpjRcs5MXdXqYKrVjandxB5MUQwNP5Khx329eY6GmiIjZ3be8r3K8LLN82EkRYqiumm9xx61ZXmcZbWfW95yeGwbGfHzsTkyqlu9t2U9m15Vss3QSGMxVNL2t7m5p0Jlizoqm27GV7Z4niQN27xXe92w1bqNm36PSmq9HyqbPtswvH6l0rjVtrdWSaXStNWjeQfLGnc5QKhWqxkcXJeBgQeHH0NDG7ZfRaWS++9PuruTvfduyOzZtSGyakNz1UKT5uZ5aWxs23RMiwwOPpL+/jWpVnvT2ZmsWTOUefMezfXXP5LBwYY0NMzKsmUDmTGjK5VKU5qb56apqSONjbPS1rY4jY3TH7f2yqxK8sdJDtulX/Xx3Z/km0kGY24PgAlETw8AAACoQ9VqT/r716RSaUrtpnlTKpWGNDS0bLpZ3rjpJnfjVq9HnwoMDfVmYODBrW7cb35eCwQeCwY238DfOhDY3utkyyBh5HrZYtn4KIpiU2A0uEVwNJhaSDSYanXz8oFUq70ZGupLUfSnWu0dXqcoBlIUQ6lWB7azjc0BUFILfx4Lgja/NzIkqq37WDhVbPGZx1NNUVQ37bfY9HpoeH+blz+2bPi33/SzkpHh1648rwUyDQ2N2XzuzZzZnI6O5nR1NWbFivY0NjZn4cL7UqkMpFrtT1H0bxpaqyUNDW1paGjZNEdJQxobG9Le3pCHH27ISSdVUhR96e19MMuXr09PT2uS9kyf/lAOPbRIU1PDpgBuKA0N7WlsnJaGhvY0N89NW9v+aW8/KGlOcshO//Pv3MLUtgXApCX0AAAAgEmiNtH1nund09jYlsbGxTtf8QmqVgezYcNN2brXRy1QGNgUOmwZTgymKPrzWC+S7ff4eKxzydY372s297h4rBfEYzfxH+tpsfn9pjQ2tqehYVYqldY0NGzZo6IxI3tWbN7O+AU2ZRn532Uw1epAqtW+VKsbUxR9mTNnY4aGNqS3d33uvrsnQ0Mb09LSm7337k2l0rdpwvfuVKt9SYZSrdbCmKamaooiWbWqyOzZtSDmgAOKTSFTXzZs6Mutt/anKPpSqdQmh29vH8zMmYNJBjI0NJCi6Ktttzmbs7jd15Kke6drATBBCT0AAABgCtuwIVm+fOSyre/bP/59/GqGhm7Y9P5jvQg2r1+pbNtroFLZHE5Uk1TS0FAZXq8WJLQnaU5jY0saGlqTNG/qydKSSqU5jY2Nw9vY+pEkDQ2Pvd48f/fmZVu/93jL6jC32C2VSiWVSktqacCOLVpU+7lxY+28GhioHc9p05IDD0za2rb9zF13JV1dyZOetONtV6vJLbckN99c2+5WVe7Cb7KLxio8AaAUQg8AAACYwqZPT4477rHXO5v5c/P7tZ8NKYrjdvD+9pfVhnPa/vKt39/6sfX71U2jN1WrI19vfr71uls+39771R2MLDWa+UR2NtfIzra15evRzMY6srdLTVNT0tg48ufOnjc27l74096ePPnJj73u6Uluvz3p6xu5XktLMm9esvfeyZVXJocckuyzz+P/bgcfnCxcWAtJOjsfSl/fqvQ/1gFobAwl2U44A8DkIPQAAAAAhu3sRrdeEJNLUSRDQ7XH4OC2P/v7a4HE5mUDA4+tP5pgZuvX2wt9thfebNiQ3HtvLcQYGEiuvjpZv7722cbGWg+R1tZaL5yi6E9Ly61J+rJ+fSX33Tcva9celwceqCSDqQ1JNWM3D9hAkt5NPwGYlIQeAAAAAHWqUnmsB0dra9nV7LpqNVmxIrn++u50dS1PUVQzMNCSW245LN3dbZk7NznooORpT0ue+cxk/r4t6b+6P3nWbu74piQbkxOOPmEsfg0ASiD0AAAAAGCPWbeuNo/H3XfXenhsPYzX4GBPHn30lgwOVrPXXtMzbdqTkzRm7tzkRS9K9t9/223eu+re7H3Y3slp2b05Oa5OMpRcc801+chHPpK/+Zu/2Y2NAVAGoQcAAAAAT1hvb22IqtWrk7Vra0NmbWnzPCObw40ZM5LFi5P582vDaPX0JEUxlKamP6RS6U1bW3uWLXtyjjmmMU27eOeqtXVe0p/khiTH7WTlx3NHko2pbSfJ3/7t3+akk07K05/+9Ce4QQDKIPQAAAAAIEltWKlHHknuuSe5//7a882BxdZzcmwOMVpbkwULakHG056WtLXVtrN2bXLrrbVtJY99fv365JZbaj02nv70+9Laem8qlYZMm3ZkGhvbR13zqlXJww8nf7j6lhz5tCOSuUm20xtkhx5M8sMk65Pp06dnw4YNSZLXvOY1uemmmzJz5sxR1wVAOYQeAAAAAHWqv78WXtxzT7JmTa1Xxpa2F2TstVeyaFFy/PHJvHm1ScS3Vq3Wtrl8efLAA7Xhqu66a+Q6c+cmhx+enHrqyG1Uq4PZsOHmTROTL0pb2xOfP+Pmm2uTnR93XJIcnk9+6JN52//3tuT5SQ7fxY3cneQ7STqTolrkyiuvzJlnnpkNGzZk1apVueCCC/LJT37yCdcIwJ4l9AAAAACYJPr7a0NJ3XtvLcTo69s2uNhSc3Oy997Jvvsmy5bVhpba1f3ccUdy1VW1nhnb6+mxcGFyxBHJs5+9/WBkawMDj2TjxttTqTRl+vSj09DQsmvFbEdRJFdfnSxdmuyzz2PLzzvvvBxxxBF59kufnfw6ySlJDsq283wUSVYluTK1Xh4baoFHkpxyyim59NJLc8stt+Rzn/tczj///CdcJwB7XqUodvSncc/r6upKR0dHOjs7M2vWrLLLAQCAcecamNFyzkD9GBxM7ruvFmLcd1+yceNjw0ZttuWdm+bm2lwYixfXgoy2tie2397e2tBTt98+svfH5nCjuTlZsqQWasye/cT2sdnGjSszMLA2TU1z0t5+cCpb/4KjVBTJlVfWQpwdjTp17rnn5v9+8/8mLUmWJJmRpJJkQ2q9O/qS1r7W9G7d/WXEvopUKpU8/PDDmTt37m7VDcATN5rrX6EHAACUzDUwo+WcgYmrWk0eeqg29NN99yXr1tWWb6+nRFILF+bNS/bbrxZi7GpPjJ3p7U1uu6322N49/ZaW5MADa8NPjdU+t1QURXp6/pChoe60tR2Qlpb5Y7LdajX5xS9qc4e0tu7aZ+6+++688IUvzL333ptqtZqFCxfmc5/7XE4++eRd+vwll1ySV7ziFfnkJz+Z17zmNbtRPQBP1Giufw1vBQAAALAD3d21nhj33FObnHto6LHeGJuDjM2hxpZzYpx8cq2XxK4M/TRa1WqyYkVtTo3167cNVJqbk4MOSp73vPEJNR5PUVTT3X1jiqIv06YdmaamsZsAfGgo+eUvk5NOqoU2u2rJkiX53e9+94T3+8Mf/jCdnZ157Wtfm8MOOywnnPDE5yABYPzp6QEAACVzDcxoOWdg92weUmr16tok35vnxdgyyNiyZ0Z7e60nxsKFtZ/jEWJsz9q1tYm677tv2/cqleSAA5Kjjtr94afGQm1y8htTFEOZPv2YNDY+wXG3HkdRJFdcUQuSmpvHdNM71dfXl9mzZ6e3tzd77713br311syZM2fPFgEwxenpAQAAAEwZ1WptGKl77qn1yHjkkdryrcOLzRoba/Ni7LtvcuyxybRpe7zkJLXJwlesSG65ZWTwsrneOXNqc2qcdtqeC1pGqyiG0t19Q4qimhkzlu3W5OSPv4/akFYnnrjnA48kaW1tzXve8568//3vz4MPPpg//dM/zY9//OM0Njbu+WIA2Ck9PQAAoGSugRkt5wzUfP3rtcCjKGq9HRYtqvXEmDdv4oQE69YlN96Y3H33tu9tHoJqvObVGE+PDWPVnxkznjwuYcdmv/lNrUdLmcdo3bp1Wbhw4fCk5xdccEE+9KEPlVcQwBSjpwcAAABQ9171qrIrqIUu99xTG4Zqcw+TzSqVZObM2g37pz994gQxu6MoimzYcHOq1Z5Mn75szIex2tqNN9aCobJDodmzZ+dNb3pTPvnJTyZJLrroopx22ml57nOfW25hAGxD6AEAAACwA9VqbcLwP/wh2bhx2/cXLkye8pRkn332fG17Uk/P8gwMPJLp049JU9P4pxB33pnMmlXruTMRvP3tb8+nPvWpFEWRs88+O894xjPKLgmA7RB6AAAAAGzH2rXJ//t/tTlADjggOeOM8nsclKG3d3X6+lanvf3QTJt22B7Z50MPJRs2JMccs0d2t0sOOeSQ/PEf/3F++MMfZu+9905ra2vZJQGwHUIPAAAAgO3YZ5/kNa8pu4ryDAw8kp6eW9PaujgdHSfvwf3Wetaccsoe2+Uue/e7352nPe1pefOb35wkGRoaype//OWcc845JjYHmCCEHgAAAAAMq1b70t19QxobO/Zo2LHZb36TnHTSHt/tLjnllFNyyqY0piiKPOc5z8nPf/7z3HHHHfngBz9YcnUAJEIPAAAAAFK7id/d/bskQ5k584RUKnt+5vWbb06OPLI2pNhkcP/99ydJPvShD+WQQw7J6173unILAiB7/q8XAAAAABPKxo0r09V1VaZNOyQzZx5fSuDx4IO1sGPOnD2+6ydkaGgoZ511VhoaasfqjW98Yy6//PKSqwJA6AEAAAAwRQ0MPJrOzl+loaEtHR0np7Fxeil1VKu1eTyOOKKU3T8hTU1Nueiii3LttdempaUl1Wo1z3nOc7Jq1aqySwOY0oQeAAAAAFNMtTqYrq6r099/fzo6Tk5r68JS67n22uQpTym1hCfsyU9+cn7xi1+ksbExAwMDOeWUU1KtVssuC2DKEnoAAAAATCE9PcvT3X1tZsw4NtOnH1l2ObnvvmTu3KStrexKnrinPvWp+dznPpckuffee/Oxj32s5IoApi4TmQMAAABMAf39D2XjxuVpbz8s06YdVnY5SWrDWq1cmZxyStmV7L7Xv/71+dGPfpTbb789L33pS8suB2DKEnoAAAAA1LFqdTDd3demqWl2OjomVrpw3XXJ8ceXXcXY+eY3v5mkNt8HAOUwvBUAAABAnerpuW3TUFbHT5jeHZs98kgyffrkHtZqa01NTcOBx1VXXZWzzz47g4ODJVcFMLWInQEAAADqzMDAo+np+UPa2w/NtGmHll3Odt16a3LyyWVXMT7Wrl2bZz3rWent7c2SJUvykY98pOySAKYMPT0AAAAA6kRRVNPV9dv099+fjo5T0tKyd9klbdfy5cmhEzOLGRMdHR3Za6+9kiQf+9jH8otf/KLkigCmDqEHAAAAQB3YuPGudHVdnRkzjsn06UeWXc7jGhxM1q1L5s0ru5Lx09ramm984xtJkqIo8pKXvCRdXV0lVwUwNYxL6HHvvffmNa95TebOnZv29vYcc8wx+e1vfzseuwIAAJh0tJmAsTQ01JPOzl+loaE5HR1PS0NDa9kl7dD11yfHHlt2FePv1FNPzfnnn58kefjhh7Nw4cJcffXV5RYFMAWM+Zwejz76aE455ZQ885nPzP/8z/9k7733zooVK4a79AEAAExl2kzAWCmKIhs23JSiGMqsWSelUqmUXdJOdXcnra1JS0vZlewZH//4x3Pbbbflv//7v9PT05PnP//5uffee9PaOrGDKYDJbMxDjw9/+MNZvHhxvvjFLw4vW7p06VjvBgAAYFLSZgLGQn//2vT03JYZM56UpqZZZZezy266KXna08quYs+pVCr5wQ9+kCc96Un5wx/+kCVLlqSvr0/oATCOxnx4qx/84Ad5ylOekle84hXZZ599cuyxx+Zzn/vcWO8GAABgUtJmAnZHtTqYrq7fZHCwM7NnP31SBR5r1yb77JNMgg4pY6qxsTGXXHJJ/vM//zPXXnttZs2aPP/NACajMQ897rzzzlx88cU55JBD8tOf/jRvfetb8/a3vz1f/vKXt7t+X19furq6RjwAAADq1WjbTIl2E1CzceMd6e6+NjNmHJdp0w4pu5xRu/325KCDyq6iHIsWLcrLXvaySTEEGcBkVymKohjLDba0tOQpT3lKfvWrXw0ve/vb355rrrkmV1111Tbrv//9788HPvCBbZZ3dnZKvgEAmBK6urrS0dHhGniKGG2bKdFugqlucLA7Gzb8Lm1tB6a1dWHZ5Twhq1fXfi5eXG4dZXvooYdy+eWX59BDD80xxxxTdjkAk8Zo2kxj3tNj4cKFOfLII0csO+KII3L33Xdvd/0LLrggnZ2dw4/Vm/8KAgAA1KHRtpkS7SaYqoqiSHf3jentvSOzZp08aQOPJLnnHoFHkpxwwgl5+ctfnje96U1llwJQt8Z8IvNTTjkly5cvH7Hstttuy/7777/d9VtbW03eBAAATBmjbTMl2k0wFfX3r83Gjbdn+vRj0tQ0s+xydsvKlckBB5RdxcTw9Kc/PXfddVeuueaa3H///Vm4cPIGWQAT1Zj39HjnO9+ZX//61/nQhz6U22+/Pf/xH/+Rz372sznvvPPGelcAAACTjjYTsCO1icqvzuBgZzo6Tp70gUeSPPBA4t5+zV/+5V8mqfXiufjii0uuBqA+jfmcHknyox/9KBdccEFWrFiRpUuX5l3velfOPffcXfqs8YwBAJhqXANPPbvTZkqcM1CvNm68M/39azNz5vFpaGguu5wxcdddSXt7Mn9+2ZVMDEVRZMGCBVm7dm3mzZuXBx54IA0NY/5vkgHqzmiuf8cl9NgdLt4BAJhqXAMzWs4ZqC9DQz3p7r4+bW1L09q6qOxyxtSvf5087WllVzGx/N3f/V0++MEPJkl+9rOf5ZnPfGbJFQFMfKVOZA4AAADAztUmKr85PT23bpqovL4Cj7vvNnn59rzuda8bfv5//s//Ka8QgDol9AAAAADYw/r7H0pX16/S1rY4M2cel0qlUnZJY+6++5J99y27ionn4IMPzpFHHpkk+eEPf5gNGzaUXBFAfWkquwAAAACAqaIoqlm//to0Nc1KR8cpZZczbtasMY/HjnzlK1/Jf/7nf+bP/uzPMn369LLLAagrQg8AAACAPaC3d1X6+u7dNFF5a9nljKtVq5ITTyy7ionruOOOy3HHHVd2GQB1yfBWAAAAAONoaKg3nZ2/StKQjo6T6z7w6OxMdjLHLFuoVqtllwBQV4QeAAAAAONkw4ZbsmHDzZk166S0tU2NWb1vvTU5/PCyq5j4brrpppx00knZd99989GPfrTscgDqhtADAAAAYIwNDDySzs4r09IyP7NmPaUuJyrfnv7+pLk5mSK/7m6ZMWNGfv3rX2fNmjX57Gc/m6Ioyi4JoC4IPQAAAADGSFEUWb/+2vT3P5COjlPS3Dyn7JL2qJtuSp70pLKrmByWLl2aZcuWJUlWrFiR66+/vuSKAOqD0AMAAABgDPT2rk5X11WZNu2oTJ9+RNnl7HFFkQwOJk1NZVcyeZx99tnDz7/yla+UWAlA/RB6AAAAAOyGarV/00Tl1XR0nJzGxraySyqFuTxG7+yzz05DQ+323Fe/+lWTmgOMAaEHAAAAwBPU07M83d2/y6xZT0tb2/5ll1Oqrq6ko6PsKiaXAw88MG95y1uSJA899FB++ctfllwRwOQn9AAAAAAYpcHBzqxb98s0Nc3NrFknpFKZ2rdY1q5N5s8vu4rJ6R//8R/T0tKSJPnoRz9acjUAk9/U/osMAAAAMAq1icqvS2/v6sye/fS0tMwru6QJ4a67kgMOKLuKyWmvvfbKW97yluy///557nOfW3Y5AJOeqaUAAAAAdkFf373p7V2VGTOOTWNje9nlTBj9/Ulzc9lVTG7/+q//mn/9138tuwyAuqCnBwAAAMAO1CYqvyrV6sCmicoFHlu6+ebk6KPLrgIAaoQeAAAAAI/jsYnKn5r29gPKLmdCGhzU02MsFEWRN73pTdl///1z//33l10OwKQl9AAAAADYyuBgZzo7r9xiovLGskuakO6+O1mypOwq6sP999+fz3/+87n77rtz6aWXll0OwKQl9AAAAADYZMuJyjs6TjFR+U6sWZMsWFB2FfVh4cKFmT59epLkv/7rv0quBmDyEnoAAAAApDZReVfXVZk27YjMmGGSip3p60taW8uuon5UKpUce+yxSZLLL788RVGUXBHA5CT0AAAAAKa0arUvnZ2/MlH5KN18c3LUUWVXUV9e8pKXJEkeffTR3HbbbSVXAzA5CT0AAACAKWvDhlvT3X1jZs060UTlo1StJk1NZVdRX0499dTh5z/84Q9LrARg8hJ6AAAAAFPOwMAjWbful2lunmei8ifg3nuTRYvKrqL+HH300WloqN2u++///u+SqwGYnIQeAAAAwJRRFEW6un6bvr77Mnv2001U/gTdd1+y775lV1F/2trasnTp0iTJjBkzSq4GYHLSCREAAACYEnp7705f3z2ZMeO4NDa2lV3OpDU4mDT4Z7Tj5sILL0xvb2+e//znl10KwKQk9AAAAACmhKamOWlrW1J2GZPeLbeYwHw8nXPOOWWXADCpyeUBAACAKaGpyXBBY6G3N2nTUWbcDQ0NZf369WWXATDpCD0AAAAA2CVdXcnMmWVXUd8GBgZy/vnnp729PX/7t39bdjkAk47QAwAAAIBdsnx5cthhZVdR3zZu3Jh//dd/zcDAQK6//vqyywGYdIQeAAAAAOyySqXsCurbrFmz0t7eniT5/e9/X3I1AJOP0AMAAACAnVq9Otlvv7KrmBoWLFiQJOnu7k5nZ2fJ1QBMLkIPAAAAAHZqzZpk4cKyq5gaNoceSbJ69eoSKwGYfIQeAAAAAOxQUZRdwdSyzz77DD8XegCMjtADAAAAgB269dbk8MPLrmLqmDFjxvBzoQfA6Ag9AAAAANih7u5k5syyq5g6pk2bliQ58sgjs5+JVABGpansAgAAAACYuPr7k+bmsquYWl796lfnhBNOyFOe8pQce+yxZZcDMKkIPQAAAAB4XLfckhx5ZNlVTC3PeMYzcsghh6SlpaXsUgAmHcNbAQAAAPC4+vsT9973rL/6q7/Kvvvum4997GN5+OGHyy4HYFIRegAAAACwXT09SXt72VVMLdddd10+/vGPJ0k+/OEP553vfGfJFQFMLkIPAAAAALbrlluSI44ou4qp5corrxx+/uY3vzn//u//XmI1AJOP0AMAAACA7apWk8bGsquYWqrVatklAExqQg8AAAAAttHVlcyaVXYVU9vQ0FDZJQBMOkIPAAAAALZx223JoYeWXcXU07hF1xqhB8DoCT0AAAAA2EZRJJVK2VVMPYsWLcrs2bOTJH19feUWAzAJCT0AAAAAGOGRR5K99iq7iqnppS99aT70oQ8lSTZu3FhyNQCTj9ADAAAAgBHuuCM56KCyq5i62tvbkyS9vb0lVwIw+TSVXQAAAAAAE4+hrcrz1Kc+NR/72Mdy8MEHl10KwKQj9AAAAABg2MMPJ3Pnll3F1PbOd74zt912Wy655JKySwGYdAxvBQAAAMCwO+9Mli4tu4qpbeXKlbnrrrty7733ll0KwKQj9AAAAABgBENblWv//fdPkvzwhz8suRKAyUfoAQAAAEASQ1tNFEuWLEmSfPzjH09RFCVXAzC5CD0AAAAASGJoq4niSU96UpKkKIp0dnaWXA3A5CL0AAAAAGCYoa3Kd/TRRw8/f+ihh0qsBGDyEXoAAAAAkEcfTWbPLrsKkuSwww4bfr5mzZoSKwGYfIQeAAAAAOSOO5KDDy67CpJk3333TWtra5Jk5cqVJVcDMLmMe+jxT//0T6lUKjn//PPHe1cAAACTjjYTMFEUhaGtJopKpZJnP/vZSZKBgYGSqwGYXMY19Ljmmmvymc98ZnjyJQAAAB6jzQRMFF1dyaxZZVfBlvbZZ58kydq1a0uuBGByGbfQo7u7O69+9avzuc99Lnvttdd47QYAAGBS0mYCJpIVK5JDDy27Crb0ile8Ih/96EfzzGc+s+xSACaVcQs9zjvvvLzgBS/I6aefvsP1+vr60tXVNeIBAABQ73a1zZRoNwHjr1o1tNVE097enk984hP5m7/5m7JLAZhUmsZjo9/4xjdy3XXX5ZprrtnpuhdddFE+8IEPjEcZAAAAE9Jo2kyJdhMwvjZsSNrby66Crc2ePTt33313enp6yi4FYFIZ854eq1evzjve8Y587WtfS1tb207Xv+CCC9LZ2Tn8WL169ViXBAAAMGGMts2UaDcB42v58uTww8uugq0tWrQoSfLQQw+ls7Oz5GoAJo8x7+lx7bXXZu3atTnuuOOGlw0NDeWKK67IJz/5yfT19aWxsXH4vdbW1rS2to51GQAAABPSaNtMiXYTML6GhpKmcRkLhN2xatWq4ecrV67Mk5/85PKKAZhExvxP2rOf/ezcdNNNI5a9/vWvz+GHH553v/vd21y8AwAATCXaTMBE0t+ftLSUXQXbc9dddw0/X7FihdADYBeNeegxc+bMHH300SOWTZ8+PXPnzt1mOQAAwFSjzQRMJLfckhxxRNlVsD1b9vCbM2dOiZUATC5jPqcHAAAAAJODnh4T1/HHHz8899Pm+T0A2Lk9MmLjZZddtid2AwAAMClpMwFlGBpKGvxz2Alrv/32y/7775/ly5fngQceyBG65ADsEn/aAAAAAKag225LDjus7CrYkX322SdJ8sADD5RcCcDkIfQAAAAAmIK6u5MZM8qugh2Zsek/0K233lpyJQCTh9ADAAAAYIopiqRSKbsKdubhhx9OkmzcuLHkSgAmD6EHAAAAwBRz113JAQeUXQU784xnPCNJsmHDhpIrAZg8hB4AAAAAU8zDDyfz5pVdBTtz5JFHJkluueWWkisBmDyEHgAAAAAwAS1ZsiRJcsMNN5RbCMAkIvQAAAAAmEIeeCDZZ5+yq2BXdHZ2JqnN7bH5OQA7JvQAAAAAmELuvjtZvLjsKtgV++677/BzQ1wB7BqhBwAAAMAUU6mUXQG7Yvbs2cPPV6xYUV4hAJOI0AMAAABgili/Ppkxo+wq2FUdHR3Dz0888cQSKwGYPIQeAAAAAFPEihXJoYeWXQW7atq0acPPFxuTDGCXCD0AAAAApohqNWlsLLsKdlVbW9vw840bN5ZYCcDkIfQAAAAAmAIGBpKmprKrYDSam5vTuCml+sUvflFyNQCTg9ADAAAAYAro6UkOP7zsKhitl7zkJUmST3ziEyVXAjA5CD0AAAAApoCOjmSL0ZKYJF772tcmSdavX19yJQCTg9ADAAAAACaoWbNmJUm6u7tLrgRgchB6AAAAAMAEtWrVqiTJhg0bSq4EYHIQegAAAADABFQURd7whjckEXoA7CqhBwAAAABMQBs3bszQ0FCSpLe3t+RqACYHoQcAAAAATEBdXV3Dzzdu3JiiKEqsBmByEHoAAAAAwAS0OfRob2/Ppz/9aaEHwC5oKrsAAAAAAGBbDz30UJJkwYIFOffcc0uuBmBy0NMDAAAAACaYoaGhfOhDH0pSCz0A2DVCDwAAAACYYL7+9a/nxz/+cZJk7ty5JVcDMHkIPQAAAABgAimKIh/84AeTJM94xjPyqle9quSKACYPc3oAAAAAwARy22235dZbb01LS0t+8IMfZNasWWWXBDBp6OkBAAAAABPI//zP/ySp9fIQeACMjtADAAAAACaQn/zkJ0mSww47LH/4wx/S399fckUAk4fQAwAAAAAmiMHBwVx++eVJki984Qs56qijcuedd5ZcFcDkIfQAAAAAgAmiUqlk4cKFOfbYY9PT05MkWbJkSclVAUweJjIHAAAAgAmisbExd955Z2688cYsW7Ysc+fOzbRp08ouC2DS0NMDAAAAACaY1atXJ0kWL15cciUAk4vQAwAAAAAmmLvuuitJcsABB5RaB8BkY3grAAAAAJhALrzwwnziE59IIvQAGC09PQAAAABgAunq6kpXV1eSZOnSpSVXAzC5CD0AAAAAYAJZtGhRkmTZsmX5oz/6o5KrAZhchB4AAAAAMIHsu+++SZK5c+fm2GOPLbkagMlF6AEAAAAAE8jm0OPee+8tuRKAyUfoAQAAAAATSF9fX5Jk9erVJVcCMPkIPQAAAABgArnyyiuTJD09PVm/fn3J1QBMLkIPAAAAAJhArrrqqiTJ/vvvL/QAGCWhBwAAAABMEOvXr88VV1yRJPl//+//ZdGiRSVXBDC5CD0AAAAAYIK49NJLMzAwkIMOOiiHHHJI2eUATDpCDwAAAACYIH784x8nSZ7//OenUqmkKIqSKwKYXIQeAAAAADABPPLII/n617+eJJk+fXqWLl2ac889t+SqACYXoQcAAAAATACXXXZZNm7cmGXLluWYY47JXXfdlRUrVpRdFsCk0lR2AQAAAABA8tKXvjS33357HnzwwVSr1STJnXfeWXJVAJOLnh4AAAAAMEEsXbo0xx9/fL72ta8lSe6999709fWVXBXA5CH0AAAAAIASrVy5Mr/61a+GX//FX/xFPvnJTyZJ5s+fn8bGxrJKA5h0hB4AAAAAUJKiKHLuuefm6U9/ei6++OL84he/yGc/+9lUKpX827/9W/7whz+kqckI9QC7yjcmAAAAAJTki1/8Yi699NK0tbXlOc95TpYuXZqPfexjefDBB/O2t72t7PIAJh2hBwAAAACU4NZbb8073vGOJMnf//3f5+CDD06SvOtd7yqzLIBJzfBWAAAAALCHbdiwIS9/+cvT3d2dZzzjGXnnO99ZdkkAdWHMQ4+LLrooJ5xwQmbOnJl99tknZ511VpYvXz7WuwEAAJiUtJkAKIoib3nLW/L73/8+CxYsyDe+8Q3zdgCMkTEPPS6//PKcd955+fWvf51LLrkkAwMDee5zn5sNGzaM9a4AAAAmHW0mAC6//PJ89atfTWNjY77xjW9kwYIFZZcEUDcqRVEU47mDBx98MPvss08uv/zynHrqqTtdv6urKx0dHens7MysWbPGszQAAJgQXANPbaNtMyXOGYB68IUvfCGdnZ2GtQLYBaO5/h33fnOdnZ1Jkjlz5mz3/b6+vvT19Q2/7urqGu+SAAAAJoydtZkS7SaAevSGN7yh7BIA6tK4TmRerVZz/vnn55RTTsnRRx+93XUuuuiidHR0DD8WL148niUBAABMGLvSZkq0mwAAYFeN6/BWb33rW/M///M/+eUvf5n99ttvu+ts718sLV68WDdtAACmDEMVTV270mZKtJsAAJjaJsTwVm9729vyox/9KFdcccUOL95bW1vT2to6XmUAAABMSLvaZkq0mwAAYFeNeehRFEX+8i//Mt/97ndz2WWXZenSpWO9CwAAgElLmwkAAMbPmIce5513Xv7jP/4j3//+9zNz5sysWbMmSdLR0ZH29vax3h0AAMCkos0EAADjZ8zn9KhUKttd/sUvfjGve93rdvp54xkDADDVuAaeWna3zZQ4ZwAAmFpKndNjHOdFBwAAmPS0mQAAYPw0lF0AAAAAAADAWBB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0Yt9DjU5/6VA444IC0tbXlxBNPzNVXXz1euwIAAJh0tJkAAGDsjUvo8c1vfjPvete78r73vS/XXXddli1bljPOOCNr164dj90BAABMKtpMAAAwPsYl9Pj4xz+ec889N69//etz5JFH5tOf/nSmTZuWL3zhC+OxOwAAgElFmwkAAMZH01hvsL+/P9dee20uuOCC4WUNDQ05/fTTc9VVV22zfl9fX/r6+oZfd3Z2Jkm6urrGujQAAJiQNl/7FkVRciXsCaNtMyXaTQAATG2jaTONeejx0EMPZWhoKPPnzx+xfP78+bn11lu3Wf+iiy7KBz7wgW2WL168eKxLAwCACe3hhx9OR0dH2WUwzkbbZkq0mwAAIEnWr1+/0zbTmIceo3XBBRfkXe961/DrdevWZf/998/dd9+twccu6erqyuLFi7N69erMmjWr7HKYBJwzjJZzhtFyzjBanZ2dWbJkSebMmVN2KUxQW7ebqtVqHnnkkcydOzeVSmWP1uI7bvc4frvPMdw9jt/ucfx2j+O3exy/3ecY7p4yj19RFFm/fn0WLVq003XHPPSYN29eGhsb88ADD4xY/sADD2TBggXbrN/a2prW1tZtlnd0dDjxGJVZs2Y5ZxgV5wyj5ZxhtJwzjFZDw7hMuccEM9o2U7L9dtPs2bPHq8Rd4jtu9zh+u88x3D2O3+5x/HaP47d7HL/d5xjunrKO3652khjzVlVLS0uOP/74XHrppcPLqtVqLr300px00kljvTsAAIBJRZsJAADGz7gMb/Wud70r55xzTp7ylKfkqU99av7lX/4lGzZsyOtf//rx2B0AAMCkos0EAADjY1xCj7PPPjsPPvhg3vve92bNmjV58pOfnJ/85CfbTNS3Pa2trXnf+9633SGvYHucM4yWc4bRcs4wWs4ZRss5M/XsTpupbM7X3eP47T7HcPc4frvH8ds9jt/ucfx2n2O4eybL8asURVGUXQQAAAAAAMDuMlMiAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1IUJF3p86lOfygEHHJC2traceOKJufrqq8suiQnq/e9/fyqVyojH4YcfXnZZTCBXXHFFXvjCF2bRokWpVCr53ve+N+L9oijy3ve+NwsXLkx7e3tOP/30rFixopximRB2ds687nWv2+Z753nPe145xVK6iy66KCeccEJmzpyZffbZJ2eddVaWL18+Yp3e3t6cd955mTt3bmbMmJGXvexleeCBB0qqmLLtyjlz2mmnbfM985a3vKWkipmKduU83dqXvvSlbc7btra2PVTxxPNE2inf/va3c/jhh6etrS3HHHNM/vu//3sPVTvxHHDAAdscv0qlkvPOO2+760/182+82jxT5d7Mjo7fwMBA3v3ud+eYY47J9OnTs2jRorz2ta/Nfffdt8NtTqV7FePVfpoq51+y82O4ve/DSqWSj3zkI4+7zalyDo5Xe2wq3Sva2TF85JFH8pd/+Zc57LDD0t7eniVLluTtb397Ojs7d7jdiXDvZEKFHt/85jfzrne9K+973/ty3XXXZdmyZTnjjDOydu3asktjgjrqqKNy//33Dz9++ctfll0SE8iGDRuybNmyfOpTn9ru+//8z/+cT3ziE/n0pz+d3/zmN5k+fXrOOOOM9Pb27uFKmSh2ds4kyfOe97wR3ztf//rX92CFTCSXX355zjvvvPz617/OJZdckoGBgTz3uc/Nhg0bhtd55zvfmR/+8If59re/ncsvvzz33XdfXvrSl5ZYNWXalXMmSc4999wR3zP//M//XFLFTEW7ep5ubdasWSPO21WrVu2hiiem0bRTfvWrX+VVr3pV3vjGN+b666/PWWedlbPOOis333zzHqx44rjmmmtGHLtLLrkkSfKKV7zicT8zlc+/8WjzTKV7Mzs6fj09Pbnuuuty4YUX5rrrrst3vvOdLF++PC960Yt2ut2pcq9iPNpPU+n8S3Z+DLc8dvfff3++8IUvpFKp5GUve9kOtzsVzsHxao9NpXtFOzuG9913X+6777589KMfzc0335wvfelL+clPfpI3vvGNO9126fdOignkqU99anHeeecNvx4aGioWLVpUXHTRRSVWxUT1vve9r1i2bFnZZTBJJCm++93vDr+uVqvFggULio985CPDy9atW1e0trYWX//610uokIlm63OmKIrinHPOKV784heXUg8T39q1a4skxeWXX14URe07pbm5ufj2t789vM4tt9xSJCmuuuqqsspkAtn6nCmKonjGM55RvOMd7yivKNjK9s7TrX3xi18sOjo69lxRE9xo2ymvfOUrixe84AUjlp144onFn//5n49xZZPTO97xjuKggw4qqtXqdt93/j1mrNo8U/XezPau/7d29dVXF0mKVatWPe46U/VexVi1n6bq+VcUu3YOvvjFLy6e9axn7XCdqXoOjkV7bKrfK9qV675vfetbRUtLSzEwMPC460yEeycTpqdHf39/rr322px++unDyxoaGnL66afnqquuKrEyJrIVK1Zk0aJFOfDAA/PqV786d999d9klMUmsXLkya9asGfGd09HRkRNPPNF3Djt02WWXZZ999slhhx2Wt771rXn44YfLLokJYnMX3zlz5iRJrr322gwMDIz4njn88MOzZMkS3zMk2fac2exrX/ta5s2bl6OPPjoXXHBBenp6yigPkjz+ebq17u7u7L///lm8eHFe/OIX5/e///2eKG/CGk075aqrrhrxtyJJzjjjDH8rUrtP8NWvfjVveMMbUqlUHnc959/2PZE2j3szO9bZ2ZlKpZLZs2fvcD33Kh4zmvaT82/HHnjggfz4xz/epX9lPxXPwbFoj031e0W7ct3X2dmZWbNmpampaYfbKvveyYQJPR566KEMDQ1l/vz5I5bPnz8/a9asKakqJrITTzxxuFvVxRdfnJUrV+aP/uiPsn79+rJLYxLY/L3iO4fReN7znpd///d/z6WXXpoPf/jDufzyy3PmmWdmaGio7NIoWbVazfnnn59TTjklRx99dJLa90xLS8s2jWLfMyTbP2eS5E//9E/z1a9+NT//+c9zwQUX5Ctf+Upe85rXlFgpU9njnadbO+yww/KFL3wh3//+9/PVr3411Wo1J598cu655549WO3EMdp2ypo1a1yTPo7vfe97WbduXV73utc97jrOv8f3RNo87s08vt7e3rz73e/Oq171qsyaNetx13Ov4jGjbT85/3bsy1/+cmbOnLnT4Zmm4jk4Vu2xqXyvaFeu+x566KH8wz/8Q9785jfvcFsT4d7JjiMZmMDOPPPM4edPetKTcuKJJ2b//ffPt771rV1KvQFG60/+5E+Gnx9zzDF50pOelIMOOiiXXXZZnv3sZ5dYGWU777zzcvPNN9flWLmMj8c7Z7ZsQBxzzDFZuHBhnv3sZ+eOO+7IQQcdtKfLZIrb1e+2k046KSeddNLw65NPPjlHHHFEPvOZz+Qf/uEfxrvMCUc7Zex8/vOfz5lnnplFixY97jrOP/aEgYGBvPKVr0xRFLn44ot3uK7vgMdoP42tL3zhC3n1q1+dtra2Ha43Fc9B7bHdt7Nj2NXVlRe84AU58sgj8/73v3+H25oI/+9PmJ4e8+bNS2NjYx544IERyx944IEsWLCgpKqYTGbPnp1DDz00t99+e9mlMAls/l7xncPuOPDAAzNv3jzfO1Pc2972tvzoRz/Kz3/+8+y3337DyxcsWJD+/v6sW7duxPq+Z3i8c2Z7TjzxxCTxPcMeN5rzdGvNzc059thjnbeb7KydsmDBAtek27Fq1ar87//+b970pjeN6nPOv8c8kTaPezPb2hx4rFq1KpdccskOe3lsj3sVj9lZ+8n59/h+8YtfZPny5aP+Tkzq/xwcy/bYVL1XtLPrvvXr1+d5z3teZs6cme9+97tpbm4e1fbLuHcyYUKPlpaWHH/88bn00kuHl1Wr1Vx66aUj/tUGPJ7u7u7ccccdWbhwYdmlMAksXbo0CxYsGPGd09XVld/85je+c9hl99xzTx5++GHfO1NUURR529velu9+97v52c9+lqVLl454//jjj09zc/OI75nly5fn7rvv9j0zRe3snNmeG264IUl8z7DHPJHzdGtDQ0O56aabnLeb7KydctJJJ434W5Ekl1xyyZT/W/HFL34x++yzT17wgheM6nPOv8c8kTaPezMjbQ48VqxYkf/93//N3LlzR70N9yoes7P2k/Pv8X3+85/P8ccfn2XLlo36s/V6Do5He2yq3Svaleu+rq6uPPe5z01LS0t+8IMf7LSn0faUcu+kzFnUt/aNb3yjaG1tLb70pS8Vf/jDH4o3v/nNxezZs4s1a9aUXRoT0F/91V8Vl112WbFy5criyiuvLE4//fRi3rx5xdq1a8sujQli/fr1xfXXX19cf/31RZLi4x//eHH99dcXq1atKoqiKP7pn/6pmD17dvH973+/uPHGG4sXv/jFxdKlS4uNGzeWXDll2dE5s379+uKv//qvi6uuuqpYuXJl8b//+7/FcccdVxxyyCFFb29v2aVTgre+9a1FR0dHcdlllxX333//8KOnp2d4nbe85S3FkiVLip/97GfFb3/72+Kkk04qTjrppBKrpkw7O2duv/324u///u+L3/72t8XKlSuL73//+8WBBx5YnHrqqSVXzlSyK99tf/Znf1a85z3vGX79gQ98oPjpT39a3HHHHcW1115b/Mmf/EnR1tZW/P73vy/jVyjdztopWx+/K6+8smhqaio++tGPFrfcckvxvve9r2hubi5uuummsn6F0g0NDRVLliwp3v3ud2/znvNvpLFo8zzrWc8q/u3f/m349VS6N7Oj49ff31+86EUvKvbbb7/ihhtuGPGd2NfXN7yNrY/fVLpXMRbtp6l8/hXFzv8fLoqi6OzsLKZNm1ZcfPHF293GVD0Hx6o9dthhhxXf+c53hl9PpXtFOzuGnZ2dxYknnlgcc8wxxe233z5incHBweHtbHkMJ8q9kwkVehRFUfzbv/1bsWTJkqKlpaV46lOfWvz6178uuyQmqLPPPrtYuHBh0dLSUuy7777F2WefXdx+++1ll8UE8vOf/7xIss3jnHPOKYqiKKrVanHhhRcW8+fPL1pbW4tnP/vZxfLly8stmlLt6Jzp6ekpnvvc5xZ777130dzcXOy///7FueeeW7cX3+zc9s6VJMUXv/jF4XU2btxY/MVf/EWx1157FdOmTSte8pKXFPfff395RVOqnZ0zd999d3HqqacWc+bMKVpbW4uDDz64+Ju/+Zuis7Oz3MKZUnblu+0Zz3jG8PVUURTF+eefP9yGmz9/fvH85z+/uO666/Z88RPEztopWx+/oiiKb33rW8Whhx5atLS0FEcddVTx4x//eA9XPbH89Kc/LZJs99rc+TfSWLR59t9//+J973vfiGVT5d7Mjo7fypUrH/c78ec///nwNrY+flPpXsVYtJ+m8vlXFDv/f7goiuIzn/lM0d7eXqxbt26725iq5+BYtce2/sxUule0s2P4eOdnkmLlypUjtrP5MxPl3kllU2EAAAAAAACT2oSZ0wMAAAAAAGB3CD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgL/z+FkXEh5vKrFwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVPElEQVR4nO3deZhcdZ0v/nf1viTpkIRskISwyL5vIiAuKKKj4sq4jCAjXh0cRebOIPe5uMyM4v6bcRmdcQR1dNzGcXf0IrLIouyKrAFD2BIgYLo7nd7SfX5/VNKQkK2T7lR19ev1PP101alT53zqcKic73n39/stFUVRBAAAAAAAYIKrq3QBAAAAAAAAY0HoAQAAAAAA1AShBwAAAAAAUBOEHgAAAAAAQE0QegAAAAAAADVB6AEAAAAAANQEoQcAAAAAAFAThB4AAAAAAEBNEHoAAAAAAAA1QegBAAAAAADUhFGHHldddVVe/vKXZ/78+SmVSvnBD34w8trg4GDOP//8HHzwwWlvb8/8+fPzlre8JY888shY1gwAAFC1tJkAAKByRh169PT05NBDD83nP//5Z7y2Zs2a3Hzzzbnwwgtz880357//+79z99135xWveMWYFAsAAFDttJkAAKBySkVRFNv95lIp3//+93Paaadtdp0bbrghxxxzTJYtW5aFCxdu764AAAAmHG0mAADYuRrGewednZ0plUqZPn36Jl/v7+9Pf3//yPPh4eE8+eSTmTlzZkql0niXBwAAFVcURbq7uzN//vzU1Zl2b7LZWpsp0W4CAGByG02baVxDj76+vpx//vl5wxvekGnTpm1ynYsuuigf+tCHxrMMAACYEB588MHsvvvulS6DnWhb2kyJdhMAACTb1mYat+GtBgcH85rXvCYPPfRQrrjiis1ewG/8F0udnZ1ZuHBhHnzwwS1e9AMAQK3o6urKggULsmrVqnR0dFS6HMbQWLSZEu0mAAAmt9G0mcalp8fg4GBe//rXZ9myZfnVr361xYvw5ubmNDc3P2P5tGnTXLwDADCpGKZo8hhNmynRbgIAgGTb2kxjHnqsv3hfsmRJLr/88sycOXOsdwEAADBhaTMBAMD4GXXosXr16tx7770jz5cuXZpbb701M2bMyLx58/La1742N998c37yk59kaGgoK1asSJLMmDEjTU1NY1c5AABAFdJmAgCAyhn1nB5XXHFFnv/85z9j+RlnnJEPfvCDWbx48Sbfd/nll+d5z3veVrff1dWVjo6OdHZ26qYNAMCk4Bq4tox3mylxzgAAMLmM5vp31D09nve852VLOckOzIsOAAAw4WkzAQBA5dRVugAAAAAAAICxIPQAAAAAAABqgtADAAAAAACoCUIPAAAAAACgJgg9AAAAAACAmiD0AAAAAAAAaoLQAwAAAAAAqAlCDwAAAAAAoCYIPQAAAAAAgJog9AAAAAAAAGqC0AMAAAAAAKgJQg8AAAAAAKAmCD0AAAAAAICaIPQAAAAAAABqgtADAAAAAACoCUIPAAAAAACgJgg9AAAAAACAmiD0AAAAAAAAaoLQAwAAAAAAqAlCDwAAAAAAoCYIPQAAAAAAgJog9AAAAAAAAGqC0AMAAAAAAKgJQg8AAAAAAKAmCD0AAAAAAICaIPQAAAAAAABqgtADAAAAAACoCUIPAAAAAACgJgg9AAAAAACAmiD0AAAAAAAAaoLQAwAAAAAAqAlCDwAAAAAAoCYIPQAAAAAAgJog9AAAAAAAAGqC0AMAAAAAAKgJQg8AAAAAAKAmCD0AAAAAAICaIPQAAAAAAABqgtADAAAAAACoCUIPAAAAAACgJgg9AAAAAACAmiD0AAAAAAAAaoLQAwAAAAAAqAlCDwAAAAAAoCYIPQAAAAAAgJog9AAAAAAAAGqC0AMAAAAAAKgJQg8AAAAAAKAmCD0AAAAAAICaIPQAAAAAAABqgtADAAAAAACoCUIPAAAAAACgJgg9AAAAAACAmjDq0OOqq67Ky1/+8syfPz+lUik/+MEPNni9KIq8//3vz7x589La2pqTTz45S5YsGat6AQAAqpo2EwAAVM6oQ4+enp4ceuih+fznP7/J1z/+8Y/nM5/5TL74xS/mt7/9bdrb23PKKaekr69vh4sFAACodtpMAABQOQ2jfcOpp56aU089dZOvFUWRf/qnf8r//b//N6985SuTJF/72tcyZ86c/OAHP8if//mf71i1AAAAVU6bCQAAKmdM5/RYunRpVqxYkZNPPnlkWUdHR4499thcd911m3xPf39/urq6NvgBAACoRdvTZkq0mwAAYFuNaeixYsWKJMmcOXM2WD5nzpyR1zZ20UUXpaOjY+RnwYIFY1kSAABA1dieNlOi3QQAANtqTEOP7XHBBReks7Nz5OfBBx+sdEkAAABVRbsJAAC2zZiGHnPnzk2SPProoxssf/TRR0de21hzc3OmTZu2wQ8AAEAt2p42U6LdBAAA22pMQ4/Fixdn7ty5ueyyy0aWdXV15be//W2OO+64sdwVAADAhKPNBAAA46thtG9YvXp17r333pHnS5cuza233poZM2Zk4cKFOffcc/OP//iP2WeffbJ48eJceOGFmT9/fk477bSxrBsAAKAqaTMxGa1e/fu0tR2QurpR32YAABhTo74aufHGG/P85z9/5Pl5552XJDnjjDPyla98JX/3d3+Xnp6evP3tb8+qVatywgkn5Oc//3laWlrGrmoAAIAqpc3EZNTWtn+6u29MU9PctLbuUelyAIBJrFQURVHpIp6uq6srHR0d6ezsNE4tAACTgmtgRss5Q7Xq63so/f3LMmXKkamvF+QBAGNjNNe/+p0CAAAAY6KlZfc0N++W7u6bUl8/Je3t+1W6JABgkhnTicwBAACAya1UKmXatKPS2Dgrq1ZdnbVruypdEgAwiejpAQAAAIy5pqZZaWw8Pj09tyUp0t5+SEqlUqXLAgBqnJ4eAAAAwLgolUqZMuWQtLTsma6uazMwsLLSJQEANU7oAQAAAIyrhoap6eg4PmvXPpGurhtTFEWlSwIAapThrQAAAICdoq1t3wwN9aWr67q0tCxKc/NulS4JAKgxenoAAAAAO019fUs6Op6T4eH+dHZel+HhtZUuCQCoIUIPAAAAYKdrbd0zU6cene7uG9Pbe3+lywEAaoTQAwAAAKiIurqGdHQ8O3V1jensvDbDw/2VLgkAmODM6QEAAABUVHPzbmlqmpfu7pvS0DA9bW37VLokAGCC0tMDAAAAqLhSqS7Tph2dhoZpWbXq6gwNral0SQDABKSnBwAAAFA1mprmpLFxdlavviV1da1pb9+/0iUBABOInh4AAABAVSmVSpk69Yg0Nc3OqlVXZ+3a7kqXBABMEEIPAAAAoCo1Ns5MR8fx6e29L6tX31bpcgCACUDoAQAAAFStcq+Pw9LcvCCrVl2dwcFVlS4JAKhiQg8AAACg6jU2Ts/06Sekv/+hrF79uxRFUemSAIAqJPQAAAAAJowpUw5KS8ue6ey8JoODT1a6nJ1qxYpKVwAA1U/oAQAAAEwoDQ1TM336CRkYWJHu7lsnTa+Pzs7kiScqXQUAVDehBwAAADAhtbcfkNbWvdPZeU0GBlZWupxxt+++yT33VLoKAKhuQg8AAABgwmpomJLp00/I4ODj6e6+peZ7fSxYkDz4YKWrAIDqJfQAAAAAJrz29v3T1vasmu/1sfvuQg8A2BKhBwAAAFAT6uvbn9br4+aa7fWx337JXXdVugoAqE5CDwAAAKCmlHt97FuzvT5mzEhWrUqGhytdCQBUH6EHAAAAUHM27PVxa831+jjssOR3v6t0FQBQfYQeAAAAQM1qb98/ra17p7PzmgwOPlnpcsZMS0u5p8fAQKUrAYDqIvQAAAAAalpDw5RMn35CBgaW11Svj8MOS265pdJVAEB1EXoAAAAAk0J7+4Fpbd1rXa+PVZUuZ4fV1ydTpyadnZWuBACqh9ADAAAAmDQaGqZm+vQT0t//YFav/kOly9lh+++f3HFHpasAgOoh9AAAAAAmnSlTDk5z8+5ZterqrF3bXelytluplMyfnzz8cKUrAYDqIPQAAAAAJqXGxunp6Dg+vb33pafnzkqXs90WLUqWLat0FQBQHYQeAAAAwKRVKpUydephaWzcNatWXZ2hoTWVLmm7POtZyd13V7oKAKg8oQcAAAAw6TU1zUpHx/Hp6bkja9YsqXQ5ozZrVvLkk0lRVLoSAKgsoQcAAABAyr0+pk07KvX1U9LZeW2GhwcqXdKoHHZY8rvfVboKAKgsoQcAAADA0zQ3z8u0ac/O6tW3pq9v4kyW0dqarF2bDEysrAYAxpTQAwAAAGAjpVJdpk07Jkldurp+m6IYqnRJ2+Tww5Nbbql0FQBQOUIPAAAAgM1oaVmQKVOOSFfXb9Pfv7zS5WxVfX0ybVqyalWlKwGAyhB6AAAAAGxBXV1jOjqek6Gh1enquiFFlc8Wvt9+yR13VLoKAKgMoQcAAADANmhr2yft7Qems/PqDA4+UelyNqtUShYsSB58sNKVAMDOJ/QAAAAA2Eb19W2ZPv3EDAysyOrVv690OZsl9ABgshJ6AAAAAIxSe/uBaW5emFWrfp21a1dXupxN2n//5M47K10FAOxcQg8AAACA7dDYOD0dHSekt/eerFlzT6XLeYZddkm6upKhoUpXAgA7j9ADAAAAJpGhod50d9+U1at/n6GhnkqXM+GVSqVMnXpE6uunpbPzmgwPD1S6pA0cfnhyyy2VrgIAdp6GShcAAAAA7Dz19a2ZOvXIDA8PpLf3vgwPrxl5rbl5YZqadq1gdRNXc/PcNDXtmu7uG9PUND8tLQsqXVKSpKkpaWxMenqS9vZKVwMA40/oAQAAAJNQXV1T2tv3H3leFEX6+x9Id/dNKYoiSdLYOCstLYtSKpUqVeaEUirVZ9q0Y9Pbe3+6uq7P1KlHpVSq/CAbhxySXHdd8pznVLoSABh/Qg8AAAAgpVIpLS2L0tKyaGTZwMDKrF5980gIUl/fntbWvVNX11ipMieE1tY90tw8L52d16atbd+K954plZJ585Lly8u/AaCWCT0AAACATWpqmpWmplkjz9euXZ2enttTFGuTlHuLtLbuk/r61kqVWLXq6pozffoJ6em5MwMDj6S9/ZCK9phZvDi59lqhBwC1T+gBAAAAbJOGhimZOvWwkefDw/3p7b03w8N965bUp7V1rzQ0TK1IfdWovX3/rF3blc7OqzNlymEVPTb77pvcfXf5NwDUKqEHAAAAsF3q6prT3n7gyPPh4bXp67svvb2r1y0ppaVlcRobd6lMgVWioWFaOjpOyOrVv0t9fWva2iqTOsycmdx7bzI0lNTXV6QEABh3Qg8AAABgTNTVNWxwQ78ohtPXd396e+8bGdqpuXnRBkNmTRalUilTpx6WgYHHsmrV1Zk27ZjU1TXt9DoOPzy5+ebk6KN3+q4BYKcQegAAAADjolSqS2vrnmlt3TNJUhRF+vqWpbt72cg6ky0EaWqancbGWenuviGNjXPS2rrHTt5/0tycdHcnU41CBkANEnoAAAAAO0WpVFp3k3+PJBuGIEVRpFQqpaVljzQ2zqxkmeOuVKrLtGnHpq/vgXR2/ibTph2dUmnnjTd18MHJddclz3nOTtslAOw0Qg8AAACgIjYdgtyf3t6l64bDqu05QVpaFqapaW46O69La+veaW6eu1P2WyolCxYkDz5Y/g0AtUToAQAAAFSFcgiyOK2ti5OU5wTp7f1j+vr+uG6N+rS27pWGhtoZl6murinTp5+QNWvuSXf3w5ky5YiR+U/G04IFybXXJrvvXg5BAKBW1I31BoeGhnLhhRdm8eLFaW1tzV577ZV/+Id/SFEUY70rAACACUebCbZdqVSXtra9M3XqkZk69ci0tx+UgYFH0t19U7q6bszq1b/P0FBfpcscE21tz0pb237p7Lw6g4NP7pR9HnxwctttO2VXALDTjHlPj4997GP5whe+kK9+9as58MADc+ONN+atb31rOjo68u53v3usdwcAADChaDPB9qura0hb274jz4eH+7NmzZIMD5eDj/r69rS27pO6uok5sEV9fXumTz8xq1f/If39D2XKlEPGdX9TpyaDg0lfX9LSMq67AoCdZsyvAq699tq88pWvzMte9rIkyR577JFvfvObuf7668d6VwAAABOONhOMnbq65kyZctDI87VrV6en5w8pirVJksbGWWlpWbRThosaS1OmHJS1azuzatWvM2XKYeM6nNfhhye//W1y3HHjtgsA2KnGfHir5zznObnssstyzz33JEl+97vf5eqrr86pp5461rsCAACYcLSZYPw0NEzJ1KmHZdq0ozJt2lGpr5+S1atvTlfXjenuvikDAysrXeI2a2joSEfHCentvS89PXeM237q6pK5c5NHHhm3XQDATjXmPT3e9773paurK/vtt1/q6+szNDSUD3/4w3nTm960yfX7+/vT398/8ryrq2usSwIAAKgao20zJdpNsL2ammalqWlWkqQoivT1LUt397IkSanUkNbWfVJf31bJEreoVCpl6tTDMjj4ZFatunpdr48pY76fxYvLk5rPm2dScwAmvjEPPb7zne/kG9/4Rv7zP/8zBx54YG699dace+65mT9/fs4444xnrH/RRRflQx/60FiXAQAAUJVG22ZKtJtgLJRKpbS27pFkjyTJ8PBgenuXZGhoTZIiDQ3T0tq6d0ql+gpWuWmNjTPS0XF8Vq/+XerqmtPevv+Y7+Pgg5M//KH8GwAmslJRFMVYbnDBggV53/vel3POOWdk2T/+4z/m61//eu66665nrL+pv1hasGBBOjs7M23atLEsDQAAqlJXV1c6OjpcA08So20zJdpNsDOsXduZ3t77UhRDSUppaVmYpqbZlS7rGQYHn0hPz52ZMuXQMZ/r4+abk/33T1pbx3SzALDDRtNmGvOeHmvWrEld3YZThdTX12d4eHiT6zc3N6e5uXmsywAAAKhKo20zJdpNsDM0NHRk6tQjkpSHwurvfyhdXTcmKQ+F1da2b+rrK58GNDbOTEfH8enp+X2SukyZMnZdMw4/PLnuuuQ5zxmzTQLATjfmocfLX/7yfPjDH87ChQtz4IEH5pZbbsmnP/3pnHXWWWO9KwAAgAlHmwmqX6lUSkvLgrS0LEiSDA8PrBsKqzflobB2SWvrXilVaAKMUqmUKVMOzdq1nVm16uq0t++fxsaZY7DdZMGC5IEHkoULx6BQAKiAMR/eqru7OxdeeGG+//3v57HHHsv8+fPzhje8Ie9///vT1NS01ffr2g8AwGTjGnhy2dE2U+KcgUobHPxT+vr+mKIo1gUki9PYOKNi9fT03JmhoZ5MnXrkmAQx116bPPvZyUad0gCgYkZz/TvmoceOcvEOAMBk4xqY0XLOUC16e+9PXV1LGhtnpq6usdLlVERRFOnrW5rBwSeSJHV1rWlre1bq6rYtxBwrQ0N9Wb365jQ3756Wlh3rptHXl9x2W3L00WNUHADsoIrO6QEAAABMDs3N8zI4uDJr1tyZohhct7SU5Km/ryyVmtPYODONjbNqMhgplUppbd0zra17JimHD2vW3JXh4YEkSVPTrmluXjjuQ2HV17eko+M56et7MJ2d12bKlENTX9++XdtqaUmmTk1WrkxmzdryumvWrMnM2TPT19RX/k9fl2Q4SZG0r23PYyseS1tb23bVAQDbQ+gBAAAAbJe6uuY0N++W5ubdNrvO8HB/Bgef2CgY2Xg77Wlq2jUNDbukVJrYYyrV17dkypRDRp4PDDyW7u6bkiSlUl1aW/dKQ0PHuO2/pWVBmpt3z+rVv0uSTJly6HYFLvvtl1x9dXL88eW5Pjb2rW99K2942xuS5iSHJzkmydP/8HZV0vPbnrQvaE/6k59992c59dRTt+MTAcDoCD0AAACAcVMORuanuXn+Jl8viiLDw2syMPB4+voeSLmbwMbq09g4I42Ns1Nf3zKu9Y61pqbZaWqanSQpiuH09t6XNWuWJCkfm7a2fcd8KKxSqZSpUw/L0FBPurquS1PT3JGeKKNxyCHlYa4OOWTD5WeffXb+/bv/npyS5MAk9UluT/LjJG1JmlLu8VFkpPfHS1/+0pz/v8/PRz/60R36bACwNeb0AACACnMNzGg5Z5hsimIog4NPZnDw8QwP96Z8J31D9fXT0tQ0O/X1U8d9KKmxMjTUl97eezI8PJBSqZT6+o60tu455r1d+vuXp69vaVpb9x4JYLbV73+fLFqUdKzrnPK+970vH/vXjyVvTDI7yW+SXJdyj49jkxyccuix3nCS+5Jck2RVMr9tfh5++OEd/EQATDYmMgcAgAnENTCj5ZyBDRVFkaGhrgwMPJahoa5NrlNfPzVNTXNSXz+takORtWs709t7X9bPidLYODvNzbuPWb29vfdlYOCxtLcfsM1DbBVFcs01yQknlOfvaJ/fnpyeZH6SbyZ5NMkrkizOprKoDT2Z5NtJ20Bbep7s2YFPAsBkYyJzAAAAYNIolUppaOjY7I38ciiyOoODj20QKjxdNYQiDQ0dmTr1iJHnAwOPZvXqm7P+71Wbm+elqWn+dtfX2rpXWlr2zJo1d6an5860tx+YhoapW3xPqZQcfHB5mKtjnzMrOSTlwOMXKQcef5Fk5jYWMCPJWcma/1iTWXNnZeWKldv1OQBgS4QeAAAAQNXo7b0/yXDq66ekvr49dXVtOxxClEORqZu9wb8+FBkYWJGhofWhyPp9lgOHhobp6+YUmbLTQpGmpjlpapozUuPAwIoNQpCmpl3T3LxwVPWUSqW0tx+QoijS03N7hoZWp63tWWlsnLHZ93R0lMOP3sbe8hBWSXJnktdn2wOP9ZqTvCl54stP5KMf/Wje9773jXIDALBlhrcCAIAKcw3MaDlnqGXDwwMZGurJ0NDqDA31ZHh4zbpX1gcRT/+9oVKpKfX1U1NfPyUNDVNTKjWNSUDx1PBZKzI0tHqT6zQ07LIuFGnfaaHIwMDj6e9/YOR5XV1bWlv3GvXE6GvWLMnatU+msXFOWlv32OQ6r3vd6/JfN/9X8pYk/1+SRUlevd2lJ39I8rOk6Kmq21IAVCnDWwEAAAATUl1dU+rqmtLYuMuo31sOTFZnaKg7a9asSFH0P+3VjYOSp56vD0saGqalvn5q6uoaN9jutgyftXbtnzIw8PAmQpHyfp6aaH3shs9qato1TU27jjwfGurJmjV3pygGUhRFSqVSGhvnpLl5ty3us61tnyTJwMBj6eq6PqVSfdraDkx9fcvIOv/1w/9KXvm0j3T8Dha/f5JflecJaWtr28GNAcBThB4AAABATSgHJjO2OFTTppTDku6sXduV/v6HUhSD2VqvkqRu3RBcU9cNnbXLZve7LXOKlEqNaWycmcbGWamrax5V/evV17dnypSDN9jv+nlBnr6ssXFmmpt3f0a409Q0O01NszM8vDZr1tyZ4eG+1NU1p61tv6QlyZQkVydpSzJnu0p8WrFJ9ktmzZ6VNavXbHV1ANhWQg8AAADYit7eP2bt2j89bcmm/mq+2Gj5xs8nqq19rtEMT7S5AGH9a9uyzyJJfUqlhpRK638//WdTyxq32NOhHJbMTGPjtk9QURTDI71K+voeeNowXBt/1g0/R6nUPDL8VrlXSXkoquHhwaxd+2TWrFmSohjY6LM/tc2GhulpaNglDQ0dKZXqtlhjqVRKc/PcNDfPfVrd5V4pa9bcuS7ceUq5N8rc1NdPGQlPhof7s2bNXeWPUZfkyiQnbP34bJMDk97be8doYwBQJvQAAACArWht3bPSJbBOeWrS4RTFUIpi7brfgyPPh4f7UxQ961576vUNw4OthSrrlbZh/acrpVRqTF1dU0qlpnW/G9c9Lv8uiuEMD6/O0NDq9Pcv38wQXE8Ph56+rC5r13ZmYODxFMXalEoNqatr2Oj9T6mvbx+Z46Q810j9uiGvNt0bZu3a9fOWdOcZ4dRgkr4kQyn3+BgLbSn3+ACAMST0AAAAACaMco+N+pRK9UlGN2H3eCuKYl0AM7gufFmb4eGBFMXqdb8HUhRr16+dckixcdiycZjyVAgyPNyf4eG+DA/3rvsZWBd+ZGQOj3IdWbd+X4aH+1IU/Rka6k8yvJltb+kzrc3AwJOZ3tyYVUsGt7guAFQDoQcAAADAGCiVSimVmpI0pb6+fdz2s3bt2hRFT9au7czwcE8GB7syPLw6a9d2jsxNMjTU+bTnPet6lKwPVrZlyLL1z+tSX9+Rq68+Pwed+I/lnhkbz9W+vdYkGUquueaaHHnkkWlubh6zSd4BmLyEHgAAAMC4K/eCWD8k1eC6nw2HoNp4uKpyz4SN5wHZXE+IbXs+NDSQ4eGeDA2tzvDwmgwNrRnpOTE01Luuh0ZfhocHnzbnxcbDXA2tG2ZrKEUxPFJr+TMOr6t7aCtHZONtbjzXyaaG23rqtfVDZ9XVtaQcsrSlrq419fVT09i4Sxob566bsHz2usfTR4a32m59/5jsneTuJCdt/2ZG3J6kMznppJPyghe8IHfccUde8YpX5BWveEWe//znp7l5+yZ0B2ByKxXlf6WrRldXVzo6OtLZ2Zlp06ZVuhwAABh3roEZLecMo1W+Gb9+vouBkaGWys8HMzw8kA2HPtqWOSxGFzYkGZlUfHi4P0NDPRv8lIOINRkeXrMubKhbd4N+U9ss1g0VVWR4eH3AMLBBsLJuj09733p168KB5tTVtaZUak19fUvq6trT0NC2btmU1Ne3pL6+eaP9rv8cjesCh8aRx8983lBzvRa++tWv5sz/fWayNskbkszZgY0NJfl88soTX5kf/vCHz3h5ypQpOeWUU3LiiSdmjz32SFtbW17wghekvt4kIACT0Wiuf4UeAABQYa6BGS3nTG0ZHl6bolg/V8PTf/enfGd4U70A1nv6JNd52nrPDArKk143p1Rq3mii7fW/6zI0NJCBgcezdu3jGRx8MkNDf8rg4JNZu7Yrw8NrNlHL+v0MZXh4+GmBw9o81atjfc+Hp72r1JD6+impq2tLfX17GhqmrZtse2rq66emoWFTQ0M99RnLgcLG9T/1uxYDh2oxZcaU9HT1JAcmefUObOgPSX6WDK8ezr//+7/nXe96VxYuXJgXvvCF+dGPfpTly5c/4y2HHXZYPvOZz+TEE0/cgR0DMBGN5vrX8FYAAACwFeUeBf0jE0M/NZl0X8ohwObChjxt+aZ6QmRdGNGyLoxoTkPDLqmra1l3A3/Dv2ofGhrK0FBnBgdXZnDw8QwOPpG1a5/M4OCTGR7u2Whf62sfyPDw+jBi6GlDSA09bf1yPevDiPr69tTXT0tDQ0caGnZNa+u+KZVanvZX9huGLE+FEM0bBCvlx00CiBqy+snVqe+oz/ADw8kjSeZvx0Z6k1yRXHThRSmVSjn77LNz7LHH5ic/+Un+z//5P/mXf/mX3HjjjXnRi16Urq6uTJkyJfX19bn11lvz3Oc+N7vttlte97rX5cwzz8whhxzi/AJgA3p6AABAhbkGZrScM+Ovu/vWbNw7oXxDv3VdINGy7nFzSqW6HdrXwMDjeeSRf33aki333Kira0tj44w0NMxIY+PMNDbumsbGWamv79jk0D+9vUtH6i8HEy3rHusNwfZrbm3OQOtA8uYkM0fxxv4k/5HMWjsrjy9/fIurLl++PLvuumuGhobS3d2dCy+8MF/84hc3WGfRokV5xStekZe//OU58cQT09LSMurPAkD1M7wVAABMIK6BGS3nDFANXve61+W/fvlfycuT7JlnTvuysSeTfDtpG2hLz5M9W1l5066++upceOGFmTp1an75y1+mt7d35LXW1tZ86lOfyjvf+c7t2jYA1Ws017879ucoAAAAAEw6RZH87d9+N//3XZ9KfpTkC0luSDKw0YrDSZYkuSTJ15LD5h223YFHkpxwwgm5/PLL86Mf/SgrV67Md77znbS3t6euri69vb2ZO3fuyLpXXXVVXvva1+azn/1sbrvttgwPD2dgYCA///nP8653vSsvetGLsv/+++f1r399+vr6trsmAKqLOT0AAAAA2GbLlydLlyaHH54cc8x5+Yd/OC/f//738+o3vTq5LklTyn9mW6Qcggwkbzv9bfnSl76UJPnTn5KVK5N99tmxOtra2nLAAQdk1qxZWbZsWZLkXe96V1asWJGzzjorv/jFL/K9730v3/ve95Ik06ZNS39/f/r7+zfYzl133ZU3vvGNOe2003asIACqguGtAACgwlwDM1rOGaASurqSO+5IZs9O9tzzma//5CdJY2PS1JRcfXVy4YXlcOSuu5JTT03Wrk1uuSVpb08OOGDs6hoYGMjFF1+cD3/4w3nooYeSJLNnz86RRx6ZfffdN7fffnt+/etfb9Cbo7GxMX//93+fuXPnZnh4OGedddbYFQTAmDOnBwAATCCugRkt5wywM61cmdx3XzJlSjmsKG1m7o4vfzk5+eTkwQeTq65K/s//KS//zneSxYvLjw89tByKjIf+/v78+7//ez7ykY/kkUceSZLcd9992XPPPdPd3Z1nP/vZKZVK6e7uztDQUB544IHU1W048ntPT0/a2tpS2tyHBKAiRnP9a3grAAAAADZQFOVeHatXJzNmJMceu+X1L700OeGEckBy/PHJ/fc/9doBB5RDj/b2cS05zc3NOeecc/K2t70t1113XX77299m8bq0ZerUqfnNb36TKVOmJEkeeuihkcCjr68vr3jFK3LWWWflYx/7WF784hfnox/9qOADYIISegAAAACQokj++MfkySfLz/ffv9y7Y2tWr04eeCB50YuSm24q9wR5el5wwAHl5UcfPT51b6y5uTnPe97z8rznPW+D5VOnTh15vGDBgpHH//RP/5RLL700l156aZLk1ltvTWtraz74wQ/ujHIBGGNCDwAAAIBJqq8vueeepL+/HFQsXpzstde2v394OLnkkuSd7yw/Xz+I+tMHU6+rKz8vis0PjVVJ733ve/Pwww/nc5/73MiyD33oQ2lvb8/f/u3fVrAyALaH0AMAAABgkhgYSJYsKYcdRZG0tCT77bf982xccknymtckDQ3Jo4+WJzlPnhlu7L9/ebisAw/csfrHQ3Nzcz772c/mxBNPzJlnnpne3t4kyd/93d/luOOOywknnFDhCgEYDaEHAAAAQA0qimTFimTdnN5JksbGZO+9k7a2Hdv28HBy8cXJ85+fzJ9fXvbAA8lRRz2176ebOrU8DFY1e/3rX585c+bkZS97WXp6epIkb37zm3PbbbdtMDQWANVN6AEAAAAwwQ0OJg899NR8HOvNn58cccTYDiv15JPJN76RnH76Uz071lu/n03tb/Hi8pwhe+45+n0ODSX19aN/32iddNJJ+cUvfpFTTz01PT09WbZsWS644IINhr4CoLoJPQAAAAAmiIGBcs+NJ57YcHljY7Lbbskee4zvvBm/+EW598g555Tn6ljvoYfK+9+S2bOT++4bfehx993lnilPm3t8XB1//PG57LLLcuedd+ZLX/pSzj333J2zYwDGhNADAAAAoIqsXZs8/njy2GPlx0/X1FTuvbFo0c6dFPzmm5Mbb0xOPDE55ZRnvv7II8kxxzz1fOPhrdbbd9/kzjvLc3xsi/vuK88XsrMCj/WOPvroHH300fmLv/iLlEqlPPHEE5k5c+bOLQKA7SL0AAAAANjJenrKPSZWrXrma/X1yZw55Um/Gyp452Z4OLn88uT++8uTnb/97Zter7s7aW/ftm3OmFEOMvr6ypOob8mSJeXf++yzzSWPuVKplEsvvTSve93r8rnPfS5vfvObK1cMANtE6AEAAAAwhoqiHGo89ljypz9tep0pU5K5c8tDPe3MHhvb4vbby706hoeT5z43eeELt77+scdu+/aPOir59a/LvUY299l///tk2rTycF2V9uMf/zidnZ15y1vekn333TdHH310pUsCYAuEHgAAAACjMDRUDjMefzxZs2bT60yZUp7DYvHi6gs1NtbXl/zyl0/NE7L33slf/MWGc3ZsTmdnMnXq6D5jqZQceWRy9dXJ8cdvuJ/e3uSmm8o9S2bNGt3nGC+f+MQn8qUvfSl9fX152ctelrvuuiszZsyodFkAbIbQAwAAAGCdoki6upKVK8s39Dc1N0V9fXmYpj32SFpbd3qJO2zZsuQ3v0n6+8uBQ2NjctJJ5Z4no3X77clxx224rKtr68NdtbeXe4fccEP5eJZK5Z4ljY3lIKSagqLm5ua8733vywc/+ME8/vjjeeMb35if/vSnqa+vr3RpAGxCqSg2N7VUZXR1daWjoyOdnZ2ZNm1apcsBAIBx5xqY0XLOwPYpimT16nKPhj/9qXyTff3N9affHZk2Ldl116Sjo7puvo/WY48lt9xS7pHydPPnJ895ztbn1Nia++8vhxS77bbh8quvLs9JUsm5OMbaqlWrMm/evPT19SVJLrjggnzkIx+pcFUAk8dorn/19AAAAAAmvPXzaKxc+VSgsSlTppSHTVq4cNuGb6pma9Yk99yT3HtveYiq9Uql8vGYOTM59NByyDHWBgfLE7E/+9nPfO3++8uhSi2ZPn163va2t+Vzn/tckuSiiy7K8573vLz4xS+ucGUAbEzoAQAAAFS1TfXQ2JRaCTTWrk0efrg8DNXy5eWAIXkqzFivpaU8xNZLXlL+7DvT9ddvefLyiXz8N+fd7353Pv/5z6coipx++uk56aSTKl0SAJsg9AAAAAAqZn2g8fjjyapVm55DIynf1N9114kbaHR1JQ8+mDzySLk3ytDQU69tPIRWXV0yb16yYEG5J0VT086tdWvuvLM8dFXDJLurtM8+++TP/uzP8uMf/zi77rprmpubK10SAJswyf55AgAAAHaWoki6u8s3+Vet2vTrSXkOjZkzk8WLJ8YcGmvXlsOLRx8t/+7u3vp72tvLw0ztu2/y/OdP3MDg4YfLoczs2Zt+fXO9cGrF+eefn2c/+9l5+9vfniQZGhrKV7/61ZxxxhkmNgeoEhP0n1gAAACg0rq7y5NlbxxorB+GqVSq/kBjzZryEFIrVpQ/S0/P1t/T2FgeRmv+/OSkk8qfcSL2PhmtJ58sH6PDD9/8Or//fTnYqVXHH398jj/++CRJURR50YtelMsvvzz33XdfPvzhD1e4OgASoQcAAACwndasKd/833PP6gw0Nucb33iql0lLS7nXwpw55Um/d/bcGBNFZ2eyZMmW5/FIkj/8IXnjG3dOTdVg+fLlSZKPfOQj2WeffXLmmWdWtiAAhB4AAADA9pkzp9IVbJ83vanSFUwsTz65bYFHUh7eajL0eknKQ1uddtpp+fjHP57h4eH85V/+ZRYvXmyCc4AKmyT/DAEAAAAwWsuXJ0uXbnvgMZk0NDTkoosuyk033ZSmpqYMDw/nRS96UZYtW1bp0gAmNaEHAAAAAM+wZEnypz8lRx65bevfemty0EHjWlJVOuyww/LrX/869fX1GRwczPHHH5/hyZYAAVQRoQcAAAAAI4oiueGGpLU1OeCAbX/fH/6QHHHE+NVVzY455ph86UtfSpI8/PDD+dSnPlXhigAmL3N6AAAAAJCkPGH5736XHHVU0tY2uveunxx+snrrW9+an/zkJ7n33nvz6le/utLlAExaQg8AAAAA8oc/lOfleO5zR//ehx5KZs8e+5ommm9/+9tJyvN9AFAZhrcCAAAAmMRWrkyuuSbZfffkkEO2bxu/+lVyyiljW9dE1NDQMBJ4XHfddTn99NOzdu3aClcFMLmInQEAAAAmoYGB5JZbkunTk+OP37FtFUVS509rRzz22GN5wQtekL6+vixcuDCf+MQnKl0SwKThnyMAAACASWR4OLn55uT3vy/P3bHvvju2vdtvT/baa2xqqxUdHR3ZZZddkiSf+tSn8utf/7rCFQFMHkIPAAAAgElgeDi59dbkhhuSAw4oBx719Tu+3euvT044Yce3U0uam5vzrW99K0lSFEVe9apXpaurq8JVAUwO4xJ6PPzww3nzm9+cmTNnprW1NQcffHBuvPHG8dgVAADAhKPNBOxMa9cmN92U3HhjuVfHsccmLS1js+2BgbEJTmrRc5/73Jx77rlJkieeeCLz5s3L9ddfX9miACaBMZ/T409/+lOOP/74PP/5z8///M//ZNddd82SJUtGuvQBAABMZtpMwM7S3Z3ceWc5lDj44KSpaez38aMfJX/2Z2O/3Vrx6U9/Ovfcc09+9rOfZc2aNXnpS1+ahx9+OM3NzZUuDaBmjXno8bGPfSwLFizIJZdcMrJs8eLFY70bAACACUmbCRhv99+fPPZYMnVqcvTRSak0fvvq7ExmzBi/7U90pVIpP/rRj3LIIYfkjjvuyMKFC9Pf3y/0ABhHYz681Y9+9KMcddRRed3rXpfZs2fn8MMPz5e+9KWx3g0AAMCEpM0EjIe+vvIQVtdfn7S1Jccck+y///gGHldckTz72eO3/VpRX1+fSy+9NP/1X/+Vm266KdOmTat0SQA1bcxDjz/+8Y/5whe+kH322Se/+MUv8s53vjPvfve789WvfnWT6/f396erq2uDHwAAgFo12jZTot0EbFpRJHffXQ467rknOeywctgxe/bO2f999yUHHrhz9jXRzZ8/P695zWtSGs8UCoAkSakoimIsN9jU1JSjjjoq11577ciyd7/73bnhhhty3XXXPWP9D37wg/nQhz70jOWdnZ2SbwAAJoWurq50dHS4Bp4kRttmSrSbgA0tX5489FD58bOelXR07Pwafvvb8lwhRx218/c9ka1cuTJXXnllnvWsZ+Xggw+udDkAE8Zo2kxj3tNj3rx5OeCAAzZYtv/+++eBBx7Y5PoXXHBBOjs7R34efPDBsS4JAACgaoy2zZRoNwHJk08mN9xQ/hkaKs/VcfTRlQk8kuR3vxN4bI+jjz46r33ta/O2t72t0qUA1Kwxn8j8+OOPz913373BsnvuuSeLFi3a5PrNzc0mbwIAACaN0baZEu0mmKxWrUruvbc8jNWMGeWQoRpGRzKXx/Y74YQTcv/99+eGG27I8uXLM2/evEqXBFBzxrynx3vf+9785je/yUc+8pHce++9+c///M/827/9W84555yx3hUAAMCEo80EbMnTe3Q8/nhy5JHlHh177VUdgcfwcHkekUMOqXQlE9Nf//VfJ0mKosgXvvCFClcDUJvGfE6PJPnJT36SCy64IEuWLMnixYtz3nnn5eyzz96m9xrPGACAycY18OSzI22mxDkDtebRR5P1I9ztskv1BByb8r3vJccdl8yfX+lKJqaiKDJ37tw89thjmTVrVh599NHU1Y353yQD1JzRXP+O+fBWSfJnf/Zn+bM/+7Px2DQAAMCEp80EJMnKlcnSpcncudUzdNWWrFqV9PYKPHZEqVTK2WefnQ9/+MMjk5o///nPr3RZADVFlAwAAABQAbNmlYeuWrCg+gOPJPn2t5M///NKVzHxnXnmmSOP/+Vf/qVyhQDUKKEHAAAAAFt03XXJYYclDeMyZsjksvfee+eAAw5Ikvz4xz9OT09PhSsCqC1CDwAAAAA2q68vue225NhjK11J7fiP//iPXHDBBbnlllvS3t5e6XIAaop8HgAAAIDN+trXkre8pdJV1JYjjjgiRxxxRKXLAKhJenoAAAAAsEm/+lVyxBFJS0ulK6ldw8PDlS4BoKYIPQAAAAB4hkceSZYvT446qtKV1Kbbbrstxx13XHbbbbd88pOfrHQ5ADVD6AEAAADABoaHk+99L3nDGypdSe2aMmVKfvOb32TFihX5t3/7txRFUemSAGqC0AMAAACADVxySfIXf5HUuXM0bhYvXpxDDz00SbJkyZLccsstFa4IoDb4pwsAAACAET/5SXLkkcn06ZWupPadfvrpI4//4z/+o4KVANQOoQcAAAAASZIbb0zq65PDDqt0JZPD6aefnrp13Wm+/vWvm9QcYAwIPQAAAADIsmXJXXclp55a6Uomjz333DPveMc7kiQrV67M1VdfXeGKACY+oQcAAADAJLdqVfLTnyZvfnOlK5l8/vEf/zFNTU1Jkk9+8pMVrgZg4hN6AAAAAExifX3JV76SrOtwwE62yy675B3veEcWLVqUF7/4xZUuB2DCa6h0AQAAAABUxvBw8sUvlgOPOn8aWzH//M//nH/+53+udBkANcE/ZwAAAACT1Be/mJx1VtLSUulKAGBsCD0AAAAAJql3vCOZNq3SVZAkRVHkbW97WxYtWpTly5dXuhyACUvoAQAAADBJGdKqeixfvjxf/vKX88ADD+Syyy6rdDkAE5Z/2gAAAACgwubNm5f29vYkyfe+970KVwMwcQk9AAAAAKDCSqVSDj/88CTJlVdemaIoKlwRwMQk9AAAAACAKvCqV70qSfKnP/0p99xzT4WrAZiYhB4AAAAAUAWe+9znjjz+8Y9/XMFKACYuoQcAAAAAVIGDDjoodetml//Zz35W4WoAJiahBwAAAABUgZaWlixevDhJMmXKlApXAzAxNVS6AAAAAACg7MILL0xfX19e+tKXVroUgAlJ6AEAAAAAVeKMM86odAkAE5rhrQAAAACgygwNDaW7u7vSZQBMOEIPAAAAAKgSg4ODOffcc9Pa2pq/+7u/q3Q5ABOO4a0AAAAAoEr09vbmn//5n5Mkt9xyS4WrAZh49PQAAAAAgCoxbdq0tLa2Jkluv/32ClcDMPEIPQAAAACgisydOzdJsnr16nR2dla4GoCJRegBAAAAAFVkfeiRJA8++GAFKwGYeIQeAAAAAFBFZs+ePfJY6AEwOkIPAAAAAKgiU6ZMGXks9AAYHaEHAAAAAFSRtra2JMkBBxyQ3XffvcLVAEwsDZUuAAAAAAB4ypve9KYcffTROeqoo3L44YdXuhyACUXoAQAAAABV5KSTTso+++yTpqamSpcCMOEY3goAAAAAqsjf/M3fZLfddsunPvWpPPHEE5UuB2BCEXoAAAAAQJW4+eab8+lPfzpJ8rGPfSzvfe97K1wRwMQi9AAAAACAKnHNNdeMPH7729+er33taxWsBmDiEXoAAAAAQJUYHh6udAkAE5rQAwAAAACq0NDQUKVLAJhwhB4AAAAAUCXq6+tHHgs9AEZP6AEAAAAAVWL+/PmZPn16kqS/v7+yxQBMQEIPAAAAAKgSr371q/ORj3wkSdLb21vhagAmHqEHAAAAAFSR1tbWJElfX1+FKwGYeBoqXQAAAAAA8JRjjjkmn/rUp7L33ntXuhSACUfoAQAAAABV5L3vfW/uueeeXHrppZUuBWDCMbwVAAAAAFSRpUuX5v7778/DDz9c6VIAJhyhBwAAAABUkUWLFiVJfvzjH1e4EoCJR+gBAAAAAFVk4cKFSZJPf/rTKYqiwtUATCxCDwAAAACoIoccckiSpCiKdHZ2VrgagIlF6AEAAAAAVeSggw4aebxy5coKVgIw8Qg9AAAAAKCK7LvvviOPV6xYUcFKACYeoQcAAAAAVJHddtstzc3NSZKlS5dWuBqAiWXcQ4+PfvSjKZVKOffcc8d7VwAAABOONhMAGyuVSnnhC1+YJBkcHKxwNQATy7iGHjfccEP+9V//dWTyJQAAAJ6izQTA5syePTtJ8thjj1W4EoCJZdxCj9WrV+dNb3pTvvSlL2WXXXYZr90AAABMSNpMAGzJ6173unzyk5/M85///EqXAjChjFvocc455+RlL3tZTj755C2u19/fn66urg1+AAAAat22tpkS7SaAyai1tTWf+cxn8rd/+7eVLgVgQmkYj41+61vfys0335wbbrhhq+tedNFF+dCHPjQeZQAAAFSl0bSZEu0mgMlo+vTpeeCBB7JmzZpKlwIwoYx5T48HH3ww73nPe/KNb3wjLS0tW13/ggsuSGdn58jPgw8+ONYlAQAAVI3RtpkS7SaAyWj+/PlJkpUrV6azs7PC1QBMHGPe0+Omm27KY489liOOOGJk2dDQUK666qp87nOfS39/f+rr60dea25uTnNz81iXAQAAUJVG22ZKtJsAJqNly5aNPF66dGkOO+ywyhUDMIGMeejxwhe+MLfddtsGy9761rdmv/32y/nnn/+Mi3cAAIDJRJsJgG1x//33jzxesmSJ0ANgG4156DF16tQcdNBBGyxrb2/PzJkzn7EcAABgstFmAmBbPL2H34wZMypYCcDEMuZzegAAAAAAO+bII48cmftp/fweAGzdmPf02JQrrrhiZ+wGAABgQtJmAmBju+++exYtWpS77747jz76aPbff/9KlwQwIejpAQAAAABVaPbs2UmSRx99tMKVAEwcQg8AAAAAqEJTpkxJktx1110VrgRg4hB6AAAAAEAVeuKJJ5Ikvb29Fa4EYOIQegAAAABAFTrppJOSJD09PRWuBGDiEHoAAAAAQBU64IADkiR33nlnhSsBmDiEHgAAAABQhRYuXJgkufXWWytbCMAEIvQAAAAAgCrU2dmZpDy3x/rHAGyZ0AMAAAAAqtBuu+028tgQVwDbRugBAAAAAFVo+vTpI4+XLFlSuUIAJhChBwAAAABUoY6OjpHHxx57bAUrAZg4hB4AAAAAUIXa2tpGHi9YsKCClQBMHEIPAAAAAKhCLS0tI497e3srWAnAxCH0AAAAAIAq1NjYmPr6+iTJr3/96wpXAzAxCD0AAAAAoEq96lWvSpJ85jOfqXAlABOD0AMAAAAAqtRb3vKWJEl3d3eFKwGYGIQeAAAAAFClpk2bliRZvXp1hSsBmBiEHgAAAABQpZYtW5Yk6enpqXAlABOD0AMAAAAAqlBRFDnrrLOSCD0AtpXQAwAAAACqUG9vb4aGhpIkfX19Fa4GYGIQegAAAABAFerq6hp53Nvbm6IoKlgNwMQg9AAAAACAKrQ+9Ghtbc0Xv/hFoQfANmiodAEAAAAAwDOtXLkySTJ37tycffbZFa4GYGLQ0wMAAAAAqszQ0FA+8pGPJCmHHgBsG6EHAAAAAFSZb37zm/npT3+aJJk5c2aFqwGYOIQeAAAAAFBFiqLIhz/84STJSSedlDe84Q0Vrghg4jCnBwAAAABUkXvuuSd33XVXmpqa8qMf/SjTpk2rdEkAE4aeHgAAAABQRf7nf/4nSbmXh8ADYHSEHgAAAABQRX7+858nSfbdd9/ccccdGRgYqHBFABOH0AMAAAAAqsTatWtz5ZVXJkkuvvjiHHjggfnjH/9Y4aoAJg6hBwAAAABUiVKplHnz5uXwww/PmjVrkiQLFy6scFUAE4eJzAEAAACgStTX1+ePf/xjfv/73+fQQw/NzJkz09bWVumyACYMPT0AAAAAoMo8+OCDSZIFCxZUuBKAiUXoAQAAAABV5v7770+S7LHHHhWtA2CiMbwVAAAAAFSRCy+8MJ/5zGeSCD0ARktPDwAAAACoIl1dXenq6kqSLF68uMLVAEwsQg8AAAAAqCLz589Pkhx66KE58cQTK1wNwMQi9AAAAACAKrLbbrslSWbOnJnDDz+8wtUATCxCDwAAAACoIutDj4cffrjClQBMPEIPAAAAAKgi/f39SZIHH3ywwpUATDxCDwAAAACoItdcc02SZM2aNenu7q5wNQATi9ADAAAAAKrIddddlyRZtGiR0ANglIQeAAAAAFAluru7c9VVVyVJ/t//+3+ZP39+hSsCmFiEHgAAAABQJS677LIMDg5mr732yj777FPpcgAmHKEHAAAAAFSJn/70p0mSl770pSmVSimKosIVAUwsQg8AAAAAqAJPPvlkvvnNbyZJ2tvbs3jx4px99tkVrgpgYhF6AAAAAEAVuOKKK9Lb25tDDz00Bx98cO6///4sWbKk0mUBTCgNlS4AAAAAAEhe/epX5957783jjz+e4eHhJMkf//jHClcFMLHo6QEAAAAAVWLx4sU58sgj841vfCNJ8vDDD6e/v7/CVQFMHEIPAAAAAKigpUuX5tprrx15/ld/9Vf53Oc+lySZM2dO6uvrK1UawIQj9AAAAACACimKImeffXZOOOGEfOELX8ivf/3r/Nu//VtKpVI++9nP5o477khDgxHqAbaVb0wAAAAAqJBLLrkkl112WVpaWvKiF70oixcvzqc+9ak8/vjjede73lXp8gAmHKEHAAAAAFTAXXfdlfe85z1Jkr//+7/P3nvvnSQ577zzKlkWwIRmeCsAAAAA2Ml6enry2te+NqtXr85JJ52U9773vZUuCaAmjHnocdFFF+Xoo4/O1KlTM3v27Jx22mm5++67x3o3AAAAE5I2EwBFUeQd73hHbr/99sydOzff+ta3zNsBMEbGPPS48sorc8455+Q3v/lNLr300gwODubFL35xenp6xnpXAAAAE442EwBXXnllvv71r6e+vj7f+ta3Mnfu3EqXBFAzSkVRFOO5g8cffzyzZ8/OlVdemec+97lbXb+rqysdHR3p7OzMtGnTxrM0AACoCq6BJ7fRtpkS5wxALbj44ovT2dlpWCuAbTCa699x7zfX2dmZJJkxY8YmX+/v709/f//I866urvEuCQAAoGpsrc2UaDcB1KKzzjqr0iUA1KRxnch8eHg45557bo4//vgcdNBBm1znoosuSkdHx8jPggULxrMkAACAqrEtbaZEuwkAALbVuA5v9c53vjP/8z//k6uvvjq77777JtfZ1F8sLViwQDdtAAAmDUMVTV7b0mZKtJsAAJjcqmJ4q3e96135yU9+kquuumqLF+/Nzc1pbm4erzIAAACq0ra2mRLtJgAA2FZjHnoURZG//uu/zve///1cccUVWbx48VjvAgAAYMLSZgIAgPEz5qHHOeeck//8z//MD3/4w0ydOjUrVqxIknR0dKS1tXWsdwcAADChaDMBAMD4GfM5PUql0iaXX3LJJTnzzDO3+n7jGQMAMNm4Bp5cdrTNlDhnAACYXCo6p8c4zosOAAAw4WkzAQDA+KmrdAEAAAAAAABjQegBAAAAAADUBKEHAAAAAABQE4QeAAAAAABATRB6AAAAAAAANUHoAQAAAAAA1AShBwAAAAAAUBOEHgAAAAAAQE0QegAAAAAAADVB6AEAAAAAANQEoQcAAAAAAFAThB4AAAAAAEBNEHoAAAAAAAA1QegBAAAAAADUBKEHAAAAAABQE4QeAAAAAABATRB6AAAAAAAANUHoAQAAAAAA1AShBwAAAAAAUBOEHgAAAAAAQE0QegAAAAAAADVB6AEAAAAAANQEoQcAAAAAAFAThB4AAAAAAEBNEHoAAAAAAAA1QegBAAAAAADUBKEHAAAAAABQE4QeAAAAAABATRB6AAAAAAAANUHoAQAAAAAA1AShBwAAAAAAUBOEHgAAAAAAQE0QegAAAAAAADVB6AEAAAAAANQEoQcAAAAAAFAThB4AAAAAAEBNEHoAAAAAAAA1QegBAAAAAADUBKEHAAAAAABQE4QeAAAAAABATRB6AAAAAAAANUHoAQAAAAAA1AShBwAAAAAAUBOEHgAAAAAAQE0QegAAAAAAADVB6AEAAAAAANQEoQcAAAAAAFAThB4AAAAAAEBNEHoAAAAAAAA1QegBAAAAAADUBKEHAAAAAABQE4QeAAAAAABATRB6AAAAAAAANWHcQo/Pf/7z2WOPPdLS0pJjjz02119//XjtCgAAYMLRZgIAgLE3LqHHt7/97Zx33nn5wAc+kJtvvjmHHnpoTjnllDz22GPjsTsAAIAJRZsJAADGx7iEHp/+9Kdz9tln561vfWsOOOCAfPGLX0xbW1suvvji8dgdAADAhKLNBAAA46NhrDc4MDCQm266KRdccMHIsrq6upx88sm57rrrnrF+f39/+vv7R553dnYmSbq6usa6NAAAqErrr32LoqhwJewMo20zJdpNAABMbqNpM4156LFy5coMDQ1lzpw5GyyfM2dO7rrrrmesf9FFF+VDH/rQM5YvWLBgrEsDAICq9sQTT6Sjo6PSZTDORttmSrSbAAAgSbq7u7faZhrz0GO0Lrjggpx33nkjz1etWpVFixblgQce0OBjm3R1dWXBggV58MEHM23atEqXwwTgnGG0nDOMlnOG0ers7MzChQszY8aMSpdCldq43TQ8PJwnn3wyM2fOTKlU2qm1+I7bMY7fjnMMd4zjt2Mcvx3j+O0Yx2/HOYY7ppLHryiKdHd3Z/78+Vtdd8xDj1mzZqW+vj6PPvroBssfffTRzJ079xnrNzc3p7m5+RnLOzo6nHiMyrRp05wzjIpzhtFyzjBazhlGq65uXKbco8qMts2UbLrdNH369PEqcZv4jtsxjt+Ocwx3jOO3Yxy/HeP47RjHb8c5hjumUsdvWztJjHmrqqmpKUceeWQuu+yykWXDw8O57LLLctxxx4317gAAACYUbSYAABg/4zK81XnnnZczzjgjRx11VI455pj80z/9U3p6evLWt751PHYHAAAwoWgzAQDA+BiX0OP000/P448/nve///1ZsWJFDjvssPz85z9/xkR9m9Lc3JwPfOADmxzyCjbFOcNoOWcYLecMo+WcYbScM5PPjrSZKs35umMcvx3nGO4Yx2/HOH47xvHbMY7fjnMMd8xEOX6loiiKShcBAAAAAACwo8yUCAAAAAAA1AShBwAAAAAAUBOEHgAAAAAAQE0QegAAAAAAADWh6kKPz3/+89ljjz3S0tKSY489Ntdff32lS6JKffCDH0ypVNrgZ7/99qt0WVSRq666Ki9/+cszf/78lEql/OAHP9jg9aIo8v73vz/z5s1La2trTj755CxZsqQyxVIVtnbOnHnmmc/43nnJS15SmWKpuIsuuihHH310pk6dmtmzZ+e0007L3XffvcE6fX19OeecczJz5sxMmTIlr3nNa/Loo49WqGIqbVvOmec973nP+J55xzveUaGKmYy25Tzd2Fe+8pVnnLctLS07qeLqsz3tlO9+97vZb7/90tLSkoMPPjg/+9nPdlK11WePPfZ4xvErlUo555xzNrn+ZD//xqvNM1nuzWzp+A0ODub888/PwQcfnPb29syfPz9vectb8sgjj2xxm5PpXsV4tZ8my/mXbP0Ybur7sFQq5ROf+MRmtzlZzsHxao9NpntFWzuGTz75ZP76r/86++67b1pbW7Nw4cK8+93vTmdn5xa3Ww33Tqoq9Pj2t7+d8847Lx/4wAdy880359BDD80pp5ySxx57rNKlUaUOPPDALF++fOTn6quvrnRJVJGenp4ceuih+fznP7/J1z/+8Y/nM5/5TL74xS/mt7/9bdrb23PKKaekr69vJ1dKtdjaOZMkL3nJSzb43vnmN7+5Eyukmlx55ZU555xz8pvf/CaXXnppBgcH8+IXvzg9PT0j67z3ve/Nj3/843z3u9/NlVdemUceeSSvfvWrK1g1lbQt50ySnH322Rt8z3z84x+vUMVMRtt6nm5s2rRpG5y3y5Yt20kVV6fRtFOuvfbavOENb8hf/uVf5pZbbslpp52W0047LX/4wx92YsXV44Ybbtjg2F166aVJkte97nWbfc9kPv/Go80zme7NbOn4rVmzJjfffHMuvPDC3Hzzzfnv//7v3H333XnFK16x1e1OlnsV49F+mkznX7L1Y/j0Y7d8+fJcfPHFKZVKec1rXrPF7U6Gc3C82mOT6V7R1o7hI488kkceeSSf/OQn84c//CFf+cpX8vOf/zx/+Zd/udVtV/zeSVFFjjnmmOKcc84ZeT40NFTMnz+/uOiiiypYFdXqAx/4QHHooYdWugwmiCTF97///ZHnw8PDxdy5c4tPfOITI8tWrVpVNDc3F9/85jcrUCHVZuNzpiiK4owzzihe+cpXVqQeqt9jjz1WJCmuvPLKoijK3ymNjY3Fd7/73ZF17rzzziJJcd1111WqTKrIxudMURTFSSedVLznPe+pXFGwkU2dpxu75JJLio6Ojp1XVJUbbTvl9a9/ffGyl71sg2XHHnts8b/+1/8a48ompve85z3FXnvtVQwPD2/ydeffU8aqzTNZ781s6vp/Y9dff32RpFi2bNlm15ms9yrGqv00Wc+/oti2c/CVr3xl8YIXvGCL60zWc3As2mOT/V7Rtlz3fec73ymampqKwcHBza5TDfdOqqanx8DAQG666aacfPLJI8vq6upy8skn57rrrqtgZVSzJUuWZP78+dlzzz3zpje9KQ888EClS2KCWLp0aVasWLHBd05HR0eOPfZY3zls0RVXXJHZs2dn3333zTvf+c488cQTlS6JKrG+i++MGTOSJDfddFMGBwc3+J7Zb7/9snDhQt8zJHnmObPeN77xjcyaNSsHHXRQLrjggqxZs6YS5UGSzZ+nG1u9enUWLVqUBQsW5JWvfGVuv/32nVFe1RpNO+W6667b4N+KJDnllFP8W5HyfYKvf/3rOeuss1IqlTa7nvNv07anzePezJZ1dnamVCpl+vTpW1zPvYqnjKb95PzbskcffTQ//elPt+mv7CfjOTgW7bHJfq9oW677Ojs7M23atDQ0NGxxW5W+d1I1ocfKlSszNDSUOXPmbLB8zpw5WbFiRYWqopode+yxI92qvvCFL2Tp0qU58cQT093dXenSmADWf6/4zmE0XvKSl+RrX/taLrvssnzsYx/LlVdemVNPPTVDQ0OVLo0KGx4ezrnnnpvjjz8+Bx10UJLy90xTU9MzGsW+Z0g2fc4kyRvf+MZ8/etfz+WXX54LLrgg//Ef/5E3v/nNFayUyWxz5+nG9t1331x88cX54Q9/mK9//esZHh7Oc57znDz00EM7sdrqMdp2yooVK1yTbsYPfvCDrFq1KmeeeeZm13H+bd72tHncm9m8vr6+nH/++XnDG96QadOmbXY99yqeMtr2k/Nvy7761a9m6tSpWx2eaTKeg2PVHpvM94q25bpv5cqV+Yd/+Ie8/e1v3+K2quHeyZYjGahip5566sjjQw45JMcee2wWLVqU73znO9uUegOM1p//+Z+PPD744INzyCGHZK+99soVV1yRF77whRWsjEo755xz8oc//KEmx8plfGzunHl6A+Lggw/OvHnz8sIXvjD33Xdf9tprr51dJpPctn63HXfccTnuuONGnj/nOc/J/vvvn3/913/NP/zDP4x3mVVHO2XsfPnLX86pp56a+fPnb3Yd5x87w+DgYF7/+tenKIp84Qtf2OK6vgOeov00ti6++OK86U1vSktLyxbXm4znoPbYjtvaMezq6srLXvayHHDAAfngBz+4xW1Vw//7VdPTY9asWamvr8+jjz66wfJHH300c+fOrVBVTCTTp0/Ps571rNx7772VLoUJYP33iu8cdsSee+6ZWbNm+d6Z5N71rnflJz/5SS6//PLsvvvuI8vnzp2bgYGBrFq1aoP1fc+wuXNmU4499tgk8T3DTjea83RjjY2NOfzww52362ytnTJ37lzXpJuwbNmy/PKXv8zb3va2Ub3P+feU7WnzuDfzTOsDj2XLluXSSy/dYi+PTXGv4ilbaz85/zbv17/+de6+++5RfycmtX8OjmV7bLLeK9radV93d3de8pKXZOrUqfn+97+fxsbGUW2/EvdOqib0aGpqypFHHpnLLrtsZNnw8HAuu+yyDf5qAzZn9erVue+++zJv3rxKl8IEsHjx4sydO3eD75yurq789re/9Z3DNnvooYfyxBNP+N6ZpIqiyLve9a58//vfz69+9assXrx4g9ePPPLINDY2bvA9c/fdd+eBBx7wPTNJbe2c2ZRbb701SXzPsNNsz3m6saGhodx2223O23W21k457rjjNvi3IkkuvfTSSf9vxSWXXJLZs2fnZS972aje5/x7yva0edyb2dD6wGPJkiX55S9/mZkzZ456G+5VPGVr7Sfn3+Z9+ctfzpFHHplDDz101O+t1XNwPNpjk+1e0bZc93V1deXFL35xmpqa8qMf/WirPY02pSL3Tio5i/rGvvWtbxXNzc3FV77yleKOO+4o3v72txfTp08vVqxYUenSqEJ/8zd/U1xxxRXF0qVLi2uuuaY4+eSTi1mzZhWPPfZYpUujSnR3dxe33HJLccsttxRJik9/+tPFLbfcUixbtqwoiqL46Ec/WkyfPr344Q9/WPz+978vXvnKVxaLFy8uent7K1w5lbKlc6a7u7v43//7fxfXXXddsXTp0uKXv/xlccQRRxT77LNP0dfXV+nSqYB3vvOdRUdHR3HFFVcUy5cvH/lZs2bNyDrveMc7ioULFxa/+tWvihtvvLE47rjjiuOOO66CVVNJWztn7r333uLv//7vixtvvLFYunRp8cMf/rDYc889i+c+97kVrpzJZFu+2/7iL/6ieN/73jfy/EMf+lDxi1/8orjvvvuKm266qfjzP//zoqWlpbj99tsr8REqbmvtlI2P3zXXXFM0NDQUn/zkJ4s777yz+MAHPlA0NjYWt912W6U+QsUNDQ0VCxcuLM4///xnvOb829BYtHle8IIXFJ/97GdHnk+mezNbOn4DAwPFK17ximL33Xcvbr311g2+E/v7+0e2sfHxm0z3Ksai/TSZz7+i2Pr/w0VRFJ2dnUVbW1vxhS98YZPbmKzn4Fi1x/bdd9/iv//7v0eeT6Z7RVs7hp2dncWxxx5bHHzwwcW99967wTpr164d2c7Tj2G13DupqtCjKIris5/9bLFw4cKiqampOOaYY4rf/OY3lS6JKnX66acX8+bNK5qamorddtutOP3004t777230mVRRS6//PIiyTN+zjjjjKIoimJ4eLi48MILizlz5hTNzc3FC1/4wuLuu++ubNFU1JbOmTVr1hQvfvGLi1133bVobGwsFi1aVJx99tk1e/HN1m3qXElSXHLJJSPr9Pb2Fn/1V39V7LLLLkVbW1vxqle9qli+fHnliqaitnbOPPDAA8Vzn/vcYsaMGUVzc3Ox9957F3/7t39bdHZ2VrZwJpVt+W476aSTRq6niqIozj333JE23Jw5c4qXvvSlxc0337zzi68SW2unbHz8iqIovvOd7xTPetaziqampuLAAw8sfvrTn+7kqqvLL37xiyLJJq/NnX8bGos2z6JFi4oPfOADGyybLPdmtnT8li5dutnvxMsvv3xkGxsfv8l0r2Is2k+T+fwriq3/P1wURfGv//qvRWtra7Fq1apNbmOynoNj1R7b+D2T6V7R1o7h5s7PJMXSpUs32M7691TLvZPSusIAAAAAAAAmtKqZ0wMAAAAAAGBHCD0AAAAAAICaIPQAAAAAAABqgtADAAAAAACoCUIPAAAAAACgJgg9AAAAAACAmiD0AAAAAAAAaoLQAwAAAAAAqAlCDwAAAAAAoCYIPQAAAAAAgJog9AAAAAAAAGqC0AMAAAAAAKgJ/z+ZC3UyIuandgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRU0lEQVR4nO39eZhcZZ03/r+r96ydBbISQth3VJYMiAvIiIyiOI77gowjinGU8RlHfZ4B5dERx5mL8Td+FXfQQRnxGQEXFJFVWVQ2FYSQhBjWhDXdSTrpper8/qikQxZImnSnuqtfr+uqK12nTp365OSmOPd5933fpaIoigAAAAAAAIxwDbUuAAAAAAAAYDAIPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAujDg0OOGG27IySefnFmzZqVUKuWyyy7rf623tzcf+9jHcsghh2TcuHGZNWtW3vWud+WRRx4ZzJoBAACGLX0mAAConQGHHmvWrMlhhx2WL33pS1u81tXVldtvvz1nnXVWbr/99vzwhz/MwoUL89rXvnZQigUAABju9JkAAKB2SkVRFM/7zaVSLr300pxyyinPus/vfve7HHXUUVm2bFl233335/tRAAAAI44+EwAA7FxNQ/0BHR0dKZVKmTRp0lZf7+7uTnd3d//zSqWSp556KlOnTk2pVBrq8gAAoOaKosiqVasya9asNDRYdm+02VafKdFvAgBgdBtIn2lIQ49169blYx/7WN761rdm4sSJW93n3HPPzTnnnDOUZQAAwIjw4IMPZrfddqt1GexE29NnSvSbAAAg2b4+05BNb9Xb25s3vOENeeihh3Ldddc96wX85r+x1NHRkd133z0PPvjgc170AwBAvejs7MycOXOycuXKtLe317ocBtFg9JkS/SYAAEa3gfSZhmSkR29vb970pjdl2bJlueaaa57zIry1tTWtra1bbJ84caKLdwAARhXTFI0eA+kzJfpNAACQbF+fadBDjw0X74sWLcq1116bqVOnDvZHAAAAjFj6TAAAMHQGHHqsXr06ixcv7n++dOnS3HnnnZkyZUpmzpyZv/mbv8ntt9+en/zkJymXy1m+fHmSZMqUKWlpaRm8ygEAAIYhfSYAAKidAa/pcd111+W4447bYvupp56aT33qU5k3b95W33fttdfm5S9/+TaP39nZmfb29nR0dBimDQDAqOAauL4MdZ8p0WYAABhdBnL9O+CRHi9/+cvzXDnJDqyLDgAAMOLpMwEAQO001LoAAAAAAACAwSD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLow4NDjhhtuyMknn5xZs2alVCrlsssu2+T1oihy9tlnZ+bMmRkzZkxOOOGELFq0aLDqBQAAGNb0mQAAoHYGHHqsWbMmhx12WL70pS9t9fXPf/7z+c///M985StfyW9+85uMGzcuJ554YtatW7fDxQIAAAx3+kwAAFA7TQN9w0knnZSTTjppq68VRZEvfOEL+ed//ue87nWvS5J85zvfyfTp03PZZZflLW95y45VCwAAMMzpMwEAQO0M6poeS5cuzfLly3PCCSf0b2tvb8/8+fNz8803b/U93d3d6ezs3OQBAABQj55PnynRbwIAgO01qKHH8uXLkyTTp0/fZPv06dP7X9vcueeem/b29v7HnDlzBrMkAACAYeP59JkS/SYAANhegxp6PB+f+MQn0tHR0f948MEHa10SAADAsKLfBAAA22dQQ48ZM2YkSVasWLHJ9hUrVvS/trnW1tZMnDhxkwcAAEA9ej59pkS/CQAAtteghh7z5s3LjBkzcvXVV/dv6+zszG9+85scffTRg/lRAAAAI44+EwAADK2mgb5h9erVWbx4cf/zpUuX5s4778yUKVOy++6758wzz8xnPvOZ7LPPPpk3b17OOuuszJo1K6eccspg1g0AADAs6TMBAEDtDDj0uPXWW3Pcccf1P//IRz6SJDn11FNz4YUX5p/+6Z+yZs2anH766Vm5cmWOPfbY/PznP09bW9vgVQ0AADBM6TMBAEDtlIqiKGpdxDN1dnamvb09HR0d5qkFAGBUcA3MQGkzAACMJgO5/h3UNT0AAAAAAABqRegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF5pqXQAAAACMFH19HVm7dnGSpFRqSlvbHmlqaq9xVQAAbCD0AAAAgO3U1NSeCRMOT5JUKr1Zt+7P/SFIkjQ2Tkhb27w0NDTXqkQAgFFN6AEAAADPQ0NDc8aO3WeTbX19nenq+lMqld6USqUkSWvrnDQ379r/HACAoSP0AAAAgEHS1DQx48cf1v+8KIp0dz+UVatu69/W2DgmbW17pbGxrRYlAgDUNaEHAAAAbMPq1cnixcluuyVTpybbO2ijVCqlrW1O2trm9G8rl7uydu2iVCrd/fu0tMxOS8t0o0EAAHaQ0AMAAAC2Yfz45OCDk4ceSpYt27i9KJLJk5Pdd0+at3MZj8bGsRk//pBnHKNIT88jWb369v5tDQ1jM2bMXmloaBmsvwIAwKgg9AAAAIDt0NSU7LFH9fFMTz+d3HNP0ttbHQFSFElLSzUIaW/f9nFLpVJaW2entXV2/7ZyeU26uu5NUfRu2CttbXukuXnKYP11AADqktADAAAAdsDkydXHM/X0VEeELF68cVuplMyYkcycue3psRobx2X8+EP7nxdFOevWLcu6dUv7tzU1TU1b2+4plRoG468BAFAXhB4AAAAwyFpakn322XRbUSTLlyd33FH9eYOJE5O5c6vveTalUmPGjNlzk209PU9k9eo7k1QP1tDQljFj9k5DQ+vg/CUAAEYgoQcAAADsBKVSdZTHzJmbbu/oSO69tzo91gatrdVptMaPf/bjtbTskpaWXfqfl8tr09V1X4qiZ/2WalDS1DRx0P4OAADDndADAAAAaqi9PTn00E23rVtXnR5r9eqN2xobkzlzkilTtj49VmPjmE0WSK9U+rJu3dKsXbuof1tr65y0tEwb7L8CAMCwIfQAAACAYaatLdlvv0239fUlDz2U/PnPG7dtGD0yY8aWQUhDQ1PGjt04x1ZRFOnufiirVt2WYv38Wi0tM9LaOjulbS0yAgAwQgg9AAAAYARoaqpOebXHHhu3FUXyyCNbrhMyfXoya1bS8Iw1zkulUtra5qStbc769xbp6VmRVatu69+nuXlq2tr2EIIAACOW0AMAAABGqFIpmT27+tigKJLHHkvuvHPTIGTXXZPddtsYhJRKpbS2zkhr64z+faqLo9/ePxKkuXly2trmpVR6RnoCADCMDXroUS6X86lPfSoXXXRRli9fnlmzZuXd7353/vmf/9lvigAAAKOePtPI1Nu7MuvWLel/3tAwNi0t09PUNHnY/buVStWRHtOnb9xWFMkTTyS//31SqWzcNm3apkHI5ouj9/Y+ldWr70xRVN8kBAEAhrtBDz3+9V//Neeff36+/e1v56CDDsqtt96a0047Le3t7fnQhz402B8HAAAwougzjUzNzZPS3Hx4//NyeU16eh7PunV/TlJssf9wC0VKpepIj1133bhta0FIUg1LZs+uvqe5eUqam6f0v9bb+3R/CFIqldLUtCEEqf3fEQAgGYLQ46abbsrrXve6vPrVr06S7LHHHrn44ovz29/+drA/CgAAYMTRZ6oPjY3jMmbMuCR7bPX1aijy2PpQ5JmK9e+fmJaWGWlsHF+zwODZgpDHHttyjZDZs6thSHPz5DQ3T+7f3tv7ZFavviNJkaIo0tIyLa2tc4QgAEDNDHroccwxx+RrX/ta7rvvvuy77775/e9/n1//+tc577zzBvujAAAARhx9ptGhGorMSzJvi9eKoki5vCo9PY+mXF71jFc2BAUNaW7eJS0t09LQ0LIzyt1YwbNMjfXww8ntt2983tSU7L57MmXK1DQ3T+3ft6fnsaxeffv6/Yq0ts5OS8sMIQgAsNMMeujx8Y9/PJ2dndl///3T2NiYcrmcf/mXf8nb3/72re7f3d2d7u7u/uednZ2DXRIAAMCwMdA+U6LfVG+q00JNTFPTxK2+XhTl9PY+ma6uhSmK3lRHh5SyYZRIdeqsmWlqat8pYUKpVF33Y7fdNm7r60seeCC5//7q60WRtLUle+45LRMmTFv/9yjS0/NIVq26rb/OtrZ5m0yXBQAw2AY99Ljkkkvy3e9+N9/73vdy0EEH5c4778yZZ56ZWbNm5dRTT91i/3PPPTfnnHPOYJcBAAAwLA20z5ToN402pVJjWlqmpaVl2lZfr06dtSLr1t2fzdcTKZWa09w8LS0tu6ZUahyyGpuakj33rD42WLcuWbo06erqryaTJs3O3Lmz09RUDUHWrVuadeuWpiiKlEpNGTt2nzQ2jhuyOgGA0adUFMWWK67tgDlz5uTjH/94FixY0L/tM5/5TC666KLce++9W+y/td9YmjNnTjo6OjJx4tZ/6wUAAOpJZ2dn2tvbXQOPEgPtMyX6TWy/SqU3vb2Ppafn8STlzV5tSEvLtDQ3T09Dw6D/DuRWPf10smxZUl5fyoZRI7vumhRFX9auXZRyeU2SpLFxTMaM2WenT+kFAAx/A+kzDfpVTldXVxoaGjbZ1tjYmEqlstX9W1tb09raOthlAAAADEsD7TMl+k1sv4aG5rS2zk5r6+wtXqtOm/VEurr+tH7arI1TZiWNaWnZddADkcmTq4+NNSQPPbRhfZCmFMUBaWtL9toraWnpSlfXPalUepNUF01va9vTeiAAwIAMeuhx8skn51/+5V+y++6756CDDsodd9yR8847L3/7t3872B8FAAAw4ugzUSvVabOmp6Vl+havFUU5PT2Ppavr7hRF32bva05Ly4w0N++6wwFEqZTMmVN9bLBuXbJkSbJ27diUSoelKDYspv5UVq++PRsmqLAoOgCwPQZ9eqtVq1blrLPOyqWXXprHHnsss2bNylvf+tacffbZaWnZ9hBVQ/sBABhtXAOPLjvaZ0q0GXauSqUnPT3L09v7RDZfQ6SxcXxaWmanqWn8oH1eUSSPP548+ODGbU1NRebMeSRNTY8mSUqlhowZs1eamtoH7XMBgOFrINe/gx567CgX7wAAjDaugRkobYbhoq9vdXp6Hk65vHqzVxr6R5UMxoLqPT3J/fcna6rLf6RSKWfy5CXZddeOlEqlNDS0ZMyYfdPY2LbDnwUADD81XdMDAAAAGB2amsanqWm/LbZvmC5r9eo/ZvMF1RsbJ6a1dXYaG8du9+e0tCT77//M4zfmiSf2zZIl1ZEhRdGdhob7Mnt2d8aMSZqaJqStba+dtmA7ADB8+L8/AAAAMKhKpca0ts5Ma+vMLV7r6+vMunXLUql0bfae1rS2zk5T06RtrttRKiW77lp9VLWmp+eQ3H9/daH0SmVVKpU/ZsqUcqZPT5qbp6StbZ71QABgFBB6AAAAADtNU9PENDVtOS1FpdKd7u6Hs27d/Zu90piWlhnrp8p69tBi09EgE1IUL8zjjyeLFyeVypMpl29Pc3OR2bOLtLfPSGvrbiMuBHnjG9+YG264IWvWrMn48eNz3HHH5eKLL651WQAwrFjTAwAAasw1MAOlzTCaVCp96e1dkZ6ex5JUnvFKKc3Nu6alZeZ2T2PV05MsWZKsXr0ilcpDSZIpU4rMmTMzra2zhmUIcu+99+agFx6UyphKsmuSaUnakqxLsiLJE0njusbcf+/92X333WtaKwAMFWt6AAAAAHWhoaEpra2z09o6e5PtRVGkt/fxrFlzVzZfN6SpaXJaW3dLQ0PLJttbWpIDDkiS6UmmpyiSxx4r8sc/Lk+lcvv69xaZO3fXTJ26e81DkMYJjam0VpJjkxyeZMxWdupKyreWM/dFc9PU05Tezt6dXCUADC9CDwAAAGDEKZVKaWmZlpaWaZtsL4oifX1Pp6trYYqiJ0VR9IcXDQ3j0tY2J42N49YfI5k+vZTp02cmqa4/0tOTLF78eO6///ZsmBtj4sRx2WuvvdLS0rzz/n4TS8luSf4mz333ZmySlyY5Oum7pC+liaUUncNqUg8A2KmEHgAAAEDdKJVKaW6ekubmKVu8Vi6vSXf3QymXV2/2nua0tMxMc/MuaWkp5cADd011LqmqJ59clT/+8U8pl/vWb2nMbrvNzcyZkzMUg0EaJjQkc1MNPLb3+M1J3prkkqQ0tpSiS/ABwOgk9AAAAGCneeKJK7Jmze+TJEVR3sbeO2rDTd/qXeNSqTFJQ/+r1d/+b+zfp1RqWL+9qX97qdSwfntD//s3vF4qNaShoSHVu80N6583r3+taf3+jWloaE6p1Lz+WC39+zQ0tKx/Xv0zaUxjY2MYOo2N4zJ27H5bbK9UetPTszyrV9+Rje1mw3smZtKkWTn88MOesX85f/7zsvzudxsXXW9qGpN58/bM5MltO1TjJz/5yRTjiuSvs/2BxwYNqQYlX0122WWXPPHEEztUCwCMRBYyBwCAGnMNzECN5DZTLm8adOyMm/ybfmY5G9Z/2BC6VCobtyXlFEX5Gds27NO7fv8N7+1bv1/v+uc9SSopit4URSVFUU5R9CXpTaVS3V59vS9F0ZtKpS9J3/r9yv3bq7bWTX/m3e9iG8+fa5/nugWwfZ/R0DAmDQ2t6/8ck8bG8WlsHJOGhglpahqfxsaJ67e1j/gQpyiKlMud6e5+JJVK1xavNzVNSkvLjDQ2jsu6dV25//6lWb16Xf/rLS1t2XPPPTJx4rjt/szShFLyV0kO3IHC/5Dk58mye5ZZ3ByAumAhcwAAAIaNlSuT226rrpVQLjemtzcpl9P/59aUSklRZJOpg7b1fGuq+zQ+43lj/7G39pnb+zkbtm1+nGduq/Ea2P2e61cdN6/3mftu7e9SDX7WJulIY+OaJF1pbOxMsjYNDQ+nVFqThoa1SdakoWFjSFA9XxuDk82fV7dtXHvjmc8bG5PGxuoC483NG54XaWpqTUvLhLS2Tkhb28SMGTMxY8ZMSktLexobp6wPXnYsdCmVSmlqak9TU/sWr1XXDunIunUP9Acic+Y8873N6esbmz//+f6sW9fTv72tLZk7d1omTJiZhoZNb8s88cQTSUuSLQejDMyBSa5L5s6dm6H6XdcHHnggl156aRYtWpT//M//XD/qKfnUpz6VO++8M0cccUSOPPLIHHHEEZk6deqQ1AAAWyP0AAAAYEi1tSX77Ze0tFQfTU3VR0tL0tCw7fcznDQmGb/+sf2KougfKbNhdEt15Es5RVF5xvYNP1eSVFKpVNLTU0l3dyVr11bS11eku7uS7u4ia9euSVdXZ3p7O9Lb+0TK5T+nXF6VUmltGhrWJNkw4mLzES5bjnip5gLV7eVyKUVRysaApvpzpVJKY2NDGhub09w8Nk1NE9LSMj5jx7Zn3LgJmTBhUtra2tPWtmuam8enubkhfX1PZc89i/XHqH5mV1eRJUvuTU/Pr5KMTak0OWPHjsvs2aXsvsexyQuzcda156spyb5JbtnB46xXFEU6Ozvz+OOPZ9GiRfnhD3+Yb3/72+ntrY5Omjt3bqZOnZr29vbcddddufzyy3P55Zf3v3/evHn5y7/8y5xxxhl5wQteMDhFAcCzEHoAAAAwpNrakt12q3UV9aUaIvSunyqrt396rOqjb5Pt1Sm5nm1qqw0jK4oh+7m6+HflGTX1JOlbP8VXJZVKT4qiJ0VRSbncl97ectat601XV296e8vp7i6nt7cvvb19KZf7UqkU699XTl9fkb6+Svr6qs/L5cr66cQ2n55r82E3Wx+GUyqV1o9Aqaz/c8OIlOqjVCrWT33WnVKpO0lvSqW1SfrS0NCXhobuNDT0pVTq69//uacKK6e5uZzm5r489FCytrwuGazZqOYmuTV56UtfmhtuuGHjpxdFenp60tXVlZUrV+app57KU089lf333z9PPPFEWlpasmTJknzrW9/KihUrsnz58jz66KPp7u7e4iNe8pKXZPLkyfmnf/qnrZbQ2NiYcrmcpUuX5mtf+1q+/vWv5+GHH87MmTMH6S8JAFsSegAAAMAgKZfXpKvr3gxugLDpguzV5w0plZrT0NCcSqVIpbI25fKaVCrrUql0p1xem6LoSqWydv2je33Y8Gzrdjz7jfm+vqRcLtLXV0pfX9Y/qs+r05RVR0f09fWmXO7rX9+kGgiU1//cmEqlJeVyc3p6mrJuXWvWrWtNT09jenub09fXlqJoTdKaUqk1DQ3NaWpqTFNTaxobW9Lc3JjW1jFpbGxbv/B7c1pamjNhQlPGjWvOhAnNGT++ORMnNmXcuKa0tTVkZy4n0tOTPPxw8vTTm25/5tRoRVGdpqulJWluTrq7kxUrksWLk4ULkyVLkrSUkh1bB32j1iRtyc0335y1a9fmu9/9bj784Q9n7dq1W53yqqGhIZVKZbsOve++++b888/P8ccfn+uuuy7lcjlFUeTpp5/OY489lhUrVmT16tUpl8u55JJLMmHChFx44YV56KGHctRRR+X444/Pcccdl5UrV+ad73yn6a8AGFQWMgcAgBpzDcxAaTPDT7lcTl/f4+nt7Uhf39MplzvS19eZcrkz5fKqlMur1++5rUXIt+f5BtVApFRqSTI2lcrYlMsT09c3Lr2949PbOzF9fRNSKk1MpdKeSqUlPT3JunXVR29vX3p61qZU6nrGozubhyyNjUWam6tTkpXLSaVS/XPduo0/l8uNaWhoTVPTmJRKbUnGJGldH2SUUipVb/iPGZNMmJBMnVp9TJqUjBs3fNY/2ZaiSB5/PHnooU3XP2lpSWbNSqZMGdjf5amnquvdrFhRff7OM0rJ65PsNQjF3pfkh0l6Ux3ssx2mTJnSH15smI5qxowZmTp1aj72sY/lL/7iL3LsscfmmGOO2WT9la1ZtWpV/vSnP+WAAw7o/576h3/4h3zhC1/YZL/m5ua84x3vyIIFC/KiF71om8cFYHQayPWv0AMAAGrMNTADpc1sn3K5Jz09j6dcfjq9vU+lr29l+vqqf24MIZLBCCJKpZY0No5NY+OENDVNSGPjxDQ1TUlT06Q0NU1OY2N7/6LalUqydm01NFi7duOjt3fTxcPL5er27u70hxXd3RtGD/StDynWpFRanebmrjQ396W5OWluLq0fTVCkoaHUfxO+paVIa2vS0lJKpVKkXG5KX9/YrFs3Nn19Y7JmzbisXt2SNWtK2fwX/kul6mPMmGTs2Opj8uTqY8KEZPz4+lyfpVyujsBYtWrjqI1p06rTtQ303vxDDyU33VT9t9xgwoTkhS+sHq+hISm1lJK/SnVdjx31uyQ/zSaDhU488cRccMEFGTNmTMaMGZP3v//92W233XL44YfnRS96UebMmZNSqZRVq1alXC5n0qRJg1DIRl1dXbnxxhtz7bXX5sc//nHuuuuuTV7/wx/+kEMOOWRQPxOA+iD0AACAEcQ1MAOlzWyqr291HnroC5tt3RBETExT04T1AcSUNDdPSXPz5DQ2TukPIbalKKo3qjeEE11dG8OIZ4YURVENLtaure7f3b1hRMWmN8gbGpKWlnJaWroyZszqtLSsTkvLmjQ0lPt/y70oijQ1ldLamrS1FWltLaWtrTqioFQqUio1paFhXBoaxqW7e1xWrx6bVaua0tVVraNcTtasSVavrv5ZfsZv+j8zvBg3Lv3HbW+vPsaPr47qGK0efbQaUCTV87DXXsnz+c9syZLk5pvTHyBNn5685CXV8/5sPv3pT+fsr52d/N3AP28LX03SnrTc35InnngiRVGksbEx48aNG4SDD44lS5bkbW97W377298mSU466aScc8452WuvvfLxj388Tz/9dE488cTsuuuuGTt2bI4//vjt/u8WgPoi9AAAgBHENTADpc1s24YAoqtr42NDGPFMzwwtOjqqjw3TNj1TU1M1KGhtzfogImlq6kuyOkWxOsnqJF1pbi7S1lYNKFpbqyMrmpuTLdfmaEhj47g0No5f/+e4lEqNKZeTzs5qHZ2d1fUzNtTX11cNMTo70x9ulErVWsaP3xhgbJhKauLE6vRREyeO7hBjW4oiue++6nlNqtNUzZo18JEcPT3JL36RPPlk9fmcOclLXzrwc1+aXErenmTXgb1vE8uTXJxkXPL//e//LwsWLNiBgw2toijyjW98Ix/84AfTs/4/0Pe85z35wQ9+kM4N/yjrzZ49O//xH/+RN77xjbUoFYAaEnoAAMAI4hqYgRrtbaarK7n33o3Pn7lY9IbnSTWcGDt20ymZqgHEM/ctUi6vSbm8Op2dq1KprElrazmNjc92x3tjF7pUalofWkxIY+O4NDSM3WI9gkqlOjXSypXVIKO3d9OjbQgyVq2qjsgolarhxfjxG0dcbDhkU1N1OqlJk6qvWfrg+SuKahtavbo68maffZ7faI6uruSKK6r/do2NyQknJDNm7Fhtc+fOzQNTHkhO2YGD/L8kD1Z/LFYOq9s+z+oPf/hD/vEf/zF33313FixYkBNOOCE/+tGP8sMf/jD33HPPJvvOnTs311xzTfbcc88aVQvAzib0AACAEcQ1MAOlzQxcd/fy9PQ8vNnWDSMuxm4SXpRKz744RVFUb3RvGBXS1bX1wGXNmmqQsXr1xpEYzwwxNgQ1jY3VKaUmT67edBdkDK0//7m6EHmplOy3X3VNjYHq60t++tNqkNXWlpx00vMLTJ5Lqb2UvCbJvs/jzfck+VmSucnea/fOokWLBre4naAoik0CxPvvvz/f+9738uUvfzmPPvpokuoC6GeccUY+/vGP53Of+1xe85rX5CUveUna2tpqVTYAQ0joAQAAI4hrYAZKmxlcfX3VqY1Wrqz+uWH9i80DiA2jMrq7q2HFhAkb1tjYGHZsMGFCMmVKNdDYfHQJO1dnZ7JwYfXfaI89qguRPx+33prcfXf13/6Vr3z+x9keF154YU778GnJ65LsNYA33pfkJ0mOTnLLyBnlMRDXXnttPv3pT+faa6/NPvvsk3POOSdve9vbkiRjx47Ny1/+8px44ol5xStekQMPPHCL0VcAjExCDwAAGEFcAzNQ2sy29fVV11ZYubIaVGyw+f3PoqiOvpg4sRp2PP109ab21nrKzc3VqaUmTza91HC3YfqqVauq/7b77ff8/r1Wr05+/OPqeh0HHZQcccTg1/psjjnmmNx8983JC5LMT/Jc64+vTnJLkj8kOSrJ75IL/38X5tRTTx36QmvkqquuSkNDQ9rb2/OVr3wlV1xxRf8okA123XXXfP/7389xxx3Xv62npyfXXHNNfvKTn2ThwoV56KGHcsghh+Q73/mOUSIAw9hArn8tZQYAAEDd6empBh+77VZdy2N7bnhvvjYII8+aNcmf/lT9eb/9nv+0UwsXJr/+dbXtvO511T93tptuuinHHXdcrrvhuuSPSaYlOSbJlCStSbqTPJnkpiSPpxp8vCzJb5P/+4//t64DjyT5y7/8y/6fv/GNb+SLX/xiPvShD2XixImZNWtWHnjggTz++OOZN29e/35f+cpX8o//+I9Zs2bNJse69957093dnf/5n/9J00BXngdg2PFNDgAAQN3ZsHD5QAg8Rq4HH0wefbT6b37EEc//3/K665IlS5J585L3vGdQS3xerr322px33nn5X5/6X8miJMuTbFhyppSkL8n4JPulOrXVzcmNv7gxxxxzTG0KrqGpU6dmt912y0MPPZTOzs7suuuuOfbYY/PLX/4yxx13XPbcc8/87Gc/6w88mpqacvTRR+fkk0/OWWedlR/96Ef553/+53zuc5+r8d8EgB1leisAAKgx18AMlDYD1ZE5d99dXUx+t92SWbOe33EqleoUVk88kfzFX1SnsRqOHnjggey1/17pa+2rBh+NScpJKsn4yviseHRFxtZiSMow0t3dnW984xv57Gc/m0ceeaR/+7hx4/L000/n97//fX7wgx/k+9//fpYtW5akuiD6CSeckAceeCC/+MUvMuv5NiQAhpQ1PQAAYARxDcxAaTOMZj09yR//WA0rDjigur7K81GpJD/8YdLRkZx4YjU4oT50d3fn5ptvzjXXXJNrr702kydPzo9+9KP+14uiyI033phPf/rT+cUvfpEkeeELX5jbbrvNwucAw5Q1PQAAAIC6smpVdb2OlpbksMOqC9A/H88MO04+OZk2bXDrpPZaW1vz8pe/PC9/+cuTVEOOZyqVSjn22GNz5ZVX5vrrr8/HP/7xfOELX+gPPL7zne/kz3/+c84+++ydXToAg0DoAQAAAAxbTzxRXWdj3LjkqKOe/3odlUpyxRXJ8uXJa18r7BhNnmv0xste9rLcdNNN/fvcfffd/YvAjxkzJh/96Ed3So0ADB6hBwAAADDsPPJIdYHyqVOT+fN37FjXXZfcd191GqvXvGZQyqOOPDMUefLJJ9Pc3Jze3t780z/9U44++ugce+yxNawOgIESegAAAADDxrJl1dEYM2fueNhx113JTTdVFyg//fTBqY/6VhRFWlpa0tvbmyR5xzvekT/+8Y+ZMGFCjSsDYHs11LoAAAAAgCVLkltuqa7ZMX9+svvuz/9Yjz2WfPWr1amxTj89OfTQwauT+vayl70sV155ZX/IsWzZsnzkIx+pcVUADITQAwAAAKiZRYuqYceECdURGTNnPv9jVSrJRRcl116bvPe9yfp1rGFAXvziF+eqq65KW1tbkuQb3/hGfvrTn9a4KgC2l9ADAAAA2KmKIlm4sBp2TJlSDTt2dGHxG25Ivv716podb35z0uCOBztg/vz5ueSSS/rX+/iP//iPGlcEwPZyCQAAAADsFEWR3HNP8pvfJLvuWg07pk7dsWMuX56cf34yfnzyvvclkyYNSqmQk08+Oeedd16SZMyYMSmXyzWuCIDtYSFzAAAAYEgVRXLvvUlHR7L//skBB+z4MSuV5Ac/SEqlathhZAdD4cwzz8zcuXNz8sknp7GxsdblALAdhB4AAADAkHhm2HHAAYMTdiTJH/6Q3Hhj8oY37Pi0WLAtr3/965MkS5cuzfLly/OiF70ora2tNa4KgGcj9AAAAAAG1Yawo7Nz8EZ2JElPT/Jf/5XssUdyxhmDc0zYHpdeemne8IY3ZNKkSTnqqKPy05/+1MgPgGHK4E8AAABgUDxzzY5Zs5L585P29sE59s03JxdeWF2k/BWvGJxjwvY67rjj0tbWlqeffjpXXnllzjrrrFqXBMCzEHoAAAAAO2TzsOMv/mLwwo5165KvfrX68+mnVxcsh51t0qRJec973tP//Nxzz83/+3//r4YVAfBshB4AAADA87JhGqvf/CaZOXNww46kum7Hd76TnHpqcvTRg3dceD4+9KEPpVQq9T9/97vfnbvvvruGFQGwNUIPAAAAYECKIlm4sBp2TJ9eDTsmTRq8469bl3zta0lDQ3V0R1vb4B0bnq999tknr3nNa5Iks2fPzpo1a3LKKafk6aefrnFlADyT0AMAAADYbhvCjl13rYYdkycP7vFvvTX59reTd7zD6A6GnzPPPDNJ8vDDD2f69OlZvHhx3vWud6UoitoWBkA/oQcAAACwTffdl9xyy8awY8qUwT1+pVINOzo7k/e9Lxk7dnCPD4PhuOOOy/HHH5/x48fnoosuyqxZs/LBD35wk2mvAKitploXAAAAAAxf992XPPVUss8+yb77Ds1nLFqUXHVV8ra3De40WTDYSqVSfv7zn+f3v/99jjjiiCxZsiRtbW357Gc/m/e9732ZOnVqrUsEGPWM9AAAAAC2sGhRdWTH1KnVkR1DdS/30kuTP/0p+cAHBB6MDM3NzTniiCOSJG1tbfnFL36R//N//k+OPvro3HDDDTWuDgAjPQAAAIB+ixZVR3bstVd1dMdQWbky+d73khNPrH4WjFSzZ8/O1KlTs2jRopxwwglZtGhR5s6dW+uyAEYtoQcAAACQRYuSJ59M9t57aMOOJLnxxmTx4uT9708azEHBCHfQQQfliiuuyDHHHJPe3t68+MUvzgMPPJAGjRugJnz7AgAAwCi2YRqryZOr01jtssvQfValklxwQTXoOPVUgQf146ijjsrXv/71JMnDDz+ct7/97TWuCGD0cnkBAAAAo9CDDya/+c3OCTuSZNmy5MtfTl7/+uToo4f2s6AWTjvttLz61a9Okvz3f/93Lr744hpXBDA6CT0AAABgFNptt2T+/KEPO5LkZz+rBiwf/KDFyqlvl156aXZZ/x/V6aefnkceeaTGFQGMPkIPAAAAGIVKpaH/jJ6e5KtfTWbPTt70pqH/PKi15ubmXHXVVdlrr72yevXqfOYzn6l1SQCjjoXMAQAAgEG3cGFy9dXJu9+djB1b62pg53nBC16QK664Il/5ylfy2c9+ttblAIw6RnoAAAAAg+qKK5J7700+8AGBB6PTvvvum/POOy/Lly/Pl7/85VqXAzCqGOkBAAAADIqenuSCC5Jjj00OOqjW1UBtLV++PAcffHDWrFmTm266KV/+8pczceLEWpcFUPeGZKTHww8/nHe84x2ZOnVqxowZk0MOOSS33nrrUHwUAADAiKPPRD1asiT55jeTd75T4AFJMmPGjCxYsCBJ8t3vfjczZ87Mb3/72xpXBVD/Bn2kx9NPP50Xv/jFOe644/Kzn/0su+66axYtWpTJkycP9kcBAACMOPpM1KOf/SxZty4544xaVwLDy+c+97ncddddueKKK9LV1ZW/+qu/ysMPP5zW1tZalwZQtwY99PjXf/3XzJkzJxdccEH/tnnz5g32xwAAAIxI+kzUk76+5FvfSo46KnnBC2pdDQw/pVIpP/rRj3LooYfmT3/6U5588sn84he/yMknn1zr0gDq1qBPb/WjH/0oRxxxRN74xjdm2rRpeeELX5ivf/3rg/0xAAAAI5I+E/XioYeS889P3vIWgQc8l8bGxlx11VVpaqr+7vF5551X44oA6tughx73339/zj///Oyzzz658sorc8YZZ+RDH/pQvv3tb291/+7u7nR2dm7yAAAAqFcD7TMl+k0MPzfckPzqV8mCBYl1mWHbZs2aldNOOy1JsnLlyhRFUeOKAOpXqRjkb9mWlpYcccQRuemmm/q3fehDH8rvfve73HzzzVvs/6lPfSrnnHPOFts7Ojoy0ZUTAACjQGdnZ9rb210DjxID7TMl+k0MH5VKctFFyV57JS9+ca2rgZFlxYoVmTt3brq7u/OrX/0qxx57bK1LAhgxBtJnGvSRHjNnzsyBBx64ybYDDjggDzzwwFb3/8QnPpGOjo7+x4MPPjjYJQEAAAwbA+0zJfpNDA8rVyZf/GJywgkCD3g+pk+fnlNPPTWvfOUrM2bMmFqXA1C3Bn0h8xe/+MVZuHDhJtvuu+++zJ07d6v7t7a2prW1dbDLAAAAGJYG2mdK9JuovTvvTH772+Tv/z5pGPRfn4TR4+yzz85FF12USy+9NIcffnitywGoS4N+qfIP//APueWWW/LZz342ixcvzve+97187Wtfy4IFCwb7owAAAEYcfSZGmssvTx59NDn9dIEH7KiHH344H//4x/Mf//EfWb16da3LAahLg365cuSRR+bSSy/NxRdfnIMPPjif/vSn84UvfCFvf/vbB/ujAAAARhx9JkaKnp7k/POTvfdOTjqp1tVAfTjyyCOz9957p6urK+973/tSqVRqXRJA3Rn0hcx3lEUcAQAYbVwDM1DaDEPtgQeqIzxOOy0ZP77W1UB9Ofvss/PpT386SXL11Vfn+OOPr3FFAMNfTRcyBwAAAEauX/86+dWvqut3CDxg8L3rXe/q//n888+vYSUA9UnoAQAAACRJvv/9pFJJzLYGQ2fvvffOgQcemCS5/PLL09nZWeOKAOqL0AMAAABGua6u5ItfTP7iL5KXvrTW1UD9e+9735sk6e3tzf/8z//UuBqA+iL0AAAAgFFs0aLkwguT9743mTu31tXA6PCGN7whLS0tSZJvf/vbNa4GoL4IPQAAAGCUuvrq5Pe/Tz7wgaStrdbVwOgxZ86c3H333SmVSrn++uuzbNmyWpcEUDeEHgAAADDKVCrJd75TXaj8b/6m1tXA6LT33nvnuOOOy5gxY3L77bfXuhyAutFU6wIAAACAnWf16uSCC5I3vCGZNavW1cDo9rWvfS1PP/109tlnn1qXAlA3jPQAAACAUWLhwuS7303OOEPgAcPB//7f/ztHHnlkfvCDH9S6FIC6IfQAAACAUeCqq5I//Sl53/uSJvM+wLDwghe8IEly8cUX5/HHH69tMQB1QugBAAAAdaxSSb797WTSpOT1r691NcAzvfnNb05DQ0OuueaaHHjggalUKrUuCWDEE3oAAABAnVq9OvnSl5ITT0yOPLLW1QCb23PPPfP+978/SfLEE0/k17/+dY0rAhj5hB4AAABQh+65Z+P6HTNm1Loa4Nl85jOfSUtLS5LkrLPOqnE1ACOf0AMAAADqzFVXJffea/0OGAkmT56cv/u7v0uS3HDDDVmyZEmNKwIY2YQeAAAAUCc2rN8xcaL1O2Ak+fznP5+Ghuptussuu6y2xQCMcEIPAAAAqAOrVydf/GLyl3+ZzJ9f62qAgRg3blxe+cpXJknK5XKNqwEY2YQeAAAAMMItXJj8138lCxYks2bVuhrg+XjNa16TJPnpT39a40oARjYzewIAAMAIds01ydNPVxcsB0auV7/61fnDH/6Ql7zkJXnyySczderUWpcEMCIZ6QEAAAAjUKWSXHRRMmZM8oY31LoaYEftscceOeCAA/Ke97wnZ599dq3LARixjPQAAACAEaarK/nmN6uLle+2W62rAQbLHnvskZ6enlx55ZUpiiKlUqnWJQGMOEZ6AAAAwAiyZEly4YXJe98r8IB6c+yxx6apqSlLlizJfffdV+tyAEYkoQcAAACMEDfckNx6a/KBDyRtbbWuBhhsf/7zn9PX15ck+fGPf1zjagBGJqEHAAAAjADf/37S0JC8+c21rgQYKgcffHAaGqq366644ooaVwMwMgk9AAAAYBhbty758peTo45Kjj221tUAQ6mtrS3z5s1LkvzhD3+ocTUAI5PQAwAAAIax++5L3v3uZP19UKDOHXnkkUmSJ598MitXrqxtMQAjkNADAAAAhrFDD03Gjq11FcDOcuihhyZJXvSiF6UoihpXAzDyCD0AAAAAYJjYe++9kyStra2ZPHlyjasBGHmEHgAAAAAwTGwIPRYvXlzjSgBGpqZaFwAAAAAAVO2777750pe+lDFjxuSXv/xlTjjhhFqXBDCiCD0AAAAAYJgYN25cXvKSl+TQQw9Ne3u7xcwBBsj0VgAAAAAwjOy5555Jko6OjnR0dNS4GoCRRegBAAAAAMPIXXfdlbFjxyZJHnzwwRpXAzCyCD0AAAAAYBg599xz09XVlUToATBQQg8AAAAAGEbGjx/f/7PQA2BghB4AAAAAMIxsmNoqEXoADJTQAwAAAACGEaEHwPMn9AAAAACAYaSlpSVJ8pKXvCTvfOc7a1wNwMgi9AAAAACAYeTuu+9Okhx++OF5xSteUeNqAEYWoQcAAAAADBO33357rrjiiiRJuVyucTUAI4/QAwAAAACGiRtvvDFJcsghh+TUU0+tcTUAI4/QAwAAAACGiUqlkiQ5+OCDc/jhh9e4GoCRR+gBAAAAAADUBaEHAAAAAAwTjY2NSZKlS5fmtttuq3E1ACOP0AMAAAAAholp06YlSW655Zacd955Na4GYOQRegAAAADAMDFz5sz+n9etW1fDSgBGJqEHAAAAAAwTe+yxR/8C5mvXrq1xNQAjj9ADAAAAAIaJOXPm5KMf/WiSpKurq8bVAIw8Qg8AAAAAGEYmTpyYJOns7KxxJQAjj9ADAAAAAIaR9vb2JMnTTz9d40oARh6hBwAAAAAMI2eddVaS5IknnqhxJQAjj9ADAAAAAIaRffbZJ0ny8pe/vLaFAIxAQg8AAAAAGEYOPfTQJEmpVKpxJQAjj9ADAAAAAIaR/fbbL0mycOHCGlcCMPIIPQAAAABgGNkQeixevDgPPfRQjasBGFmEHgAAAAAwjMyePTsNDQ2pVCr58Y9/XOtyAEaUIQ89Pve5z6VUKuXMM88c6o8CAAAYcfSZANhcqVTK+PHjkyT33HNPjasBGFmGNPT43e9+l69+9av9iy8BAACwkT4TAM9mn332qXUJACPSkIUeq1evztvf/vZ8/etfz+TJk4fqYwAAAEYkfSYAnsvxxx+fJGlqaqpxJQAjy5CFHgsWLMirX/3qnHDCCc+5X3d3dzo7Ozd5AAAA1Lvt7TMl+k0Ao9G0adOSJI899liNKwEYWYYkKv7v//7v3H777fnd7363zX3PPffcnHPOOUNRBgAAwLA0kD5Tot8EMBrtuuuuSZLFixfXuBKAkWXQR3o8+OCD+fCHP5zvfve7aWtr2+b+n/jEJ9LR0dH/ePDBBwe7JAAAgGFjoH2mRL8JYDSaMGFCkuQ3v/lNOjo6alwNwMhRKoqiGMwDXnbZZXn961+fxsbG/m3lcjmlUikNDQ3p7u7e5LXNdXZ2pr29PR0dHZk4ceJglgYAAMOSa+DRZUf7TIk2AzAaPPDAA5k7d26S5I477sgLXvCC2hYEUEMDuf4d9OmtXvGKV+SPf/zjJttOO+207L///vnYxz62zYt3AACAeqbPBMD2WLJkySY/Cz0Ats+ghx4TJkzIwQcfvMm2cePGZerUqVtsBwAAGG30mQDYHmvXru3/ecOIDwC2bdDX9AAAAAAAdsxee+2VJCmVSpk3b16NqwEYOQZ9pMfWXHfddTvjYwAAAEYkfSYANrch6CiKItdff33++q//usYVAYwMRnoAAAAAwDDT0tLSP+3hM6e6AuC5CT0AAAAAYBjaf//9kyRPPvlkjSsBGDmEHgAAAAAwDE2bNi1J8thjj9W4EoCRQ+gBAAAAAMNQURRJkptuuqnGlQCMHEIPAAAAABiGOjs7kyR33XVXjSsBGDmEHgAAAAAwDG1Y06Ojo6PGlQCMHEIPAAAAABiGTj755CRJT0+P4ANgOwk9AAAAAGAYOuywwzJr1qwkyT333FPjagBGBqEHAAAAAAxTG6a4WrRoUY0rARgZhB4AAAAAMAz19vamUqkkSR5//PEaVwMwMgg9AAAAAGAY6u7uznXXXZdE6AGwvYQeAAAAADAMtbW19f98+umn17ASgJFD6AEAAAAAw1BTU1MaGxuTJK2trTWuBmBkEHoAAAAAwDC1IexYt25djSsBGBmEHgAAAAAwTBVFkST55je/WeNKAEYGoQcAAAAADFPlcjlJcskll9S4EoCRQegBAAAAAMPc2rVra10CwIgg9AAAAACAYeqjH/1okqS7u7vGlQCMDEIPAAAAABimTjvttCQWMgfYXkIPAAAAABimxowZk6Q6vdWGRc0BeHZCDwAAAAAYpsaOHZukuqB5b29vjasBGP6EHgAAAAAwTG0Y6ZEkXV1dNawEYGRoqnUBAAAAAMDWtbS05JZbbsnYsWMzfvz4WpcDMOwJPQAAAABgmCqVSpk/f36tywAYMUxvBQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUBaEHAAAAAABQF4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANSFQQ89zj333Bx55JGZMGFCpk2bllNOOSULFy4c7I8BAAAYkfSZAABg6Ax66HH99ddnwYIFueWWW3LVVVelt7c3r3zlK7NmzZrB/igAAIARR58JAACGTqkoimIoP+Dxxx/PtGnTcv311+elL33pNvfv7OxMe3t7Ojo6MnHixKEsDQAAhgXXwKPbQPtMiTYDAMDoMpDr36ahLqajoyNJMmXKlK2+3t3dne7u7v7nnZ2dQ10SAADAsLGtPlOi3wQAANtrSBcyr1QqOfPMM/PiF784Bx988Fb3Offcc9Pe3t7/mDNnzlCWBAAAMGxsT58p0W8CAIDtNaTTW51xxhn52c9+ll//+tfZbbfdtrrP1n5jac6cOYZpAwAwapiqaPTanj5Tot8EAMDoNiymt/rgBz+Yn/zkJ7nhhhue8+K9tbU1ra2tQ1UGAADAsLS9faZEvwkAALbXoIceRVHk7//+73PppZfmuuuuy7x58wb7IwAAAEYsfSYAABg6gx56LFiwIN/73vdy+eWXZ8KECVm+fHmSpL29PWPGjBnsjwMAABhR9JkAAGDoDPqaHqVSaavbL7jggrz73e/e5vvNZwwAwGjjGnh02dE+U6LNAAAwutR0TY8hXBcdAABgxNNnAgCAodNQ6wIAAAAAAAAGg9ADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6oLQAwAAAAAAqAtCDwAAAAAAoC4IPQAAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuCD0AAAAAAIC6IPQAAAAAAADqgtADAAAAAACoC0IPAAAAAACgLgg9AAAAAACAuiD0AAAAAAAA6sKQhR5f+tKXsscee6StrS3z58/Pb3/726H6KAAAgBFHnwkAAAbfkIQe3//+9/ORj3wkn/zkJ3P77bfnsMMOy4knnpjHHntsKD4OAABgRNFnAgCAoTEkocd5552X9773vTnttNNy4IEH5itf+UrGjh2bb33rW0PxcQAAACOKPhMAAAyNpsE+YE9PT2677bZ84hOf6N/W0NCQE044ITfffPMW+3d3d6e7u7v/eUdHR5Kks7NzsEsDAIBhacO1b1EUNa6EnWGgfaZEvwkAgNFtIH2mQQ89nnjiiZTL5UyfPn2T7dOnT8+99967xf7nnntuzjnnnC22z5kzZ7BLAwCAYe3JJ59Me3t7rctgiA20z5ToNwEAQJKsWrVqm32mQQ89BuoTn/hEPvKRj/Q/X7lyZebOnZsHHnhAh4/t0tnZmTlz5uTBBx/MxIkTa10OI4A2w0BpMwyUNsNAdXR0ZPfdd8+UKVNqXQrD1Ob9pkqlkqeeeipTp05NqVTaqbX4jtsxzt+Ocw53jPO3Y5y/HeP87Rjnb8c5hzumluevKIqsWrUqs2bN2ua+gx567LLLLmlsbMyKFSs22b5ixYrMmDFji/1bW1vT2tq6xfb29nYNjwGZOHGiNsOAaDMMlDbDQGkzDFRDw5AsuccwM9A+U7L1ftOkSZOGqsTt4jtuxzh/O8453DHO345x/naM87djnL8d5xzumFqdv+0dJDHovaqWlpYcfvjhufrqq/u3VSqVXH311Tn66KMH++MAAABGFH0mAAAYOkMyvdVHPvKRnHrqqTniiCNy1FFH5Qtf+ELWrFmT0047bSg+DgAAYETRZwIAgKExJKHHm9/85jz++OM5++yzs3z58rzgBS/Iz3/+8y0W6tua1tbWfPKTn9zqlFewNdoMA6XNMFDaDAOlzTBQ2szosyN9plrTXneM87fjnMMd4/ztGOdvxzh/O8b523HO4Y4ZKeevVBRFUesiAAAAAAAAdpSVEgEAAAAAgLog9AAAAAAAAOqC0AMAAAAAAKgLQg8AAAAAAKAuDLvQ40tf+lL22GOPtLW1Zf78+fntb39b65IYpj71qU+lVCpt8th///1rXRbDyA033JCTTz45s2bNSqlUymWXXbbJ60VR5Oyzz87MmTMzZsyYnHDCCVm0aFFtimVY2Fabefe7373F986rXvWq2hRLzZ177rk58sgjM2HChEybNi2nnHJKFi5cuMk+69aty4IFCzJ16tSMHz8+b3jDG7JixYoaVUytbU+befnLX77F98z73//+GlXMaLQ97XRzF1544Rbttq2tbSdVPPw8n37KD37wg+y///5pa2vLIYcckiuuuGInVTv87LHHHlucv1KplAULFmx1/9He/oaqzzNa7s081/nr7e3Nxz72sRxyyCEZN25cZs2alXe961155JFHnvOYo+lexVD1n0ZL+0u2fQ639n1YKpXyb//2b896zNHSBoeqPzaa7hVt6xw+9dRT+fu///vst99+GTNmTHbfffd86EMfSkdHx3MedzjcOxlWocf3v//9fOQjH8knP/nJ3H777TnssMNy4okn5rHHHqt1aQxTBx10UB599NH+x69//etal8QwsmbNmhx22GH50pe+tNXXP//5z+c///M/85WvfCW/+c1vMm7cuJx44olZt27dTq6U4WJbbSZJXvWqV23yvXPxxRfvxAoZTq6//vosWLAgt9xyS6666qr09vbmla98ZdasWdO/zz/8wz/kxz/+cX7wgx/k+uuvzyOPPJK//uu/rmHV1NL2tJkkee9737vJ98znP//5GlXMaLS97XRzEydO3KTdLlu2bCdVPDwNpJ9y00035a1vfWve85735I477sgpp5ySU045JXfddddOrHj4+N3vfrfJubvqqquSJG984xuf9T2juf0NRZ9nNN2bea7z19XVldtvvz1nnXVWbr/99vzwhz/MwoUL89rXvnabxx0t9yqGov80mtpfsu1z+Mxz9+ijj+Zb3/pWSqVS3vCGNzzncUdDGxyq/thoule0rXP4yCOP5JFHHsm///u/56677sqFF16Yn//853nPe96zzWPX/N5JMYwcddRRxYIFC/qfl8vlYtasWcW5555bw6oYrj75yU8Whx12WK3LYIRIUlx66aX9zyuVSjFjxozi3/7t3/q3rVy5smhtbS0uvvjiGlTIcLN5mymKojj11FOL173udTWph+HvscceK5IU119/fVEU1e+U5ubm4gc/+EH/Pvfcc0+RpLj55ptrVSbDyOZtpiiK4mUve1nx4Q9/uHZFwWa21k43d8EFFxTt7e07r6hhbqD9lDe96U3Fq1/96k22zZ8/v3jf+943yJWNTB/+8IeLvfbaq6hUKlt9XfvbaLD6PKP13szWrv8399vf/rZIUixbtuxZ9xmt9yoGq/80WttfUWxfG3zd615XHH/88c+5z2htg4PRHxvt94q257rvkksuKVpaWore3t5n3Wc43DsZNiM9enp6ctttt+WEE07o39bQ0JATTjghN998cw0rYzhbtGhRZs2alT333DNvf/vb88ADD9S6JEaIpUuXZvny5Zt857S3t2f+/Pm+c3hO1113XaZNm5b99tsvZ5xxRp588slal8QwsWGI75QpU5Ikt912W3p7ezf5ntl///2z++67+54hyZZtZoPvfve72WWXXXLwwQfnE5/4RLq6umpRHiR59na6udWrV2fu3LmZM2dOXve61+Xuu+/eGeUNWwPpp9x8882b/L8iSU488UT/r0j1PsFFF12Uv/3bv02pVHrW/bS/rXs+fR73Zp5bR0dHSqVSJk2a9Jz7uVex0UD6T9rfc1uxYkV++tOfbtdv2Y/GNjgY/bHRfq9oe677Ojo6MnHixDQ1NT3nsWp972TYhB5PPPFEyuVypk+fvsn26dOnZ/ny5TWqiuFs/vz5/cOqzj///CxdujQveclLsmrVqlqXxgiw4XvFdw4D8apXvSrf+c53cvXVV+df//Vfc/311+ekk05KuVyudWnUWKVSyZlnnpkXv/jFOfjgg5NUv2daWlq26BT7niHZeptJkre97W256KKLcu211+YTn/hE/uu//ivveMc7algpo9mztdPN7bfffvnWt76Vyy+/PBdddFEqlUqOOeaYPPTQQzux2uFjoP2U5cuXuyZ9FpdddllWrlyZd7/73c+6j/b37J5Pn8e9mWe3bt26fOxjH8tb3/rWTJw48Vn3c69io4H2n7S/5/btb387EyZM2Ob0TKOxDQ5Wf2w03yvanuu+J554Ip/+9Kdz+umnP+exhsO9k+eOZGAYO+mkk/p/PvTQQzN//vzMnTs3l1xyyXal3gAD9Za3vKX/50MOOSSHHnpo9tprr1x33XV5xSteUcPKqLUFCxbkrrvuqsu5chkaz9ZmntmBOOSQQzJz5sy84hWvyJIlS7LXXnvt7DIZ5bb3u+3oo4/O0Ucf3f/8mGOOyQEHHJCvfvWr+fSnPz3UZQ47+imD55vf/GZOOumkzJo161n30f7YGXp7e/OmN70pRVHk/PPPf859fQdspP80uL71rW/l7W9/e9ra2p5zv9HYBvXHdty2zmFnZ2de/epX58ADD8ynPvWp5zzWcPhvf9iM9Nhll13S2NiYFStWbLJ9xYoVmTFjRo2qYiSZNGlS9t133yxevLjWpTACbPhe8Z3Djthzzz2zyy67+N4Z5T74wQ/mJz/5Sa699trstttu/dtnzJiRnp6erFy5cpP9fc/wbG1ma+bPn58kvmfY6QbSTjfX3NycF77whdrtetvqp8yYMcM16VYsW7Ysv/zlL/N3f/d3A3qf9rfR8+nzuDezpQ2Bx7Jly3LVVVc95yiPrXGvYqNt9Z+0v2f3q1/9KgsXLhzwd2JS/21wMPtjo/Ve0bau+1atWpVXvepVmTBhQi699NI0NzcP6Pi1uHcybEKPlpaWHH744bn66qv7t1UqlVx99dWb/NYGPJvVq1dnyZIlmTlzZq1LYQSYN29eZsyYscl3TmdnZ37zm9/4zmG7PfTQQ3nyySd974xSRVHkgx/8YC699NJcc801mTdv3iavH3744Wlubt7ke2bhwoV54IEHfM+MUttqM1tz5513JonvGXaa59NON1cul/PHP/5Ru11vW/2Uo48+epP/VyTJVVddNer/X3HBBRdk2rRpefWrXz2g92l/Gz2fPo97M5vaEHgsWrQov/zlLzN16tQBH8O9io221X/S/p7dN7/5zRx++OE57LDDBvzeem2DQ9EfG233irbnuq+zszOvfOUr09LSkh/96EfbHGm0NTW5d1LLVdQ399///d9Fa2trceGFFxZ/+tOfitNPP72YNGlSsXz58lqXxjD0v/7X/yquu+66YunSpcWNN95YnHDCCcUuu+xSPPbYY7UujWFi1apVxR133FHccccdRZLivPPOK+64445i2bJlRVEUxec+97li0qRJxeWXX1784Q9/KF73utcV8+bNK9auXVvjyqmV52ozq1atKv7xH/+xuPnmm4ulS5cWv/zlL4sXvehFxT777FOsW7eu1qVTA2eccUbR3t5eXHfddcWjjz7a/+jq6urf5/3vf3+x++67F9dcc01x6623FkcffXRx9NFH17BqamlbbWbx4sXF//2//7e49dZbi6VLlxaXX355seeeexYvfelLa1w5o8n2fLe9853vLD7+8Y/3Pz/nnHOKK6+8sliyZElx2223FW95y1uKtra24u67767FX6HmttVP2fz83XjjjUVTU1Px7//+78U999xTfPKTnyyam5uLP/7xj7X6K9RcuVwudt999+JjH/vYFq9pf5sajD7P8ccfX3zxi1/sfz6a7s081/nr6ekpXvva1xa77bZbceedd27yndjd3d1/jM3P32i6VzEY/afR3P6KYtv/DRdFUXR0dBRjx44tzj///K0eY7S2wcHqj+23337FD3/4w/7no+le0bbOYUdHRzF//vzikEMOKRYvXrzJPn19ff3HeeY5HC73ToZV6FEURfHFL36x2H333YuWlpbiqKOOKm655ZZal8Qw9eY3v7mYOXNm0dLSUsyePbt485vfXCxevLjWZTGMXHvttUWSLR6nnnpqURRFUalUirPOOquYPn160draWrziFa8oFi5cWNuiqannajNdXV3FK1/5ymLXXXctmpubi7lz5xbvfe976/bim23bWltJUlxwwQX9+6xdu7b4wAc+UEyePLkYO3Zs8frXv7549NFHa1c0NbWtNvPAAw8UL33pS4spU6YUra2txd5771189KMfLTo6OmpbOKPK9ny3vexlL+u/niqKojjzzDP7+3DTp08v/uqv/qq4/fbbd37xw8S2+imbn7+iKIpLLrmk2HfffYuWlpbioIMOKn7605/u5KqHlyuvvLJIstVrc+1vU4PR55k7d27xyU9+cpNto+XezHOdv6VLlz7rd+K1117bf4zNz99oulcxGP2n0dz+imLb/w0XRVF89atfLcaMGVOsXLlyq8cYrW1wsPpjm79nNN0r2tY5fLb2maRYunTpJsfZ8J7hcu+ktL4wAAAAAACAEW3YrOkBAAAAAACwI4QeAAAAAABAXRB6AAAAAAAAdUHoAQAAAAAA1AWhBwAAAAAAUBeEHgAAAAAAQF0QegAAAAAAAHVB6AEAAAAAANQFoQcAAAAAAFAXhB4AAAAAAEBdEHoAAAAAAAB1QegBAAAAAADUhf8/dprxU1kiTRMAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJfklEQVR4nO3deZRcZZ0//nd1d7qzd0hCNkhCQJQdlCUGBFGjgiiLzrjgjILKjA6KDPOdQX4jIl8X1HE889XxoDNf18FxZxtmlC+g4AJIIICgLAmGPQmEkO6s3Z3u+/ujkk46CUmadKe6b79e59Tpqlu3qj65eVK5z3338zyVoiiKAAAAAAAADHJ1tS4AAAAAAACgLwg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFLodejxq1/9Km95y1sybdq0VCqVXH311d3PdXR05MILL8yhhx6aUaNGZdq0aXnPe96Tp59+ui9rBgAAGLD0mQAAoHZ6HXqsXr06hx9+eL761a9u9dyaNWsyf/78XHzxxZk/f36uvPLKPPTQQzn11FP7pFgAAICBTp8JAABqp1IURfGiX1yp5Kqrrsrpp5/+gvvMmzcvxxxzTB577LHMmDHjxX4UAADAoKPPBAAAu1dDf39AS0tLKpVKxo0bt83n29ra0tbW1v24q6sry5cvz4QJE1KpVPq7PAAAqLmiKLJy5cpMmzYtdXWW3RtqdtRnSvSbAAAY2nrTZ+rX0GPdunW58MIL8653vStjx47d5j6XXXZZLr300v4sAwAABoUnnngie++9d63LYDfamT5Tot8EAADJzvWZ+m16q46OjrztbW/Lk08+mZtvvvkFT+C3/I2llpaWzJgxI0888cR2T/oBAKAsWltbM3369KxYsSLNzc21Loc+1Bd9pkS/CQCAoa03faZ+GenR0dGRt7/97Xnsscfyi1/8Yrsn4U1NTWlqatpq+9ixY528AwAwpJimaOjoTZ8p0W8CAIBk5/pMfR56bDx5X7BgQX75y19mwoQJff0RAAAAg5Y+EwAA9J9ehx6rVq3KwoULux8vWrQo99xzT8aPH5+pU6fmz/7szzJ//vxcd9116ezszJIlS5Ik48ePT2NjY99VDgAAMADpMwEAQO30ek2Pm2++Oa95zWu22v7e9743n/zkJzNr1qxtvu6Xv/xlTjzxxB2+f2tra5qbm9PS0mKYNgAAQ4Jz4HLp7z5Tos0AADC09Ob8t9cjPU488cRsLyfZhXXRAQAABj19JgAAqJ26WhcAAAAAAADQF4QeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASqHXocevfvWrvOUtb8m0adNSqVRy9dVX93i+KIp84hOfyNSpUzNixIjMnTs3CxYs6Kt6AQAABjR9JgAAqJ1ehx6rV6/O4Ycfnq9+9avbfP4LX/hCvvzlL+drX/tafve732XUqFF54xvfmHXr1u1ysQAAAAOdPhMAANROQ29fcPLJJ+fkk0/e5nNFUeRf/uVf8vGPfzynnXZakuS73/1uJk+enKuvvjrvfOc7d61aAACAAU6fCQAAaqdP1/RYtGhRlixZkrlz53Zva25uzuzZs3Pbbbdt8zVtbW1pbW3tcQMAACijF9NnSvSbAABgZ/Vp6LFkyZIkyeTJk3tsnzx5cvdzW7rsssvS3NzcfZs+fXpflgQAADBgvJg+U6LfBAAAO6tPQ48X46KLLkpLS0v37Yknnqh1SQAAAAOKfhMAAOycPg09pkyZkiRZunRpj+1Lly7tfm5LTU1NGTt2bI8bAABAGb2YPlOi3wQAADurT0OPWbNmZcqUKbnpppu6t7W2tuZ3v/td5syZ05cfBQAAMOjoMwEAQP9q6O0LVq1alYULF3Y/XrRoUe65556MHz8+M2bMyPnnn59Pf/rT2X///TNr1qxcfPHFmTZtWk4//fS+rBsAAGBA0mcCAIDa6XXoceedd+Y1r3lN9+MLLrggSfLe97433/72t/MP//APWb16df7qr/4qK1asyKte9ar8/Oc/z/Dhw/uuagAAgAFKnwkAAGqnUhRFUesiNtfa2prm5ua0tLSYpxYAgCHBOTC9pc0AADCU9Ob8t0/X9AAAAAAAAKgVoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBS6PPQo7OzMxdffHFmzZqVESNGZL/99sunPvWpFEXR1x8FAAAw6OgzAQBA/2no6zf8/Oc/n8svvzzf+c53cvDBB+fOO+/M2Wefnebm5px33nl9/XEAAACDij4TAAD0nz4PPW699dacdtppOeWUU5Ik++yzT77//e/njjvu6OuPAgAAGHT0mQAAoP/0+fRWxx57bG666aY8/PDDSZJ77703v/nNb3LyySf39UcBAAAMOvpMAADQf/p8pMfHPvaxtLa25oADDkh9fX06Ozvzmc98Ju9+97u3uX9bW1va2tq6H7e2tvZ1SQAAAANGb/tMiX4TAADsrD4f6fGjH/0o3/ve9/Kf//mfmT9/fr7zne/ki1/8Yr7zne9sc//LLrsszc3N3bfp06f3dUkAAAADRm/7TIl+EwAA7KxKURRFX77h9OnT87GPfSznnntu97ZPf/rTueKKK/Lggw9utf+2fmNp+vTpaWlpydixY/uyNAAAGJBaW1vT3NzsHHiI6G2fKdFvAgBgaOtNn6nPp7das2ZN6up6DiCpr69PV1fXNvdvampKU1NTX5cBAAAwIPW2z5ToNwEAwM7q89DjLW95Sz7zmc9kxowZOfjgg3P33XfnS1/6Ut73vvf19UcBAAAMOvpMAADQf/p8equVK1fm4osvzlVXXZVnnnkm06ZNy7ve9a584hOfSGNj4w5fb2g/AABDjXPgoWVX+0yJNgMAwNDSm/PfPg89dpWTdwAAhhrnwPSWNgMAwFDSm/Pfuu0+CwAAAAAAMEgIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAMOSeddFJGjRqVYcOGZe+9985Xv/rVWpcEAPQBoQcAAAAwJHz9619Ppb6Syh6VXP/w9Vlz4JqsP2Z9npr0VD78uQ+nMq6S0aNH17pMAGAXNNS6AAAAACBZujR58sme28aPT/baK2lsrE1NZbFs2bLsuc+eSVOSVyc5Ksmobez4XLL61tWpjK9k4rCJeXbps7u3UABglwk9AAAAGPDWrXs8HR3LkhSbba1seLzpZ13diNTXj0pd3cjU149MXd2IVCqVWpTca5MnV28bFUWyfHny4INJR0fPfUePTvbeOxm1rQv39HDrrbfmuJOOS2YmeVuS+u3sPCHJW5KsSZZdsSz1o+vTuapzt9QJAPQNoQcAAAAD3vDhMzJ8+Izt7lMURbq61qazc026ulano+PZdHWtTc+gJKmGJMmmwKTn/WpgMqr7Vqk01iQ4qVSSCROqty2tWpU8/niyZk3P7Y2N1ZEhe+xRff1Qt2bNmhz3+uOS/ZOcnk1/3TsyMsnZSdd3urLHnnvk+Wef77caAYC+JfQAAACgFCqVSurrqyM8kokv6j2qwcmadHauyfr1rWlrezpF0fZCn7jxVZvdr9ssMBm9ITTZ3tCCF2f06OTAA7fe3t6ePPVUsmjRFpVWkj33TKZOTRqG0JWAUaNGJXslOS07H3hsNCzJu5MV/7Yijz/+eGbM2H7otlFbW1sWLlyYRx99NJVKJW9605u6n5s3b16mTp2avfbaa9CMQNoZp556ahYtWpT29vYURZGDDjooRx11VI4++ugcddRRmbCt5A4A+skQOtUBAACA7asGJ9XQItmz168viq50dq5OZ+eqtLcvTWfn6iRbTo+0cTquLdVv+OwxaWgYk7q6kb2+MN7YmMyaVb31rCt59tnkD39I1q/v+VxTUzJtWvlGh6xZsyYZm+R1Sepe5JuMSPLyZNYBs9K5ZtvTXP3xj3/MHXfckXnz5uWOO+7Ivffem44N85HttddeOf/889PR0ZGOjo58+ctfznPPPZexY8fmqKOOysyZM1NfX5+Wlpbsu+++ec973pM99tgjEydOzLBhw15k0f3rj3/8Y/7jP/4jhx12WNra2lIURe6555488cQT3fssWLAg11xzTZJk2rRpeeqpp2pVLgBDUKUoim2dadVMa2trmpub09LSkrFjx9a6HAAA6HfOgektbaaciqJzQ2CyMp2dq9LZuSZJ1xZ7bb6OSbIxPKlOyVUNS+rrR/dqdElbW7J4cXX9kC2vEIwYkUyZMjgDkfph9eka15Wcm96P8tjcmiT/lix+YHFuvfXW3HfffZk5c2YefvjhPProo7nqqquybt26Hi8ZMWJE1q5duyvlp6GhIcOGDcuJJ56Ys846K8cee2yS5Morr8zEiRMzbty4jBs3Ls3NzWlubk5SDe322muv7b5vURRpb29PpVJJY2NjkmTp0qW5/vrrs3z58jz33HNZunRpnnnmmSxdujSLFy/OmWeemfHjx+eOO+7INddck/b29hd8/7POOiuHHXZY5s2bl9tvvz2rVq3Ke97znhx22GGZM2dOPvOZz+T1r399/uzP/ixNTU27dIwAGDp6c/4r9AAAgBpzDkxvaTNsbtNaJhvDklUpivXZ0dolSZG6uuGprx+zYSqu0amra+zx3uvWVQOR55/fOhCpVJLx45NJk5KRI/vtj7dT2tuTrq5k+PBN2yrDKslrkxzbBx/wgyQPbn+XuXPn5pxzzsnRRx+dp59+OhdffHHGjx+fkSNHdgcYw4YNS0dHR4477risX78+zzzzTO67777ceOON6ezsTFEUef755/NCl2omTpyYZcuWbbeOvfbaK7Nnz8748ePzwx/+MA0NDamvr09RFFm7dm3Wrl2boihywQUXZN999838+fNzyy235JFHHtnpwzFy5MgcdNBBmTRpUpJq2FIURVasWJHzzjsv73jHO5IkP/vZz3pM77W5MWPG5Kyzzsoll1xi+isAdkjoAQAAg4hzYHpLm9l569evzNq1CzY82vyC/45sa9+N27bXjd78+e29flvPJUl9KpW6JHWpVHre37StfsPj6vOb7m/+XN0Op8YqiiJPP92ep59emWRVimJlGhraM25cdWTH1mt/9AxOKpURWbVqdJ57bmTWrRuVomjq/sxKpRqSNDVtWoy9sXHL9+s7d9+dHHJIsvmMUJVxleTtqa7psat+l+Rn1bsjRozI7Nmzc+CBB2bffffNzJkzs88+++SlL31p94iLXdHV1ZVnn302v/nNbzJv3rwsXbo0v//973Pvvfems7M6xdbkyZOz1157paWlJcuXL8/zz/fNQuuHHXZYjj/++EyaNCkLFizIFVdckSSZMmVK5syZk9mzZ+dVr3pVjj322J2aeu3JJ5/Mz372s/z+97/P/PnzM2/evO6pvzbae++984Mf/CBHH310hg0bVqq1TgDoO0IPAAAYRJwD01t93WaqF1I7UxTt6epq3/BzbYqia8PjjhRFR7q6OlIU7RtGEXRueLw+SUe6uro27Lc+ycb7XSmKriTrUxSdG24bn9/2+ghb27zLOhguhvYcSVGpNKQaQDSkGhTUpVJpSl3dxu3DUqk0bPi5Mayo695WV7cx0Nj4/LANozHqUlfXmKKopK6uyMZjWhTrNxzbrmw7nNlyxEfPetevr2TFiuT554t0dlZ/e7/6W/ybXtPYWGTs2GTMmLbU169JV9e6De1l05RHG1/X0ZGsWlWXVavqs359fapLi9Ylqe++VY/HiIwcOTxjxw7P6NHDM3Lk8NTXN6ZSaUxd3bBsL8QpiiJ33lnkyCO7NrTTdenqWpfhU6cl786LXdO+p/uSXJmsXrU6I2s0rGXVqlWZN29ebr311rz85S/vHkFRFEV+/vOf5+CDD87YsWPz+9//Prfffnvmz5+fe++9N+eee25OPPHEVCqV3HvvvXn3u9+dJJk0aVKOOuqovOIVr8grXvGKHHnkkZk+fXr3cV66dGkeeOCB7L///jucMmtnrV69OrfeemtuvPHGXHnllVm/fn0effTR1NfX581vfnPuvPPOnHrqqTn11FPzmte8xvRXAHQTegAAwCDiHJje2thmfv/7/y9jxgzPtkcPbG+kwtaPN118r9/sIvzGx40bLsA3pHqRuiF1dcNSqWy8GN3Y/bh6wX7jher67umSqtuqF7GrF7uT+vqdX3disOoZKHUmaU9nZ3uS9s1CpK4tQqW2HoFSZ+fGYKltQwjVtlnA0ZEd/9339vH291m/Plm7tsiaNZV0bje7KlIUlWwKYDpTV9eVSqUrdXVF6urWpzrFVvXPsn59ezo6OrN+fWc6OtanUunacAyqr+3sXJ+urvZ0da1LUbSkUlmTSmVNimJ9uro2rlReDWi6uury1vc/nrwzyeTt1biT5icN/9Ow1SiFwaajoyMrV65MXV1dxo0bV+tysnLlyvz1X/91vv/972f06NFZtWpV93OjR4/OG9/4xhx//PHZZ599MnLkyLz2ta8dEt8bAGytN32mrQarAgAAMDjMnHmhoGyAWL++uv7Fxltb28af9enoqM/atY3p6Khu7+iorkHR0bFpcfCi6LlQ+PYe92bf3r5253Qm6Uil0rHhZ/tm9zuStG+4v3lw0plkZZJlqVSeS6WyNHV1q1OprEjSlkqlc6s1Q3qGLg2prx+RSqUhXV17ZO3aWVmx4qVZsuTwLFs2OZ2ddT1eOWpUko5K9SP7IvRoqU5rNdgNGzYs48ePr3UZ3caMGZPvfe97ec1rXpMjjzwyS5YsybXXXpsf/ehHef755/PTn/40P/3pT7v3P+KII/LlL385xx9/fA2rBmCgE3oAAAAwaHR1VQODdeuSVauS1auTtWs33das2RQ6JC8uIEh2LiTY/H5DQ3XNiqam6roSI0ZUfzY1JePGVRf7bmqq7jN8ePXnrqxxURRF93RkXV1tG0aHbLzfvmEEyOZTWW209ZRWW47o6OzsSmfn8+noeC4dHcvT0bEs69cvy/r1rRumLSu6/9wb1xOpjvjJhtFBG6ev6vne9fUjU1c3Jo2NE9LYeGiGD5+RYcNmpLFxbDo6hmf58kqeeipZtixpaan+PT//fPL000lr68bPqx7b8eOr64S8+tXJoYcmE7cxhdU//3OSO5O85MUf5+5D9Mfk5z//+S6+EdtSqVRyzjnndD9+05velP322y//8A//0L1txIgRaWxszD333JMTTjghp512Wl7xilfktNNOy2GHHWYdEAB6ML0VAADUmHNgeqvWbWZj8NDaWg0dNr+tWVO9tbf3fM2LCRpeqLc6bFj1N/mbmpKRI6sXwUeNqv4cObJ6Gz48qavb9ut3h+p6KOs23Np63K9O95RsveD59sOIno8rG6Yca0pdXVMqlcYURUM6O59Pe/vStLcvSXv7U2lrW5pk47RY63u8fns11NePTkPD2DQ0jE9j47Q0Ne2VYcOmpbFxdOrqRmyYymzHF5qLIlmxIlm0KHnqqWTlyuq2oqgGU8uWJYsXV0fKjBxZDYiam6t/nw0NydSpyctelkyb1ru/zwcfTD7wgVPz2z/+V3JOkl1ZhuPRJFcmRcuAunxSau3t7XnyySeTJDNmzEh7e3vWrFmTiy++OI8++miPAGrmzJk59dRT85a3vCXHH398hg8fXquyAehH1vQAAIBBxDkwvdXfbeZ3v0sWLHjh0Q7JpsBh5MjqBeqRI5MxY6o/R4+ujmKoZejQG0XRmc7Otd0Lcm+8VRcE314w8UKPk+p6Jk2pqxu+xa1pw0iIbevs7Ex7++NZu3ZR1q17LG1tT6azc02Stg1rgXRu8Xk9NTQ0Z9iwCRk2bGKGD98njY37pLFxbOrqRm747L79jfjVq5OHH04eeaQ6wibZ1Fba25OlS6uhx+jR1ZEZo0dven7YsGTffauhRl8145aW5L77kgMPrH5eZVglOT7Jq3fhTa9I3nLgW3Lttdf2TZHskhUrVuTKK6/MNddck//3//5f1m1seKmOCLn00kvz93//9zWsEID+YE0PAAAAXrTZs6u3gWrj1E6dnWvS1bW2+2dRtGfHi7pvHmJsCijq60ekrq56a2gYt+H+rnWZ29uXZ82ah7Nu3Z/S1vZkurpWp7Nz3YapqNq2qGHjgvL1G4KLKWlq2iujR78ijY0TUl8/OvX1o3e5pt7o7EyWL08efTR58slqwLGtfTauTdLUVN228VcrR45M5s5NDjigGnb0twcfrI4eOe64TcHKiBEjsnb+2uSlSaa+iDe9L8kzybULBB4Dxbhx4/K+970v73vf+3LxxRfn05/+dJKkrq4ua9euzYQJE7r3vffee/OpT30qr371q3PiiSfm4IMPzvr16/OLX/wi1113XR566KEcfPDB+Zd/+Zca/WkA6A9CDwAAAHaL6oiKzYOKNenq2vhb2i80YiLZVpBRqTRuWCNiZBob99wQUuzCIhk70NnZmbVrH87atQuybt2f0tnZmq6u9RtGhazbYlRIVX39iA3hxd5pbn5lGhsnp75+bBoaqiMvar0OQWdn8txz1dEYra3Js89W10nZqK6uOtXUnntW19BYu7Y6tdnmxo1LDjkkmTWrdiN7urqS229PXvKS6topm1vTuiaVukrywyTvSu8WNX8wyQ3JA797oO+KpU9deumlOeCAA/KP//iPeeyxx5IkH//4x9PW1pb3ve99ufHGG3sshj527Ni0tbWlbeOiP0laWlpqUjsA/cf0VgAAUGPOgemt3d1miqJIV9eaDVNAre4OLrY9amLz+xsfZ8O2+u6gojqyYlS/TLm0Mzo7O7Nu3SNZs+bBDSHGyu51OIpiXTo727IpaClSqTSkoWFChg/fK01NM9PYOHHDuhfNqa9vTn39wFxHYPXq6poZLS3VcGD58mrQ0dW1KdSYMKH6c+zY6lRVTz3V8z2GDatOF3XQQdV1NgaStWuTefOqI5M2jjTZlkpdJRmb6jRXhyYZtp03XZPktiT3JjdddVNe+9rX9mXJ9IP29vZ885vfzGc+85nutUBmz56db3zjG7n66qtzyy235JZbbkn7ZosNNTQ05Pzzz88ZZ5yRY489Nkny/PPPp7m5OXWDZW4+gCHEmh4AADCIOAemt/qrzaxduyjr1z+/4dHmIUYldXUjNgssRqWubnjNRypsqb19eVavvj9r1y5Ie/viJMUWC4pvHFVSSaVSSUPDxAwfvneamvZJY+P4VCrD0tDQnIaGcamvH7PdtTcGiqKoBhqLF1cXkE+qa2k880x10fARI5KJEzctDL7nntXRGffcU11cfHMjRiRHHZVMnz441mNZvrw6pdWcOVuvObMt06ZNy+IVi5PhSV6SZHaScUnqk3QkeSbJb5MsSbIyeXbxs5k4cWJ/lU8/aGtry//9v/83n/3sZ3PSSSflG9/4RpJqmDF+/PgkycEHH5yVK1emo6MjCxcuzMiR1VXuH3300bz+9a/PySefnP/zf/7PgPt+AxjqrOkBAABAr40YMSvJrFqX0a26qPdTWbPmgaxdu6BHINPVVV0Xo7rIdzWgqa8fkcbGvTN8+KyMHHlY6uvrUqk0pL6+OcOG7ZH6+rGD8kLmxmDj6aerIxs2Wru2OjVVQ0M12Bi+YbDJmDHVkRljxiSPP57cdVfyxBObXjdsWHLEEdWwYDCEG9vyzDPVP9OGX9DfKU8//XSS5KKLLsrnPve5ZEF6zqjWlYyvH5/nlj/Xp7Wy+zQ1NeXcc8/NBz7wgR7TVi1cuDANDQ35/Oc/n7/9279NkixdurQ78Ojs7Mw73/nOLFy4MF/5ylcyYsSIfO5znxuU3xcAGOkBAAA15xyY3hrMbWZjkLF69f1Zt+6RrF+/ovu5ouhKZ+eaFMXadHV1JEkaGsalqWnvjBixX+rrx6e+vj5J3YappfbYsOh4OX6fb9Wq6tRSm6+rkVSnqFq7troY+PDNZtEaObI6KmP06GT9+mq4sWBBz9fuvXdyzDHVfcvimWeqAdARR9S6EgaLtWvXpqurK6NGjdrm85dffnn+5m/+pse2Sy65JJ/85Cd3Q3UA7AwjPQAAANit2tufzapV92XNmoeyfv2yzZ4p0tXVka6udensXJukc7Mg42VpbNw0fVB13Yw90tCwR+rrR5Xyt6zb26sX7Jcvrz7e/NcQK5XqWhtb/rEnT66GGxuDi1WrkttuSx54oBp0JEl9fXLYYcmZZw7e0Rs7Y9myajD08pfXuhIGkxEjRmz3+fe973354x//mH/913/t3nbppZdm5MiR+Yd/+If+Lg+APmakBwAA1JhzYHqrVm3m+ed/lZaWW7bxTCUNDc0ZPny/jBp1SBob90p9fX3a2pakvf2p1NWNTEPDHhk2bI/U1W1ntemS6OqqTju1dGnS2dnzuaam6rRTG0dvFMWmkGP06J7hRpKsWJH85jfVnxsNH14dvTFjRn//SQaWlpbqQutHH13rSiirH/3oRznrrLOydrN55H7961/nVa96VQ2rAiAx0gMAAIB+sMceJ2SPPU7Y6f2bmqakqWlKP1ZUO0WRtLZWRx1svs5GUh1pMWlScsgh1ecefnjTc21t1TU19tln6ymnVqxIbr550yiQpLoA+XHHVd9vKGtrS+67L3Htmf709re/PZMnT84pp5yS1atXJ0n+7u/+LrfffnspR54BlJXQAwAAAF5AW1vP6ag219yczJqVbG/mnNGjkyOP3Hp7a2vyP/9Tna5p43RUAo5tK4rk9tuTE3Y+b4MX7dWvfnWuv/76nHzyyVm7dm0+/vGPCzwABhmhBwAAAENaV1d1ceylS6sLgm+uqSmZNq06MuPFXPesVJI1a5Lf/rb6/huNGFENOKaUcyBMn7r99mT27Bd3/OHFOO6443LDDTekUqnkmGOOqXU5APSS0AMAAIDS2zgd1dNPV0OIzdXXJ3vumRx8cNKwi73kdeuqF+mffHLTtsbG5JWvTF7/+l1776HoD39I9tuvuo4J7E6zZ8/u8fi73/1uTjnllEyYMKFGFQGws4QeAAAAlMaOpqOaOXPrtTRerPXrk7vuShYsqI4Wqaurrtdx1FHJiSf2zWcMZUuWVEMo031Ra2effXa+/e1v521ve1t+8pOf1LocAHZA6AEAAMCg88wz1XCjs7Pn9l2djuqFdHUl999fXUy7KKrbKpXkiCOSM8/ctC4HfaOjI/nTn5Jjj611JZA8//zzSZKf/vSnmTdvXo4++ugaVwTA9gg9AAAAGHTq6pJDDtn16ai2paurOnpj/vyeocoBByTvepeAY3e4447qlGAwEPzwhz/MuHHjsm7dupxyyil58MEHM378+FqXBcALEHoAAAAw6Eyc2D/ve911yYoV1ZEib3tbdT0Odq8HH0z237+61goMBE1NTbnoootyySWX5Nlnn82ZZ56Z//7v/069RgowIPn9FAAAANjgzW9O/uIvkle9SuBRCytXVheDt44HA815552X4cOHJ0muv/76XHzxxTWuCIAXIvQAAAAABoR7700OP7zWVcDWxo0blw984APdjy+77LJcd911NawIgBci9AAAAABq7v77k4MO6tsF6KEvnXfeealUKhk3blze/OY354QTTqh1SQBsgzU9AAAAgJpavTrp6EisDc1Atv/+++fWW2/NK17xijQ0NKSuzu8SAwxEvp0BAACAmrrnnuSII2pdBezYK1/5yjQ2Nqauri4LFy5Me3t7fvKTn6Szs7PWpQGwgdADAAAAqJmFC5P99jOtFYNLe3t7TjrppOy555758z//83ziE5+odUkAbCD0AAAAAGpi/fpk2bJkypRaVwK98+CDD6a1tTWtra1Jks9+9rP59re/XduiAEgi9AAAAABqZP785Mgja10F9N5hhx2WhQsX5mMf+1j32h7vf//7c8stt9S4MgCEHgAAAMBut3x5MmZMMmxYrSuBF2fs2LG57LLLctddd6WxsTFdXV15/etfn8cee6zWpQEMaUIPAAAAYLd78MHkwANrXQXsuiOOOCK//vWvU19fn46Ojpx44onp6uqqdVkAQ5bQAwAAANit/vSnZN99a10F9J1jjjkm//7v/566uro88cQTmTdvXq1LAhiyGmpdAAAAADB0FEWydGkyZ06tK4G+dfbZZ6epqSl77713Zs+eXetyAIYsoQcAAACw29x7b3LYYbWuAvrHmWee2X3/1ltvzZw5c1KpVGpYEcDQY3orAAAAYLdob0/Wr09Gjap1JdB/iqLImWeemeOOOy6vf/3rs379+lqXBDCkCD0AAACA3eLuu5Mjjqh1FdC/KpVK9t2waM1NN92Uiy66qMYVAQwtQg8AAACg361cmYwcmTSYaJsh4OKLL87UqVOTJP/8z/+cX//61zWuCGDoEHoAAAAA/e7++5NDDql1FbB7NDU15Qc/+EGS6nRXZ5xxRlpbW2tcFcDQ0C+hx1NPPZW/+Iu/yIQJEzJixIgceuihufPOO/vjowAAAAYdfSaGmmefTSZOTKznzFBywgkn5Pzzz0+SPPfcc3nrW99a24IAhog+Dz2ef/75HHfccRk2bFh+9rOf5Y9//GP++Z//OXvssUdffxQAAMCgo8/EUPTII8n++9e6Ctj9vvSlL+VNb3pTkur6HrfeemuNKwIovz6fSfPzn/98pk+fnm9961vd22bNmtXXHwMAADAo6TMx1Dz1VDJtWq2rgNqoVCq59tprc8QRR+T+++/PV77ylRx77LG1Lgug1Pp8pMe1116bo446Kn/+53+eSZMm5eUvf3n+/d//va8/BgAAYFDSZ2KoeeKJZMaMWlcBtVNfX5/rr78+l19+eb773e/WuhyA0uvz0ONPf/pTLr/88uy///65/vrr86EPfSjnnXdevvOd72xz/7a2trS2tva4AQAAlFVv+0yJfhOD12OPCTwgSaZNm5YzzjgjH/3oR/PmN7+51uUAlFqlKIqiL9+wsbExRx11VI85Cs8777zMmzcvt91221b7f/KTn8yll1661faWlpaMHTu2L0sDAIABqbW1Nc3Nzc6Bh4je9pkS/SYGr9tuS+bMqXUVMDCsXLky48aNS1dXV+67774ccsghtS4JYNDoTZ+pz0d6TJ06NQcddFCPbQceeGAef/zxbe5/0UUXpaWlpfv2xBNP9HVJAAAAA0Zv+0yJfhOD05/+lFiuBjYZM2ZMZs6cmSR5//vfX+NqAMqrzxcyP+644/LQQw/12Pbwww93f6lvqampKU1NTX1dBgAAwIDU2z5Tot/E4PTMM8krX1nrKmBgOe6447Jo0aLMmzcvixcvztSpU2tdEkDp9PlIj7/927/N7bffns9+9rNZuHBh/vM//zP/9m//lnPPPbevPwoAAGDQ0WdiKPjTn5J99611FTDwfOQjH0mSFEWRr33tazWuBqCc+nxNjyS57rrrctFFF2XBggWZNWtWLrjggpxzzjk79VrzGQMAMNQ4Bx56dqXPlGgzDHy/+10ye3atq4CBpyiKTJ06NUuXLs3EiROzdOnS1NX1+e8kA5ROb85/+yX02BVO3gEAGGqcA9Nb2gwD2Z/+lIwenUyaVOtKYGD6+Mc/ns985jNJkl/84hd5zWteU+OKAAa+mi5kDgAAAAxdzz4r8IDtOeusszJy5Mgkybe+9a0aVwNQPkIPAAAAoE88+mgyc2atq4CB7SUveUluuOGGJMlPfvKTtLa21rgigHIRegAAAAB9YsmSZMqUWlcBA9+cOXPy8Y9/PDfeeGPGjBlT63IASkXoAQAAAOyyJ55Ipk+vdRUwOFQqlVxyySVZu3Ztli1bVutyAEpF6AEAAADssqefTvbaq9ZVwODx5je/OXPnzs2Pf/zjWpcCUCpCDwAAAGCXLF5sWivorblz5yZJPvvZz+bLX/5yjasBKA+hBwAAALBLHn/cAubQW29729uSJE899VT+9V//NUVR1LgigHIQegAAAAAv2rJlyYQJta4CBp9Zs2bl8MMPT5IsWLAgd999d40rAigHoQcAAADwoj3ySPKSl9S6Chic3vGOd3Tf/4//+I8aVgJQHkIPAAAA4EVpbU3Gjq11FTB4veMd70hdXfXy3BVXXJGurq4aVwQw+Ak9AAAAgBflgQeSAw6odRUweO2777754Ac/mCRZtmxZbr/99hpXBDD4CT0AAACAXlu7Nhk+PKlUal0JDG6f/vSn87rXvS5J8uMf/7jG1QAMfkIPAAAAoNfuuy859NBaVwGD3x577JGPfOQj2W+//bLnnnvWuhyAQU/oAQAAAPRKR0dSV1e9Abvu1FNPzYIFC/KXf/mXprgC2EVOTwAAAIBe+f3vk8MOq3UVUB6VSiU33XRTZsyYkfe85z21LgdgUBN6AAAAADutKJL165PGxlpXAuVy1FFHJUkWLFiQxYsX17gagMFL6AEAAADstPvvTw45pNZVQPm0t7enbsOccTfddFONqwEYvIQeAAAAwE5bsyYZNarWVUD57LnnnhkxYkSS5Kc//WmNqwEYvIQeAAAAwE5ZsCB5yUtqXQWUU6VSyctf/vIkyS233JKiKGpcEcDgJPQAAAAAdsry5cmECbWuAsrrjDPOSJI8//zzefjhh2tcDcDgJPQAAAAAduipp5Jp02pdBZTb8ccf333/v/7rv2pYCcDgJfQAAAAAdujJJ5Pp02tdBZTboYce2r2Y+UknnVTjagAGJ6EHAAAAsF0rViTjxtW6Cii/4cOH5+CDD06S/OlPf6pxNQCDU0OtCwAAAAAGtoceSo45ptZVwNDwwQ9+MC0tLTnwwANrXQrAoGSkBwAAAPCC1q1LmpqSSqXWlcDQ8Dd/8zd55StfmZ/85Cd54IEHal0OwKBjpAcAAADwgu67L3nFK2pdBQwtX/ziF/M///M/aW5uNuIDoJeM9AAAAAC2qaur+rO+vrZ1wFDS2dmZqVOnJknuu+++GlcDMPgIPQAAAIBtuv/+5JBDal0FDC2rV6/ON77xjSTJ3XffXeNqAAYfoQcAAACwTWvXJiNG1LoKGFrGjh2bERv+4f3hD3+ocTUAg4/QAwAAANjKggXJS15S6ypgaJoyZUqSZNWqVWlpaalxNQCDi9ADAAAA2Mry5cmECbWuAoamjaFHkjzxxBM1rARg8BF6AAAAAD0sWZJMnlzrKmDomjRpUvd9oQdA7wg9AAAAgB4eeyzZZ59aVwFD1+jRo5MkF1xwQU444YQaVwMwuAg9AAAAgG6rViWjRtW6ChjaRo4cmSTZY489Mso/SIBeaah1AQAAAMDA8cADyVFH1boKGNrOOOOM7Lfffjn++ONrXQrAoGOkBwAAAJAkWb8+qatLKpVaVwJD28knn5zjjz8+1157bf71X/+11uUADCpGegAAAABJkvvvTw49tNZVAH/3d3+XL33pS0mS/fffPx/+8IdrXBHA4GGkBwAAAJCiSNraksbGWlcCQ9v8+fO7A48keeUrX1nDagAGH6EHAAAAkIcfTl72slpXAfz2t7/tvv/Xf/3X+e53v1vDagAGH6EHAAAAkBUrknHjal0F0NXVVesSAAY1oQcAAAAMcYsXJ1On1roKYEudnZ21LgFg0BF6AAAAwBD3+OPJjBm1rgJIkrlz5+atb31rEqEHwIsh9AAAAIAhbNWqZNSoWlcBbHTwwQfnuOOOS5K0tbXVuBqAwUfoAQAAAEPYH/6QHHxwrasANjdixIgkydq1a2tcCcDgI/QAAACAIWr9+qSuLqlUal0JsLmNoce6detqXAnA4NNQ6wIAAACA2rj//uSww2pdBbClI444Iv/4j/+YAw44oNalAAw6Qg8AAAAYog46KGlsrHUVwJaOOOKIHHHEEbUuA2BQMr0VAAAADFECDwCgbIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKIV+Dz0+97nPpVKp5Pzzz+/vjwIAABh09JkAAKDv9GvoMW/evHz961/PYYcd1p8fAwAAMCjpMwEAQN/qt9Bj1apVefe7351///d/zx577NFfHwMAADAo6TMBAEDf67fQ49xzz80pp5ySuXPnbne/tra2tLa29rgBAACU3c72mRL9JgAA2FkN/fGmP/jBDzJ//vzMmzdvh/tedtllufTSS/ujDAAAgAGpN32mRL8JAAB2Vp+P9HjiiSfy0Y9+NN/73vcyfPjwHe5/0UUXpaWlpfv2xBNP9HVJAAAAA0Zv+0yJfhMAAOysSlEURV++4dVXX50zzjgj9fX13ds6OztTqVRSV1eXtra2Hs9tqbW1Nc3NzWlpacnYsWP7sjQAABiQnAMPLbvaZ0q0GQAAhpbenP/2+fRWr3vd63Lffff12Hb22WfngAMOyIUXXrjDk3cAAIAy02cCAID+0+ehx5gxY3LIIYf02DZq1KhMmDBhq+0AAABDjT4TAAD0nz5f0wMAAAAAAKAW+nykx7bcfPPNu+NjAAAABiV9JgAA6BtGegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKfR56XHbZZTn66KMzZsyYTJo0Kaeffnoeeuihvv4YAACAQUmfCQAA+k+fhx633HJLzj333Nx+++254YYb0tHRkTe84Q1ZvXp1X38UAADAoKPPBAAA/adSFEXRnx/w7LPPZtKkSbnllltywgkn7HD/1tbWNDc3p6WlJWPHju3P0gAAYEBwDjy09bbPlGgzAAAMLb05/23o72JaWlqSJOPHj9/m821tbWlra+t+3Nra2t8lAQAADBg76jMl+k0AALCz+nUh866urpx//vk57rjjcsghh2xzn8suuyzNzc3dt+nTp/dnSQAAAAPGzvSZEv0mAADYWf06vdWHPvSh/OxnP8tvfvOb7L333tvcZ1u/sTR9+nTDtAEAGDJMVTR07UyfKdFvAgBgaBsQ01t9+MMfznXXXZdf/epX2z15b2pqSlNTU3+VAQAAMCDtbJ8p0W8CAICd1eehR1EU+chHPpKrrroqN998c2bNmtXXHwEAADBo6TMBAED/6fPQ49xzz81//ud/5pprrsmYMWOyZMmSJElzc3NGjBjR1x8HAAAwqOgzAQBA/+nzNT0qlco2t3/rW9/KWWedtcPXm88YAIChxjnw0LKrfaZEmwEAYGip6Zoe/bguOgAAwKCnzwQAAP2nrtYFAAAAAAAA9AWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFLot9Djq1/9avbZZ58MHz48s2fPzh133NFfHwUAADDo6DMBAEDf65fQ44c//GEuuOCCXHLJJZk/f34OP/zwvPGNb8wzzzzTHx8HAAAwqOgzAQBA/+iX0ONLX/pSzjnnnJx99tk56KCD8rWvfS0jR47MN7/5zf74OAAAgEFFnwkAAPpHQ1+/YXt7e+66665cdNFF3dvq6uoyd+7c3HbbbVvt39bWlra2tu7HLS0tSZLW1ta+Lg0AAAakjee+RVHUuBJ2h972mRL9JgAAhrbe9Jn6PPRYtmxZOjs7M3ny5B7bJ0+enAcffHCr/S+77LJceumlW22fPn16X5cGAAAD2nPPPZfm5uZal0E/622fKdFvAgCAJFm5cuUO+0x9Hnr01kUXXZQLLrig+/GKFSsyc+bMPP744zp87JTW1tZMnz49TzzxRMaOHVvrchgEtBl6S5uht7QZequlpSUzZszI+PHja10KA9SW/aaurq4sX748EyZMSKVS2a21+I7bNY7frnMMd43jt2scv13j+O0ax2/XOYa7ppbHryiKrFy5MtOmTdvhvn0eekycODH19fVZunRpj+1Lly7NlClTttq/qakpTU1NW21vbm7W8OiVsWPHajP0ijZDb2kz9JY2Q2/V1fXLknsMML3tMyXb7jeNGzeuv0rcKb7jdo3jt+scw13j+O0ax2/XOH67xvHbdY7hrqnV8dvZQRJ93qtqbGzMkUcemZtuuql7W1dXV2666abMmTOnrz8OAABgUNFnAgCA/tMv01tdcMEFee9735ujjjoqxxxzTP7lX/4lq1evztlnn90fHwcAADCo6DMBAED/6JfQ4x3veEeeffbZfOITn8iSJUtyxBFH5Oc///lWC/VtS1NTUy655JJtTnkF26LN0FvaDL2lzdBb2gy9pc0MPbvSZ6o17XXXOH67zjHcNY7frnH8do3jt2scv13nGO6awXL8KkVRFLUuAgAAAAAAYFdZKREAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApDLjQ46tf/Wr22WefDB8+PLNnz84dd9xR65IYoD75yU+mUqn0uB1wwAG1LosB5Fe/+lXe8pa3ZNq0aalUKrn66qt7PF8URT7xiU9k6tSpGTFiRObOnZsFCxbUplgGhB21mbPOOmur752TTjqpNsVSc5dddlmOPvrojBkzJpMmTcrpp5+ehx56qMc+69aty7nnnpsJEyZk9OjRedvb3palS5fWqGJqbWfazIknnrjV98wHP/jBGlXMULQz7XRL3/72t7dqt8OHD99NFQ88L6af8uMf/zgHHHBAhg8fnkMPPTT/8z//s5uqHXj22WefrY5fpVLJueeeu839h3r7668+z1C5NrO949fR0ZELL7wwhx56aEaNGpVp06blPe95T55++untvudQulbRX/2nodL+kh0fw219H1YqlfzTP/3TC77nUGmD/dUfG0rXinZ0DJcvX56PfOQjednLXpYRI0ZkxowZOe+889LS0rLd9x0I104GVOjxwx/+MBdccEEuueSSzJ8/P4cffnje+MY35plnnql1aQxQBx98cBYvXtx9+81vflPrkhhAVq9encMPPzxf/epXt/n8F77whXz5y1/O1772tfzud7/LqFGj8sY3vjHr1q3bzZUyUOyozSTJSSed1ON75/vf//5urJCB5JZbbsm5556b22+/PTfccEM6Ojryhje8IatXr+7e52//9m/zX//1X/nxj3+cW265JU8//XTe+ta31rBqamln2kySnHPOOT2+Z77whS/UqGKGop1tp1saO3Zsj3b72GOP7aaKB6be9FNuvfXWvOtd78r73//+3H333Tn99NNz+umn5/7779+NFQ8c8+bN63HsbrjhhiTJn//5n7/ga4Zy++uPPs9QujazveO3Zs2azJ8/PxdffHHmz5+fK6+8Mg899FBOPfXUHb7vULlW0R/9p6HU/pIdH8PNj93ixYvzzW9+M5VKJW9729u2+75DoQ32V39sKF0r2tExfPrpp/P000/ni1/8Yu6///58+9vfzs9//vO8//3v3+F71/zaSTGAHHPMMcW5557b/bizs7OYNm1acdlll9WwKgaqSy65pDj88MNrXQaDRJLiqquu6n7c1dVVTJkypfinf/qn7m0rVqwompqaiu9///s1qJCBZss2UxRF8d73vrc47bTTalIPA98zzzxTJCluueWWoiiq3ynDhg0rfvzjH3fv88ADDxRJittuu61WZTKAbNlmiqIoXv3qVxcf/ehHa1cUbGFb7XRL3/rWt4rm5ubdV9QA19t+ytvf/vbilFNO6bFt9uzZxV//9V/3cWWD00c/+tFiv/32K7q6urb5vPa3SV/1eYbqtZltnf9v6Y477iiSFI899tgL7jNUr1X0Vf9pqLa/oti5NnjaaacVr33ta7e7z1Btg33RHxvq14p25rzvRz/6UdHY2Fh0dHS84D4D4drJgBnp0d7enrvuuitz587t3lZXV5e5c+fmtttuq2FlDGQLFizItGnTsu++++bd7353Hn/88VqXxCCxaNGiLFmypMd3TnNzc2bPnu07h+26+eabM2nSpLzsZS/Lhz70oTz33HO1LokBYuMQ3/HjxydJ7rrrrnR0dPT4njnggAMyY8YM3zMk2brNbPS9730vEydOzCGHHJKLLrooa9asqUV5kOSF2+mWVq1alZkzZ2b69Ok57bTT8oc//GF3lDdg9aafctttt/X4vyJJ3vjGN/q/ItXrBFdccUXe9773pVKpvOB+2t+2vZg+j2sz29fS0pJKpZJx48Ztdz/XKjbpTf9J+9u+pUuX5r//+7936rfsh2Ib7Iv+2FC/VrQz530tLS0ZO3ZsGhoatvtetb52MmBCj2XLlqWzszOTJ0/usX3y5MlZsmRJjapiIJs9e3b3sKrLL788ixYtyvHHH5+VK1fWujQGgY3fK75z6I2TTjop3/3ud3PTTTfl85//fG655ZacfPLJ6ezsrHVp1FhXV1fOP//8HHfccTnkkEOSVL9nGhsbt+oU+54h2XabSZIzzzwzV1xxRX75y1/moosuyn/8x3/kL/7iL2pYKUPZC7XTLb3sZS/LN7/5zVxzzTW54oor0tXVlWOPPTZPPvnkbqx24OhtP2XJkiXOSV/A1VdfnRUrVuSss856wX20vxf2Yvo8rs28sHXr1uXCCy/Mu971rowdO/YF93OtYpPe9p+0v+37zne+kzFjxuxweqah2Ab7qj82lK8V7cx537Jly/KpT30qf/VXf7Xd9xoI1062H8nAAHbyySd33z/ssMMye/bszJw5Mz/60Y92KvUG6K13vvOd3fcPPfTQHHbYYdlvv/1y880353Wve10NK6PWzj333Nx///2lnCuX/vFCbWbzDsShhx6aqVOn5nWve10eeeSR7Lfffru7TIa4nf1umzNnTubMmdP9+Nhjj82BBx6Yr3/96/nUpz7V32UOOPopfecb3/hGTj755EybNu0F99H+2B06Ojry9re/PUVR5PLLL9/uvr4DNtF/6lvf/OY38+53vzvDhw/f7n5DsQ3qj+26HR3D1tbWnHLKKTnooIPyyU9+crvvNRD+7Q+YkR4TJ05MfX19li5d2mP70qVLM2XKlBpVxWAybty4vPSlL83ChQtrXQqDwMbvFd857Ip99903EydO9L0zxH34wx/Oddddl1/+8pfZe++9u7dPmTIl7e3tWbFiRY/9fc/wQm1mW2bPnp0kvmfY7XrTTrc0bNiwvPzlL9duN9hRP2XKlCnOSbfhsccey4033pgPfOADvXqd9rfJi+nzuDaztY2Bx2OPPZYbbrhhu6M8tsW1ik121H/S/l7Yr3/96zz00EO9/k5Myt8G+7I/NlSvFe3ovG/lypU56aSTMmbMmFx11VUZNmxYr96/FtdOBkzo0djYmCOPPDI33XRT97aurq7cdNNNPX5rA17IqlWr8sgjj2Tq1Km1LoVBYNasWZkyZUqP75zW1tb87ne/853DTnvyySfz3HPP+d4ZooqiyIc//OFcddVV+cUvfpFZs2b1eP7II4/MsGHDenzPPPTQQ3n88cd9zwxRO2oz23LPPfckie8ZdpsX00631NnZmfvuu0+73WBH/ZQ5c+b0+L8iSW644YYh/3/Ft771rUyaNCmnnHJKr16n/W3yYvo8rs30tDHwWLBgQW688cZMmDCh1+/hWsUmO+o/aX8v7Bvf+EaOPPLIHH744b1+bVnbYH/0x4bataKdOe9rbW3NG97whjQ2Nubaa6/d4UijbanJtZNarqK+pR/84AdFU1NT8e1vf7v44x//WPzVX/1VMW7cuGLJkiW1Lo0B6O/+7u+Km2++uVi0aFHx29/+tpg7d24xceLE4plnnql1aQwQK1euLO6+++7i7rvvLpIUX/rSl4q77767eOyxx4qiKIrPfe5zxbhx44prrrmm+P3vf1+cdtppxaxZs4q1a9fWuHJqZXttZuXKlcX/+l//q7jtttuKRYsWFTfeeGPxile8oth///2LdevW1bp0auBDH/pQ0dzcXNx8883F4sWLu29r1qzp3ueDH/xgMWPGjOIXv/hFceeddxZz5swp5syZU8OqqaUdtZmFCxcW//t//+/izjvvLBYtWlRcc801xb777luccMIJNa6coWRnvtv+8i//svjYxz7W/fjSSy8trr/++uKRRx4p7rrrruKd73xnMXz48OIPf/hDLf4INbejfsqWx++3v/1t0dDQUHzxi18sHnjggeKSSy4phg0bVtx33321+iPUXGdnZzFjxoziwgsv3Oo57a+nvujzvPa1ry2+8pWvdD8eStdmtnf82tvbi1NPPbXYe++9i3vuuafHd2JbW1v3e2x5/IbStYq+6D8N5fZXFDv+N1wURdHS0lKMHDmyuPzyy7f5HkO1DfZVf+xlL3tZceWVV3Y/HkrXinZ0DFtaWorZs2cXhx56aLFw4cIe+6xfv777fTY/hgPl2smACj2Koii+8pWvFDNmzCgaGxuLY445prj99ttrXRID1Dve8Y5i6tSpRWNjY7HXXnsV73jHO4qFCxfWuiwGkF/+8pdFkq1u733ve4uiKIqurq7i4osvLiZPnlw0NTUVr3vd64qHHnqotkVTU9trM2vWrCne8IY3FHvuuWcxbNiwYubMmcU555xT2pNvdmxbbSVJ8a1vfat7n7Vr1xZ/8zd/U+yxxx7FyJEjizPOOKNYvHhx7YqmpnbUZh5//PHihBNOKMaPH180NTUVL3nJS4q///u/L1paWmpbOEPKzny3vfrVr+4+nyqKojj//PO7+3CTJ08u3vSmNxXz58/f/cUPEDvqp2x5/IqiKH70ox8VL33pS4vGxsbi4IMPLv77v/97N1c9sFx//fVFkm2em2t/PfVFn2fmzJnFJZdc0mPbULk2s73jt2jRohf8TvzlL3/Z/R5bHr+hdK2iL/pPQ7n9FcWO/w0XRVF8/etfL0aMGFGsWLFim+8xVNtgX/XHtnzNULpWtKNj+ELtM0mxaNGiHu+z8TUD5dpJZUNhAAAAAAAAg9qAWdMDAAAAAABgVwg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAErh/wc/GX/C1aAcfQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVIklEQVR4nO3deZxddX0//tedycxkn5A9IXtkEQgoa9lUBESKbFI3EEGtVcQF/bW1fBVBLaLW2talaFUQpaLYCrhWEQFFwAABQcSYQAiEbBDITPbMcn5/XDIhe4bM5M7ceT4fj/vI3HPPvec9Jx8u53Ne+Xw+paIoigAAAAAAAPRyNZUuAAAAAAAAoCsIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqtDp0OM3v/lNTj311IwfPz6lUik33nhjx2stLS35yEc+khkzZmTQoEEZP3583va2t2XhwoVdWTMAAECPpc8EAACV0+nQY9WqVTnooIPyla98ZYvXVq9enVmzZuWSSy7JrFmz8sMf/jCzZ8/Oaaed1iXFAgAA9HT6TAAAUDmloiiKF/3mUik33HBDzjjjjG3uc8899+Twww/P/PnzM2nSpBd7KAAAgF5HnwkAAHavft19gKamppRKpQwbNmyrr69bty7r1q3reN7e3p5nn302I0aMSKlU6u7yAACg4oqiyIoVKzJ+/PjU1Fh2r6/ZUZ8p0W8CAKBv60yfqVtDj7Vr1+YjH/lI3vKWt2To0KFb3eeKK67IJz7xie4sAwAAeoUnn3wyEyZMqHQZ7EY702dK9JsAACDZuT5Tt01v1dLSkrPOOisLFizIbbfdts0L+M3/xVJTU1MmTZqUJ598crsX/QAAUC2am5szceLELF++PI2NjZUuhy7UFX2mRL8JAIC+rTN9pm4Z6dHS0pI3vvGNmT9/fn79619v9yK8oaEhDQ0NW2wfOnSoi3cAAPoU0xT1HZ3pMyX6TQAAkOxcn6nLQ48NF+9z5szJrbfemhEjRnT1IQAAAHotfSYAAOg+nQ49Vq5cmblz53Y8nzdvXh544IEMHz4848aNy9/8zd9k1qxZ+clPfpK2trYsXrw4STJ8+PDU19d3XeUAAAA9kD4TAABUTqfX9Ljtttty3HHHbbH9vPPOy2WXXZapU6du9X233nprXvWqV+3w85ubm9PY2JimpibDtAEA6BNcA1eX7u4zJdoMAAB9S2eufzs90uNVr3pVtpeT7MK66AAAAL2ePhMAAFROTaULAAAAAAAA6ApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKnQ49fvOb3+TUU0/N+PHjUyqVcuONN27yelEU+fjHP55x48ZlwIABOeGEEzJnzpyuqhcAAKBH02cCAIDK6XTosWrVqhx00EH5yle+stXXP/e5z+WLX/xivvrVr+b3v/99Bg0alJNOOilr167d5WIBAAB6On0mAAConH6dfcPJJ5+ck08+eauvFUWRf//3f8/HPvaxnH766UmSb3/72xkzZkxuvPHGvPnNb961agEAAHo4fSYAAKicLl3TY968eVm8eHFOOOGEjm2NjY054ogjctddd231PevWrUtzc/MmDwAAgGr0YvpMiX4TAADsrC4NPRYvXpwkGTNmzCbbx4wZ0/Ha5q644oo0NjZ2PCZOnNiVJQEAAPQYL6bPlOg3AQDAzurS0OPFuPjii9PU1NTxePLJJytdEgAAQI+i3wQAADunS0OPsWPHJkmWLFmyyfYlS5Z0vLa5hoaGDB06dJMHAABANXoxfaZEvwkAAHZWl4YeU6dOzdixY3PLLbd0bGtubs7vf//7HHnkkV15KAAAgF5HnwkAALpXv86+YeXKlZk7d27H83nz5uWBBx7I8OHDM2nSpFx00UX553/+5+y1116ZOnVqLrnkkowfPz5nnHFGV9YNAADQI+kzAQBA5XQ69Lj33ntz3HHHdTz/8Ic/nCQ577zz8q1vfSv/+I//mFWrVuXv/u7vsnz58hxzzDH5v//7v/Tv37/rqgYAAOih9JkAAKBySkVRFJUu4oWam5vT2NiYpqYm89QCANAnuAams7QZAAD6ks5c/3bpmh4AAAAAAACVIvQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqtDloUdbW1suueSSTJ06NQMGDMj06dPzqU99KkVRdPWhAAAAeh19JgAA6D79uvoDP/vZz+bKK6/MNddck/333z/33ntv3v72t6exsTEf+MAHuvpwAAAAvYo+EwAAdJ8uDz3uvPPOnH766TnllFOSJFOmTMl1112XmTNndvWhAAAAeh19JgAA6D5dPr3VUUcdlVtuuSV/+ctfkiR/+MMfcscdd+Tkk0/u6kMBAAD0OvpMAADQfbp8pMc//dM/pbm5Ofvuu29qa2vT1taWyy+/POecc85W91+3bl3WrVvX8by5ubmrSwIAAOgxOttnSvSbAABgZ3X5SI/rr78+//3f/53vfve7mTVrVq655pp8/vOfzzXXXLPV/a+44oo0NjZ2PCZOnNjVJQEAAPQYne0zJfpNAACws0pFURRd+YETJ07MP/3TP+XCCy/s2PbP//zPufbaa/PnP/95i/239i+WJk6cmKampgwdOrQrSwMAgB6pubk5jY2NroH7iM72mRL9JgAA+rbO9Jm6fHqr1atXp6Zm0wEktbW1aW9v3+r+DQ0NaWho6OoyAAAAeqTO9pmSbfebVqxIhgxJSqUuLxMAAHqlLg89Tj311Fx++eWZNGlS9t9//9x///35whe+kHe84x1dfSgAAIBepyv7TEuXJkuWJFsbvz9sWDJ6dDJ4sFAEAIC+o8unt1qxYkUuueSS3HDDDVm6dGnGjx+ft7zlLfn4xz+e+vr6Hb7f0H4AAPoa18B9y672mZKNbWbBgtszdOjgJJt260qlgVm7dkSWLRuelSu3/LdupVKyxx7lUGTQoK74rQAAoPt0ps/U5aHHrtLhAwCgr3ENTGftqM20ta1OS8uytLY+m6JofX5rKRvCkaIoZcWKfnnuueFZu3ZkSqX+m7y/tjYZMSIZMybZyRwGAAC6TUXX9AAAAKCyamsHprZ2YJKJ29xn8OCWjBr1XFpaHkt7+5rnt5aDkba2pKkpefjh2rS2Dk+pNCI1NYM6ptFqaCiPEhk5MtlseRIAAKgooQcAAEAfVFNTl/r60amvH73V14cNSyZObE1r6/K0tDyR9vbVHa+tX58891zyxBNJe3u/lEojUiqNTE1N/xRF0tiYjB1bXk8EAAB2J6EHAAAAW1VT0y/19SNTXz9yi9dGjCj/2d7emtbWZVm/fm6KYn2KIlm1Knn88WTNmg2LrA9IqTQqpdIeqa+v7Rgl0k+PFACALuYSEwAAgBetHIyMSX39mI5tQ4cm48Zt3KetbU1aWp5JS8uCtLa259lnkwULkvb2DUtM1qRUGp6amtHZY48BGTcuGTBg9/4e7JqDDjooD859MKl7fkNLMq5xXBYuXFjRugCAvkfoAQAAQLeqrR2Q2tqJ6d+/vMbIHnts+npRtKel5dmsX/94mprWZM6cZO3aYpN9SqUhGThwTMaNG5o99iilVNpd1bMtf/7zn/PSl740GZqkPkljysvCtCepSRY9uyil/qWkJvnhf/8wZ555ZkXrBQD6BqEHAAAAFVUq1XRMozV4cLLnnpu+XhRF2tpWprl5aZYunZu5c7f8jPr6QRkzZnTGjNkjNTUSke5WW1+b9kHtyV5JjkkyKeXAY4N1Se5Pcl/559ef/fqMHzU+Tz3xVAWqBQD6EqEHAAAAPVqpVEq/fkMyfPiQDB++9X3WrFmVRYuWZtasx18wbVZ5REhNTZGRIwdn7Ngxqa9vTMkwkV1SGlhKxiZ5Y5Ih29ipIclfJTkiyZ+T/F+y8JmFGTx8cFY+u3I3VQoA9EVCDwAAAHq9AQMGZdq0qZk2beoWr7W2JosWrcof/7gkbW2PJdk4dVZNTXlR9lGjGtO//5jU1g4WimxHaWAp2TPJm7NzdxRKSV6aZFiS7yWrWlfl5S9/ee6///5urBIA6MuEHgAAAFS1fv2SiRMHZeLEaVu81tqaLF5cZM6c5rS2LkpRrOh4rba2HIjssUcp9fXDU18/NrW1/Xdn6T3KKaecUl63403p/N2EcUnOSHJj8sD8B7q2MACAFxB6AAAA0Gf165dMmFDKhAmNKd/R36ilJVmyJHn00fa0tT2bong05cUqkn79iowcWcqwYUlNTW3q6kalrm50amqqt5v9szt+lrw+Sd2L/ICpSUYmeSo57bTT8qMf/ajriutB1q1bl7lz52b+/PmZP39+nn766Xz84x/veH3t2rVpaGjo9SOK1q5dm/79N4aAF198cX74wx+mKIrst99+OfTQQ3PYYYfl0EMPzYgRIypYKQB9TfVejQEAAMAuqKtLJkxIJkyoSflu/ciO19avTxYvTubOTdrbW1MUT6co/pSkNfX1RUaMSBobk1IpKZUaUl8/OnV1I1Iq1Vbq19kld955Z3mdjsm7+EHHJLkh+fHtP+6CqnqOH/3oR/npT3+au+66K4888khaW1s3ef3QQw/NX//1XydJ3vve9+Z73/teJkyYkJEjR2bw4MEZNmxYhg8fnhEjRuRd73pXpkyZUoHfYtuKokhzc3OefvrpzJkzJ1deeWXuuOOOfPrTn84+++yT4447LkuWLMlf/vKXJMmcOXNy0003dbx/6tSpuemmmzJjxoxK/QoA9CFCDwAAAOik+vpk0qTyo9y1Hvf8oxyILFpUDkSKIknWpb396RTFQ+nXry0jRybDhpUDkSQplepSVzcydXWjUlPzYodRdK+jjz86OS7lNTp2xZQk9UlWb9x055135kMf+lBOPfXUvO1tb8uk8kntUYqiyJIlS3LnnXfmt7/9be6///5ceumlOe6445IkV199dW688cZtvv+GG27oCD3+8Ic/ZM2aNZkzZ07mzJmzxb7z5s3Ld7/73STJv/7rv+bf/u3fMn78+Oyzzz6ZMmVKRo0alZEjR2bYsGGZOnVqXvrSlyZJVqxYkeeeey4TJ07c4SiSoiiyfPnyPPfcc3n22Wfz7LPPZvHixXn44YezatWqHHXUUTn77LOTJAsWLMj06dOzfv36LT7nggsuyOtf//ocd9xx+cd//Mecf/75OeGEE9LS0pIkqa2tTVtbW5YtW5ZZs2Zl4MCBmT59eh566KHsvffeaWho2MGZB4DOE3oAAAD0UitWPJBSaVA2vRNdZMs705tv6+w+RZLalEr9Uipt/c+k9vkb9hu2b3itd0/h82LU1yeTJ5cfZQ1JJiSZkPXry1NmbQxEkqJoSVE8k5qaR9LY2Jrhw4vUbZZ91NQMTF3dyPTrt0dlptAakGSfLvicUsqjRR5IlixZkjFjxmT27NmZOXNmZs6cmY9//OM58cQT841vfCMTJ07sggO+eLfcckuuuOKK/OlPf8rTTz+9xeiNr371qx2hxxve8IbceOON6devX0aMGJHRo0dn5MiRGT58eAYOHJhjjz22430//vGPc8EFF2Tx4sVZuXJlVq9endWrV2fNmjVpaWnJmDFjOvb9zne+k6eeeipPPfVU7rnnni1qPPfcc/Ptb387y5cvz/Dhw1M836j69euXurq69OvXL/369UttbW3e/OY350tf+lKKosgzzzyT0aNHb/N3X7x4cc4+++zcfvvtOe644zo+d4OBAwdmr732yp577pmDDz44SbLvvvtm4sSJmTRpUpYsWZKVK1emra0tSdLc3Jzzzz8/J554Yn7yk5/kNa95Tdra2nL22WfnkksuMf0VAF1K6AEAANBLDRnysgwZMrTbj1O+4dmeomhLUbRu5c/WFMXatLW1brF91wOXzrynJqVSXWpq6lIq1T3/c/3zP9e/YHvNLpyNXVNfn0ycWH5sVJdkXNrbx2XZsmThwmTduo0jQcr3m1elpmZZhg5dmMbG1mzrH8iXSnXp129YamuHprZ2cNcGJAO76HMGJ2lLxo4dm0GDBmX06NHZf//9s2LFijzxxBP55S9/mde//vX57W9/u8maEV2tubk5v/3tb3PnnXfmD3/4Q+bMmZO/+Zu/yeWXX54k+fWvf51bbrlli/cNGDAgY8aMyX777dex7eyzz84JJ5yQUaNG7TDoGz9+/CZTP23P+973vvzP//xP/vSnP2XBggWbhA9DhgzJS17ykiTJsGHDMmHChDz55JNJktbW1i1CmqVLlyYpr8WxrcCjrq4uRxxxRF73utclSfbbb78URZExY8bk8MMPz9FHH51jjjkmRx111FZ/z0GDBmXu3LlJyiNP/vSnP+XBBx/Mgw8+mFmzZuWkk07Ko48+mtra2ixevDj/8R//kf/8z//Mueeem/e+9705+OCD+2RQCkDXKhWbx/UV1tzcnMbGxjQ1NWXo0O6/eAcAgEpzDUxn9aQ2s2rVI2lvX5MtR4Zs/vOL2bY1L+zCbrpfURTPBy2tz6+z0fKCUKYl7e0tSdqStHfsn5TywnusRVF03HQtinLwsOHPrW3b9LXiBSNg6jp+rqlpSE3NgNTU9E9NzYDU1pZ/3hDMbAxqtr/eR2tr8uyzydNPl0ORTX/3DX+uz4ABzRk0qDmDBq1IQ0NbSqXNz9mm57go2p9/rEt7e/nR1rYyLS3PZf36p7Ju3YLsd/S3kvekPGhlV/06yW+23HzQQQfluuuuyzHHHJNnn302EydOzIwZM3LggQfmgAMOyJQpUzJ58uSMGzcutbU7OleteeaZZzJr1qyMHDkyhx9+eJLk5z//ec4999w0NTVtEQokycte9rLcf//9SZKZM2fmrW99a/bZZ58cffTROe644zJjxowMHNhV6U/nrFy5Mvfcc0/uvPPO3HnnnVm2bFnuvvvujtebmpqyatWq/P73v8/dd9+dRx55JHPmzMljjz2Wk046KV/+8pczadKkrF69uiNsOvTQQ3PwwQfnkEMOycEHH7zVqbEWLVqUcePGdenv0tLSko997GP53Oc+t8n2PffcM6eddlpOO+20HHfccaa/AqBDZ65/hR4AAFBhroHpLG2m5yqKtrS3r38+cCkHLe3ta9Pevibt7aufDxTWpijWvWBEzPqOUTEbgpjnP63j522FLy/8eUPvvqUlWbUqWb26yLp1q1MUa1IqrUlb2+okq1IUzUlakqx//s88f5zaJG0pivVZtao2y5cPyKJFwzN//sR88Tv/mJyXZFgXnKQfJ5mVNDc1Z9GiRVm4cGHmzJmT/v3759xzz80vf/nLnHTSSdt8e11dXV772tfmRz/6Uce2o446Kk8//XSWLFmS1atXd0yrlCQvf/nLM2vWrCTJD3/4w5x11lmbfN6AAQMyatSoTJkyJW9+85tzwQUXdMEv2XO0tbWlpaWlY9RMURRpamrKsGHDKltYkkcffTRnn312Zs6cucVrV199dd72trflqaeeyty5c9Pa2ppXv/rVOwy8AKhOnbn+Nb0VAAAAVaO9vf35EGH98+FD6/M/bzrqY+M0XC/8ef3zocOG5+XHhqm9kmzyr+BfOCpkZ563t7c/H1QUSYq0t7elHHS0P7+t/fn3bBh5seH11k1q2ZnVxPv3Lz9qawemVBqY1tbhWbFicJqa9sizz47KmjXrUhSrsmhRQ+bN65fnnitSFMnatXtk5coxOeCAn2Xy5D9l332TU09dly9+LckjSY58kX8xHSclyfwkNeXpmYYMGZK99947r3rVqzp2ec1rXpNPfepTefzxx/Pyl788f/zjH/PII49k/vz5efLJJ9PS0rLJje+iKDJr1qys23z4y1b81V/9VS688MLsu+++ecUrXpEDDjggNTWVm+5sd6itrd3kfJVKpR4ReCTJ9OnTc/fdd+cb3/hG3ve+9+Woo47K3nvvnZ/97Gc5+OCDM2jQoKxdu7Zj/z333DP/9m//lje84Q0VrBqAns5IDwAAqDDXwHRWV7eZ8g321k2CgLa2dWlvX5HW1hVpb1+d1tYVKYryaIG2tg0jF9Y+P0Khfdd/qS5RJCkvoF5ey6LmBYuqb1jLo9/zN7k3TD9Vmxcuxl6eYqpf2tpq095eSlH0S3t7bdrba9LWVh5N0dpa/nPD87a2pLW1PCpjw2vt7eXHxn2KtLUlbW21aWurSVtbKW1tNWlvr01bW21aWmpSKtWkKMp1l/+NYm2Kot/z2+qe31aToth0Sq5k42iP9vZk6dLk8ceTxYuLrF37bIYMWZC6utbU128IQ0ppaxud9evHZdKk2rziFclee92XFSt+lqJoT6lUk2HDTkxj419l7tzkueeS//3fO/O5q49O3pudyVy27bEkNybvOfs9ufLKKzv99tbW1ixcuDCtra2ZNm1akuThhx/OgQcemPb29hx++OE5+eSTM2PGjBx88MGZMmWKNSJ6iYceeihTpkzJkCFDUhRF7rzzzhxzzDEdi7KvWbOmY99hw4blne98Z84999wceOCB/o4B+gDTWwEAQC/iGpjO2tBmHnzwoxky5MUu9PzCqZNKKYqa1NRsuOlf8/zC3/1TWzswNTWDUls7KO3tg9LaOigtLYOyfn35sWbNwLS01KSlJVmzprzWxLp1yfr15RvwHUd7wXRMO/O8q/Z5Me+pqSk/amvLj81/3vC8X7+NP79we01NUldX/qx+/TY+NrzWr195QfMN2+vry9uTckjy9NPJU08lixaV/3zqqWTlyvI5fcGsTZsolVoyaNATqa9fnmHDygul77VXstdeIzJ48J6pqanbZP+2tjVZvPjbWb9+cZJkwIDpGTXqLamtrc2KFcmf/1w+1uOPl6fKOuqoZL+/KiWvTzJl6zXslG8neTwp2nb+VsSaNWvyj//4j7nkkku2uQD3Zz7zmQwYMCDvf//7q37kRl/R3NycZ555JpMmTcoTTzyR7373u/nP//zPLFq0aJP99t133zz88MP+3gGqnNADAAB6EdfAdNaGNvP97zelpmZoXjD7yyZrO+woDNh8/62954XbNtyg798/GTAgaWjY+NiwrX//8j4DB268kd8XrFmTLFxYDiiWLEmeeSZZvrw8KiQp/9nSkqxdW/5zK2tod5znQYOSkSOT4cOTcePK4cWoUcmQIeUwpb19XdasmZf29lUveG9dGhompq5uj+3UOC9Llvx3iqItpVJtRo16YwYN2jtJ+e967tzyQumDByd/+lPS3JycdFIyYUL5/WeeeWZuvPvG5J0pDzzprMeS3JSc+opTN1mPY0fOOeecfPe7381hhx2WW2+9NXV1dbn00ktz7rnnZr/99nsRhdCb3XrrrfnOd76TZcuW5Ze//GVOPPHEnHfeeTn55JMzcODAvPvd787++++f448/Pvvtt59RIABVQugBAAC9iGtgOmtDm3nssaaMGzd0k5ECdM6GkRVPPJEsXlweXfHssxtHVGweCLW3l0dcrF+/cURLUg6EGhvLQcXIkcno0eWfNyylUF9fDi02POrrd66+9vbWrFv3RFpbn3tBHQ0ZMGBqamsH7fD9TU0zs2zZT5+vYWzGjj03/foN7nh9/frkoYfKv++kScmttyarVyenn17+PTbXMLQh60etT85O51YJfSrJ9cmw2mF5btlzO9z9hf7yl7/kqKOOyrJly3LiiSdm2bJlmTVrVg466KDce++96dfPcqV91erVq/PLX/4yZ555ZsaNG5d3v/vdueyyyzpeHzlyZF75ylfmla98ZV71qldl//33T2tra37961/nJz/5SWbPnp0FCxZkxowZ+fa3v92x2DsAPY/QAwAAehHXwHSWNrNRW1t5dMXjj5cDi0WLkhUrtj2C5YUjXoqifNO/f//y6IqhQ8s3+seO3RhWbD5yplQq7ztkSHn/gQO3nD5rV7S0LM/atY+nKFqf/xfqtenff1Lq6obv9Gc899xv8txzt6RUqsmAAXtl1Kg3bbKQdVIOdubMKY/SeclLkhtvLJ/LM88s/17bUzekLq3DWpM3JtlR8yuS/CnJL5KxA8duMTXRzrrrrrvy6le/umNR6+HDh+eb3/xmzjjjjBf1eVSPm2++Oe9617syf/78JMnQoUMzfvz4zJ8/f5N1QJLkrLPOyh133JElS5Zssn3cuHH57W9/m+nTp++2ugHoHKEHAAD0Iq6B6axqazNtbeWRFvPnJwsWlKeJ2jCCItkYQGxYFDzZGEaUSuWpn8aNS8aM2Ti6orl545oi2+r1bggwhg7tngBjR4qiyLp1C9LSsrRjW21tY/r3n/L8Quw7b/ny3+XZZ3+ZJBky5GUZPvy0LYKOpBwQLViQ7LFHed2P//3f8nk966zytFY7a+KUiVnQtCAZnuSYJFOz6QLna5LMSnJ/knXJ/37rf/P617++U7/T5m666aacc845Oeqoo3L11Vdnzz333KXPo3qsX78+V111VS6//PIsWLAgSTJq1Ki87GUvy9FHH53f/e53uf3229PS0pKiKDJ27Ngce+yxWbx4cY455pi8613vytSpUyv8WwCwPUIPAADoRVwD01k9tc2sWZM8+ujGAGPZsq0HDi8caZGUp4YaOTLZc8/yFEtTppRvwK9dWw4vmprKoze213stlTZOMdXYWH5/T5v1qCjas3btvLS2Lu/YVl6HY9SLWndg5co/ZunSHyRJBg06ICNHvn6rQUdSHgmzZEkyfnw5IPrBD8rBUmfDjs2deeaZufGWG5P6lNf5KCVpT7I+yarkvrvuy8EHH/ziD7CZlpaW1NW9mAVF6AvWrVuXb3zjG/n0pz+dhQsXZvr06Zk7d26SZObMmXnlK1+ZN7zhDfmv//qvfOpTn8qnP/3p1NXV5W//9m9zySWXZNy4cXnkkUey7777WgsEoIcRegAAQC/iGpjO6u4209ZWvkn+2GMbb5Zv3nPcfNqnoiivUzFuXDm0mDKlHGK88B78unXlAGNnQoykPO3UC0OM3nYPckPI0dJSXsOiVKpJ//5Tt7vY+I6sX/9sFi36etraVqd//wkZM+Yd2ww6kmTevGTp0mTy5PI6Iz/8Yfn8n3VWMmzYiy4DerR169blrrvuSlNTU04//fSO7bNnz87ee++dUqmUe+65Jx/72Mfyy1+WR0gNHz4873//+3PFFVfkoosuymc+8xnBB0APIvQAAIBexDUwndWZNrNyZTJ3bnkExpNPlsOGzb3wvl5RbBx5MWVK+Wb59OmbhhcbtLZuDDGam8thyeajOF6ooaF8o723hhg7UhRF1q6dn9bWZc9vKe1yyJEkbW1tWbLkqqxduyD9+g3K2LHvTn1943bf8+ST5amspkwpr1Hys5+V1zs59dRy+AGU3X777fnwhz+cWbNmbbL90ksv3WRRdAAqS+gBAAC9iGtgOmtDm/l//68p/ftv2WZeOApj4MDy6Itp05K99y6vebEt7e3lUKSpKVm+PGlp2XKfFwYVG6aTGjasHGJsZ8BB1Vq/fknWrn0ySVIqldLQMDn19SO75LObmmZm2bKfJklGj35DBg8+YIfvWbq0HHBNmlQeafO73yUPP5wcf3w5vAK2tG7duvz93/99vvzlL2+y/XOf+1z+4R/+oUJVAfBCQg8AAOhFXAPTWTvbZoqivC7G8uXlIGPVqk1ff+Fi4ElSU1MOLzaMxrB0wpZaW1dkzZq5SdpTFEXq68ekoWFCl02D09q6MgsXfi2trcszcOA+GTXqLdudvmqDVauSBx8sj+KYPj2ZMyf59a+TQw5JDj20S0qDqnf99dfnyiuvzKte9apcdtllKZVK+c1vfpNjjjmm0qUB9Hmd6TP1sGXdAAAA2FkPPpgMGLDx+dbuuw8YUA4wJk0q/1xtU0p1t/b29Vm9+i9pb1+bJOnXb0gGDz4wpVLXDmt57rnf5Lnnbk5NTX3GjXtXGhrG7tT72tqS++8vr6fyV39VHqnzjW+UR3m8+91dWiJUvTe+8Y15wxvekFKplMcffzzf+ta3cu655+bBBx/MkCFDKl0eADtJ6AEAANBL7b9/sseuLRfBZjasy9HS8kySIjU19RkwYO/U1g7Y4Xs7q61tfZ566ktpbV2eQYMOzLRpn+rU++fMSZYtSw4+uDzV2P/+b3lkz/nnl58Dnbdh1NZ//Md/5MYbb8zjjz+eL3/5y7n44osrXBkAO8tlEAAAQC/VF9fQ6A4tLc9l7drHOp43NEzOgAFTuu14K1Y8mKef/n5KpfqMHfu3GTBgz069/7nnkj/9Kdlrr/Lj3nuT++4rL1I+fnw3FQ19zJo1a7J2bXmE19y5c1MURZdNYwdA9xJ6AAAA0KdsmLKqKNYlSfr12yODBx/crTc029rasnTpd7JmzaPp339SJk/+5E6t1fFCRZHMmpX0758cfXTS3Jx87WvlET+msoKuNWbMmPzgBz/I6aefnquuuirTp0/P//t//6/SZQGwE4QeAAAAVLVNp6zKC6as6t/tx16//tksXPiVtLevz8iRZ2TcuPNf1Oc89VQyf355Kqv+/ZOf/Sx5+unkne80lRV0l9e97nX50pe+lAsvvDAf/ehHU1dXl3/4h3+odFkA7ECpKIqi0kW8UGdWYQcAgGrgGpjO0mZ2bMOUVRumpGlomJz6+pG77fhNTTOzbNlNqa0dnHHj3pv6+sYX9TmtreXpq8aMSaZOTZ54IvnpT5NXvzrZZ58uLhrYqre//e351re+lSSZOXNmDjvssMoWBNAHdeb6V+gBAAAV5hqYztJmtvTCKauKokhd3R7p33/abp+Df/Hia7N69SMZMGCvjB59bqensHqhJ54oj/A47LCkpib54Q+TUik588zyc2D3WLduXYYNG5a1a9dm1KhReeyxxzJ48OBKlwXQp3Tm+tcgWAAAAHqd8pRVjz8/ZVVpt05Ztbm2tjVZsOCLaWtrzvDhp2bs2Lfu4ueVR3eMHZsceWR5Wquf/jQ57bRkwoQuKhrYaQ0NDbn44otz6aWXpl+/fhk4cGClSwJgO4QeAAAA9AotLcuydu3jKYr2lEo1aWiYnAEDplasnjVr5mXRoqtSKvXL+PHvTkPD2F3+zEWLknnzkkMPTerrkxtuSNrbk/e+twsKBl60D3zgA/nsZz+bRYsW5dZbb83xxx9f6ZIA2AahBwAAAD1SW9varFnzl7S3r0+S1NUNz+DBB+/2Kas299xzt+W5525OXd2oTJ582S5NYbVBUSSzZiVDhyZHHZUsXZpcf31y6qnJ5MldUDSwS4YNG5Z3vOMd+fKXv5x/+7d/y6GHHpoHH3wwxx57bKVLA2Az1vQAAIAKcw1MZ1VrmymKtqxZ82haW5tSnrKqfwYO3Ds1NfWVLi1JsmjRt7NmzewMGvSyjBnzhi773Obm5A9/SA4+OBk0KLn55mTJkuTss63dAT3JnDlzss8++6QoikyZMiVPP/10fv/732f//fevdGkAVc+aHgAAAPR4RVFk/fpFWbfuqSRJqVSbAQOmZ+DAvStc2UZtbevz1FNfSmvrsxk+/NSMG/e2Lv38OXOSVauSY45J1q1Lvva18sLlJ57YpYcBusBee+2V173udfnxj3+cfv36ZdWqVTnjjDMyc+bM7LHHHpUuD4DnGekBAAAV5hqYzurNbaa1tSlr1jyaomhPkjQ0jEt9/fiKT1m1ufXrn86CBV9Okowb984MGDCpSz+/rS2ZOTOZMiUZNy55+OHkN79JzjsvsUYy9FwPPfRQWltbM3HixBxyyCF54okncvLJJ+fHP/5xl0x1B8DWGekBAABAj9Devi6rV8/uWJejX7+hGTz4oJRKPfPm4MqVf8zSpdeltnZoJk36h/TrN7jLj/HMM8mf/5wccURSV5fcdFNSW5tccEGXHwroYjNmzOj4+cYbb8wRRxyRn//857nkkkvy6U9/uoKVAbCB0AMAAIAus2Fdjra2FSmKIjU1DRkwYO/U1vavdGnbtWzZL9LU9Js0NEzK5Mmf7LZ/sf3nPyetreXprNauTb7+9eT445N99umWwwHdaOzYsal5fuGdK664InvvvXfOP//8yhYFgNADAACAF68oiqxbtyDr1y95foqqmgwYMC39+vWcdTm2Z9Gib2XNmjkZMuSITJt2ebcdp709ufvuZPr0ZMyYZPbs5JZbkne8I+nfs/MgYBsGDx6cD33oQ/nc5z6X9vb2vOc978mJJ56YPffcs9KlAfRp1vQAAIAKcw1MZ1W6zbS0LMvatY+nKIqUSqXU1++Zhoaxu72OF6utrS1PPfUfaW1dlhEjTk9j4+HderympuQPf0j+6q+S+vrkF79IVq9OzjyzWw8L7CYPPPBAjjnmmKxatSp77713Zs6cmcbGxkqXBVBVrOkBAABAl2ltXZk1a+akKNqSJHV1IzJ48ME9bvHxHVm//tksXPiVtLevz7hx78iAAVO7/ZiPPZY0NyeveEV5tMc3v5m8/OXJwQd3+6GB3eRlL3tZ/vCHP+S4447LX/7yl7zvfe/Ld77znUqXBdBnCT0AAADYrvb2VRk0aEZqanpnF3L16kezePFVqakZkAkTPtQti5NvriiSWbOSkSOTl70sWb48ueaa5JxzytuA6jJ9+vR8//vfzzHHHJNrr702AwYMyH/9139VuiyAPqmm0gUAAADQs9XXj+mVgcfy5Xfnscc+mmXLfpzJkz+ZKVM+tlsCj/Xrk9/+Ntl772Ty5OThh5P/+Z/k/e8XeEA1O/LII/P2t789SfLNb34zv/rVrypcEUDf1PuuWgEAAGA7nn76R1mx4vcZOPCl3bo4+dY880x5kfKjj05qa5Obby6v3/G3f7tbywAq5Bvf+EaKoshVV12Vs88+Ow888EDGjx9f6bIA+hQjPQAAAOj12trasnDh1/PYYx9Nbe2ATJt2ecaOfetureHRR5NFizYGHtdemwwblpx++m4tA6iwL3/5yznooIPy9NNP57TTTktra2ulSwLoU4QeAAAA9FptbevzxBOfy/z5l2XIkCMybdrlGT78xN1ex333JfX1yYwZ5emtvvzl8uLlhx2220sBKmzAgAH5/Oc/n5qamtx33325+OKLK10SQJ9ieisAAAB6nfXrn82CBf+RJNlzzwvS0DC2InW0tiZ33ZUceGDS2JgsXZp8//vJO9+ZDBxYkZKAHuDYY4/NmDFjsmjRovzrv/5rTjvttBx77LGVLgugTxB6AAAA0GusWvWXLFlyTWprB2fSpH/YLQuTb0tzc/KHPyRHHpn061desPzuu5MLL0xqzKsAfVpDQ0O+973v5ZWvfGWKosgXvvAFoQfAbtItl2FPPfVU3vrWt2bEiBEZMGBAZsyYkXvvvbc7DgUAANDr6DN13nPP/SaPPfbRPPfcLzN58iczefLFFQ08nnoqmTMnOfbYcuBxxx3Jn/9cHuEh8ACS5BWveEUuuuiiJMmNN96Y8ePHZ+bMmZUtCqAP6PKRHs8991yOPvroHHfccfn5z3+eUaNGZc6cOdljjz26+lAAAAC9jj5T5yxZ8oOsWvVABg7cP9OmXV7pcpIkjzxSDjoOOaT8/Ec/SgYPTs46q7J1AT3PF77whaxatSpf//rXs2jRopxxxhmZN29eGhoaKl0aQNXq8tDjs5/9bCZOnJirr766Y9vUqVO7+jAAAAC9kj7TjrW1tWXRov/K+vULMmzY8T0m7CiK5N57kwkTknHjytuuvTY54IDkZS+raGlAD1UqlXLllVdmwIAB+eIXv5jjjz8+dXV1lS4LoKp1+aDbH/3oRzn00EPzhje8IaNHj87LX/7yfP3rX+/qwwAAAPRK+kzb1ta2JvPnfzbz5388w4Ydm2nTLs/w4a+udFlJyguW//a3yUtfWg482tuT//zP8vRWAg9ge2pra3P55ZensbEx1157bX784x9XuiSAqtblocdjjz2WK6+8MnvttVd+8Ytf5IILLsgHPvCBXHPNNVvdf926dWlubt7kAQAAUK0622dKqr/ftG7d4jz22KV54onPZdy4d2TatMszePABlS6rw4oVyZ13JkcdVZ7Gau3a5ItfTM4+O5k8udLVAb3B4MGDc8EFFyRJPv3pT6coigpXBFC9SkUXf8vW19fn0EMPzZ133tmx7QMf+EDuueee3HXXXVvsf9lll+UTn/jEFtubmpoydOjQriwNAAB6pObm5jQ2NroG7iM622dKqrfftHLlH7N06XWprR2aCRM+kNraAZUuaQuLFiULFiSHHpqUSsmzzybf+U7y7ncn/ftXujqgN1myZEkmTpyYlpaW3HTTTTnttNMqXRJAr9GZPlOXj/QYN25c9ttvv022vfSlL80TTzyx1f0vvvjiNDU1dTyefPLJri4JAACgx+hsnympvn7Ts8/enMce+2iamn6XyZM/mcmTP9IjA4+5c5Ply5PDDisHHk88kXz/+8n73y/wADpvzJgxGTx4cJLk8st7xlpFANWoyxcyP/roozN79uxNtv3lL3/J5G2M+W1oaEhDQ0NXlwEAANAjdbbPlFRPv2nx4u9m9eqHM2TIwT1mcfJteeCBZPjw5CUvKT9/5JFk5szk+dlpAF6UU045Jddee23uueeeLFq0KOPGjat0SQBVp8tHenzoQx/K3XffnU9/+tOZO3duvvvd7+a//uu/cuGFF3b1oQAAAHqdvtZnamtry5NP/nsee+yj6d9/cqZNuzyjRp1V6bK2qSjK63dMnJhMmlTedu+9yUMPJeedV9nagN7v/e9/f5KkKIpceeWVFa4GoDp1+UiPww47LDfccEMuvvjifPKTn8zUqVPz7//+7znnnHO6+lAAAAC9Tl/pM61f35SFC7+Y9va1GTv2HRk4cHqlS9qhlpZy4HH44cmA52fbuuOO8hRXb3xjRUsDqsRhhx2W0aNHZ+nSpfnLX/5S6XIAqlKXhx5J8rrXvS6ve93ruuOjAQAAer1q7jOtWTMvixZdlZqa+owf/4HU1zdWuqSdsmJFeUqrY45JamvL226+ufxnlf5VARVQKpXy7ne/O5/61KeyfPnySpcDUJW6fHorAAAA+p7ly+/OY499NM88c1MmT74sU6Zc0msCj8WLy2t2vDDw+MlPyqM9TjyxsrUB1edtb3tbkuTmm2/O4sWLK1wNQPXplpEeAAAA9A1PP31DVqyYlYED9+nxi5NvzWOPJatXl6e02uB//ieZMiU59NCKlQVUsZe85CU54ogj0tzcnOuvvz7nn39+hg4dWumyAKqGkR4AAAB0SltbWxYsuDKPPfbR1NYOzrRpn8rYsW+tdFmd9sc/lv884ICN2667Ltl7b4EH0L1++ctfZsKECfngBz+Y//3f/610OQBVRegBAADATmltXZn58z+b+fM/nmHDjs20aZdn+PDeOf/TPfckI0cm06Zt3HbNNcnBBycHHli5uoC+YejQoXn1q1+dJPn2t79d4WoAqovQAwAAgO1at25xHnvs0jz55L9m3Lh3ZNq0yzN48AE7fmMP1N6e3HFHeTTH2LEbt3/zm+U1PfbZp3K1AX3LOeeck1KplNtuuy3z58+vdDkAVcOaHgAAAGxVc/N9eeaZH6Zfv+GZPPmjqa2tr3RJu2T9+uSuu5Ijj0zqn/9V2tuTr389OfnkZNKkytYH9C33339/SqVSiqLId77znXzsYx+rdEkAVcFIDwAAADbx9NM/yWOPfTSrVj2UyZM/mUmT/r9eH3g0NyczZybHHrtp4PG1ryWnnirwAHa/GTNmpL29PUl5iquiKCpcEUB1EHoAAACQtra2LFz49Tz22EdTKtVk2rTLM27c+amtra10abts6dJk9uzk6KOTmud7we3tyVe/mpx1VjJ+fGXrA/qmqVOn5qCDDkqSzJkzJ/fff3+FKwKoDqa3AgAA6MPa2tZkwYIvpq2tOaNGvSnjx7+r0iV1qccfT1auTA47bOO29vbkK19J3vKW8mLmAJXypje9KX/4wx+SJD/+8Y9z8MEHV7gigN7PSA8AAIA+rK1tZcaOPS/Tpl2eIUMOrHQ5XerPf05aW5MDXrDm+obA49xzBR5A5b3pTW9KzfND0I466qgKVwNQHYQeAAAAfVh9/ag0NIytdBld7oEHkiFDkpe8ZOO2FwYew4ZVqjKAjaZNm5b3ve99SZKLLroora2tFa4IoPcTegAAAFA1iiK5665k4sRkzz03bm9vT770JYEH0PNcdtllGTFiRObNm5dZs2ZVuhyAXs+aHgAAAFSFtrbkd79LDjkkGTRo4/YNgcd55wk8gJ5njz32yHXXXZd99tknkyZNqnQ5AL2e0AMAAIBeb+3a5O67k6OPTurqNm4XeAC9wYknnljpEgCqhtADAACAXq2pKXnooeSVr0xKpY3bBR4AAH2P0AMAAIBea8mS5IknkmOO2XT7hkXLBR4AAH2L0AMAAIBeaf78pLk5OeywTbdvCDwsWg4A0PcIPQAAAOh1Zs9OamqSGTM23d7envznfyZveYvAAwCgLxJ6AAAA0Ks8+GCyxx7JxImbbm9vT7761eSNb0xGjqxMbQAAVJbQAwAAgF6hKJJ77kmmTk1Gjdr0tfb25OtfT17/+mT06MrUBwBA5Qk9AAAA6PGKIrnjjuRlL0uGDNny9auuSk45JRk7dreXBgBADyL0AAAAoEdraUl+97vkyCOThoYtX7/66uTEE5MJE3Z/bQAA9CxCDwAAAHqsVauSe+9Njj02qa3d8vVvfzt5xSuSyZN3f20AAPQ8Qg8AAAB6pGefTWbPLocapdKWr193XXLEEcn06bu/NgAAeiahBwAAAD3OokXlx5FHbv31669PZsxI9tln99YFAEDPJvQAAACgR3n88WT16uTgg7f++g03JC95SXLAAbu1LAAAeoGaShcAAAAAG/z5z0lbW7Lfflt//Sc/ScaP33YgAgBA3yb0AAAAoEd44IFk8OBtr9Fx883J0KHldTwAAGBrTG8FAABARRVFMnNmOewYOXLr+9x2W1JTU17UHAAAtsVIDwAAACqmKJLf/a48ndW2Ao+77krWrEmOP3731gYAQO8j9AAAAKAiWlqS229PDjssGTJk6/vce2+yeHFy8sm7tzYAAHon01sBAACw261endxzT3LssUlt7db3efjh5NFHkze9affWBgBA7yX0AAAAYLd67rnkkUfK63OUSlvf59FHk/vuS972tt1bGwAAvZvQAwAAgN1m8eJkwYLkqKO2vc/CheWFy9/5zt1WFgAAVULoAQAAwG4xf36yYkVy6KHb3ueZZ5Kbbkre/e7dVxcAANXDQuYAAAB0u9mzk/XrkwMO2PY+K1cm111XDjxq9FYBAHgRXEYCAADQrR56KBk4MNlrr23vs3Zt8o1vJBdcIPAAAODFcykJAABAt7nnnmTMmGTixG3v096efPWryXvek/QzCTMAALvA5SQAAABdriiS3/0umTEjaWzc9n7t7clXvpK84x1J//67rz4AAKqT0AMAAIAuVxTlBct3FGR8/evJm96UDB26e+oCAKC6md4KAACALldTs+PA45prkte+Nhk9evfUBABA9RN6AAAAsNt9//vJ4YcnkydXuhIAAKqJ0AMAAIDd6qabkunTk5e+tNKVAABQbYQeAAAA7DY335yMGFFe7wMAALqa0AMAAIDd4o47kvb25JhjKl0JAADVSugBAABAt5s1K1m2LDnppEpXAgBANRN6AAAA0K1mzy4/Tj+90pUAAFDthB4AAAB0m4ULy9NaveUtla4EAIC+QOgBAABAt1i+PLnxxuTtb690JQAA9BVCDwAAALrc2rXJNdck73lPUqPnCQDAbuLSEwAAgC7V2pp87WvJu98t8AAAYPdy+QkAAECXaW9PvvrV8pRW/ftXuhoAAPqafpUuAAAAgOpy/vnJ4MGVrgIAgL7ISA8AAAC6TE2NwAMAgMrp9tDjM5/5TEqlUi666KLuPhQAAECvo88EAABdp1tDj3vuuSdf+9rXcuCBB3bnYQAAAHolfSYAAOha3RZ6rFy5Muecc06+/vWvZ4899uiuwwAAAPRK+kwAAND1ui30uPDCC3PKKafkhBNO2O5+69atS3Nz8yYPAACAarezfaZEvwkAAHZWv+740O9973uZNWtW7rnnnh3ue8UVV+QTn/hEd5QBAADQI3Wmz5ToNwEAwM7q8pEeTz75ZD74wQ/mv//7v9O/f/8d7n/xxRenqamp4/Hkk092dUkAAAA9Rmf7TIl+EwAA7KxSURRFV37gjTfemDPPPDO1tbUd29ra2lIqlVJTU5N169Zt8trmmpub09jYmKampgwdOrQrSwMAgB7JNXDfsqt9pkSbAQCgb+nM9W+XT291/PHH56GHHtpk29vf/vbsu++++chHPrLDi3cAAIBqps8EAADdp8tDjyFDhuSAAw7YZNugQYMyYsSILbYDAAD0NfpMAADQfbp8TQ8AAAAAAIBK6PKRHltz22237Y7DAAAA9Er6TAAA0DWM9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqQpeHHldccUUOO+ywDBkyJKNHj84ZZ5yR2bNnd/VhAAAAeiV9JgAA6D5dHnrcfvvtufDCC3P33Xfn5ptvTktLS17zmtdk1apVXX0oAACAXkefCQAAuk+pKIqiOw/w9NNPZ/To0bn99tvzile8Yof7Nzc3p7GxMU1NTRk6dGh3lgYAAD2Ca+C+rbN9pkSbAQCgb+nM9W+/7i6mqakpSTJ8+PCtvr5u3bqsW7eu43lzc3N3lwQAANBj7KjPlOg3AQDAzurWhczb29tz0UUX5eijj84BBxyw1X2uuOKKNDY2djwmTpzYnSUBAAD0GDvTZ0r0mwAAYGd16/RWF1xwQX7+85/njjvuyIQJE7a6z9b+xdLEiRMN0wYAoM8wVVHftTN9pkS/CQCAvq1HTG/1vve9Lz/5yU/ym9/8ZrsX7w0NDWloaOiuMgAAAHqkne0zJfpNAACws7o89CiKIu9///tzww035LbbbsvUqVO7+hAAAAC9lj4TAAB0ny4PPS688MJ897vfzU033ZQhQ4Zk8eLFSZLGxsYMGDCgqw8HAADQq+gzAQBA9+nyNT1KpdJWt1999dU5//zzd/h+8xkDANDXuAbuW3a1z5RoMwAA9C0VXdOjG9dFBwAA6PX0mQAAoPvUVLoAAAAAAACAriD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKrQbaHHV77ylUyZMiX9+/fPEUcckZkzZ3bXoQAAAHodfSYAAOh63RJ6fP/738+HP/zhXHrppZk1a1YOOuignHTSSVm6dGl3HA4AAKBX0WcCAIDu0S2hxxe+8IW8613vytvf/vbst99++epXv5qBAwfmqquu6o7DAQAA9Cr6TAAA0D36dfUHrl+/Pvfdd18uvvjijm01NTU54YQTctddd22x/7p167Ju3bqO501NTUmS5ubmri4NAAB6pA3XvkVRVLgSdofO9pkS/SYAAPq2zvSZujz0eOaZZ9LW1pYxY8Zssn3MmDH585//vMX+V1xxRT7xiU9ssX3ixIldXRoAAPRoy5YtS2NjY6XLoJt1ts+U6DcBAECSrFixYod9pi4PPTrr4osvzoc//OGO58uXL8/kyZPzxBNP6PCxU5qbmzNx4sQ8+eSTGTp0aKXLoRfQZugsbYbO0mborKampkyaNCnDhw+vdCn0UJv3m9rb2/Pss89mxIgRKZVKu7UW33G7xvnbdc7hrnH+do3zt2ucv13j/O0653DXVPL8FUWRFStWZPz48Tvct8tDj5EjR6a2tjZLlizZZPuSJUsyduzYLfZvaGhIQ0PDFtsbGxs1PDpl6NCh2gydos3QWdoMnaXN0Fk1Nd2y5B49TGf7TMnW+03Dhg3rrhJ3iu+4XeP87TrncNc4f7vG+ds1zt+ucf52nXO4ayp1/nZ2kESX96rq6+tzyCGH5JZbbunY1t7enltuuSVHHnlkVx8OAACgV9FnAgCA7tMt01t9+MMfznnnnZdDDz00hx9+eP793/89q1atytvf/vbuOBwAAECvos8EAADdo1tCjze96U15+umn8/GPfzyLFy/Oy172svzf//3fFgv1bU1DQ0MuvfTSrU55BVujzdBZ2gydpc3QWdoMnaXN9D270meqNO111zh/u8453DXO365x/naN87drnL9d5xzumt5y/kpFURSVLgIAAAAAAGBXWSkRAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqkKPCz2+8pWvZMqUKenfv3+OOOKIzJw5s9Il0UNddtllKZVKmzz23XffSpdFD/Kb3/wmp556asaPH59SqZQbb7xxk9eLosjHP/7xjBs3LgMGDMgJJ5yQOXPmVKZYeoQdtZnzzz9/i++d1772tZUploq74oorcthhh2XIkCEZPXp0zjjjjMyePXuTfdauXZsLL7wwI0aMyODBg3PWWWdlyZIlFaqYStuZNvOqV71qi++Z97znPRWqmL5oZ9rp5r71rW9t0W779++/myrueV5MP+UHP/hB9t133/Tv3z8zZszIz372s91Ubc8zZcqULc5fqVTKhRdeuNX9+3r7664+T1+5N7O989fS0pKPfOQjmTFjRgYNGpTx48fnbW97WxYuXLjdz+xL9yq6q//UV9pfsuNzuLXvw1KplH/5l3/Z5mf2lTbYXf2xvnSvaEfn8Nlnn8373//+7LPPPhkwYEAmTZqUD3zgA2lqatru5/aEeyc9KvT4/ve/nw9/+MO59NJLM2vWrBx00EE56aSTsnTp0kqXRg+1//77Z9GiRR2PO+64o9Il0YOsWrUqBx10UL7yla9s9fXPfe5z+eIXv5ivfvWr+f3vf59BgwblpJNOytq1a3dzpfQUO2ozSfLa1752k++d6667bjdWSE9y++2358ILL8zdd9+dm2++OS0tLXnNa16TVatWdezzoQ99KD/+8Y/zgx/8ILfffnsWLlyY17/+9RWsmkramTaTJO9617s2+Z753Oc+V6GK6Yt2tp1ubujQoZu02/nz5++minumzvRT7rzzzrzlLW/JO9/5ztx///0544wzcsYZZ+SPf/zjbqy457jnnns2OXc333xzkuQNb3jDNt/Tl9tfd/R5+tK9me2dv9WrV2fWrFm55JJLMmvWrPzwhz/M7Nmzc9ppp+3wc/vKvYru6D/1pfaX7PgcvvDcLVq0KFdddVVKpVLOOuus7X5uX2iD3dUf60v3inZ0DhcuXJiFCxfm85//fP74xz/mW9/6Vv7v//4v73znO3f42RW/d1L0IIcffnhx4YUXdjxva2srxo8fX1xxxRUVrIqe6tJLLy0OOuigSpdBL5GkuOGGGzqet7e3F2PHji3+5V/+pWPb8uXLi4aGhuK6666rQIX0NJu3maIoivPOO684/fTTK1IPPd/SpUuLJMXtt99eFEX5O6Wurq74wQ9+0LHPI488UiQp7rrrrkqVSQ+yeZspiqJ45StfWXzwgx+sXFGwma21081dffXVRWNj4+4rqofrbD/ljW98Y3HKKadssu2II44o3v3ud3dxZb3TBz/4wWL69OlFe3v7Vl/X/jbqqj5PX703s7Xr/83NnDmzSFLMnz9/m/v01XsVXdV/6qvtryh2rg2efvrpxatf/ert7tNX22BX9Mf6+r2inbnuu/7664v6+vqipaVlm/v0hHsnPWakx/r163PfffflhBNO6NhWU1OTE044IXfddVcFK6MnmzNnTsaPH59p06blnHPOyRNPPFHpkugl5s2bl8WLF2/yndPY2JgjjjjCdw7bddttt2X06NHZZ599csEFF2TZsmWVLokeYsMQ3+HDhydJ7rvvvrS0tGzyPbPvvvtm0qRJvmdIsmWb2eC///u/M3LkyBxwwAG5+OKLs3r16kqUB0m23U43t3LlykyePDkTJ07M6aefnocffnh3lNdjdaafctddd23y/4okOemkk/y/IuX7BNdee23e8Y53pFQqbXM/7W/rXkyfx72Z7WtqakqpVMqwYcO2u597FRt1pv+k/W3fkiVL8tOf/nSn/pV9X2yDXdEf6+v3inbmuq+pqSlDhw5Nv379tvtZlb530mNCj2eeeSZtbW0ZM2bMJtvHjBmTxYsXV6gqerIjjjiiY1jVlVdemXnz5uXYY4/NihUrKl0avcCG7xXfOXTGa1/72nz729/OLbfcks9+9rO5/fbbc/LJJ6etra3SpVFh7e3tueiii3L00UfngAMOSFL+nqmvr9+iU+x7hmTrbSZJzj777Fx77bW59dZbc/HFF+c73/lO3vrWt1awUvqybbXTze2zzz656qqrctNNN+Xaa69Ne3t7jjrqqCxYsGA3VttzdLafsnjxYtek23DjjTdm+fLlOf/887e5j/a3bS+mz+PezLatXbs2H/nIR/KWt7wlQ4cO3eZ+7lVs1Nn+k/a3fddcc02GDBmyw+mZ+mIb7Kr+WF++V7Qz133PPPNMPvWpT+Xv/u7vtvtZPeHeyfYjGejBTj755I6fDzzwwBxxxBGZPHlyrr/++p1KvQE6681vfnPHzzNmzMiBBx6Y6dOn57bbbsvxxx9fwcqotAsvvDB//OMfq3KuXLrHttrMCzsQM2bMyLhx43L88cfn0UcfzfTp03d3mfRxO/vdduSRR+bII4/seH7UUUflpS99ab72ta/lU5/6VHeX2ePop3Sdb37zmzn55JMzfvz4be6j/bE7tLS05I1vfGOKosiVV1653X19B2yk/9S1rrrqqpxzzjnp37//dvfri21Qf2zX7egcNjc355RTTsl+++2Xyy67bLuf1RP+2+8xIz1GjhyZ2traLFmyZJPtS5YsydixYytUFb3JsGHDsvfee2fu3LmVLoVeYMP3iu8cdsW0adMycuRI3zt93Pve97785Cc/ya233poJEyZ0bB87dmzWr1+f5cuXb7K/7xm21Wa25ogjjkgS3zPsdp1pp5urq6vLy1/+cu32eTvqp4wdO9Y16VbMnz8/v/rVr/K3f/u3nXqf9rfRi+nzuDezpQ2Bx/z583PzzTdvd5TH1rhXsdGO+k/a37b99re/zezZszv9nZhUfxvsyv5YX71XtKPrvhUrVuS1r31thgwZkhtuuCF1dXWd+vxK3DvpMaFHfX19DjnkkNxyyy0d29rb23PLLbds8q82YFtWrlyZRx99NOPGjat0KfQCU6dOzdixYzf5zmlubs7vf/973znstAULFmTZsmW+d/qooijyvve9LzfccEN+/etfZ+rUqZu8fsghh6Surm6T75nZs2fniSee8D3TR+2ozWzNAw88kCS+Z9htXkw73VxbW1seeugh7fZ5O+qnHHnkkZv8vyJJbr755j7//4qrr746o0ePzimnnNKp92l/G72YPo97M5vaEHjMmTMnv/rVrzJixIhOf4Z7FRvtqP+k/W3bN7/5zRxyyCE56KCDOv3eam2D3dEf62v3inbmuq+5uTmvec1rUl9fnx/96Ec7HGm0NRW5d1LJVdQ3973vfa9oaGgovvWtbxV/+tOfir/7u78rhg0bVixevLjSpdED/X//3/9X3HbbbcW8efOK3/3ud8UJJ5xQjBw5sli6dGmlS6OHWLFiRXH//fcX999/f5Gk+MIXvlDcf//9xfz584uiKIrPfOYzxbBhw4qbbrqpePDBB4vTTz+9mDp1arFmzZoKV06lbK/NrFixovj7v//74q677irmzZtX/OpXvyoOPvjgYq+99irWrl1b6dKpgAsuuKBobGwsbrvttmLRokUdj9WrV3fs8573vKeYNGlS8etf/7q49957iyOPPLI48sgjK1g1lbSjNjN37tzik5/8ZHHvvfcW8+bNK2666aZi2rRpxSte8YoKV05fsjPfbeeee27xT//0Tx3PP/GJTxS/+MUvikcffbS47777ije/+c1F//79i4cffrgSv0LF7aifsvn5+93vflf069ev+PznP1888sgjxaWXXlrU1dUVDz30UKV+hYpra2srJk2aVHzkIx/Z4jXtb1Nd0ed59atfXXzpS1/qeN6X7s1s7/ytX7++OO2004oJEyYUDzzwwCbfievWrev4jM3PX1+6V9EV/ae+3P6KYsf/DRdFUTQ1NRUDBw4srrzyyq1+Rl9tg13VH9tnn32KH/7whx3P+9K9oh2dw6ampuKII44oZsyYUcydO3eTfVpbWzs+54XnsKfcO+lRoUdRFMWXvvSlYtKkSUV9fX1x+OGHF3fffXelS6KHetOb3lSMGzeuqK+vL/bcc8/iTW96UzF37txKl0UPcuuttxZJtnicd955RVEURXt7e3HJJZcUY8aMKRoaGorjjz++mD17dmWLpqK212ZWr15dvOY1rylGjRpV1NXVFZMnTy7e9a53Ve3FNzu2tbaSpLj66qs79lmzZk3x3ve+t9hjjz2KgQMHFmeeeWaxaNGiyhVNRe2ozTzxxBPFK17ximL48OFFQ0ND8ZKXvKT4h3/4h6KpqamyhdOn7Mx32ytf+cqO66miKIqLLrqoow83ZsyY4q//+q+LWbNm7f7ie4gd9VM2P39FURTXX399sffeexf19fXF/vvvX/z0pz/dzVX3LL/4xS+KJFu9Ntf+NtUVfZ7JkycXl1566Sbb+sq9me2dv3nz5m3zO/HWW2/t+IzNz19fulfRFf2nvtz+imLH/w0XRVF87WtfKwYMGFAsX758q5/RV9tgV/XHNn9PX7pXtKNzuK32maSYN2/eJp+z4T095d5J6fnCAAAAAAAAerUes6YHAAAAAADArhB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFf5//FwOJywVaNMAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV4klEQVR4nO3deZheZX0//vcz+z7ZICSQhIDsu2yCWkVRpC5gLajFr2itVosL+tUq16+ofK1FbS+/tpaqXVxaLWoriF9xqSLgArIFRAQhQEyChABZZs9kZp7z+2PIQCCQTDKTZ+aZ1+u65pLnPOc55zPHm4dzn/fc910qiqIIAAAAAADANFdT6QIAAAAAAAAmgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgK4w49fvrTn+aVr3xlFi5cmFKplG9/+9tj7w0NDeWDH/xgjjjiiLS2tmbhwoV54xvfmAcffHAiawYAAJiy9JkAAKByxh169PX15aijjsoll1zylPf6+/uzbNmyXHjhhVm2bFkuu+yy3H333XnVq141IcUCAABMdfpMAABQOaWiKIqd/nCplMsvvzxnnnnm0+5z00035YQTTsjKlSuzePHinT0VAADAtKPPBAAAu1fdZJ+gq6srpVIps2bN2ub7g4ODGRwcHHtdLpezfv36zJ07N6VSabLLAwCAiiuKIj09PVm4cGFqaiy7N9Nsr8+U6DcBADCzjafPNKmhx6ZNm/LBD34wr3/969PR0bHNfS6++OJcdNFFk1kGAABMC6tXr84+++xT6TLYjXakz5ToNwEAQLJjfaZJm95qaGgor3nNa/LAAw/kmmuuedob+Cf/xVJXV1cWL16c1atXP+NNPwAAVIvu7u4sWrQoGzduTGdnZ6XLYQJNRJ8p0W8CAGBmG0+faVJGegwNDeXss8/OypUr85Of/OQZb8IbGxvT2Nj4lO0dHR1u3gEAmFFMUzRzjKfPlOg3AQBAsmN9pgkPPbbcvC9fvjxXX3115s6dO9GnAAAAmLb0mQAAYPKMO/To7e3NvffeO/Z6xYoVue222zJnzpwsWLAgf/zHf5xly5blu9/9bkZGRvLQQw8lSebMmZOGhoaJqxwAAGAK0mcCAIDKGfeaHtdcc01OOeWUp2w/99xz89GPfjRLly7d5ueuvvrqvPCFL9zu8bu7u9PZ2Zmuri7DtAEAmBHcA1eXye4zJdoMAAAzy3juf8c90uOFL3xhnikn2YV10QEAAKY9fSYAAKicmkoXAAAAAAAAMBGEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVxh16/PSnP80rX/nKLFy4MKVSKd/+9re3er8oinz4wx/OggUL0tzcnFNPPTXLly+fqHoBAACmNH0mAAConHGHHn19fTnqqKNyySWXbPP9T33qU/mHf/iHfP7zn88NN9yQ1tbWnHbaadm0adMuFwsAADDV6TMBAEDl1I33A6effnpOP/30bb5XFEU+85nP5K/+6q9yxhlnJEn+/d//PfPnz8+3v/3tvO51r9u1agEAAKY4fSYAAKicCV3TY8WKFXnooYdy6qmnjm3r7OzMiSeemOuvv36bnxkcHEx3d/dWPwAAANVoZ/pMiX4TAADsqAkNPR566KEkyfz587faPn/+/LH3nuziiy9OZ2fn2M+iRYsmsiQAAIApY2f6TIl+EwAA7KgJDT12xgUXXJCurq6xn9WrV1e6JAAAgClFvwkAAHbMhIYee+21V5Jk7dq1W21fu3bt2HtP1tjYmI6Ojq1+AAAAqtHO9JkS/SYAANhRExp6LF26NHvttVeuuuqqsW3d3d254YYbctJJJ03kqQAAAKYdfSYAAJhcdeP9QG9vb+69996x1ytWrMhtt92WOXPmZPHixTn//PPz13/91znggAOydOnSXHjhhVm4cGHOPPPMiawbAABgStJnAgCAyhl36HHzzTfnlFNOGXv9vve9L0ly7rnn5stf/nL+8i//Mn19fXnb296WjRs35nnPe15+8IMfpKmpaeKqBgAAmKL0mQAAoHJKRVEUlS7iibq7u9PZ2Zmuri7z1AIAMCO4B2a8tBkAAGaS8dz/TuiaHgAAAAAAAJUi9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAKap4eHe9Pffm6IoKl0KAABMCXWVLgAAAICdU1fXlvr6xvT03JSklJaWg1JX11HpsgAAoGKEHgAAANNYff3c1NfPTVEU6e+/O/39v01tbWtaWg5NqVSqdHkAALBbCT0AAACqQKlUSmvrwUlGp73q6bk5SZGmpv3S0DCvssUBAMBuIvQAAACoMnV1benoOD5FUWTTpvvT3X1famqa09p6WEql2kqXBwAAk0boAQAAUKVKpVKam/dPc/P+GRkZSG/vbSmKkTQ1LUlDw/xKlwcAABNO6AEAADAD1NY2p7392CTJwMDv0t19Y0qlhrS2Hp6aGl1DAACqgztbAACAGaa5ed80N++bcnkwfX2/SlGMpLFxcRob96p0aQAAsEuEHgAAADNUTU3j2OiPTZtWpbv7xtTUNKal5TCjPwAAmJbcxQIAAJCmpsVpalqckZFNY6M/mpr2TUPDnpUuDQAAdpjQAwAAgDG1tU1PWfujpqY5ra2HpVSqqXB1AADwzIQeAAAAbNOWtT9GRgbS07MsyUiamw9Iff2cSpcGAADbJPQAAADgGdXWNqej47gURZGBgXszMHBvamvb09JycEqlUqXLAwCAMUIPAAAAdkipVEpLywFJkuHh7vT03JwkaW09NLW1rZUsDQAAkgg9AAAA2Al1dR3p6Dg+RVGkr+83KZf7Ul8/P83N+1a6NAAAZjChBwAAADutVCqlre3wJMnmzWvT3X1DSqWGtLYenpqa+gpXBwDATCP0AAAAqGLl8nBqanZP16+hYX4aGuanXN6cvr5fpyiG09S0Xxoa5u2W8wMAQM1EH3BkZCQXXnhhli5dmubm5uy///752Mc+lqIoJvpUAAAA087u7DONTj11R3p6bkl3983p77875fLwhJ/nyWpqGtLe/ux0dJyQkZHudHffkL6+3+oXAgAw6Sb8z30++clP5nOf+1y+8pWv5LDDDsvNN9+cN7/5zens7My73/3uiT4dAADAtLI7+0ylUint7UePvR4e7klf3x0piuEkRerqZqW5ef+UShP+93Bjmpv3S3Pzfhke7kpPz01JatLaenhqa5sm7ZwAAMxcEx56XHfddTnjjDPy8pe/PEmy77775tJLL82NN9440acCAACYdirZZ6qra98qBBka2pje3ttSFOWUSqXU189LY+PilEqlSTh3Zzo6TkhRjDy28PmmNDYuSmPjggk/FwAAM9eE/znPySefnKuuuir33HNPkuRXv/pVfv7zn+f000+f6FMBAABMO1Opz1RfP+uxaaiOS3v7sampaUlv77Kx6bA2b1474ecslWrT1nbkYwHIULq7b0xf352mvgIAYEJM+EiPD33oQ+nu7s7BBx+c2trajIyM5OMf/3jOOeecbe4/ODiYwcHBsdfd3d0TXRIAAMCUMd4+U7L7+k0NDXukoWGPJKPrgQwOPpDu7puTJKVSTZqbD0hdXfuEna+paXGamhZneLjnsamvSo9NfdU8YecAAGBmmfDQ45vf/Ga+9rWv5T//8z9z2GGH5bbbbsv555+fhQsX5txzz33K/hdffHEuuuiiiS4DAABgShpvnympTL+pVCqlqWlRmpoWJUmKYiQDA/emv78nSVJb25zm5gNTU1O/y+eqq2t/0tRXA2lsXGzqKwAAxq1UTPAY4kWLFuVDH/pQzjvvvLFtf/3Xf52vfvWr+e1vf/uU/bf1F0uLFi1KV1dXOjo6JrI0AACYkrq7u9PZ2ekeeIYYb58pmZr9ppGR/gwMLE9RDKcoijQ0zE9j4z4Tth7Ipk0rs3nzQ6mt7UhLy8GTss4IAADTw3j6TBM+0qO/vz81NVsvFVJbW5tyubzN/RsbG9PY2DjRZQAAAExJ4+0zJVOz31Rb25K2tqPGXm/evDY9PbckGV23Y3QqrLadPn5T05I0NS3J8HD3Y1Nf1aSt7YjU1Eyt6wAAwNQy4aHHK1/5ynz84x/P4sWLc9hhh+XWW2/Npz/96fzpn/7pRJ8KAABg2qnWPlNDw/w0NMxPkpTLw49NhdWbJKmr60xz87N2arRGXV1HOjpOSLk8nP7+36RcHkxT075paNhzQusHAKA6TPj0Vj09Pbnwwgtz+eWX5+GHH87ChQvz+te/Ph/+8IfT0NCw3c8b2g8AwEzjHnhm2dU+UzL92szwcFcGBu5LUZQfWxD9Wamr2/m6Bwbuz9DQI6mrm5Xm5gNNfQUAUOXGc/874aHHrppuN+8AALCr3AMzXtO5zRRFOQMDyzM8PLog+mhwsf9OBRdDQxszMHBPSqXatLYekZqaHQuNAACYXiq6pgcAAAA8nVKpJi0tB429HhrakN7eZSmKIqVSXVpaDkxtbcsOHau+flbq60envurr+3WKYihNTfuloWHeZJUPAMAUJ/QAAACgYurrZ6e+/tgkW9YCuScjI/1JksbGhWlsXLjdY9TU1KW9/ZgkycDAfenuvs/UVwAAM5TQAwAAgCmhpqYura2Hjr0eHPx9urtvTpLU1rakufnA1NQ8cze2uXn/NDfvn6GhDenpuTGlUl1aWw9PTU3jpNYOAMDUIPQAAABgSmps3DuNjXsnSUZG+h6bwmo4pVJtmpsPSF1d+9N+dnQEyYmPTX11R4picxobF6exca/dVT4AABUg9AAAAGDKq61tHZvCqihG0t+/PP39vUmKNDQsSGPj3tucymp06qujkySbNq1Md/dNqalpTmvroSmVanbjbzA+v/3tb9PS0pLFixdXuhQAgGlF6AEAAMC0UirVprX14LHXg4Nr0tNzS5LRcKS5+YBtToPV1LQkTU1LMjLSl56eZUnKaW4+MPX1s3ZT5U9v1apV2e/g/TLSOJI05/He+nCSgaRxsDEPrHog8+ZZpB0A4JkIPQAAAJjWGhsXpLFxQZInT4NVk+bmA58yDVZtbWs6Oo5LURQZGLgnAwP3pLa2PS0tB+/2hc/7+/vTuldr0pDkOUmOS9L6pJ16ksEbB7PHQXskQ0nfQ31paWnZrXUCAEwXQg8AAACqxtNPg5U0NMxPY+M+Y8FGqVRKS8tBSZLh4Z709NycpEhz87NSXz9n0mtdtmxZjj3l2NGw4/4kNyf5VZIiSSmjozzmJXljkhcneWGSa5PWBa1Z+euVpr4CANgGoQcAAADTQl/f3Y9NXbVja3E8eRqszZvXjk2DVVPTmJaWg1JT05AkqatrT0fH8Y+N/rg3AwP3PrbPYducKmtX9ff359gTjx0NN25OMjfJqx/738Ykg0nWJbk+yWeS9CU5P8mLknQkS45YkqKrmPC6AACmO6EHAAAA00K5PJCHH/7PsdelUn3q60/KnDk7NuKhoWF+GhrmJ0lGRjalv/+3KZc3JynS2LhPGhsXPDb644Cxffr6bk9RDKe+fo80Ne07YdNftba3Jm1JDktycpL2J+3QlKQzyX5JejMafnwhycszOgXW+qTUVkrRK/iYagYHB3Pvvfdm0aJF6ejoSJLcd999ufLKK7P//vvnqKOOyt57773bp1KbDDfccEO+/OUv5+67784jjzySzZs3pyiKHHrooTn++OPzR3/0RznkkEMqXSYAM4zQAwAAgGmhvf3otLcfPfZ6ZGRTVq/+WZYv/2mWLEmKopz6+jnp7Hzedhcnr61tSlvbkUmSoigyOPj7dHePTm9VU9OQ5uYDU1vbnPb2ZydJNm9+ZGz6q6amfdPQsOdO/x7f+973RgOPP0xy8Pb2zui+L0myJMl3MxqIvDDJXTtdQsWNjIzkgQceyNy5c9PW1lbpcnbayMhI7r777tx444256aabcv311+fXv/51hoeH84EPfCBLlizJwMBAbrjhhvz3f//32OfmzJmTQw89NCMjI2lra8urX/3qHHnkkZk9e3ZqampSV1eX/ffff0oFI5s3b86qVauyYcOGrF+/PuvXr8/PfvazfP7zn3/KvsuXL88VV1yRpUuXjoUeGzZsyMqVK3P00Ufv5soBmGlKRVFMqT8L6e7uTmdnZ7q6usb+IgIAAKqZe2DGS5vZ2u9/n3R3J4cckmze/HC6un6RkZG+sffr6+ems/O5qavbsWtVLm9Of/89KZc3pVQqpba2LU1N+6empi5FUWTTppUZGnokSdLcvP+41/8odZaS0zI6ymO87krygyTvTfL/kvkPzM9DDz20EweafBs2bMivfvWr3Hbbbbntttty9NFH5/zzz0+SPPLII9lzz9HgaN68edlvv/3yyle+Mm984xun5FolRVFk7dq16evry9q1a3PPPffk+9//fi677LIMDw/v8HHmz5+fRx99NCMjI9vdt6mpKSeddFKOOeaYHHDAAfn5z3+efffdN3vuuWfmzZuXWbNmpbOzM52dndl7771TX1+fvr6+zJ8/f4fr6e/vz5133jkWYjzyyCN5+OGH8+CDD2bdunU5++yzc8YZZ+SWW27JZZddlr//+79/2mOdddZZede73pWhoaH87Gc/y0c/+tHsscceOeaYY3LkkUdm9erV+cY3vpHnPOc5eec735k//uM/TmNj4w7XCsDMNp77X6EHAABUmHtgxkubeaoVK5Lh4eSAA5763qZND6an54atgpBSqTYtLYektfXw7a7ZMTzck4GBe1MUow+q6+o609y8X5KabNp0f4aGNmR0BMjisemzns5hhx2WO0t3JmeN9zd8gm8lWZXRBc7/Iyk2TI1ufV9fXz72sY9l2bJlueOOO7JmzZqt3j/rrLPyzW9+M0ly//335/DDD8/AwMBW+5RKpbzkJS/Jv/7rv2bRokW7rfYn2hJw3HLLLbnuuuvywx/+ML/61a+eNtyor6/Pc57znJxwwgmZO3du/v7v/34smJgzZ05aWlpSV1eX+vr6/PEf/3Ge//zn584778yVV16Zr3/96+nv709HR0d6e3uzYcOGbNy4MeN9VDNv3rysW7cuRVFkzz33zPr161NfX5/m5uaUSqWUSqXH1qsZyAc+8IH85V/+ZW6//fZcccUV+cQnPvG0x+3s7ExPT0/K5fLYtpqamhx22GGZO3duWlpakoz+//bqV786b3nLW5Ikt99+e4466qhnrHmPPfbIn/3Zn+V//+//nblz547r9wVg5hF6AADANOIemPHSZrZt+fKkvj7Zd9/t71suD6ev7/b09989FmZsUVPTlJaWg9Pc/KzU1jY95bPDw10ZGLg/RTGSUqmUmpqmNDbul+HhR7N589okowujNzc/K6VS7VafLc0qJa9PstfO/pZJ1ia5NKMLm1+SFA/vnm79unXrcvPNN+e2227Lrbfemq6urjz3uc/NX/3VX2X9+vVZsGBBNm/evM3PHnzwwfmnf/qnnHLKKSmKIm1tbenv709bW1vmzJmT9vb2dHV15YEHHkiSvOUtb8m//uu/Turv093dnZ/97Gd54IEHsm7dutx111257bbb8pvf/OYZQ4dFixbloIMOyn777Ze2tracffbZOfHEEyesrnK5nDVr1uT+++/Pvffem1tuuSXXXHNN7rzzzhRFkVe+8pXp7e1NV1dX7r777vT1PTHMK407MEmS2traPO95z8uee+6ZPffcM1/+8pe3Ou7ee++dE044ISeeeGKe97zn5eSTT97u1Fs9PT258847c/vtt+f222/PsmXLctNNN2VoaCizZs3Kxo0bkyR77bVX/vAP/zDnnXdejjnmmCk1pRcAU4fQAwAAphH3wIyXNvP07roraWtLdmWQwPBwb/r7f5uBgftSFEPb3KehYX6am5+VxsYlKYrN2bTpvpTLm8beL5UaMzLS/9gD3FIaG/fOv//7d/O2j7wt+fOdr23MPyc5NMkdSbFm57v1Q0NDWbNmTdasWZO+vr4MDg6ms7MzJ598cvr6+vL+978/X/va19Lb27vNh+mHHXZY7rjjjhRFkcbGxgwNDaWuri6tra2ZPXt2Ojs709DQkBe+8IX51Kc+lSRjUzA98aH6E+27776566670tQ0Gjh97GMfy3777Zd99903S5YsyYIFC1JbW7vNz24xPDycrq6urF27Nvfff3++/e1vp7W1NTU1Nbnnnntyxx13ZNWqVc94jIMOOignn3xyjj/++HR1deWUU07JEUccMTa6YXfr6+vLbbfdluc+97lj27797W/nV7/6VY477rgce+yxaW9vz/XXX58f/ehH6e7uzrve9a4URZGiKPLGN74xt95669hn58+fn2OPPTbPfvazc+yxx+aVr3zl2HXt6enJ6tWrs3bt2hx44IHZe++9J+x3uO6663LwwQfnxhtvzAUXXJDly5ePvb/33nvnVa96VV71qlfllFNOMf0VAGOEHgAAMI24B2a8tJlnduedSXv7rgUfo13l4rFRIEWKovyE98rZvPn3GRj4XYaG1iYpkpTG/kK9KJKRkZ4MD3elvn5OGhoWpChKmb/gFSleluT4XfjltrglyZVJ9hx/6DEyMpIXvehF+c1vfpN169Y95f0jjzwyv/rVr1Iul9Pa2ppNmzZt9X5DQ0NmzZqVI444Im95y1vy+te/PknywAMPZI899tjhB9U9PT1Zs2ZNHnzwwSxfvjx33XVX7rrrrrzgBS/Ihz70oSRbr/2xRX19ffbZZ5+0trbmta99bf7qr/4qSfLTn/40r3jFK9Lf379Da2Zssccee+S0007LIYcckkMOOSS9vb059dRTs2DBgh0+xnTQ29ub4eHhlMvl1NTUZNasWZUuKT09PTnnnHMyMjKSa665Jv39/WPvtbW15bTTTsv73//+DAwMZHh4OC960Yu2G3gBUJ3Gc//7zBOXAgAAwDRQFOWMjPRkZKQ3S5b05L77+jMwUM78+cMpisGMjGxKUWxOuTyYotickZFNGR7uSbncm5GRgZTLvSmXt0zNtCVEqElSk1JpNNR4XE2S8mPnLcb+eVs19fbenpGRnpTL/SkaksyaoF+4M0lTkmdYQ3t4eDjXX399vve972VgYCCf+cxnUhRFXvCCF+T666/fap2GLZqamsYWwq6pqcknPvGJ9Pb25qCDDspxxx2XJUuWPO30Q/vss8+4foX29va0t7fnwAMPzAtf+MKnvD8yMpKLL744r371q7N+/fqsXLkyq1evztDQUFasWJEkef7zn5+iKPL5z38+733vezM4OLjVMTo7O7PPPvvkoYceyj777JMXv/jFOfDAA3PggQdmjz32yKGHHpqamppx1T1dtbW1VbqEp2hvb893vvOdJMmmTZvyk5/8JK9//evT3d2d3t7efOtb38q3vvWtsf0PO+ywXHHFFdl///0rVTIA04DQAwAAgCmnKIqUywMZHt6QoaF1GR7ekOHh3pTLfY+FE6VsCSfK5SIjI+szMtKbcrk/SU06Ohrz6KNJb29d5s2rT01NfUqlhpRK9ampaUhdXUeampakvn5u6upmp75+dmpq2ib0AfjmzY9mcHDl4xvqjpu4Xnh9ktokj82+9Z3vfCe/+93vcvvtt+fXv/51VqxYkUcffXRsSqq6urp87GMfS3t7ezZs2JByuZy6urrsv//+OeKII3L44YfnsMMOy+GHH56DDz547DTvec97Jqjg8bv44ovzf//v/828efNy3XXX5YADDsjIyEgefPDBrFq1KoODg2lpacmZZ5459uD8hBNOyOmnn54TTjghL3nJS1JfX1+x+hmfpqamnH766Zk3b166u7vHttfV1WXp0qV5+OGHs27dujzrWc/KMccckzPPPDNnnHFGjjzySOuAALAV01sBAECFuQdmvKZ7mxkZ2ZShodFAYDTQ6E1S3urBZVEUqalpSk1NfYaGujIy0pMkqalpTk1NQ5I8Yf+6NDTskcbGJWlqWjT2fpKsWJH09yeHHbZ7frfBwTUZHHwgSSn19XPT1LRvSqVSRkY2pa6lOfmjJAdv7yg74O4klydHHjg6FdXhhx+e3/zmN9vctampKX/3d3+XN77xjWlvb88vf/nLdHZ25lnPetaUDgV6e3tzyimn5Oabb85+++2X66+/fquprn7+85/n7LPPzpo1a9LQ0JBPfepTede73jVjRm5Us82bN2f16tUplUpZvHhx6urq8sADD+T1r399rrvuuq1GKS1atChnnnlmzjrrrDz/+c+vYNUATCbTWwEAALDbFUWRkZGebNr0+wwO/i7Dw10piqfOv1RT05i6ullpbNwnTU1LMzi45rGFwDdvtd+WhcFbWw9NS8vBqasb//Q8S5cma9YkN96YHH98Mll/EN7fvzzDw+vT0LAwHR2ji3YURZGBgXsyPNydmprGzGrpzMZVXRMTeqxOsin51a9+lSR56UtfmtbW1tx4441jfwl/2mmn5WUve1kWLly4VaD0nOc8ZwIKmHxtbW357ne/m5NPPjn3339/XvGKV+Tqq69Oa2trkmTOnDnZsGFDDjnkkFx66aU56qijKlwxE6WhoeEpU1jts88++dnPfpZHHnkk3/nOd/KBD3wgGzZsyOrVq/PZz342Dz/88FjoUS6Xc+edd86o6csAeJyRHgAAUGHugRmvSrSZ0UCjO4ODv8/g4OoMDW1IUQynVCqNTaFUKpVSU9Oahob5aWraL/X1c1JTU5/h4d709f06mzbdnyd3QUul+rS0HJDm5oNTV9cyafX39ibLliUnnpjs4DrbO2Tz5oczMHBvmpsPTEPDvCRJuTycvr7bUxTDaW4+MPX1s5Ik/f39aV3UmpyX0ampdtZIkkuSdCfF0NbXc8WKFVm6dOkuHHzqueeee3LyySdn3bp1ed7znperr746dXWjf8N57bXX5vjjj09Ly+S1HaamH/3oR3n/+9+f22+/PUkye/bsXHTRRXnrW9+au+++O0cffXTmzZuXF7zgBXnBC16QF77whTnssMMyPDycn/zkJ/nud7+bD3zgA1myZEmFfxMAdsR47n+FHgAAUGHugRmvyWozRVFkeHh9Nm9+JOVyX5JkYOC+lMtDKZWSmpqW1NfvlaamfdPQMC81NY9PjVQuD6e//7fp77/zKSM2amqa0tp6WJqbD6roX10XRXLDDck++4z+7NqxivT23pra2ra0tByYJCmXh9LbOzryoq3tqK2uz8hI8tvfJoefUEr+MMnhu3DyO5N8L3ngtw/kHe94R77whS9kwYIFu3DAqe/666/Pi170omzatCn//d//nde85jWVLokpoFwu59JLL83/9//9f1m5cnT9nL333jtnnXVWvvCFL2RgYGCr/Ts6OjI4ODi24P3//M//5CUveUmS5He/+1322WefsUANgKnF9FYAAAA8Rbm8OUNDj2Ro6NEUxUi2LAT+uNrU1c1KU9Oi1NaOTiHU3n7sVnsMDW1MT88t2bhxzVbbS6XaNDcfkLlzX5Xa2qZJ/C12XqmUPOc5yf33j053deyxSe1OjLgol4fT3X1d2tqOSV1de4qiSF/f7SmXN6et7ZjU1Ix2tTdtSu65Z3RNkd/9Ltlrr+Sv3ndx/vpfLkgOyc6N9hhJcm3y9je8PSeffHJWrVqV4eHhfO9739uJg00fJ510Ur7+9a/nnHPOyfe//32hB0mSmpqanHPOOTnrrLPyxS9+MR//+MfzwAMP5NnPfnY2btyYm2++OVdccUV+8Ytf5KabbhpbIH327Nk5++yzx0ZF3XTTTTn99NPzile8Il/84hdNiQUwzRnpAQAAFeYemPHaVpsZnX6qL0NDD2d4eGOeGmgkpVJjGhr2SF3d3LEH89tSLpczOLg6vb3LMjLSt9V7dXUdaWs7Ok1NiyfyV9rtNm8ene5q3rzkWc/a8c+Vy5vT3X19Ojqem5qaumzatCqDgw+kre2o9Pe35v77k+Hh0VEl3d1JU9PodFqHHTb6z0lS01aTYt8i+eMk41ljpEjyrSQrkrlNc7Nu3boceOCB+Z//+Z8ZM0XP0NDQlF58ncoaHBzMpZdemje84Q1jIzYuvPDC/PVf//XYPkcccUSuu+66tLWNrhH0t3/7t7n66qvzwx/+MOVyOe9617vy93//91utgwNA5RnpAQAAMAP09NyWUqktWwKO2tq21NfvkaampTv0wK5cLmdg4O709f36KVNSNTYuzKxZp4ytR1FtGhpGR308/HBy/fXJ3nsni7eT45TLw+nqui4NDX+Q++4bzoYN16VUWpSampOTJG1tyezZydq1o/sfdNDocZ/onnuS668q5zkvKSXfyGjwsSM98+EklyVZnbSmNevWrcvxxx+fK6+8Mnvsscf4fvlpTODBM2lsbMyb3vSmrbZt2LAh9fX1KYoin/zkJ/Pe97537Puxp6cnH//4x9PV1ZXW1tb09fXls5/9bJqbm/OJT3xC8AEwTRnpAQAAFeYemPEab5spl8vp67sj/f13pSiGtnqvuXlp2tqOnbJTUu0uDz6YrFqV1NUlCxaMjtLo73/8/dGRND9Lbe3JaWxclblz12WvvY7NyEhN7rkn2bJ0wF57bXu9kPvuSx55ZHRUybx5yf/5P8lFn6pNuamcHJPk2CTN2yhsU5Jlj/30JXnsPC95yUty2WWXjf21OvD0+vpGR6y1trY+5b1rr70273vf+7Js2bKttn/kIx/JRz/60d1RHgA7wEgPAACAGahc3pze3tszMLD8sTU7RpVKtWlpOSh77PHq1NQ0VLDCyVUUyeDgaFixadNoEDEwMLqtVBp9f8sfbm/5878t25NkyyCC228fHbUxZ05y4IGj23t6bk1T0xHp6ropDz64OA8+eHwefHD0vQMPTJq3EVg8+miyYsXo8ffbL9l//9Gpr/7hH5KTTkpGekfyH/+xLG962/Ep31JO5ifZM0lTRsOOh5OsTUoDpdz8i5vzxS9+MZdcckle97rX5Stf+UoaGqr3/0uYSNsKO7Z4wQtekOuuuy7vf//784//+I9j2y+66KK0tLTkL//yL3dHiQBMICM9AACgwtwDM15b2szy5f+ctrbHn7aXSvVpaTkkra2HPuOaHZOpKJKRkWRoaPs/5fLWIcQTZ5J5ckDxdO898XWpNLp+RnPz6PoZzc2jPw0NW++/o7q7k5/+NOnufiA1NQ+npqY/tbUn5KijGjJv3uMhyeBg0tubrF8/+rtvqWnu3GTffR8/98MPJ1ddldTUJK99bfL734++19OTXHNNcvnlL8uNN96YgYGBNDc359nPfnZ+/OMfj9VTLpezfPnyHHjggabdgUnwzW9+M29605sy8NjQraOPPjq//OUv09jYWOHKADDSAwAAYAaorz8r9fWzMjw8OoJgaGj0Qf2W18PDo8HCE+1MsLCjocMTR0zU149OFbXlnxsbR0dPNDQ8vm2qPLcvitGppx588PHQIhmt/6SThrN8+fVJDsrBBz8vLS3Jhg2jAcfmx5ZBaWhIOjqShQtHP/Nkw8Oji6aXSqP///z5n49uf/DB5Pjjk5/8JNlzz+QHP/jBM9ZZU1OTgw46aGJ+aeApzj777MyfPz8vf/nL86pXvSpf+tKXBB4A05DQAwAAYJrasKEmRfF4iNDcnNTWbh04TJVgodKKYjRweOih0VEZT1QqJXvskRx++FNDizVrvpajjvqDNDUtzfLlycaNowHOoYc+PtLj6QwOJnfcMRo8HXFE8oUvJO9+9+P1bLFsWfKnf7rLvyIwAV7wghfkrrvuyqJFiypdCgA7SegBAAAwTe233+gIA0ZDhL6+0REbGzZsHSps0dGR7L336IiT7R+vnEcf/U7a249Oc/PSJKNrdySjYcZvfjM6gqNUSlpaRtf/qK1NurpGg5FyeXQEyFFHjQYp//RPyZ/92ejUVkly772ji5oPDIweZ86cibkOwK57YuCxcePGvOENb8jb3/72vOIVr6hgVQDsKKEHAAAAU1pRjI7OWLfu8UDhie9t0dY2OmLjieto7IxyeXO6uq5LXd3stLUd9ZT3GxuTo49+/HV//2jQMjg4uo7Hfvttff6vfCV5xSu2Dls2bkwOOGB00fS99tr5WoHJMzw8nKOOOiqrVq3Ktddem9/97neZO3dupcsCYDuEHgAAAFREUYwu4r1hw2gIMDz81H22hAdtbaOBwqJFoyMqJsvISF96em5Jff2cNDUt3aHPtLSM/mzL5Zcnxx6bLF689fYtv9fg4LbXAQEqr66uLu9973vz3ve+N729vfnzP//z/Pd//3elywJgO9xaAQAAMGG2TDPV1TUaZmxZ7PvJ+ySjD/7b25PZs0ennar0w//h4a709f0m7e0npq/v9tTVte/S8X74w9FRHIcfvvX2gYHHQ5Lly5ODD96l0wCT6Pzzz8+Pf/zjXHnllfnWt76Vm266Kccff3ylywLgGQg9AAAAeEbDw6MhRlfX6GLgIyOPv1cqbT3FVKmUtLaOBhkHHDA6FdR0MDS0IQMD96Sz8+R0d9+Q9vbjdul411wzutD5SSc99b377htdz2N4OFmxInnd63bpVMAk+9a3vpVZs2Zl06ZNefnLX57f/va3mWMhHoApS+gBAAAww4yMjE4rtSXIGBra+v0nBxl1dUln5+hi20uWTO70UpUwNLQ+AwPL09FxYoaG1qe2tiOl0s7/kjfcMLrOxx/+4bbfHxxMmppGFzOfN+/xxc2BqamxsTEf+tCH8tGPfjSPPPJI/uRP/iRXXnllaqvtyxCgSgg9AAAAprmRkdERGFtGYmxZG+PJIzC2vK6tTTo6Rn8WLhwdkTBTDQ93jQUeSdLf/9t0dp6808e7+ebkoYeSM87Y/r4bN46OigGmvne/+935xCc+kU2bNuWGG27IihUr8qxnPavSZQGwDUIPAACAaeq220YX+K6peTzE2HvvmR1ijMfwcG/6+n4zFnIMDPwuTU1Ldvp4N9+crF6dvPrVO7b/lsXMgalv9uzZefvb355ly5blwgsvFHgATGFCDwAAgGnq6KNHgw7Gb2RkU3p7b01n5/OSJEVRZPPmB3d6lMfNNycrVyavec2Of2bNmmTBgp06HVABn/70p1N6UlpZLpdTY446gCnFtzIAAAAzSrk8nJ6eG9LZ+byxB5h9fXektfWInTreTTeNjvAYT+AxOJjcc09y4ok7dUqgAp4ceFx22WU57rjjsmHDhgpVBMC2CD0AAACYMYqiSHf3L9LR8dyxB5jl8lDK5U2pq2sf9/F+8Ytk7dodn9Jqi5Urk/b20enJtrj//mT9+nGXAOxmv/3tb/PGN74xb3vb23LrrbfmnHPOycjISKXLAuAxQg8AAABmjO7u69PefkJqah6f7bm3d1na2o4Z97F+8pOktzd5xSvG97nm5tHFzpubR18Xxehokbq6ZM6ccZcB7EZFUeRd73pX/uM//iPr1q1LqVTK97///Vx44YWVLg2Axwg9AAAAmBF6em5NS8vBqa1tHts2NLQhtbUdW4UgO+J73xtdQP6008ZfxyGHJMuXj06JdcstyY03JkcckSxePP5jAbtXqVTK9773vfzjP/5j9thjjxRFkSS5+OKL8+Uvf7myxQGQROgBAADADNDfvzz19fNSXz/nSdvvSmvrIeM61n//dzJ3bvLCF+5cLaXS6CL08+cnz3726LoeTU07dyxg96uvr895552Xe++9Nx/60IfGFjJ/y1vekmuvvbbC1QEg9AAAAKCqDQ6uSVEMp6lp0VbbBwZWpKlp33Ed6ytfGR2psSsLkBfF6DogixaNBiDA9NTR0ZGLL744t9xySxoaGlIul3PmmWemq6ur0qUBzGhCDwAAAKrWyEhfBgdXP2U0R1EU2bz5oTQ2Ltyh45TLyT/9U3LKKclhh+1aTevXJ2vWJMeMfxkRYAo6+uij87Of/SxtbW15wxvekJaWlkqXBDCjjW/SUgAAAJgmiqKcnp5b0tn5/G2+395+7A4dp78/+ed/Tt70pmTWrF2v6/e/H120fN68XT8WMDWccMIJWbVqVWbPnl3pUgBmPKEHAAAAVam7+5fp6DgxpW3MIVUqlVIqNWz3GA8+mFx2WfIXf5E0bH/3HTI0lNTWTsyxgKlD4AEwNQg9AAAAqDp9fb9Jc/MBqalp3Olj3H57cuuto4FHjcmhAQCmBaEHAAAAVWVwcE1Kpbo0NOyx08e46qqkry8599wJLAwAgEnnb1UAAACoGiMjm7Jp08q0tBy008f4xjeSlpbkVa+awMKeoFyenOMCAGCkBwAAAFWiKIr09Nz4tAuXb8/w8OiC5aedluy//wQX95j+/qSnJ5k/f3KODwAw0wk9AAAAqAq9vbemre2YbS5cvj0PP5xcemnylrckbW2TUNxjfv/7ZOPG5DnPmbxzAADMZJMyvdXvf//7vOENb8jcuXPT3NycI444IjfffPNknAoAAGDa0WeaeJs2rU5d3azU1bWP+7O33ZZceWXyrndNbuCRJN3do2uF7LXX5J4HAGCmmvCRHhs2bMhzn/vcnHLKKfn+97+fPfbYI8uXL8/s2bMn+lQAAADTjj7TxBsZGcjmzWvS0XHCuD/73e8mtbXJm988CYU9jVIpqbHCJgDApJjw0OOTn/xkFi1alC996Utj25YuXTrRpwEAAJiW9JkmXk/PTeNex6NcTr74xeS445Kjj56cugAA2P0m/G9LvvOd7+S4447LWWedlT333DPHHHNM/uVf/mWiTwMAADAt6TNNrJ6e29LWdtS41vF49NHkkkuSP/ojgQcAQLWZ8NDj/vvvz+c+97kccMAB+eEPf5h3vOMdefe7352vfOUr29x/cHAw3d3dW/0AAABUq/H2mRL9pqczOLgmtbXNqavr3OHPLFuWXHFFct55yZw5k1jc09iJNdYBABiHCZ/eqlwu57jjjsvf/M3fJEmOOeaY3HHHHfn85z+fc8899yn7X3zxxbnooosmugwAAIApabx9pkS/aVvK5eFs2rQinZ0n7/BnLr88aWlJ3vKWSSzsGWzalNTXV+bcAAAzxYSP9FiwYEEOPfTQrbYdcsghWbVq1Tb3v+CCC9LV1TX2s3r16okuCQAAYMoYb58p0W/alp6eG9PevmMLl2/enHzuc8mhhyannTbJhT2Dhx4aXUtkwYLK1QAAUO0mfKTHc5/73Nx9991bbbvnnnuyZMmSbe7f2NiYxsbGiS4DAABgShpvnynRb3qy/v7laWpampqa7XdpV6xIvv/95E1vGh3lUUnr14/+HHhgZesAAKhmEz7S473vfW9++ctf5m/+5m9y77335j//8z/zz//8zznvvPMm+lQAAADTjj7Trhke7s3ISHcaG7c/XOKqq5Kbbkr+4i8qH3gkSVEka9cm++xT6UoAAKrXhIcexx9/fC6//PJceumlOfzww/Oxj30sn/nMZ3LOOedM9KkAAACmHX2mXdPbe2va2p79jPuUy8m//VvS0ZGcffZuKmwcaia8Jw4AwBYTPr1VkrziFa/IK17xisk4NAAAwLSnz7RzentvT1vbkSmVSk+7z0MPJf/1X8k55yRz5uzG4gAAmBImJfQAAACAiTQ0tC6lUl3q6jqfdp+f/zy5//7kvPOMpgAAmKncBgIAADClFUWRvr670tp66DbfL5eTr3519J/f+EaBBwDATGakBwAAAFNab++ytLdvex2PRx9NLr00OeusZK+9dnNh49DfPzUWUwcAqHZCDwAAAKaswcGHUlvbkdrapyYGN9yQ3Hnn9JjO6pFHkrlzp36dAADTndstAAAApqSiKGfTpvvT0nLAVtvL5eRrX0sGBpI3v3l6BAnr1yd9fcmCBZWuBACguhnpAQAAwJTU03Nz2tuP22rb+vWjgcdrXpMsXFihwnZCuZysWJE861mVrgQAoLoJPQAAAJhyBgd/n/r6eampaRjbNp2ms9qWtWuTF76w0lUAAFS3aXibCAAAQDUripFs2rQyzc37JRkdJfHVr06v6ayerFRKRkamZ+0AANOJkR4AAABMKU+c1urRR5NLL51+01kBAFAZQg8AAACmjNFprfZMTU1Drr8+ueee6TudFQAAu5/bRgAAAKaELdNaNTYuzVe/Ojod1LnnTv/AoygqXQEAwMxhpAcAAABTQk/PLSmVjssllySvfW2y556VrmhidHcnnZ2VrgIAYGYQegAAAFBxg4MPpr5+bhobG6puOqtHH03mzat0FQAAM0MV3UYCAAAwHRVFOZs2rUhz8/6pqamuwCNJurqShoakqanSlQAAVL8qu5UEAABguunpuSVtbcdWuoxJUxTJ736XLFpU6UoAAKqf0AMAAICK2bz54dTVdaa2trqHQfzud8nSpZWuAgCg+gk9AAAAqIiiKNLff09aWg6sdCmTbt0663oAAOwOQg8AAAAqorf3trS3H1PpMiZdqTT6v9W2VgkAwFTklgsAAIDdbmhofWpqGlJb21rpUgAAqCJCDwAAAHa7vr4709p6WKXLAACgygg9AAAA2K16e+9IW9sRlS5jtxgYSJqbK10FAMDMIfQAAABgtxkZ6UtRDKeurrPSpewW69cnc+ZUugoAgJlD6AEAAMBu09t7W9rajqp0GbvNunVCDwCA3UnoAQAAwG7R3788zc0HpFQqVbqU3WZoKCmVktraSlcCADAzCD0AAACYdOXy5gwPb0xDw56VLmW3+/3vkwULKl0FAMDMIPQAAABg0vX03JL29mdXuoyKWLkyWbKk0lUAAMwMQg8AAAAm1aZNq9PYuDCl0syc42nNmmTvvStdBQDAzCD0AAAAYNIURTmDg6vT1DRzhzoMDycNDZWuAgBgZhB6AAAAMGl6epalrW1mTmu1RVFUugIAgJlD6AEAAMCk2Lz50dTWtqW2tqnSpVREUSSl0ugPAAC7h9ADAACASTEwcHdaWw+udBkV09+ftLZWugoAgJlF6AEAAMCE6+29I62th1e6jIpavz6ZM8f0VgAAu5PQAwAAgAk1MtKXoticurrOSpdSURs2JLNnm94KAGB3EnoAAAAwoXp7b0tb2zGVLqPihoeTujojPQAAdiehBwAAABNmYOD+NDUtTcnwhiRJb2/S3FzpKgAAZg6hBwAAABOiXB7O5s0Pp7FxYaVLmTJWrkwWL650FQAAM4fQAwAAgAnR27ss7e3HVrqMKWXVqmTJkkpXAQAwcwg9AAAA2GWbNz+currZqampr3QpU8q6dcm8eZWuAgBg5hB6AAAAsEuKosjAwPK0tBxQ6VKmlKJISqWkRs8bAGC3cesFAADALunruyOtrUdUugwAABB6AAAAsPNGRvpSFMOpq+uodClTyqZNSVNTpasAAJh5hB4AAADstN7e29LWdnSly5hyNmxI5sypdBUAADOP0AMAAICdMjCwIk1N+6ZUKlW6lClnw4Zk9uxKVwEAMPMIPQAAABi3ohjJ5s1r0ti4d6VLmZK2TG9VFJWuBABgZhF6AAAAMG49PcvS3n5cpcuY0srlSlcAADDzCD0AAAAYl82bH01tbXtqahoqXcqUtn59MmtWpasAAJhZhB4AAACMy8DA3WltPbjSZUx5q1Yl++xT6SoAAGYWoQcAAAA7rK/vzrS0HFrpMqaF1auTffetdBUAADOL0AMAAIAdVlvbkfr62ZUuY8oriqS31/RWAAC7m9ADAACAHdbUZL4mAACmLqEHAAAATKByOamtHR3tAQDA7iX0AAAAgAm0cWPS2VnpKgAAZiahBwAAAEygjRuT2bOTUqnSlQAAzDxCDwAAAJhAXV1JR0elqwAAmJkmPfT4xCc+kVKplPPPP3+yTwUAADDt6DNVn3I5qfEnhgAAFTGpt2E33XRTvvCFL+TII4+czNMAAABMS/pM1atcrnQFAAAz06SFHr29vTnnnHPyL//yL5k9e/ZknQYAAGBa0meqbo8+msyZU+kqAABmnkkLPc4777y8/OUvz6mnnvqM+w0ODqa7u3urHwAAgGq3o32mRL9pOlq5Mlm8uNJVAADMPHWTcdCvf/3rWbZsWW666abt7nvxxRfnoosumowyAAAApqTx9JkS/abpaNWq5LTTKl0FAMDMM+EjPVavXp33vOc9+drXvpampqbt7n/BBRekq6tr7Gf16tUTXRIAAMCUMd4+U6LfNB0NDCRtbZWuAgBg5pnwkR633HJLHn744Tz72c8e2zYyMpKf/vSn+cd//McMDg6mtrZ27L3GxsY0NjZOdBkAAABT0nj7TIl+03RTKlW6AgCAmWvCQ48Xv/jF+fWvf73Vtje/+c05+OCD88EPfvApN+8AAAAziT5Tddu0KdnBATwAAEyCCQ892tvbc/jhh2+1rbW1NXPnzn3KdgAAgJlGn6m6bdiQzJpV6SoAAGauCV/TAwAAAGaqjRuTOXMqXQUAwMw14SM9tuWaa67ZHacBAACYlvSZqkd//+j0Vtb1AACoDCM9AAAAAACAqiD0AAAAgAlULic1etsAABXhNgwAAAAm0EMPJfPmVboKAICZSegBAAAAE6RUSlauTPbZp9KVAADMTEIPAAAAmCBFkfz+98mSJZWuBABgZhJ6AAAAwATatClpaal0FQAAM5PQAwAAACZAUYxObwUAQOUIPQAAAGACdHcnHR2VrgIAYGYTegAAAMAE2LAhmTOn0lUAAMxsQg8AAACYAF1dRnoAAFSa0AMAAAAmwMhIUldX6SoAAGY2oQcAAAAAAFAVhB4AAAAwQcrlpLa20lUAAMxcQg8AAACYIA88kOy5Z6WrAACYuYQeAAAAMAGKIlm1Ktlnn0pXAgAwcwk9AAAAYIL8/vfJkiWVrgIAYOYSegAAAMAEGRpKmpoqXQUAwMwl9AAAAIBdNDSU1NdXugoAAIQeAAAAsIs2bkxmz650FQAACD0AAABgF23YkMyaVekqAAAQegAAAMAu6u1N2toqXQUAAEIPAAAA2EVFkZRKla4CAAChBwAAAAAAUBWEHgAAADABhoeT+vpKVwEAMLMJPQAAAGACrF6dzJ9f6SoAAGY2oQcAAABMgNWrk0WLKl0FAMDMJvQAAACACbBmjdADAKDShB4AAACwC4pi9H+HhpKGhsrWAgAw0wk9AAAAYBf09ydtbZWuAgCAROgBAAAAu2TDhmT27OSP/qjSlQAAIPQAAACAXbBhQzJrVtLSUulKAAAQegAAAMAu2LzZWh4AAFOF0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAYCeNjCS1tZWuAgCALYQeAAAAsJO6upJZsypdBQAAWwg9AAAAYCdt2JDMnl3pKgAA2ELoAQAAADupuztpb690FQAAbCH0AAAAgJ1ULic1etYAAFOGWzMAAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAYCftvXelKwAA4ImEHgAAALCT9tqr0hUAAPBEQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqwoSHHhdffHGOP/74tLe3Z88998yZZ56Zu+++e6JPAwAAMC3pMwEAwOSZ8NDj2muvzXnnnZdf/vKX+dGPfpShoaG89KUvTV9f30SfCgAAYNrRZwIAgMlTKoqimMwTPPLII9lzzz1z7bXX5g/+4A+2u393d3c6OzvT1dWVjo6OySwNAACmBPfAM9t4+0yJNgMAwMwynvvfuskupqurK0kyZ86cbb4/ODiYwcHBsdfd3d2TXRIAAMCUsb0+U6LfBAAAO2pSFzIvl8s5//zz89znPjeHH374Nve5+OKL09nZOfazaNGiySwJAABgytiRPlOi3wQAADtqUqe3esc73pHvf//7+fnPf5599tlnm/ts6y+WFi1aZJg2AAAzhqmKZq4d6TMl+k0AAMxsU2J6q3e+85357ne/m5/+9KfPePPe2NiYxsbGySoDAABgStrRPlOi3wQAADtqwkOPoijyrne9K5dffnmuueaaLF26dKJPAQAAMG3pMwEAwOSZ8NDjvPPOy3/+53/miiuuSHt7ex566KEkSWdnZ5qbmyf6dAAAANOKPhMAAEyeCV/To1QqbXP7l770pbzpTW/a7ufNZwwAwEzjHnhm2dU+U6LNAAAws1R0TY9JXBcdAABg2tNnAgCAyVNT6QIAAAAAAAAmgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqsKkhR6XXHJJ9t133zQ1NeXEE0/MjTfeOFmnAgAAmHb0mQAAYOJNSujxjW98I+973/vykY98JMuWLctRRx2V0047LQ8//PBknA4AAGBa0WcCAIDJMSmhx6c//em89a1vzZvf/OYceuih+fznP5+WlpZ88YtfnIzTAQAATCv6TAAAMDnqJvqAmzdvzi233JILLrhgbFtNTU1OPfXUXH/99U/Zf3BwMIODg2Ovu7q6kiTd3d0TXRoAAExJW+59i6KocCXsDuPtMyX6TQAAzGzj6TNNeOjx6KOPZmRkJPPnz99q+/z58/Pb3/72KftffPHFueiii56yfdGiRRNdGgAATGnr1q1LZ2dnpctgko23z5ToNwEAQJL09PRst8804aHHeF1wwQV53/veN/Z648aNWbJkSVatWqXDxw7p7u7OokWLsnr16nR0dFS6HKYBbYbx0mYYL22G8erq6srixYszZ86cSpfCFPXkflO5XM769eszd+7clEql3VqL77hd4/rtOtdw17h+u8b12zWu365x/Xada7hrKnn9iqJIT09PFi5cuN19Jzz0mDdvXmpra7N27dqttq9duzZ77bXXU/ZvbGxMY2PjU7Z3dnZqeIxLR0eHNsO4aDOMlzbDeGkzjFdNzaQsuccUM94+U7LtftOsWbMmq8Qd4jtu17h+u8413DWu365x/XaN67drXL9d5xrumkpdvx0dJDHhvaqGhoYce+yxueqqq8a2lcvlXHXVVTnppJMm+nQAAADTij4TAABMnkmZ3up973tfzj333Bx33HE54YQT8pnPfCZ9fX1585vfPBmnAwAAmFb0mQAAYHJMSujx2te+No888kg+/OEP56GHHsrRRx+dH/zgB09ZqG9bGhsb85GPfGSbU17BtmgzjJc2w3hpM4yXNsN4aTMzz670mSpNe901rt+ucw13jeu3a1y/XeP67RrXb9e5hrtmuly/UlEURaWLAAAAAAAA2FVWSgQAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqMOVCj0suuST77rtvmpqacuKJJ+bGG2+sdElMUR/96EdTKpW2+jn44IMrXRZTyE9/+tO88pWvzMKFC1MqlfLtb397q/eLosiHP/zhLFiwIM3NzTn11FOzfPnyyhTLlLC9NvOmN73pKd87L3vZyypTLBV38cUX5/jjj097e3v23HPPnHnmmbn77ru32mfTpk0577zzMnfu3LS1teU1r3lN1q5dW6GKqbQdaTMvfOELn/I98/a3v71CFTMT7Ug7fbIvf/nLT2m3TU1Nu6niqWdn+in/9V//lYMPPjhNTU054ogj8r3vfW83VTv17Lvvvk+5fqVSKeedd94295/p7W+y+jwz5dnMM12/oaGhfPCDH8wRRxyR1tbWLFy4MG984xvz4IMPPuMxZ9KzisnqP82U9pds/xpu6/uwVCrlb//2b5/2mDOlDU5Wf2wmPSva3jVcv3593vWud+Wggw5Kc3NzFi9enHe/+93p6up6xuNOhWcnUyr0+MY3vpH3ve99+chHPpJly5blqKOOymmnnZaHH3640qUxRR122GFZs2bN2M/Pf/7zSpfEFNLX15ejjjoql1xyyTbf/9SnPpV/+Id/yOc///nccMMNaW1tzWmnnZZNmzbt5kqZKrbXZpLkZS972VbfO5deeulurJCp5Nprr815552XX/7yl/nRj36UoaGhvPSlL01fX9/YPu9973vz//7f/8t//dd/5dprr82DDz6YP/qjP6pg1VTSjrSZJHnrW9+61ffMpz71qQpVzEy0o+30yTo6OrZqtytXrtxNFU9N4+mnXHfddXn961+ft7zlLbn11ltz5pln5swzz8wdd9yxGyueOm666aatrt2PfvSjJMlZZ531tJ+Zye1vMvo8M+nZzDNdv/7+/ixbtiwXXnhhli1blssuuyx33313XvWqV233uDPlWcVk9J9mUvtLtn8Nn3jt1qxZky9+8YsplUp5zWte84zHnQltcLL6YzPpWdH2ruGDDz6YBx98MH/3d3+XO+64I1/+8pfzgx/8IG95y1u2e+yKPzspppATTjihOO+888Zej4yMFAsXLiwuvvjiClbFVPWRj3ykOOqooypdBtNEkuLyyy8fe10ul4u99tqr+Nu//duxbRs3biwaGxuLSy+9tAIVMtU8uc0URVGce+65xRlnnFGRepj6Hn744SJJce211xZFMfqdUl9fX/zXf/3X2D533XVXkaS4/vrrK1UmU8iT20xRFMULXvCC4j3veU/lioIn2VY7fbIvfelLRWdn5+4raoobbz/l7LPPLl7+8pdvte3EE08s/vzP/3yCK5ue3vOe9xT7779/US6Xt/m+9ve4ierzzNRnM9u6/3+yG2+8sUhSrFy58mn3manPKiaq/zRT219R7FgbPOOMM4oXvehFz7jPTG2DE9Efm+nPinbkvu+b3/xm0dDQUAwNDT3tPlPh2cmUGemxefPm3HLLLTn11FPHttXU1OTUU0/N9ddfX8HKmMqWL1+ehQsXZr/99ss555yTVatWVbokpokVK1bkoYce2uo7p7OzMyeeeKLvHJ7RNddckz333DMHHXRQ3vGOd2TdunWVLokpYssQ3zlz5iRJbrnllgwNDW31PXPwwQdn8eLFvmdI8tQ2s8XXvva1zJs3L4cffnguuOCC9Pf3V6I8SPL07fTJent7s2TJkixatChnnHFGfvOb3+yO8qas8fRTrr/++q3+W5Ekp512mv9WZPQ5wVe/+tX86Z/+aUql0tPup/1t2870eTybeWZdXV0plUqZNWvWM+7nWcXjxtN/0v6e2dq1a3PllVfu0F/Zz8Q2OBH9sZn+rGhH7vu6urrS0dGRurq6ZzxWpZ+dTJnQ49FHH83IyEjmz5+/1fb58+fnoYceqlBVTGUnnnji2LCqz33uc1mxYkWe//znp6enp9KlMQ1s+V7xncN4vOxlL8u///u/56qrrsonP/nJXHvttTn99NMzMjJS6dKosHK5nPPPPz/Pfe5zc/jhhycZ/Z5paGh4SqfY9wzJtttMkvzJn/xJvvrVr+bqq6/OBRdckP/4j//IG97whgpWykz2dO30yQ466KB88YtfzBVXXJGvfvWrKZfLOfnkk/PAAw/sxmqnjvH2Ux566CH3pE/j29/+djZu3Jg3velNT7uP9vf0dqbP49nM09u0aVM++MEP5vWvf306Ojqedj/PKh433v6T9vfMvvKVr6S9vX270zPNxDY4Uf2xmfysaEfu+x599NF87GMfy9ve9rZnPNZUeHbyzJEMTGGnn3762D8feeSROfHEE7NkyZJ885vf3KHUG2C8Xve614398xFHHJEjjzwy+++/f6655pq8+MUvrmBlVNp5552XO+64oyrnymVyPF2beWIH4ogjjsiCBQvy4he/OPfdd1/233//3V0mM9yOfreddNJJOemkk8Zen3zyyTnkkEPyhS98IR/72Mcmu8wpRz9l4vzbv/1bTj/99CxcuPBp99H+2B2GhoZy9tlnpyiKfO5zn3vGfX0HPE7/aWJ98YtfzDnnnJOmpqZn3G8mtkH9sV23vWvY3d2dl7/85Tn00EPz0Y9+9BmPNRX+3Z8yIz3mzZuX2trarF27dqvta9euzV577VWhqphOZs2alQMPPDD33ntvpUthGtjyveI7h12x3377Zd68eb53Zrh3vvOd+e53v5urr746++yzz9j2vfbaK5s3b87GjRu32t/3DE/XZrblxBNPTBLfM+x242mnT1ZfX59jjjlGu33M9vope+21l3vSbVi5cmV+/OMf58/+7M/G9Tnt73E70+fxbOaptgQeK1euzI9+9KNnHOWxLZ5VPG57/Sft7+n97Gc/y9133z3u78Sk+tvgRPbHZuqzou3d9/X09ORlL3tZ2tvbc/nll6e+vn5cx6/Es5MpE3o0NDTk2GOPzVVXXTW2rVwu56qrrtrqrzbg6fT29ua+++7LggULKl0K08DSpUuz1157bfWd093dnRtuuMF3DjvsgQceyLp163zvzFBFUeSd73xnLr/88vzkJz/J0qVLt3r/2GOPTX19/VbfM3fffXdWrVrle2aG2l6b2ZbbbrstSXzPsNvsTDt9spGRkfz617/Wbh+zvX7KSSedtNV/K5LkRz/60Yz/b8WXvvSl7Lnnnnn5y18+rs9pf4/bmT6PZzNb2xJ4LF++PD/+8Y8zd+7ccR/Ds4rHba//pP09vX/7t3/Lsccem6OOOmrcn63WNjgZ/bGZ9qxoR+77uru789KXvjQNDQ35zne+s92RRttSkWcnlVxF/cm+/vWvF42NjcWXv/zl4s477yze9ra3FbNmzSoeeuihSpfGFPS///f/Lq655ppixYoVxS9+8Yvi1FNPLebNm1c8/PDDlS6NKaKnp6e49dZbi1tvvbVIUnz6058ubr311mLlypVFURTFJz7xiWLWrFnFFVdcUdx+++3FGWecUSxdurQYGBiocOVUyjO1mZ6enuL9739/cf311xcrVqwofvzjHxfPfvaziwMOOKDYtGlTpUunAt7xjncUnZ2dxTXXXFOsWbNm7Ke/v39sn7e//e3F4sWLi5/85CfFzTffXJx00knFSSedVMGqqaTttZl77723+D//5/8UN998c7FixYriiiuuKPbbb7/iD/7gDypcOTPJjny3/a//9b+KD33oQ2OvL7roouKHP/xhcd999xW33HJL8brXva5oamoqfvOb31TiV6i47fVTnnz9fvGLXxR1dXXF3/3d3xV33XVX8ZGPfKSor68vfv3rX1fqV6i4kZGRYvHixcUHP/jBp7yn/W1tIvo8L3rRi4rPfvazY69n0rOZZ7p+mzdvLl71qlcV++yzT3Hbbbdt9Z04ODg4downX7+Z9KxiIvpPM7n9FcX2/x0uiqLo6uoqWlpais997nPbPMZMbYMT1R876KCDissuu2zs9Ux6VrS9a9jV1VWceOKJxRFHHFHce++9W+0zPDw8dpwnXsOp8uxkSoUeRVEUn/3sZ4vFixcXDQ0NxQknnFD88pe/rHRJTFGvfe1riwULFhQNDQ3F3nvvXbz2ta8t7r333kqXxRRy9dVXF0me8nPuuecWRVEU5XK5uPDCC4v58+cXjY2NxYtf/OLi7rvvrmzRVNQztZn+/v7ipS99abHHHnsU9fX1xZIlS4q3vvWtVXvzzfZtq60kKb70pS+N7TMwMFD8xV/8RTF79uyipaWlePWrX12sWbOmckVTUdtrM6tWrSr+4A/+oJgzZ07R2NhYPOtZzyo+8IEPFF1dXZUtnBllR77bXvCCF4zdTxVFUZx//vljfbj58+cXf/iHf1gsW7Zs9xc/RWyvn/Lk61cURfHNb36zOPDAA4uGhobisMMOK6688srdXPXU8sMf/rBIss17c+1vaxPR51myZEnxkY98ZKttM+XZzDNdvxUrVjztd+LVV189downX7+Z9KxiIvpPM7n9FcX2/x0uiqL4whe+UDQ3NxcbN27c5jFmahucqP7Ykz8zk54Vbe8aPl37TFKsWLFiq+Ns+cxUeXZSeqwwAAAAAACAaW3KrOkBAAAAAACwK4QeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUhf8fhN03rIh8lbQAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLU0lEQVR4nO3deXxddZ0//tdN06R7SgvdoIWyb23ZpLKJCIKoCDN+3QZH3Dec0fE7M8hPkXFEcRt1Fr7gd0aBUVzwqyjjMgw7ImVrKUsppS2lFOhCt6RrmuX8/ggEQ9fQJDe5eT4fj/to7rnnnvvO8cP1vM8r53NKRVEUAQAAAAAA6OOqyl0AAAAAAABAVxB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVodOhx1133ZVzzjknEyZMSKlUyq9+9av215qamnLRRRdlypQpGTp0aCZMmJD3ve99ef7557uyZgAAgF5LzwQAAOXT6dBjw4YNmTZtWq644oqtXtu4cWNmzZqVSy65JLNmzcovf/nLzJs3L29729u6pFgAAIDeTs8EAADlUyqKonjVby6VcsMNN+S8887b7joPPPBAjj/++CxevDiTJk16tR8FAADQ5+iZAACgZ1V39wfU19enVCpl5MiR23y9sbExjY2N7c9bW1uzevXqjB49OqVSqbvLAwCAsiuKIuvWrcuECRNSVeW2e/3NznqmRN8EAED/1pmeqVtDj82bN+eiiy7Ke97znowYMWKb61x++eX50pe+1J1lAABAn7BkyZLss88+5S6DHrQrPVOibwIAgGTXeqZum96qqakpb3/72/Pss8/mjjvu2O4B/Cv/Yqm+vj6TJk3KkiVLdnjQDwAAlaKhoSETJ07M2rVrU1dXV+5y6EJd0TMl+iYAAPq3zvRM3XKlR1NTU975zndm8eLFue2223Z4EF5bW5va2tqtlo8YMcLBOwAA/YppivqPzvRMib4JAACSXeuZujz0eOngff78+bn99tszevTorv4IAACAPkvPBAAA3afTocf69euzYMGC9ueLFi3K7NmzM2rUqIwfPz7/63/9r8yaNSu/+c1v0tLSkmXLliVJRo0alZqamq6rHAAAoBfSMwEAQPl0+p4ed9xxR0477bStll9wwQX5h3/4h0yePHmb77v99tvz+te/fqfbb2hoSF1dXerr612mDQBAv+AYuLJ0d8+UGDMAAPQvnTn+7fSVHq9//euzo5xkN+6LDgAA0OfpmQAAoHyqyl0AAAAAAABAVxB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEXodOhx11135ZxzzsmECRNSKpXyq1/9qsPrRVHki1/8YsaPH5/BgwfnjDPOyPz587uqXgAAgF5NzwQAAOXT6dBjw4YNmTZtWq644optvv6Nb3wj//Iv/5Krrroq9913X4YOHZqzzjormzdv3u1iAQAAejs9EwAAlE91Z99w9tln5+yzz97ma0VR5Lvf/W6+8IUv5Nxzz02S/Od//mfGjh2bX/3qV3n3u9+9e9UCAAD0cnomAAAony69p8eiRYuybNmynHHGGe3L6urqMn369MyYMWOb72lsbExDQ0OHBwAAQCV6NT1Tom8CAIBd1aWhx7Jly5IkY8eO7bB87Nix7a+90uWXX566urr2x8SJE7uyJAAAgF7j1fRMib4JAAB2VZeGHq/GxRdfnPr6+vbHkiVLyl0SAABAr6JvAgCAXdOloce4ceOSJMuXL++wfPny5e2vvVJtbW1GjBjR4QEAAFCJXk3PlOibAABgV3Vp6DF58uSMGzcut956a/uyhoaG3HfffTnhhBO68qMAAAD6HD0TAAB0r+rOvmH9+vVZsGBB+/NFixZl9uzZGTVqVCZNmpTPfOYzueyyy3LQQQdl8uTJueSSSzJhwoScd955XVk3AABAr6RnAgCA8ul06PHggw/mtNNOa3/+2c9+NklywQUX5Jprrsnf//3fZ8OGDfnoRz+atWvX5uSTT85///d/Z9CgQV1XNQAAQC+lZwIAgPIpFUVRlLuIP9XQ0JC6urrU19ebpxYAgH7BMTCdZcwAANCfdOb4t0vv6QEAAAAAAFAuQg8AAAAAAKAiCD0AAAAAAICKIPQAAAAAAAAqgtADAAAAAACoCEIPAAAAAACgIgg9AAAAAACAiiD0AAAAAAAAKoLQAwAAAAAAqAhCDwAAAAAAoCIIPQAAAAAAgIog9AAAAAAAACqC0AMAAAAAAKgIQg8AAAAAAKAiCD0AAAAAAICKIPQAAAAAAAAqgtADAAAAAACoCEIPAAAAAACgIgg9AAAAAACAiiD0AAAAAAAAKoLQAwAAAAAAqAhCDwAAAAAAoCIIPQAAAAAAgIog9AAAAOij6uvLXQEAAPQuQg8AAIA+6umn2x4AAEAboQcAAEAfNW1a27+zZiVFUd5aAACgNxB6AAAA9GH77ZcceGBy993Jli3lrgYAAMpL6AEAANBH1dffn6IoMmJEctJJycyZyYoV5a4KAADKR+gBAADQRw0bNjVr196ZlpbNqapKTjghWbkymTu33JUBAEB5CD0AAAD6qAEDBmXkyFOzfv2sbNmyMkly+OHJqFHJPfckra1lLhAAAHqY0AMAAKAPK5VKqas7MVu2PJ9NmxYlScaOTY49tu0+Hw0NZS4QAAB6kNADAACgAgwbNjVJsn79I0mS2trklFOSBQuSp58uY2EAANCDhB4AAAAVYvDgyampmZD6+ntSFEVKpeSYY9pemzkzKYry1gcAAN1N6AEAAFBBamr2zLBhx6S+/q60tjYmSfbbLzn44OQPf0g2by5vfQAA0J2EHgAAABVmwIBBqat7XdatezBNTauTJMOHt0139fDDyfPPl7lAAADoJkIPAACACtR2g/OTsnnzM9m8ecmLy5Lp05MNG5JHHy1zgQAA0A2EHgAAAH3U44/v/D4dw4cfldbWzdmwYW77soMOSvbeO7n77qS5uZuLBACAHiT0AAAA6KP22SeZMSNZunTH6w0ZclCqq0emoeGBFC+mJKNGJa99bXL//cnKlT1QLAAA9AChBwAAQB81YkRy4onJpk1t4ceWLdtft7Z2fIYMOTT19X9IUbQkSaqr296/fHkyd+723wsAAH2F0AMAAKCP23//5Pjjk0ceSebM2f561dXDM2LECamvvzstLRvalx9xRNuVH/fck7S09EDBAADQTYQeAAAAFWDAgOS449ru1fHHP7ZdvbEtVVUDU1f3uqxf/0i2bHmhffnYsW3vv+eeZM2aHioaAAC6mNADAACggowcmZx0UrJuXXLvvdue8qpUKqWu7oRs2bI0mzY93b68piY55ZRkyZJk/vweKxkAALqM0AMAAKACHXhg8prXtE159dhjyYv3L+9g2LCpSVqyYcPjHZZPnZoMGdIWmmzrfQAA0FsJPQAAACrUS1NeTZzYdqPzpUu3Xmfw4ANSXb1HGhoeSPEnCcfeeydHHZX84Q9JQ0PP1QwAALtD6AEAAFDh6uqSE09MNm9uCz82ber4em3t+AwZckjq6+9OUbS2Lx80qG26qwULkqee6uGiAQDgVRB6AAAA9BOTJyevfW3yxBPJ7Nkdp66qrh6RESOmp77+7rS0bG5fXiolxxyTDByY3H+/6a4AAOjdhB4AAAD9SKmUHH10ctBBbVd9PP30y69VVdWkru6UrF8/K01Nazq8b+LEZMqUtumu1q/v2ZoBAGBXCT0AAAD6oaFD26a8GjgwueeepL6+bXmpVEpd3YnZvHlRGhuf6/CewYPbpruaN69jWAIAAL2F0AMAAKAf23vv5IQTkmefTR54IGlubls+fPgxaW5el40b53dYv1RKjj227d8HHjDdFQAAvYvQAwAAoJ8rlZIjjkiOOiqZNSuZO7dt+dChh6aqqjbr1s3e6j377pscfnjbdFcbNvRouQAAsF1CDwAAAJK0TXV1/PHJuHFtU14991wyaNCk1Nbuk/r6GSlecVnH0KFt013NnZs880yZigYAgD8h9AAAAKCDPfZou99Hc3Nb+NHYuGeGDZua+vq70tra3GHdUik57rikpSWZOdN0VwAAlJfQAwAAgG3ad9+2+30sWpTMmjU0Q4eelIaGP6alZev5rCZPTg4+uG26q02bylAsAACkG0KPlpaWXHLJJZk8eXIGDx6cAw44IF/+8pe3ugwaAACgP+prPVOplEydmkyblsyaVZ1nn31d1q9/NFu2rNxq3eHD26a7euSRthujAwBAT6vu6g1+/etfz5VXXplrr702RxxxRB588MF84AMfSF1dXf76r/+6qz8OAACgT+mrPVNNTTJ9erJ2bSlz5rw2Y8Y8kn322ZBBg/btsF6p1LbewoXJ7NltN0cHAICe0uWhxz333JNzzz03b3nLW5Ik++23X37yk5/k/vvv7+qPAgAA6HP6es80cmTb/T6WLJmamTPn54AD5mbcuMO2Wu+AA5K1a5O77kpe+9q20AQAALpbl09vdeKJJ+bWW2/Nk08+mSR5+OGHc/fdd+fss8/u6o8CAADocyqlZ5o4MTnxxIOycmVdZsyYmS1btl5n5Mjk5JPbbnC+fHmPlwgAQD/U5Vd6fO5zn0tDQ0MOPfTQDBgwIC0tLfnKV76S888/f5vrNzY2prGxsf15Q0NDV5cEAADQa3S2Z0p6b99UKiVHHjkhjY1D89BDd6e29sRMm1aVUunldaqq2m6GPndusmpVcvjh5asXAIDK1+VXelx//fW57rrr8uMf/zizZs3Ktddem29961u59tprt7n+5Zdfnrq6uvbHxIkTu7okAACAXqOzPVPS+/um2tq6vOY1x2fs2LsyY8bmPPXU1uscdliy557JPfckra09XyMAAP1DqSiKois3OHHixHzuc5/LhRde2L7ssssuy49+9KM88cQTW62/rb9YmjhxYurr6zNixIiuLA0AAHqlhoaG1NXVOQbuJzrbMyV9p28qiiINDTOyYcOhefrpUTnooGSvvTqus2VLcu+9ybRpSV1deeoEAKBv6UzP1OXTW23cuDFVVR0vIBkwYEBat/OnPLW1tamtre3qMgAAAHqlzvZMSd/pm0qlUurqTkxV1ewcc8z6LFkyKQsWJEcdlQwe3LZOTU3yutcls2Ylo0Yl++1XzooBAKg0XR56nHPOOfnKV76SSZMm5YgjjshDDz2Ub3/72/ngBz/Y1R8FAADQ51R6zzR/frLvvkeluXlBJkyYkwMPPCIPPdR2/4+jjkr7/T6OOSZ5+ulk9uy25QAA0BW6fHqrdevW5ZJLLskNN9yQFStWZMKECXnPe96TL37xi6mpqdnp+13aDwBAf+MYuH/Z3Z4p6d1jZv365LrrkmOPTaZOXZ7Nm5/O8OHHZ/PmUmbPTsaMSQ444OX1165NHnssee1rk+ou/7M8AAAqQWeOf7s89NhdvfngHQAAuoNjYDqrL4yZu+9OHn88ecc7NqRUejAjRpyQqqqaLF+eLFyYHHpo2/RWSdLcnMyYkUyd6j4fAABsrTPHv1U7fBUAAABehZNPTj74weS3vx2am246JfX1D6SpaVXGjk1OPDFZvjy57762wKO6OjnllLYw5Jlnyl05AAB9mdADAACAblFdnbz3vcnpp1fll788Kb/5zXPZsOGpJMlhh7VNgTVzZjJvXtv6xxyTNDW1TXcFAACvhtADAACAbrXnnsmHPpScdNLU/OIX1fnZz2Zm3boi1dXJ9OnJ6NFt02GtWdN2v48xY5J7701612TMAAD0BW4TBwAAQI8YMyZ53/smZf36kbnppj9k7drpOfnk2hxySNt0WHPmJE891XbFx9ChyR/+kJxwQjJwYLkrBwCgrxB6AAAA0KOGDRuRP//zk9PQcF8eemhy7r57XCZMSM46K2lsTO65J9l//+Skk5I//jE5+uhk+PByVw0AQF8g9AAAAOij1q17KKXSiNTUjEtNzdiUSn1nBuNSqSp1dSfk+OPn5bjjXsiqVVNy7bVJTU3y9rcnzz7bdr+Pk05q+3e//dquFAEAgB0RegAAAPRRw4cfnWHDhmbLlmVZv/7hJK0dXh84cExqasanqqr3tn5DhhySpqbVqau7Oxdc8Jps3Fib669PWlqSN785mTEjOeigZNmyZPPmZNKkclcMAEBv1nuPfAEAANipUmlAamv3Tm3t3h2WF0WRpqYXsnHjnBRFc4fXqqtHpbZ271RV1fRkqds1cOCo1NWdmHXrHkhNzfi8732TsmVLcsMNycaNyZAhbYHHc8+1TX910EHlrhgAgN5K6AEAAFCBSqVSamrGpKam45xQRVGkuXlNNm58IkXR1OG1AQOGp7Z2YgYMGNyTpSZpm+5qxIjp2bTp6TQ03Jfhw4/Lu941IJs3J//v/yXr1rUFIKtWJevXt93nY1c98cQTOfTQQ7uveAAAeg2hBwAAQB/Vdk+PYUkGpLp6RKqr6zJgQN0Op7MqlUoZOHBUBg4ctdVrzc0N2bx5UVpbN73iPbWprp6Y5ua6NDa2XW2xZcvLj+bmtumoSqWkKF75eW3LSqVk4MCktjYZPLjtMXx42/M/NXjwfqmtnZCGhvsyaNC+GTRo77z3vcnq1cl3v5tUV7fd42PduuR1r9v27/iBD3wg1/zimqQmSW2SAUlakjQm2ZK8/+3vz9VXX73DfQuvVmNjYxYsWJDFixe3PxobGzN58uSceOKJOe6448pdYpd45plncsMNN+SJJ57I2972tpx99tlJko0bN+b888/Pcccd1/4YPXp0masFoD8pFcUrD0nLq6GhIXV1damvr8+IESPKXQ4AAHQ7x8B01ktj5s476zNs2Ii0trakVGpIUdSnKBpSFE0pldrWLYq2YKKxsZTGxiKbNydbtgxKa+vIJHVpbR2a0osrvxRObG1zamufzZAhDRk2rMiQIcmwYcnw4QMyfPj4DB26VwYM2PFN1IsiaWpqq2XTpmTDhrYrNhobO37mSx3qiBHJ2LFPpSiWZ/jw41JVNTBFkfzHf7Td32P48OTgg9vu+/GS17/+9bnz4TuTkUlOTrJ/kj8tqzXJwiR/TLI2OXXaqbnjjjt2bafTpTZs2JCVK1dm9OjRGTZsWLnLedVaWlrS2NiYIUOGpLGxMb/4xS9ywQUXpLm5eZvrn3zyyXnDG96QwYMHp6mpKb///e8zbNiwjBw5MlOmTMkee+yRiRMnZtq0adl3333b/9sst6Io0tDQkBdeeCFPPvlkrrrqqvz+979v/z3/4i/+Iqeffnrq6uqyYsWKfPKTn+zw/smTJ+eNb3xjPvGJT+Soo44qw28AQF/XmZ5J6AEAAGXmGJjOemnM3HFHfYYOHZHm5o5XXzQ1tT1vanr5CovBg9vujTF4cDJw4OYkDUnWpCg2pFRqawtfCj3a/i0lKVIUpZRKQ1MUdWluHpktW2pfDFCSzZub09KyLAMGrHhx3ZcDjJaWPdLauneS2hRFMmhQW1AxfHjbz6VSW3AyalRSV9d2Bcefqq9PFi9OtmxpTkvLrFRX1+Wwww5JUSSPPtp2tcdTTyUnn5z82Z8le43fKytbVibvTrIrf1S+KslPk72q98qK51d00f8yvFJRFPnnf/7nzJ49O/Pnz8/y5cuzbNmybNiwIUmy3377ZdGiRe3rb9q0KYMH9/z0ajtTFEWWL1+e++67L4sXL86cOXMyZ86cPPDAAxk7dmxaWlqydOnS/OkpllKplLe+9a3Zb7/9Ultbmx//+Md5/vnnd/kzBw8enIkTJ2bMmDEZPXp0hg8fnv322y977bVXPvzhD2fIkCFJkmXLlqW5uTnDhg3LkCFDMnDgwB2GJUVRZMuWLdm4cWPWrFmT1atXZ/Xq1Vm2bFmOOOKIDBo0KJMmTcqVV16ZG264IcuWLcuyZcuyefPmrbZ1yimn5OSTT86cOXNy4403bvX6gAED0tLS0mHZd77znXzmM5/Z5f0AAEnneibTWwEAAPRhVVXJ0KHJ6NFtYcJLj9ratrBj2+c+B734GLOtFzsoiiItLRvS0lKf5uaFaW195YnPjh9QKtWkunpkklKamp5MsiVJWwizbl1SX1+b5uZ9UhR1ef75UubNa1ve2tp2dcdee7XVnSR77pnss091Bgw4Phs3rsy8efekqenArFo1JmeemaxYkXzve8mnPnVEVhYrkw8m2dXz5aOTfDB54ZoXMmXKlDz66KO7+EZeqSiKPP3005k9e3buu+++NDY25mtf+1pqa2tTKpXyjW98I0uXLt3qfdXV1Zk8eXKH7UybNi2TJ0/Of/zHf2TixIk9+Wt0qGPx4sWZN29eHn/88Tz44IO5/vrrt3v1xpIlS9p/rqmpyahRo9qDiuuvvz6DBg1Kkhx00EF55JFH0trams2bN2fp0qV55plnsnHjxmzevDlnn3121q1bl/nz5+eRRx7Jpk2b8uSTT+bJJ5/c6jMbGxtz1FFHZe7cufnnf/7nPPXUU+2vlUqlDBgwIAMHDkx1dXXuvPPOHHrooamqqsonP/nJXHPNNWltbd3pfqipqcmWLVu2+dqQIUPygx/8IO9617uSJFdeeWWam5uzZs2arFixIsuXL8/69evbA4/rr78+v/jFL3LDDTdk5cqVueCCC3LaaaflwAMPzGGHHWb6KwC6lCs9AACgzBwD01kvjZmVKxenrm5USqXqlEo1qara8RRTPaG1dUuam9emuXlNWlrWv+LVUlpaNqe5+YW0tGxKdXVdqqtHpqqqJsmAbNw4LsuXj01zcymtrW1Xe6xY0Rbo1NUtycCB4zJp0jMplZbnppumZMKE4Vm/flbOed+xyYeSvJpZktYl+UEy9565ZbvZ+YYNG/Lcc8/l+eefz8qVK7PHHntk/PjxOfDAA1NTU1OWmnbmC1/4Qn7zm9/kueeey5o1a7b6a/777rsvxx9/fJLkLW95S373u99tczvDhg3LL3/5y7zxjW/Mww8/3D710VFHHZUZM2a0BwbdoaGhIXfddVfuu+++jB49OgsXLsyCBQvyhz/8of1KlG0588wzc9xxx+WII47I5s2bM2TIkBxwwAHZd999s9dee3XJlFTLli3L8uXLs3bt2qxYsSK/+MUvcv3112d7p3C2dUXFrnjl+0aOHJlSqZQ1a9Zk0KBBue666zJ+/PiMGzcuN910U+rr63PyySfnxBNP3OnvuW7dujz++ON58skn85d/+ZdJkjVr1uScc87JH//4x/b1Bg4cmPe+97258MILc8wxx/SaKb0A6F1MbwUAAH2IY2A666Ux89RTP8uwYQNTFE0vPtrau1KplKIo/uReHUWHE4nbe/7KqXm2t+5LqqoGZcCAoRkwYHgGDBjy4r/DU109cqchTGvrljQ1rU5T08oURWOKoiVNTavS1LQ6SZFSqSrV1XukKEpZtSqprz8yRbFPlixJhgwpsscec7Jy5Ya87Z0nJK8rkhN3Y4fenVTdXZWWTZ0/abwrmpqasnDhwsybNy+LFi3K008/nS9/+csZPnx4kuRTn/pUrrjiiq3ed8ghh+Thhx9O7Svv9t5NHn744Tz33HNZvHhxHnjggTz++ON55plnsnbt2jQ2Nmb27NmZMmVKkuTAAw/MwoULt7md6urq/M///E9OO+20JMkPf/jDfOc730lzc3Oam5vT2NiYFStWZP36tlDs3nvvzfTp05Mk/9//9//l8ssvT5IMHTo0p556aqZOnZojjzwy++23X4466qgMHTp0p79Lc3NzWlpa8vTTT2fBggW55557snjx4gwePDgLFy7M/Pnz8+yzz+5wG4cffnj7o66uLieddFKmTJnSPq1UT1u/fn0eeOCB3HPPPbnnnnsyf/78HHrooTnuuONy/vnnZ+LEidm0aVNmzJiR22+/PXPnzs2CBQvy1FNPpbGxsX07Dz/8cCZNmpTBgwfnd7/7XWbNmpVjjz02xxxzTCZOnJhSqZR169Zl+fLlOfDAA7v897jttttyyy235JZbbskDDzzQ4bXDDjssc+bMEXwAsBWhBwAA9CGOgems7hozra3NaW3dlNbWTWlpWZ/m5vq0tKxLc/PGFMWWtLRsTFE0prW1MS0tm1MUW178eX37z62tm19cpyVJkaQqpVJSKr0UgFS/GIZUvfhaVdqmyCqlVKpKVdXgVFePzMCBe2bAgBHZsmVlWlpWJ2l9MVDZI+vX75HVqw/P4sUH5N2fGJh8LG2zdb1am5L836RYvXvt8Z8GRD//+c9z7bXX5vHHH8/ixYu3mk7oO9/5Ts4+++wccsgh+epXv5qvfvWrGT9+fPbaa6+sXbs2CxcuzJYtW3LllVfm4x//+G7V9ZLNmzfn3nvvzW233ZbbbrstS5YsyeOPP94eIhx99NGZPXv2dt//s5/9LO985zuTJJ/73Ody66235tBDD81RRx2V448/PpMmTcq4ceN2OaRZt25dli5dmokTJ7bfx+Nf/uVf8pWvfCUrVmz7PiszZ87MMccckyT59re/nauvvrp9nzc2Nmbp0qXZuHFjWlpadvnqh8GDB+fkk0/OMccckwMPPDATJkzI0UcfnfHjx+/S79HbtbS0ZOPGjSmKIq2trRkxYkSvuCosSRYuXJi/+Iu/yP33358kGTduXG688cbsu+++2XPPPfPpT38606dPz+jRo1NdXZ03vOENGTBgQJmrBqAchB4AANCHOAams14aMwsX/igv/dH7SyfcW1ub09y85sXAoj4tLa+8B0eRl+/D0fHnttChJkl1SqXaDBgwKFVVtS8+BqeqqialUtvPbVdyVKdUGpC28OLlW0b+6VUibf+2JmlOUbSkKJpTFE1pbW1q//mlupOWNDdvSnPzqjQ3r0lT0+o0N6/9k/Ub09q6pT14ec97FmTRkKbkHV2wU69PplZPzcMPP7zTVbds2ZL7778/d955Z2bOnJm5c+fmmWeeyWmnnZaPfexjOeecc/L1r389n/vc53a4nc9//vO57LLL0tLSkueffz4HHnhgJk2alP322y9NTU2566678v73vz9XXHHFq76594MPPpjrrrsut912Wx5//PGt7ktx/fXX5x3vaNuBb3vb2/Jf//VfKZVKGT58eCZMmJBDDjkkRx55ZI466qiceeaZPfYd9YUvfCFf+cpXUl1dnXPOOSerV6/O4sWL8+CDD7bf/+Hv//7v881vfnOH2xkyZEgOOuigJMnGjRtz/vnnZ//998+BBx6YvfbaK/vvv3+vCQD6q6Io8h//8R/51Kc+1X4PkVKplIcffjhTp07tsO7ee++d73znO+1jFoD+w43MAQAA+oGmptVpbR3ZfhVFURSpqhqUYcOmZODAcampGZeBA0e+GExUlgUL1mfRs8OTP+uiDR6RPHLDI3n22Wfz5JNPZu7cuUmS1tbWTJ8+Pccff3xuuummfP7zn8/MmTO3uYnf/va3Ofroo3POOefk7LPPzsaNG3PZZZdl9OjRGT58eAYPHpxBgwZl8ODBaWlpab+J94ABA7J48eJs2bIlCxYsyIIFC9q3efXVV+eaa67Jl770pVxyySVJkuXLl+e3v/1thg8fnhEjRmTgwIF54YUXsnz58jz66KO54IILcvLJJydpmy7q5ptv3ma91dXVWbVqVfvzH/7wh+3hy8CX7iZfJv/4j/+YRx99NDfeeGPmz5+fhx9+eKtw4iMf+UhOPPHEDB06NKVSKVVVVVm6dGnmz5+fqVOn5phjjsmkSZOEGr1cqVTKRz7ykUyfPj1/+7d/mzlz5mTAgAHZY4898vnPfz6//vWv89hjjyVJnnvuubzzne/MyJEj881vfjMf/vCHy1w9AL2R0AMAAKCPGj/+gn53ddC6dcnDDycHHDCsbUqrV3cBxNYGJ6lNJk6cuNVLX/jCF3L88cdn/fr1HQKPgQMHZuTIkdl7771z8MEHZ9q0aTn99NOTJFOnTs2UKVNy6aWX7tJJ99e+9rV5+umn8/TTT2fhwoV59NFH88gjj+Thhx/OqlWrOky1NHfu3HzoQx/a/q/y4nRNSfLWt741t99+e8aNG5cpU6Zk+vTpOeKII3LEEUdsFW7U1dWlrq5up7X2hKqqqlx33XX52Mc+lq985Svb3IeLFy/OJz/5yVx00UX59Kc/XYYq6UpTp07N//zP/yRpuydLdXV1Lrvsslx22WV56qmn8uMf/zj/5//8nyxdujRr167Nxz/+8Tz22GP5whe+kPr6+jz11FM55ZRTMmjQ7sx1B0AlML0VAACUmWNgOqu/jplly5Knn06qq5OiSI5/Qyn58yT7d8HGFyb5ZZINbU+rq6vT0tKSKVOm5O/+7u/y3ve+N2vXrs21116bgw8+OKeeemqP3NC6KIrMmDEjw4cPb7+J+MyZM3PppZdm3bp1aWhoyObNm7NixYqsXr06Sdv9Nl66Gfif3ty+UmzZsiWf//zn861vfStJctRRR+WBBx5IdbW/6+wPbr/99vzVX/1V5syZkyT56U9/mtmzZ+drX/tahgwZkte//vU566yzcvrpp+fwww+vqLEP0J+Z3goAAICK8sILyaxZyahRydSpSU1Nko0vPrrCxiSb2+6Bcfjhh2fw4MFpbW1Nc3NzampqkiQjR47s8SsKvvKVr+SSSy7JBz/4wXz/+99Pkhx77LH5zW9+kyRZs2ZNzjnnnDzxxBMZNGhQfvazn+Vtb3tb+/sr6YTvjTfemKuvvjrPPPNMZs2alST5+Mc/nn/6p38SePQjp512Wh577LHccsst+fGPf5x3vOMdmTdvXiZMmJDnn38+v/vd7/K73/0uSbLnnnvm1FNPzfe///1ecxUTAN3PlR4AAFBmjoHprP42ZjZtSn760+S005L99nt5ealUSg5Kcn4XfMiPkjyVFC29qkXOPffck5NOOikDBgzI3Llz22/KnbTd3+Css87KnDlzUldXl//6r//KKaecUsZqu8/KlSszefLkrF+/PkkyatSofP/73895551X3sLoNdatW5dJkyaltbU1EyZMyOLFi7Np06bstddeWb58eUUFgAD9UWeOf93NCwAAgF6rKJKrr07+/M87Bh5J2ubuX5lk/W5+yLokq5IM383tdIMTTzwxb37zm9PS0pJLL720ffmyZcty4oknZs6cORk/fnz+8Ic/VGzgkbT9xf6PfvSjDB06NG984xvzyCOPCDzoYMGCBRk2bFgaGhryxBNPZNiwYXnjG9+Yt7/97XnqqafSy/7mF4BuJPQAAACgVyqK5Ec/Ss45J9nWzDQf/vCHk/okD+zmB92fpCEZ0tr99+h4NS677LIkyU9+8pM8/PDDSZIxY8bk1FNPzcEHH5x77rmn/X4flezcc8/NmjVr8j//8z/Ze++9y10OvczRRx+dBQsW5N/+7d8yYcKEvPDCC7n55ptz1VVX5cADD8x//ud/lrtEAHqI6a0AAKDMHAPTWf1lzNx1V1vwceqp21+nNKiUDE7yl0lGv4oPWZnkh0kakw2rNvTIzclfjXe96125/vrrc8455+TGG29MkjQ1NaWhoSGjR7+aXxwqV2NjY2bMmJHbbrstt99+e+67777MmTOnw/RwAPQtnTn+FXoAAECZOQams/rDmJk9O1m1Knnd65KBA7e/3ujRo7O6eXUyMMn7knTmXsVr0xZ41CRpSIr1vao97mDevHk59NBDkySLFy/OpEmTylwR9B0bNrQFmu7rAdB3uacHAAAAfdbixcnQocnIkTsOPJJkyZIlbZ3twCTXJHk6yc6yi+LF9a5NMihJU/JP//hPu1VzdzvkkENy4YUXJkluueWWMlcDfcvQoUMFHgD9iCs9AACgzBwD01mVPGY2b04eeSQZMCCZOnXnoUeSvOMd78j/u/3/JZOSPJWkNslrkkxL21UcL9mSZHaSB5NsTnJYkqVJ3aa6rF2xtkt/j+7Q2tqa+fPn5+CDD3YCFwDoVzpz/FvdQzUBAADATs2cmZxwQvLAA7sWeCTJz3/+8xx77LGZtWhW8q4k65LckOSetF0BUpWkNUlTkk1J/izJ+CQ/SWo31GZt/dqu/0W6QVVVVQ455JBylwEA0KsJPQAAAOgVnnoq2X//tn8PPLBz7505c2Y+8YlP5KqfXpUMS3JOkkOTDPiTlYoki5PcnWRlsv9e+2fh8wu7qHoAAHoD9/QAAACg7FpbkxUrkvHjkzVrktGjO7+NK6+8MsWaIv/40X9Mfpfk/yT5v0m+n+Tfk1yR5JfJmw9+c4o1RRY+KfAAAKg0Qg8AAADKbvbs5KijkubmpHo35yS45JJLUqwvUqwsUjxXZPHdi1M8W6R4oUhRX+S3v/1tV5QMAEAvJPQAAACgrBobk6JIBg1K5s5NDjusa7c/adKkrt0gAAC9ltADAACAsnrkkbarPJJk8+a28AMAAF4NoQcAAABls2VLMmBA26MokipdKgAAu8HhJAAAAGXzyCPJ1KltPz/1VHLAAeWtBwCAvk3oAQAAQFkURdvjpRuXr12bjBxZzooAAOjrhB4AAACUxZw5yeGHl7sKAAAqidADAACAsti4MRk6tO3nLVuSgQPLWw8AAH2f0AMAAIAet3JlsueeLz9fuND9PAAA2H1CDwAAAHrcokXJ5MkvP9+w4eWrPgAA4NUSegAAANCjiqLt31KpvHUAAFB5hB4AAAD0qKee6jiVVVEIQAAA6BpCDwAAAHrU6tXJqFEvP1+1Khk9unz1AABQOYQeAAAA9JiXprb6U88+m0yc2PO1AABQeYQeAAAA9JhXTm2VJC0tyYAB5akHAIDKIvQAAACgx7xyaisAAOhKQg8AAAAAAKAiCD0AAADoEdu6YXljY1JbW556AACoPEIPAAAAesSiRcnkyR2XLVniJuYAAHQdoQcAAAA9plTq+Ly+Phkxojy1AABQeYQeAAAAdLui2DrweMn2lgMAQGcJPQAAAOh225raKhF4AADQtbol9Hjuuefy3ve+N6NHj87gwYMzZcqUPPjgg93xUQAAAH1Of+yZVq9ORo0qdxUAAFS66q7e4Jo1a3LSSSfltNNOy+9///vstddemT9/fvbYY4+u/igAAIA+R8/0sqIodwUAAFSaLg89vv71r2fixIm5+uqr25dN3tY1zAAAAP1Qf+yZtnc/jzVrkn6Y9QAA0I26fHqrG2+8Mccdd1ze8Y53ZMyYMTn66KPz7//+7139MQAAAH1Sf+yZnnkmmThx6+VLlybjxvV8PQAAVK4uDz2eeuqpXHnllTnooINy00035ROf+ET++q//Otdee+02129sbExDQ0OHBwAAQKXqbM+U9P2+aeXKZK+9tl6+eXMyeHDP1wMAQOXq8umtWltbc9xxx+WrX/1qkuToo4/OY489lquuuioXXHDBVutffvnl+dKXvtTVZQAAAPRKne2Zksrom7Y1vRUAAHS1Lr/SY/z48Tn88MM7LDvssMPyzDPPbHP9iy++OPX19e2PJUuWdHVJAAAAvUZne6akcvsmQQgAAF2ty6/0OOmkkzJv3rwOy5588snsu+++21y/trY2tbW1XV0GAABAr9TZninp233T+vXJ0KHlrgIAgP6iy6/0+Ju/+Zvce++9+epXv5oFCxbkxz/+cf7v//2/ufDCC7v6owAAAPqc/tYzPfVUsv/+236tKHq2FgAAKl+Xhx6vec1rcsMNN+QnP/lJjjzyyHz5y1/Od7/73Zx//vld/VEAAAB9Tn/rmZqakpqarZe3tiZVXd6RAgDQ33X59FZJ8ta3vjVvfetbu2PTAAAAfZ6eKVmzJtljj3JXAQBApfF3NQAAAPS4lSuTvfYqdxUAAFQaoQcAAADdYv36ZNiw7b82ZEjP1gMAQOUTegAAANAtnn462Xff7b9eKvVYKQAA9BNCDwAAALpFY2MyaFC5qwAAoD8RegAAAAAAABVB6AEAAAAAAFQEoQcAAABdrrU1qdJxAgDQwxyCAgAA0OWWLk3Gj9/2a0XRs7UAANB/CD0AAADocsuXJ2PHbvu1jRuTIUN6th4AAPoHoQcAAABdriiSUmnbr61dm4wa1aPlAADQTwg9AAAA6FGrVyd77FHuKgAAqERCDwAAAHrUli1JTU25qwAAoBIJPQAAAOhSra1JlW4TAIAycBgKAABAl3rhhWTMmHJXAQBAfyT0AAAAoEstXZqMHVvuKgAA6I+EHgAAAHSplpakurrcVQAA0B8JPQAAAAAAgIog9AAAAKBHlUrlrgAAgEol9AAAAKDHFEW5KwAAoJIJPQAAAOgyjY1Jbe32X9+4MRk6tOfqAQCgfxF6AAAA0GWWLk3Gj9/+6/X1yYgRPVcPAAD9i9ADAACALrN6dTJq1PZfr69P6up6rh4AAPoXoQcAAABdpih2fKPyTZuSwYN7rh4AAPoXoQcAAAA9ZmehCAAA7A6hBwAAAAAAUBGEHgAAAPQYV3kAANCdhB4AAAB0iebmZMCAHa9TFD1TCwAA/ZPQAwAAgC7xwgvJmDHlrgIAgP5M6AEAAECXEHoAAFBuQg8AAAC6RFNTUl1d7ioAAOjPhB4AAAD0GDcyBwCgOwk9AAAA6BGNjUlNTbmrAACgkgk9AAAA6BHr1iV1deWuAgCASib0AAAAoEc0NCTDh5e7CgAAKpnQAwAAgN3W2JjU1u54nYaGZNiwnqkHAID+SegBAADAbluxIhkzZsfrtLQk1dU9Uw8AAP2T0AMAAIDdtmpVMnr0jtcplXqmFgAA+i+hBwAAALutpSUZMGDH6xRFz9QCAED/JfQAAAAAAAAqgtADAACAHmF6KwAAupvQAwAAgB5heisAALqb0AMAAAAAAKgIQg8AAAB2S3Pzzm9inuzaOgAAsDuEHgAAAOyW1auT0aN3vt5RR3V7KQAA9HNCDwAAAHbLCy8ke+1V7ioAAEDoAQAAwG7avDkZNKjcVQAAgNADAAAAAACoEEIPAAAAAACgIgg9AAAAAACAiiD0AAAAAAAAKoLQAwAAAAAAqAhCDwAAAF61xsaktrbcVQAAQBuhBwAAAK/aypXJnnuWuwoAAGgj9AAAAOBVW7UqGT263FUAAECbbg89vva1r6VUKuUzn/lMd38UAABAn9PXe6ampmTgwHJXAQAAbbo19HjggQfyve99L1OnTu3OjwEAAOiT9EwAANC1ui30WL9+fc4///z8+7//e/bYY4/u+hgAAIA+Sc8EAABdr9tCjwsvvDBvectbcsYZZ+xwvcbGxjQ0NHR4AAAAVLpd7ZkSfRMAAOyq6u7Y6E9/+tPMmjUrDzzwwE7Xvfzyy/OlL32pO8oAAADolTrTMyX6JgAA2FVdfqXHkiVL8ulPfzrXXXddBg0atNP1L7744tTX17c/lixZ0tUlAQAA9Bqd7ZkSfRMAAOyqLr/SY+bMmVmxYkWOOeaY9mUtLS2566678m//9m9pbGzMgAED2l+rra1NbW1tV5cBAADQK3W2Z0p6b9+0ZUtSU1PuKgAA4GVdHnqcfvrpefTRRzss+8AHPpBDDz00F1100VYH7wAAAP1JJfVMq1Ylo0eXuwoAAHhZl4cew4cPz5FHHtlh2dChQzN69OitlgMAAPQ3ldQzrVqVHHRQuasAAICXdfk9PQAAAOgfGhuTXjjrFgAA/ViXX+mxLXfccUdPfAwAAECfpGcCAICu4UoPAAAAAACgIgg9AAAAAACAiiD0AAAAAAAAKoLQAwAAAAAAqAhCDwAAADqttTWp0lECANDLOEQFAACg09auTUaOLHcVAADQkdADAACATlu1Khk9utxVAABAR0IPAAAAOm3dumT48HJXAQAAHQk9AAAA6LRDD01KpXJXAQAAHQk9AAAA6LQhQ8pdAQAAbE3oAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBF6PLQ4/LLL89rXvOaDB8+PGPGjMl5552XefPmdfXHAAAA9El6JgAA6D5dHnrceeedufDCC3Pvvffm5ptvTlNTU84888xs2LChqz8KAACgz9EzAQBA9ykVRVF05we88MILGTNmTO6888687nWv2+n6DQ0NqaurS319fUaMGNGdpQEAQK/gGLh/62zPlBgzAAD0L505/q3u7mLq6+uTJKNGjdrm642NjWlsbGx/3tDQ0N0lAQAA9Bo765kSfRMAAOyqbr2ReWtraz7zmc/kpJNOypFHHrnNdS6//PLU1dW1PyZOnNidJQEAAPQau9IzJfomAADYVd06vdUnPvGJ/P73v8/dd9+dffbZZ5vrbOsvliZOnOgybQAA+g1TFfVfu9IzJfomAAD6t14xvdWnPvWp/OY3v8ldd921w4P32tra1NbWdlcZAAAAvdKu9kyJvgkAAHZVl4ceRVHkr/7qr3LDDTfkjjvuyOTJk7v6IwAAAPosPRMAAHSfLg89Lrzwwvz4xz/Or3/96wwfPjzLli1LktTV1WXw4MFd/XEAAAB9ip4JAAC6T5ff06NUKm1z+dVXX533v//9O32/+YwBAOhvHAP3L7vbMyXGDAAA/UtZ7+nRjfdFBwAA6PP0TAAA0H2qyl0AAAAAAABAVxB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARhB4AAAAAAEBFEHoAAAAAAAAVQegBAAAAAABUBKEHAAAAAABQEYQeAAAAAABARRB6AAAAAAAAFUHoAQAAAAAAVAShBwAAAAAAUBGEHgAAAAAAQEXottDjiiuuyH777ZdBgwZl+vTpuf/++7vrowAAAPocPRMAAHS9bgk9fvazn+Wzn/1sLr300syaNSvTpk3LWWedlRUrVnTHxwEAAPQpeiYAAOge3RJ6fPvb385HPvKRfOADH8jhhx+eq666KkOGDMkPfvCD7vg4AACAPkXPBAAA3aO6qze4ZcuWzJw5MxdffHH7sqqqqpxxxhmZMWPGVus3NjamsbGx/Xl9fX2SpKGhoatLAwCAXumlY9+iKMpcCT2hsz1Tom8CAKB/60zP1OWhx8qVK9PS0pKxY8d2WD527Ng88cQTW61/+eWX50tf+tJWyydOnNjVpQEAQK+2atWq1NXVlbsMullne6ZE3wQAAEmybt26nfZMXR56dNbFF1+cz372s+3P165dm3333TfPPPOMho9d0tDQkIkTJ2bJkiUZMWJEucuhDzBm6Cxjhs4yZuis+vr6TJo0KaNGjSp3KfRSr+ybWltbs3r16owePTqlUqlHa/Edt3vsv91nH+4e+2/32H+7x/7bPfbf7rMPd085919RFFm3bl0mTJiw03W7PPTYc889M2DAgCxfvrzD8uXLl2fcuHFbrV9bW5va2tqtltfV1Rl4dMqIESOMGTrFmKGzjBk6y5ihs6qquuWWe/Qyne2Zkm33TSNHjuyuEneJ77jdY//tPvtw99h/u8f+2z323+6x/3affbh7yrX/dvUiiS7vqmpqanLsscfm1ltvbV/W2tqaW2+9NSeccEJXfxwAAECfomcCAIDu0y3TW332s5/NBRdckOOOOy7HH398vvvd72bDhg35wAc+0B0fBwAA0KfomQAAoHt0S+jxrne9Ky+88EK++MUvZtmyZTnqqKPy3//931vdqG9bamtrc+mll25zyivYFmOGzjJm6Cxjhs4yZugsY6b/2Z2eqdyM191j/+0++3D32H+7x/7bPfbf7rH/dp99uHv6yv4rFUVRlLsIAAAAAACA3eVOiQAAAAAAQEUQegAAAAAAABVB6AEAAAAAAFQEoQcAAAAAAFARel3occUVV2S//fbLoEGDMn369Nx///3lLole6h/+4R9SKpU6PA499NByl0Uvctddd+Wcc87JhAkTUiqV8qtf/arD60VR5Itf/GLGjx+fwYMH54wzzsj8+fPLUyy9ws7GzPvf//6tvnfe9KY3ladYyu7yyy/Pa17zmgwfPjxjxozJeeedl3nz5nVYZ/PmzbnwwgszevToDBs2LG9/+9uzfPnyMlVMue3KmHn961+/1ffMxz/+8TJVTH+0K+P0la655pqtxu2gQYN6qOLe59X0KT//+c9z6KGHZtCgQZkyZUp+97vf9VC1vc9+++231f4rlUq58MILt7l+fx9/3dXz9JdzMzvaf01NTbnooosyZcqUDB06NBMmTMj73ve+PP/88zvcZn86V9Fd/VN/GX/Jzvfhtr4PS6VSvvnNb253m/1lDHZXP9afzhXtbB+uXr06f/VXf5VDDjkkgwcPzqRJk/LXf/3Xqa+v3+F2e8O5k14VevzsZz/LZz/72Vx66aWZNWtWpk2blrPOOisrVqwod2n0UkcccUSWLl3a/rj77rvLXRK9yIYNGzJt2rRcccUV23z9G9/4Rv7lX/4lV111Ve67774MHTo0Z511VjZv3tzDldJb7GzMJMmb3vSmDt87P/nJT3qwQnqTO++8MxdeeGHuvffe3HzzzWlqasqZZ56ZDRs2tK/zN3/zN/mv//qv/PznP8+dd96Z559/Pn/+539exqopp10ZM0nykY98pMP3zDe+8Y0yVUx/tKvj9JVGjBjRYdwuXry4hyrunTrTp9xzzz15z3vekw996EN56KGHct555+W8887LY4891oMV9x4PPPBAh3138803J0ne8Y53bPc9/Xn8dUfP05/Ozexo/23cuDGzZs3KJZdcklmzZuWXv/xl5s2bl7e97W073W5/OVfRHf1Tfxp/yc734Z/uu6VLl+YHP/hBSqVS3v72t+9wu/1hDHZXP9afzhXtbB8+//zzef755/Otb30rjz32WK655pr893//dz70oQ/tdNtlP3dS9CLHH398ceGFF7Y/b2lpKSZMmFBcfvnlZayK3urSSy8tpk2bVu4y6COSFDfccEP789bW1mLcuHHFN7/5zfZla9euLWpra4uf/OQnZaiQ3uaVY6YoiuKCCy4ozj333LLUQ++3YsWKIklx5513FkXR9p0ycODA4uc//3n7OnPnzi2SFDNmzChXmfQirxwzRVEUp556avHpT3+6fEXBK2xrnL7S1VdfXdTV1fVcUb1cZ/uUd77zncVb3vKWDsumT59efOxjH+viyvqmT3/608UBBxxQtLa2bvN14+9lXdXz9NdzM9s6/n+l+++/v0hSLF68eLvr9NdzFV3VP/XX8VcUuzYGzz333OINb3jDDtfpr2OwK/qx/n6uaFeO+66//vqipqamaGpq2u46veHcSa+50mPLli2ZOXNmzjjjjPZlVVVVOeOMMzJjxowyVkZvNn/+/EyYMCH7779/zj///DzzzDPlLok+YtGiRVm2bFmH75y6urpMnz7ddw47dMcdd2TMmDE55JBD8olPfCKrVq0qd0n0Ei9d4jtq1KgkycyZM9PU1NThe+bQQw/NpEmTfM+QZOsx85Lrrrsue+65Z4488shcfPHF2bhxYznKgyTbH6evtH79+uy7776ZOHFizj333MyZM6cnyuu1OtOnzJgxo8P/VyTJWWed5f8r0nae4Ec/+lE++MEPplQqbXc942/bXk3P49zMjtXX16dUKmXkyJE7XM+5ipd1pn8y/nZs+fLl+e1vf7tLf2XfH8dgV/Rj/f1c0a4c99XX12fEiBGprq7e4bbKfe6k14QeK1euTEtLS8aOHdth+dixY7Ns2bIyVUVvNn369PbLqq688sosWrQop5xyStatW1fu0ugDXvpe8Z1DZ7zpTW/Kf/7nf+bWW2/N17/+9dx55505++yz09LSUu7SKLPW1tZ85jOfyUknnZQjjzwySdv3TE1NzVZNse8Zkm2PmST5i7/4i/zoRz/K7bffnosvvjg//OEP8973vreMldKfbW+cvtIhhxySH/zgB/n1r3+dH/3oR2ltbc2JJ56YZ599tger7T0626csW7bMMel2/OpXv8ratWvz/ve/f7vrGH/b92p6Hudmtm/z5s256KKL8p73vCcjRozY7nrOVbyss/2T8bdj1157bYYPH77T6Zn64xjsqn6sP58r2pXjvpUrV+bLX/5yPvrRj+5wW73h3MmOIxnoxc4+++z2n6dOnZrp06dn3333zfXXX79LqTdAZ7373e9u/3nKlCmZOnVqDjjggNxxxx05/fTTy1gZ5XbhhRfmscceq8i5cuke2xszf9pATJkyJePHj8/pp5+ehQsX5oADDujpMunndvW77YQTTsgJJ5zQ/vzEE0/MYYcdlu9973v58pe/3N1l9jr6lK7z/e9/P2effXYmTJiw3XWMP3pCU1NT3vnOd6Yoilx55ZU7XNd3wMv0T13rBz/4Qc4///wMGjRoh+v1xzGoH9t9O9uHDQ0Nectb3pLDDz88//AP/7DDbfWG//Z7zZUee+65ZwYMGJDly5d3WL58+fKMGzeuTFXRl4wcOTIHH3xwFixYUO5S6ANe+l7xncPu2H///bPnnnv63unnPvWpT+U3v/lNbr/99uyzzz7ty8eNG5ctW7Zk7dq1Hdb3PcP2xsy2TJ8+PUl8z9DjOjNOX2ngwIE5+uijjdsX7axPGTdunGPSbVi8eHFuueWWfPjDH+7U+4y/l72anse5ma29FHgsXrw4N9988w6v8tgW5ypetrP+yfjbvj/84Q+ZN29ep78Tk8ofg13Zj/XXc0U7O+5bt25d3vSmN2X48OG54YYbMnDgwE5tvxznTnpN6FFTU5Njjz02t956a/uy1tbW3HrrrR3+agO2Z/369Vm4cGHGjx9f7lLoAyZPnpxx48Z1+M5paGjIfffd5zuHXfbss89m1apVvnf6qaIo8qlPfSo33HBDbrvttkyePLnD68cee2wGDhzY4Xtm3rx5eeaZZ3zP9FM7GzPbMnv27CTxPUOPeTXj9JVaWlry6KOPGrcv2lmfcsIJJ3T4/4okufnmm/v9/1dcffXVGTNmTN7ylrd06n3G38teTc/j3ExHLwUe8+fPzy233JLRo0d3ehvOVbxsZ/2T8bd93//+93Psscdm2rRpnX5vpY7B7ujH+tu5ol057mtoaMiZZ56Zmpqa3HjjjTu90mhbynLupJx3UX+ln/70p0VtbW1xzTXXFI8//njx0Y9+tBg5cmSxbNmycpdGL/S///f/Lu64445i0aJFxR//+MfijDPOKPbcc89ixYoV5S6NXmLdunXFQw89VDz00ENFkuLb3/528dBDDxWLFy8uiqIovva1rxUjR44sfv3rXxePPPJIce655xaTJ08uNm3aVObKKZcdjZl169YVf/u3f1vMmDGjWLRoUXHLLbcUxxxzTHHQQQcVmzdvLnfplMEnPvGJoq6urrjjjjuKpUuXtj82btzYvs7HP/7xYtKkScVtt91WPPjgg8UJJ5xQnHDCCWWsmnLa2ZhZsGBB8Y//+I/Fgw8+WCxatKj49a9/Xey///7F6173ujJXTn+yK99tf/mXf1l87nOfa3/+pS99qbjpppuKhQsXFjNnzize/e53F4MGDSrmzJlTjl+h7HbWp7xy//3xj38sqquri29961vF3Llzi0svvbQYOHBg8eijj5brVyi7lpaWYtKkScVFF1201WvGX0dd0fO84Q1vKP71X/+1/Xl/Ojezo/23ZcuW4m1ve1uxzz77FLNnz+7wndjY2Ni+jVfuv/50rqIr+qf+PP6KYuf/DRdFUdTX1xdDhgwprrzyym1uo7+Owa7qxw455JDil7/8Zfvz/nSuaGf7sL6+vpg+fXoxZcqUYsGCBR3WaW5ubt/On+7D3nLupFeFHkVRFP/6r/9aTJo0qaipqSmOP/744t577y13SfRS73rXu4rx48cXNTU1xd577128613vKhYsWFDusuhFbr/99iLJVo8LLrigKIqiaG1tLS655JJi7NixRW1tbXH66acX8+bNK2/RlNWOxszGjRuLM888s9hrr72KgQMHFvvuu2/xkY98pGIPvtm5bY2VJMXVV1/dvs6mTZuKT37yk8Uee+xRDBkypPizP/uzYunSpeUrmrLa2Zh55plnite97nXFqFGjitra2uLAAw8s/u7v/q6or68vb+H0K7vy3Xbqqae2H08VRVF85jOfae/hxo4dW7z5zW8uZs2a1fPF9xI761Neuf+Koiiuv/764uCDDy5qamqKI444ovjtb3/bw1X3LjfddFORZJvH5sZfR13R8+y7777FpZde2mFZfzk3s6P9t2jRou1+J95+++3t23jl/utP5yq6on/qz+OvKHb+33BRFMX3vve9YvDgwcXatWu3uY3+Oga7qh975Xv607mine3D7Y3PJMWiRYs6bOel9/SWcyelFwsDAAAAAADo03rNPT0AAAAAAAB2h9ADAAAAAACoCEIPAAAAAACgIgg9AAAAAACAiiD0AAAAAAAAKoLQAwAAAAAAqAhCDwAAAAAAoCIIPQAAAAAAgIog9AAAAAAAACqC0AMAAAAAAKgIQg8AAAAAAKAiCD0AAAAAAICK8P8DyfTcbn1/cHwAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDCklEQVR4nO3deXxddZ0//tdN0qQLbUpb6CLdKLVspVYEBBS3KjCI4Ki4zYjouDBV3OYr8ptBQNQqLg9Hx0F0EHAEFUdRRx0UgQKyCmUfoC2UttKFtUkX2qTJ+f2RIVq6ht70Jvc+n4/HfZB77rnnvnMen17O+7xyzqdUFEURAAAAAACAfq6u0gUAAAAAAACUg9ADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKPQ49rr/++hx//PEZN25cSqVSfvGLX3S/1t7entNPPz3Tp0/PkCFDMm7cuLznPe/JsmXLylkzAABAn6VnAgCAyulx6LF27drMmDEj3/72tzd7bd26dZk3b17OPPPMzJs3Lz//+c/z0EMP5U1velNZigUAAOjr9EwAAFA5paIoihf85lIpV1xxRU488cStrvOnP/0phx56aBYvXpwJEya80I8CAADod/RMAACwazX09ge0tLSkVCpl+PDhW3x9w4YN2bBhQ/fzzs7OPP300xk5cmRKpVJvlwcAABVXFEVWr16dcePGpa7OtHu1Zns9U6JvAgCgtvWkZ+rV0GP9+vU5/fTT8853vjPDhg3b4jpz5szJOeec05tlAABAv7B06dLstddelS6DXWhHeqZE3wQAAMmO9Uy9dnur9vb2vOUtb8mf//znzJ07d6sH8M//i6WWlpZMmDAhS5cu3eZBPwAAVIvW1taMHz8+q1atSnNzc6XLoYzK0TMl+iYAAGpbT3qmXrnSo729PSeddFIWL16ca665ZpsH4U1NTWlqatps+bBhwxy8AwBQU9ymqHb0pGdK9E0AAJDsWM9U9tDjuYP3BQsW5Nprr83IkSPL/REAAAD9lp4JAAB6T49DjzVr1mThwoXdzxctWpS77rorI0aMyNixY/PWt7418+bNy69//et0dHRkxYoVSZIRI0aksbGxfJUDAAD0QXomAAConB7P6TF37ty85jWv2Wz5ySefnLPPPjuTJ0/e4vuuvfbavPrVr97u9ltbW9Pc3JyWlhaXaQMAUBMcA1eX3u6ZEmMGAIDa0pPj3x5f6fHqV78628pJdmJedAAAgH5PzwQAAJVTV+kCAAAAAAAAykHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFWhx6HH9ddfn+OPPz7jxo1LqVTKL37xi01eL4oin/3sZzN27NgMGjQos2bNyoIFC8pVLwAAQJ+mZwIAgMrpceixdu3azJgxI9/+9re3+Pp5552Xb37zm/nOd76TW2+9NUOGDMnRRx+d9evX73SxAAAAfZ2eCQAAKqehp2849thjc+yxx27xtaIo8o1vfCP/8i//khNOOCFJ8oMf/CCjR4/OL37xi7zjHe/YuWoBAAD6OD0TAABUTlnn9Fi0aFFWrFiRWbNmdS9rbm7OYYcdlptvvnmL79mwYUNaW1s3eQAAAFSjF9IzJfomAADYUWUNPVasWJEkGT169CbLR48e3f3a882ZMyfNzc3dj/Hjx5ezJAAAgD7jhfRMib4JAAB2VFlDjxfijDPOSEtLS/dj6dKllS4JAACgT9E3AQDAjilr6DFmzJgkycqVKzdZvnLlyu7Xnq+pqSnDhg3b5AEAAFCNXkjPlOibAABgR5U19Jg8eXLGjBmTq6++untZa2trbr311hx++OHl/CgAAIB+R88EAAC9q6Gnb1izZk0WLlzY/XzRokW56667MmLEiEyYMCEf//jH8/nPfz5Tp07N5MmTc+aZZ2bcuHE58cQTy1k3AABAn6RnAgCAyulx6HH77bfnNa95TffzT37yk0mSk08+ORdffHE+/elPZ+3atfngBz+YVatW5RWveEWuvPLKDBw4sHxVAwAA9FF6JgAAqJxSURRFpYv4a62trWlubk5LS4v71AIAUBMcA9NTxgwAALWkJ8e/ZZ3TAwAAAAAAoFKEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAAAAAFAVhB4AAAAAAEBVEHoAAAAAAABVQegBAAAAAABUBaEHAAAAAABQFYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAPRT69dXugIAAOhbhB4AAAD91L33VroCAADoW4QeAAAA/dTw4cmTT1a6CgAA6DuEHgAAAP3U1KnJ/PmVrgIAAPoOoQcAAEA/tvfeySOPVLoKAADoG4QeAAAA/VRbWzJmTLJyZVIUla4GAAAqT+gBAADQT33ta13/nTkzufPOytYCAAB9gdADAACgn2puTu67Lxk4MGloSFavrnRFAABQWUIPAACAfupDH0ouvrjr5+nTk3vuqWg5AABQcUIPAACAfqq+PnnTm7qCj1IpmTzZpOYAANQ2oQcAAEA/dtRRyYIFSUtLMm5c16TmHR2VrgoAACpD6AEAANDPnXFGct55XT8ffHByxx2VrQcAACpF6AEAANDP7bZb8pKXJL/9bdLYmOy+e9cVHwAAUGuEHgAAAFXgbW9L5s5N2tqSqVOThQuToqh0VQAAsGsJPQAAAKrEZz6TnHtu188zZybz5lW2HgAA2NXKHnp0dHTkzDPPzOTJkzNo0KBMmTIl5557bgp/YgQAANCrPdOIEcl++3Xd5mrw4K7bXj3+eBmKBgCAfqKh3Bv88pe/nPPPPz+XXHJJDjjggNx+++055ZRT0tzcnNNOO63cHwcAANCv9HbP9K53JZ/+dHLUUcm0ackf/5iMGpXUuc4fAIAaUPbQ46abbsoJJ5yQ4447LkkyadKk/OhHP8ptt91W7o8CAADod3ZFz/TZzyaf+1xy3nnJIYckt9+eHHpo2TYPAAB9Vtn/1ueII47I1Vdfnfnz5ydJ7r777vzxj3/MscceW+6PAgAA6Hd2Rc+0227J61+fXHhh0tSUjB6dLF5cts0DAECfVfYrPT7zmc+ktbU1++67b+rr69PR0ZEvfOELefe7373F9Tds2JANGzZ0P29tbS13SQAAAH1GT3um5IX1Ta9/ffK1ryV33ZW85CXJbbd1hR8DB5bhlwAAgD6q7Fd6XH755bn00ktz2WWXZd68ebnkkkvy1a9+NZdccskW158zZ06am5u7H+PHjy93SQAAAH1GT3um5IX3TZ/6VHLRRcmzz3bd5uq225IyzJcOAAB9VqkoynvIO378+HzmM5/J7Nmzu5d9/vOfzw9/+MM8+OCDm62/pb9YGj9+fFpaWjJs2LBylgYAAH1Sa2trmpubHQPXiJ72TMnO9U1PP5188YvJV7+atLYmDz+czJxZnt8FAAB2hZ70TGW/vdW6detSV7fpBST19fXp7Ozc4vpNTU1pamoqdxkAAAB9Uk97pmTn+qYRI5KTTuq61dWnPpUMH941v8fEiS9ocwAA0KeVPfQ4/vjj84UvfCETJkzIAQcckDvvvDNf//rX8773va/cHwUAANDvVKJnOvTQZNGi5Cc/Sd7+9mTevK7wo7m51z4SAAAqouy3t1q9enXOPPPMXHHFFXn88cczbty4vPOd78xnP/vZNDY2bvf9Lu0HAKDWOAauLTvbMyUvfMx84xvJS1+aHHVUcv31yRFHJA1l/1M4AAAor54c/5Y99NhZGj4AAGqNY2B6amfGzJlndl3tse++yU03Ja98ZVIq9VKh/6ezM3neHb0AAGCHVXRODwAAAPquc89N/umfktNO65rQ/Pbbk0MO6fl21q1LVq5Mnnkm2d6f0g0fnkyZ8oLKBQCAHhF6AAAA1Jgvfzn55CeTM85IJkxI7rsvOfDAbb9n6dKukOO5q0IGD05Gj04mTer9K0UAAGBHCT0AAABqTH198vWv/yX42G23ZOHCZJ99Nl936dLksceSiROTl71s19cKAAA94a6qAAAA/dTKlT9JR8f6F/Te54KPOXO65tvo6EiWLElaW5Onn+5a55FHkvb25OUvT8aOLWPhAADQS4QeAAAA/dTIkcfliSf+K8uXX5S2tsd7/P7ngo9vfKNrsvHVq5Prr092373r9aeeSvbeu7w1AwBAbxJ6AAAA9FMNDbtlzJi/y+jRJ6el5cYsX35h1qy5r0fbqK9PvvKV5LLLklWrkjVrkhUrul6r0zECANDPOIQFAADopzo7NyZJ6urqssceb87Yse/Pxo2rsnz5hXnyyd+ms7Nzh7ZTX5+ce25yyy3J4sXJE08ky5d3Xf2xNevWrcuoUaNSGl5KaUQppZGllHYvpXFwY5588sly/HoAANBjQg8AAIB+au3a+9La+qesWXNPOjvbkyTDh78iY8e+P7vtdmBWrrwky5f/IO3tq3Zoe5/6VNLQkPzXf3Xd2urxx5ONGzdd55JLLklpcClD9hqSp/Z+Knlrkr9L8vdJTkraD23PHtP2SGloKf/0T/9Uzl8XAAC2q1QURVHpIv5aa2trmpub09LSkmHDhlW6HAAA6HWOgemp54+Zjo71WbfuwRRFe0qlhgwevF/q6wcmSTo72/Lkk79KR8fqDB784jQ3H7nd7f/gB8nNNycf+lDXZOZ/+7ddy/fbb788uPLB5KgkByYZsJUNdCaZn+TqJKuT4tk+1XYCANDP9KRnathFNQEAANBL6usHZujQlyTpuuXVunUPprPz2SSlDBo0OXvs8dZ0dCTr1t2X5csvSVLKyJHHpLFxzy1u7z3vSfbZJ/na15Ljj0+uvDJ5/wdflGVty5L3J9ltOwXVJdk3yd5JfpyUBpdSrBN8UBs2bNiQhQsXZvHixd2PDRs2ZPLkyZkyZUpmzZqVpqamSpe505YsWZIrrrgiDz74YJ566qlcfvnllS4JAJIIPQAAAPqt1avvTKnUlUCsWjUsK1dOTKnUmK7LMJKiKFIUi5IsSn190tk5NMnfpyg6s2TJb9LZuSql0rDU1x+XpqbGTJqUPPeHc0cckUyalPzLvyQ33fTmLHt2WfK+JIN7UGBjkncluSQplUrpYzcaoILWrl2bJ598MiNHjsxuu20vReu7Ojo6snjx4uy9995Jkvb29sycOTMPPPDAFtevq6vLmjVrknT9+zzppJPS0tKS4cOHZ8SIERk5cmT22WefHHXUUdl7771TKpV22e+yPUVR5JFHHsn8+fNz/vnn57e//W06Ojq6X7/iiivy5je/uYIVAkAXt7cCAIAKcwxMTz03Zu66qyVtbcNSKiV77NGaESMeTdL+V2vWp6lpXAYM2COlUikbN7bm2WcXpii6ZigfOHBCkro8/fSV2bixI08/vWc2bDg6pVJd6uqSqVOTpqakaXQpOSnJuBdY8Nok/5GkLSnWvLAWtKWlJYsXL86gQYMyderUF1gIlTB37txcfPHFWbBgQVauXJkVK1Zk7dq13a9feumlede73lXBCrevKIqsXLkyN910U2644Ybceeedefjhh7NixYoURZG1a9emqakpTzzxRPbcc8tXUCXJXnvtlaVLlyZJ2tratnnFR1NTU1avXp0BA7ruIzd79uyMGDEie+yxR0aNGpXhw4enubk5zc3N2WOPPTJ69OgX9HvNmzcvTz31VFasWJH7778/LS0t2bBhQ5555pkcdNBB+dznPpckufnmm3PkkUduNbw86qijct111/W4BgDYEW5vBQAAUAOGDUsmT+5+luSgTV7v7NyYtrblWbPmziR/OVFZKpVSX797Nm5sSUdHawYP3jelUinNzQ1Zu/ayFEVH6utHZunSY3L55Zcmg/LCA48kGZJkdJL5yTXXXJPXvva121z9wgsvzL333pvFixfn0UcfzaOPPppVq1Yl6fpL+UceeSQTJ07ciYIop6IosmjRotx111257bbbMm/evLzvfe/LhAkTsnr16vz2t7/NJZdcstn7GhoasnHjxuy1117dy372s5/lu9/9bv7jP/4j48eP35W/RreiKLJ06dKMHz8+pVIpTz31VA444ICsXLlyi+vX19fnkUceyX777Zfdd98948aNy8iRIzNq1KiMGDEigwcPTkNDQwYMGJDDDjus+30dHR2ZOXNmnnnmmaxbty7PPvts1q9fn/b2ruBy4MCB3YHHhg0b8u///u9brXn//ffP/fff3/184MCBqaurS0NDQxoaGlJfX5+iKPLss89m1qxZ+eUvf5kkWbhwYQ455JCtBhn33HNPd+ixZs2a7vUGDx6cqVOn5kUvelGSru+Ugw46aIvbAIBdTegBAADQTz322JvS0lKf5K9vgVP81fOun+vrh6a+fmgaGoZnwIARqa8flSQplTakVBr8f8tHpqNjXUqlugwYMCpF0ZGhQ7+dc877eHJ0GYp9ZZLlyeve+Lq0tbTlmmuuyc9//vPcfPPNqa+vz5133tm96ve+973ceuutm21i2LBhecc73lF1gUdHR0cefvjhLF++PE888UR23333jB07Nvvss08aGxsrXV63devWZdGiRXn44Ydz00035cYbb0zSdWK8tbV1k3WvuuqqTZ4PGzYs//Ef/5GxY8dmzJgxOfnkk3PTTTdlt912y/vf//7svffe2X///fOHP/wh9913X9785jfnj3/8YwYOHNhrv09ra2tuuOGG3HTTTbn77ruzcOHCLF++PKtXr05RFFm4cGGmTJmS4cOH56mnnup+36BBgzJ69Ojss88+Oeigg3LMMcdkv/32S9IV5Dz22GM79PmDBg3KvHnzNlve2dmZ5cuXZ8WKFd3L1q9fnwEDBnQHIs/39NNPd//83BwiW3PHHXds8vyvA4/GxsaUSqXu97/+9a/vfu2QQw7Jl770pbziFa/IEUcc0aduvQUAf03oAQAA0E8ddNCvtnt5/8aNG9Pe/uc8++wjaWtbkQ0bHktb2+J0dKxNUbSns/PZdHY+m46ODSmK9SmKznR2tv3fa+3JwDw3RcjOeVG65vioS4YPH55169Z1v1RXV5cbb7wxRx55ZJLk1a9+dYqiyPjx47PPPvtkv/32yyte8YpMmTKlX84L0t7enocffjgPPfRQFi1alEcffTQzZszIKaeckiR55plnMm3atM3eN23atNx99927bNLr1tbW3HjjjVmzZk0efvjhLFiwIFdddVWefPLJrF+/fpv7vrGxMQ0NDVm3bl0aGhoydOjQ7L777hk6dGgaGxszevTovO1tb+te/7l5LdasWZOFCxdm4cKF+f3vf5+k66qBO+64Ix/72MdywQUX5JJLLklDQ0MmTZqUiRMnZuzYsamvr9/m77Jx48Y8+eSTmTdvXubNm5fFixdn48aN+eIXv5ixY8ems7MzI0eOzMaNG7e6jbvuuitTpkxJfX19fvzjH2evvfbK9OnTM3hwTya26bm6urq86EUv6r6KIkmam5vz9NNP509/+lNuuumm3HTTTVmwYEH23XffvOxlL8sRRxzRve6gQYPy6U9/Og888EAWLFiQRx55JG1tbd2vv+ENb+j+ecqUKTn77LMzY8aMvPSlL+2+umX16tVZunRpRowY0b3u8OHDc/rpp/fq7w4A5WBODwAAqDDHwPTUrhozK1cmY6aXktll2uD30hV8LNr8pQsvvDDve9/7kiS/+c1v8sY3vnGzdcaOHZuDDz44p512Wl71qld1376nr9iwYUN3QNHa2pp3vvOdeeCBB7JkyZJNJnxOkpe//OU555xzMnjw4AwaNCizZs3qnqth1apVefjhh9PW1pbzzz8/H/7wh8tS3/r163PLLbfkmmuuyTXXXJMHH3wwb3nLWzJ16tTcf//9uf3223PfffdtcxvNzc2ZMmVKxo8fnxUrVuQjH/lIZsyYkX333TctLS0ZOnToDoc0q1evzvLly7Ns2bIsWLAgDzzwQP73f/83GzZsyHXXXZeiKPL9738/Z599dpYsWdL9vgEDBmSvvfbKkCFDMn369Fx22WXdr+29995b3N/P+dWvfpXjjz8+Sdf8Go899lgGDRqUPfbYI5MmTcoBBxyQl7/85Xn961+fsWPH7tDv0dd1dHRk3bp1KYoinZ2dGTBgQIYMGVLpsgCgR3py/Cv0AACACnMMTE/tijFzxx3J8OHJPkeWklPLtNGLk+yW1P1vXd74xjd2T8Q8dOjQvPWtb83MmTOTJA899FDOP//87hPiy5Yty6OPPprOzq4J2Pfbb7/Mnz8/N9xwQ3bbbbf87Gc/y+GHH55DDz00u+++e5mK3bq2trY8+OCDueeee3L33Xfn6quvzkMPPZSRI0dm0qRJWbFiRR5//PG0tLR0v2fIkCGZNm1a1qxZk/nz529xu42Njbnpppty8MEH55vf/GY+9rGPZcyYMZk/f36GDh36gmpdtmxZvva1r+Xuu+/OjTfemPXr12/3PYcddlj22WefTJ06NatWrcrgwYMzc+bMHHrooZkwYcILqqOnPv/5z+fMM89MY2NjjjvuuDz99NNZvHhxli5dukmgceihh25yK7QxY8ZsNvfGwIEDM2TIkIwcOTIXXHBBXv3qVyfpusKmubk5dXV1u+R3AgBeOKEHAAD0I46B6aneHjO33ZZMmZL8+tfJe/9fGa/0+G6SqUnTLU07dPL9r61duzZ33XVX7rjjjvzXf/1Xbrjhhvzrv/5rVq9enX/5l3/pXm/atGk5+OCDs88++2Ty5Mk5/vjjM3LkyO1u/69b4+XLl2fu3Ll55plnsnHjxjzxxBNZvnx5/vznP+fGG2/M2rVrd7juurq6/P73v89rX/valEqlnH/++bnsssu6//p+3bp1WbNmTR5//PF0dHTksccey7hx4/Lss8/mFa94RebNm5dSqZRJkyZl3333zX777Zfx48dn2LBhefvb3979F/vXXXdd7rrrrtx7771ZuXJl2traMn/+/CxZsqQ7LEq6QoFBgwZl0aJFaWhoyD777JPp06fngAMO6H5Mmzat4kFAZ2dn3vzmN+dXv/pVRo0alVtvvTV77713Ojo6smzZsixZsiTr169PZ2dnBg4cmFe+8pVJkquvvjo33HBDpk+fnpkzZ2bSpEkV/10AgJ0n9AAAgH7EMTA91ZtjZsGCpFT6v8Djvcnue5eSf0iys3fD6Ujy7SQHJcPvGp5nnnnmBW/qrLPOyuc+97nU19fnve99bzZs2JBbb701CxYs2Gzd+++/P/vvv3+S5J//+Z/zr//6r9ltt93S0NCQtra2tLe359lnn017e3sOOeSQLFiwYJNJobdmyJAhmTlzZmbMmJEkeeKJJzJjxoxMmTIlY8eOzZ577pk999wzw4cP36GT7hs3bsxjjz2W8ePHd69/xhln5Hvf+94mk2j/tSeeeCKjRnVNSv/3f//3+eEPf7jF9QYMGJAzzzwzb33rW7Pvvvtm/vz56ejoyNSpUzNgwIDt1lYpa9asyWte85qMHz8+l156aQYNGrTJ63/4wx/ynve8J88++2zuueeejB8/vkKVAgC9rSfHv33n5qcAAABUVGdnsmxZcuedyUc+kjQ0JA3rG7Lx9o3Jq3Zy4/OTtCVZmRx88ME7tanTTz89Dz/8cC699NJceOGFeetb35rvfe97mTp1avfVDg8++GAWLVqUMWPGpL29PfPnz8/tt9+etWvXbvVKjeduk1RXV5fhw7uCmQEDBuQf/uEfMnbs2IwdOzarV6/OtGnT8trXvrasE4w3NDRk4sSJmyybM2dOvvjFL+aJJ57Igw8+mAceeCAPPvhgVq5cmdbW1u5bXq1bty5333139/v222+/fOpTn8qLX/ziTJ06NaNHj06pVOp+fUuTpvdFu+22W37/+99n2LBhm0xc3tbWln/+53/OV7/61SRdv+/q1asrVSYA0Me40gMAACrMMTA91Vtj5t57k6uuSv7xH5OBA7uWLVmyJBNfOrHrFlc7c5egC5PsleTBpHh659vQoijy7//+7/nEJz6R9vb2JMnTTz/dPafHhz70oXz3u9/d6vvnzp2bkSNHprGxMT/72c/y6KOP5tBDD83MmTOz3377ZdCgQens7MyaNWsq+u9y/vz5Oe+88zJo0KB861vf2uz1Z555Jscff3xuvPHGDBw4MD/5yU/ypje9qQKV9r6iKHLmmWfm17/+dXfI8+EPfzhf+9rXMnjw4ApXBwD0Jld6AAAA0GNXXpn87d/+JfBI0jVxdVuS/01y4Avc8PIkrUmGJqVnS9tbe4eUSqXMnj07Bx98cM4444ysWLFik9sfPX/OkKFDh+bAAw/M9OnTM3369LzkJS9Jc3Nzkq7bSG1JXV1dxYPIJ598MhdeeGHq6+tz2mmnZerUqd2vPfbYYzn66KNz//33p7m5Of/93//dPbdFNTr11FNzwQUXJElGjBiRCy+8MCeeeGJliwIA+hyzeQEAAJDly5ONG7smMH++3/7kt8lV6Qoveqo1yU+T7J1kXnL7jbfvVJ3P9/KXvzzXXnttHnjggQz8q7TmkksuSVtbW1paWvLEE09k1apVuemmm3LBBRfkIx/5SHfg0dcdccQR+Zu/+Zt0dHTkrLPO2uS1U089Nffff3/Gjh2bG264oaoDjyQ59thjM2TIkLz+9a/PPffcI/AAALbI7a0AAKDCHAPTU70xZs4+O/n0p5Ot3SXoU5/6VL5+4deTv00yccvrbObJJD9KMiBJc1L/WH02rt5YjnJryp133pmXvvSlSZK77rqre/L05cuX55RTTsl3vvOdTJo0qYIV7jrt7e19evJ1AKB39OT415UeAAAANa61NWls3HrgkSRf+9rX8v/N/v+Snye5PMmybWzwqST/neSHSUYl2b1rfYHHCzNz5sycdNJJSZKTTz65e/nYsWNz5ZVX1kzgkUTgAQBsl9ADAACgxv3qV8lRR21/vS984Qt54JYHuub3+EmS7ySZm+T2JPOS3JCuCcv/M8mDSV6b5JmkbmlditY+dZOBfudzn/tckuTuu+/Ol7/85QpXAwDQdwk9AAAAalxHR/JXc4Bv07777puiKHLIiw/puqJjbpJfp+vKjrlJBiaZlqQpyZXJv33239KxuqM3yq4p06ZNy+zZs5Mk999/f4WrAQDouxoqXQAAAACVc9ddyd57d93eqiduu+22JMkVV1yRt7/97WkvtXd1mI8mI58emSVLl2Twtu6XRY9985vfzEc/+tG8+MUvrnQpAAB9ltADAACght19dzJrVlJf/8Le/+Y3vzltbW3lLYotqqury7Rp0ypdBgBAn+b2VgAAADWsVEqefjoZMaLSlQAAwM4TegAAANSoVauSoUOTtrae394KAAD6IqEHAABAjbr22uQ1r6l0FQAAUD5CDwAAgBq1dm0yfHjXLa4AAKAaCD0AAABqXFFUugIAACgPoQcAAECNc6UHAADVQugBAABQg5YtS0aO7PrZlR4AAFQLoQcAAEANmjcvOeSQrp9d6QEAQLUQegAAANSgVauSUaMqXQUAAJSX0AMAAAAAAKgKQg8AAIAa9Ne3tDKnBwAA1ULoAQAAAAAAVAWhBwAAAAAAUBWEHgAAADVm48akoaHSVQAAQPkJPQAAAGrM4sXJ2LGVrgIAAMpP6AEAAFBjli5Nxo+vdBUAAFB+Qg8AAIAas3Llpld6lEqVqwUAAMpJ6AEAAFBj2tuTgQP/8rwoKlcLAACUk9ADAACgxrnSAwCAaiH0AAAAAAAAqoLQAwAAoMY8/8oOt7cCAKBaCD0AAABqzPNDjoaGZOPGytQCAADlJPQAAACocQMHJuvXV7oKAADYeUIPAACAGjd4cLJuXaWrAACAndcrocdjjz2Wv/u7v8vIkSMzaNCgTJ8+PbfffntvfBQAAEC/09d6JqEHAADVoqHcG3zmmWdy5JFH5jWveU3+53/+J3vssUcWLFiQ3XffvdwfBQAA0O/0xZ5pyJBk5cqKfTwAAJRN2UOPL3/5yxk/fnwuuuii7mWTJ08u98cAAAD0S32xZ2pqMqcHAADVoey3t/rVr36Vl73sZXnb296WPffcMzNnzsz3vve9cn8MAABAv9QXe6ZSKSmKipYAAABlUfbQ45FHHsn555+fqVOn5ne/+11OPfXUnHbaabnkkku2uP6GDRvS2tq6yQMAAKBa9bRnSsrfN5VKO/V2AADos8p+e6vOzs687GUvyxe/+MUkycyZM3PfffflO9/5Tk4++eTN1p8zZ07OOeeccpcBAADQJ/W0Z0r0TQAAsKPKfqXH2LFjs//++2+ybL/99suSJUu2uP4ZZ5yRlpaW7sfSpUvLXRIAAECf0dOeKSl/3+RWVgAAVKuyX+lx5JFH5qGHHtpk2fz58zNx4sQtrt/U1JSmpqZylwEAANAn9bRnSsrbN23cmAwYUJZNAQBAn1P2Kz0+8YlP5JZbbskXv/jFLFy4MJdddlm++93vZvbs2eX+KAAAgH6n0j3TunVJY+Pmy83zAQBANSh76HHIIYfkiiuuyI9+9KMceOCBOffcc/ONb3wj7373u8v9UQAAAP1OpXum9euTgQN3yUcBAMAuV/bbWyXJG9/4xrzxjW/sjU0DAAD0e5Xsmdratnylh3k+AACoBmW/0gMAAIC+a8MGc3oAAFC9hB4AAAA1ZFsTmbvaAwCA/k7oAQAAUEPa27ccegwa1HUVCAAA9GdCDwAAgBqycWPSsIXZHYcNS1pbd309AABQTkIPAACAGrKt0KOlZdfXAwAA5ST0AAAAqCEdHUmptPny3XZL1q7d9fUAAEA5CT0AAABqSGfnlq/0qKvrCkQAAKA/E3oAAADUkI6OLYceAABQDYQeAAAANaSzs9IVAABA7xF6AAAA1JDOzq5bWQEAQDVyqAsAAFBjthZ6bGmCcwAA6E+EHgAAADVma+FGUezaOgAAoNyEHgAAACRxpQcAAP2f0AMAAIAkrvQAAKD/E3oAAACQJKmvTzZurHQVAADwwgk9AAAASJIMG5a0tla6CgAAeOGEHgAAADVma7exGj5c6AEAQP8m9AAAAKgxnZ1bXu5KDwAA+juhBwAAQA2pq9t66NHQkLS379p6AACgnIQeAAAANaRuO11gqbRr6gAAgN4g9AAAAKghpVKycePWX9/afB8AANAfCD0AAABqSEPD1m9vBQAA/Z3QAwAAoIZsa04PAADo74QeAAAANaRU2vYtrMzpAQBAfyb0AAAAqCENDdue0wMAAPozoQcAAEANqasTegAAUL2EHgAAADWkvn7bt7caODBZv37X1QMAAOUk9AAAAKghDQ3bnsh8+PDkmWd2WTkAAFBWQg8AAIAaUleXtLdv/fXm5qSlZdfVAwAA5ST0AAAAqCHbm8h88OBk7dpdVw8AAJST0AMAAKCG1NcnHR1bf71U2nW1AABAuQk9AAAAasj2rvQAAID+TOgBAABQQxoatn2lBwAA9GdCDwAAgBrS2OhKDwAAqpfQAwAAoIa40gMAgGom9AAAAKghDQ1Je3ulqwAAgN4h9AAAAKghjY2u9AAAoHoJPQAAAGpIXV3S2bntdRobk7a2XVMPAACUk9ADAACgxhTFtl8fPjxZtWpXVAIAAOUl9AAAAKgxpdK2Xxd6AADQXwk9AAAA2MRuuyVr1lS6CgAA6DmhBwAAAJsolZL6+kpXAQAAPSf0AAAAqDHbm9MjSWbM6P06AACg3IQeAAAANWZ7c3oAAEB/JfQAAAAAAACqgtADAACgxuzI7a0AAKA/EnoAAADUGLe3AgCgWgk9AAAAAACAqiD0AAAAqDFubwUAQLUSegAAANQYt7cCAKBaCT0AAAAAAICqIPQAAAAAAACqgtADAACgxpjTAwCAaiX0AAAAqDHm9AAAoFr1eujxpS99KaVSKR//+Md7+6MAAAD6HT0TAACUT6+GHn/6059ywQUX5KCDDurNjwEAAOiXKtUzub0VAADVqtdCjzVr1uTd7353vve972X33XfvrY8BAADolyrZM7m9FQAA1arXQo/Zs2fnuOOOy6xZs7a53oYNG9La2rrJAwAAoNrtaM+U6JsAAGBHNfTGRn/84x9n3rx5+dOf/rTddefMmZNzzjmnN8oAAADok3rSMyX6JgAA2FFlv9Jj6dKl+djHPpZLL700AwcO3O76Z5xxRlpaWrofS5cuLXdJAAAAfUZPe6ak/H2TOT0AAKhWZb/S44477sjjjz+el770pd3LOjo6cv311+ff/u3fsmHDhtTX13e/1tTUlKampnKXAQAA0Cf1tGdKyt83mdMDAIBqVfbQ43Wve13uvffeTZadcsop2XfffXP66advdvAOAABQS/RMAADQe8oeegwdOjQHHnjgJsuGDBmSkSNHbrYcAACg1vSFnsntrQAAqFZln9MDAACAvs3trQAAqFZlv9JjS+bOnbsrPgYAAKBf0jMBAEB5uNIDAACgxri9FQAA1UroAQAAAAAAVAWhBwAAAAAAUBWEHgAAAAAAQFUQegAAAAAAAFVB6AEAAAAAAFQFoQcAAECNKZUqXQEAAPQOoQcAAECNKYpKVwAAAL1D6AEAAFBjXOkBAEC1EnoAAADUGFd6AABQrYQeAAAAAABAVRB6AAAAAAAAVUHoAQAAUGPM6QEAQLUSegAAANSgzs5KVwAAAOUn9AAAAKgxAwYkbW2VrgIAAMpP6AEAAFBjhB4AAFQroQcAAECNaWpK1q+vdBUAAFB+Qg8AAIAaM2BAsnFjpasAAIDya6h0AQAAAOxahxySDBxY6SoAAKD8hB4AAAA1ZvjwSlcAAAC9w+2tAAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqUPbQY86cOTnkkEMydOjQ7LnnnjnxxBPz0EMPlftjAAAA+iU9EwAA9J6yhx7XXXddZs+enVtuuSVXXXVV2tvb84Y3vCFr164t90cBAAD0O3omAADoPaWiKIre/IAnnngie+65Z6677rocddRR212/tbU1zc3NaWlpybBhw3qzNAAA6BMcA9e2nvZMiTEDAEBt6cnxb0NvF9PS0pIkGTFixBZf37BhQzZs2ND9vLW1tbdLAgAA6DO21zMl+iYAANhRvTqReWdnZz7+8Y/nyCOPzIEHHrjFdebMmZPm5ubux/jx43uzJAAAgD5jR3qmRN8EAAA7qldvb3Xqqafmf/7nf/LHP/4xe+211xbX2dJfLI0fP95l2gAA1Ay3KqpdO9IzJfomAABqW5+4vdVHPvKR/PrXv87111+/zYP3pqamNDU19VYZAAAAfdKO9kyJvgkAAHZU2UOPoijy0Y9+NFdccUXmzp2byZMnl/sjAAAA+i09EwAA9J6yhx6zZ8/OZZddll/+8pcZOnRoVqxYkSRpbm7OoEGDyv1xAAAA/YqeCQAAek/Z5/QolUpbXH7RRRflve9973bf737GAADUGsfAtWVne6bEmAEAoLZUdE6PXpwXHQAAoN/TMwEAQO+pq3QBAAAAAAAA5SD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKgg9AAAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKrQa6HHt7/97UyaNCkDBw7MYYcdlttuu623PgoAAKDf0TMBAED59Uro8ZOf/CSf/OQnc9ZZZ2XevHmZMWNGjj766Dz++OO98XEAAAD9ip4JAAB6R6+EHl//+tfzgQ98IKecckr233//fOc738ngwYPz/e9/vzc+DgAAoF/RMwEAQO9oKPcG29racscdd+SMM87oXlZXV5dZs2bl5ptv3mz9DRs2ZMOGDd3PW1pakiStra3lLg0AAPqk5459i6KocCXsCj3tmRJ9EwAAta0nPVPZQ48nn3wyHR0dGT169CbLR48enQcffHCz9efMmZNzzjlns+Xjx48vd2kAANCnPfXUU2lubq50GfSynvZMib4JAACSZPXq1dvtmcoeevTUGWeckU9+8pPdz1etWpWJEydmyZIlGj52SGtra8aPH5+lS5dm2LBhlS6HfsCYoaeMGXrKmKGnWlpaMmHChIwYMaLSpdBHPb9v6uzszNNPP52RI0emVCrt0lp8x+0c+2/n2Yc7x/7bOfbfzrH/do79t/Psw51Tyf1XFEVWr16dcePGbXfdsoceo0aNSn19fVauXLnJ8pUrV2bMmDGbrd/U1JSmpqbNljc3Nxt49MiwYcOMGXrEmKGnjBl6ypihp+rqemXKPfqYnvZMyZb7puHDh/dWiTvEd9zOsf92nn24c+y/nWP/7Rz7b+fYfzvPPtw5ldp/O3qRRNm7qsbGxhx88MG5+uqru5d1dnbm6quvzuGHH17ujwMAAOhX9EwAANB7euX2Vp/85Cdz8skn52Uve1kOPfTQfOMb38jatWtzyimn9MbHAQAA9Ct6JgAA6B29Enq8/e1vzxNPPJHPfvazWbFiRV7ykpfkyiuv3Gyivi1pamrKWWedtcVbXsGWGDP0lDFDTxkz9JQxQ08ZM7VnZ3qmSjNed479t/Psw51j/+0c+2/n2H87x/7befbhzukv+69UFEVR6SIAAAAAAAB2lpkSAQAAAACAqiD0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCr0udDj29/+diZNmpSBAwfmsMMOy2233Vbpkuijzj777JRKpU0e++67b6XLog+5/vrrc/zxx2fcuHEplUr5xS9+scnrRVHks5/9bMaOHZtBgwZl1qxZWbBgQWWKpU/Y3ph573vfu9n3zjHHHFOZYqm4OXPm5JBDDsnQoUOz55575sQTT8xDDz20yTrr16/P7NmzM3LkyOy22255y1vekpUrV1aoYiptR8bMq1/96s2+Zz784Q9XqGJq0Y6M0+e7+OKLNxu3AwcO3EUV9z0vpE/56U9/mn333TcDBw7M9OnT89vf/nYXVdv3TJo0abP9VyqVMnv27C2uX+vjr7d6nlo5N7Ot/dfe3p7TTz8906dPz5AhQzJu3Li85z3vybJly7a5zVo6V9Fb/VOtjL9k+/twS9+HpVIpX/nKV7a6zVoZg73Vj9XSuaLt7cOnn346H/3oRzNt2rQMGjQoEyZMyGmnnZaWlpZtbrcvnDvpU6HHT37yk3zyk5/MWWedlXnz5mXGjBk5+uij8/jjj1e6NPqoAw44IMuXL+9+/PGPf6x0SfQha9euzYwZM/Ltb397i6+fd955+eY3v5nvfOc7ufXWWzNkyJAcffTRWb9+/S6ulL5ie2MmSY455phNvnd+9KMf7cIK6Uuuu+66zJ49O7fcckuuuuqqtLe35w1veEPWrl3bvc4nPvGJ/Pd//3d++tOf5rrrrsuyZcvyt3/7txWsmkrakTGTJB/4wAc2+Z4577zzKlQxtWhHx+nzDRs2bJNxu3jx4l1Ucd/Ukz7lpptuyjvf+c68//3vz5133pkTTzwxJ554Yu67775dWHHf8ac//WmTfXfVVVclSd72trdt9T21PP56o+eppXMz29p/69aty7x583LmmWdm3rx5+fnPf56HHnoob3rTm7a73Vo5V9Eb/VMtjb9k+/vwr/fd8uXL8/3vfz+lUilvectbtrndWhiDvdWP1dK5ou3tw2XLlmXZsmX56le/mvvuuy8XX3xxrrzyyrz//e/f7rYrfu6k6EMOPfTQYvbs2d3POzo6inHjxhVz5sypYFX0VWeddVYxY8aMSpdBP5GkuOKKK7qfd3Z2FmPGjCm+8pWvdC9btWpV0dTUVPzoRz+qQIX0Nc8fM0VRFCeffHJxwgknVKQe+r7HH3+8SFJcd911RVF0facMGDCg+OlPf9q9zgMPPFAkKW6++eZKlUkf8vwxUxRF8apXvar42Mc+Vrmi4Hm2NE6f76KLLiqam5t3XVF9XE/7lJNOOqk47rjjNll22GGHFR/60IfKXFn/9LGPfayYMmVK0dnZucXXjb+/KFfPU6vnZrZ0/P98t912W5GkWLx48VbXqdVzFeXqn2p1/BXFjo3BE044oXjta1+7zXVqdQyWox+r9XNFO3Lcd/nllxeNjY1Fe3v7VtfpC+dO+syVHm1tbbnjjjsya9as7mV1dXWZNWtWbr755gpWRl+2YMGCjBs3LnvvvXfe/e53Z8mSJZUuiX5i0aJFWbFixSbfOc3NzTnssMN857BNc+fOzZ577plp06bl1FNPzVNPPVXpkugjnrvEd8SIEUmSO+64I+3t7Zt8z+y7776ZMGGC7xmSbD5mnnPppZdm1KhROfDAA3PGGWdk3bp1lSgPkmx9nD7fmjVrMnHixIwfPz4nnHBC7r///l1RXp/Vkz7l5ptv3uT/FUly9NFH+39Fus4T/PCHP8z73ve+lEqlra5n/G3ZC+l5nJvZtpaWlpRKpQwfPnyb6zlX8Rc96Z+Mv21buXJlfvOb3+zQX9nX4hgsRz9W6+eKduS4r6WlJcOGDUtDQ8M2t1Xpcyd9JvR48skn09HRkdGjR2+yfPTo0VmxYkWFqqIvO+yww7ovqzr//POzaNGivPKVr8zq1asrXRr9wHPfK75z6IljjjkmP/jBD3L11Vfny1/+cq677roce+yx6ejoqHRpVFhnZ2c+/vGP58gjj8yBBx6YpOt7prGxcbOm2PcMyZbHTJK8613vyg9/+MNce+21OeOMM/Kf//mf+bu/+7sKVkot29o4fb5p06bl+9//fn75y1/mhz/8YTo7O3PEEUfkz3/+8y6stu/oaZ+yYsUKx6Rb8Ytf/CKrVq3Ke9/73q2uY/xt3QvpeZyb2br169fn9NNPzzvf+c4MGzZsq+s5V/EXPe2fjL9tu+SSSzJ06NDt3p6pFsdgufqxWj5XtCPHfU8++WTOPffcfPCDH9zmtvrCuZNtRzLQhx177LHdPx900EE57LDDMnHixFx++eU7lHoD9NQ73vGO7p+nT5+egw46KFOmTMncuXPzute9roKVUWmzZ8/OfffdV5X3yqV3bG3M/HUDMX369IwdOzave93r8vDDD2fKlCm7ukxq3I5+tx1++OE5/PDDu58fccQR2W+//XLBBRfk3HPP7e0y+xx9SvlceOGFOfbYYzNu3LitrmP8sSu0t7fnpJNOSlEUOf/887e5ru+Av9A/ldf3v//9vPvd787AgQO3uV4tjkH92M7b3j5sbW3Ncccdl/333z9nn332NrfVF/7t95krPUaNGpX6+vqsXLlyk+UrV67MmDFjKlQV/cnw4cPz4he/OAsXLqx0KfQDz32v+M5hZ+y9994ZNWqU750a95GPfCS//vWvc+2112avvfbqXj5mzJi0tbVl1apVm6zve4atjZktOeyww5LE9wy7XE/G6fMNGDAgM2fONG7/z/b6lDFjxjgm3YLFixfnD3/4Q/7hH/6hR+8z/v7ihfQ8zs1s7rnAY/Hixbnqqqu2eZXHljhX8Rfb65+Mv6274YYb8tBDD/X4OzGp/jFYzn6sVs8Vbe+4b/Xq1TnmmGMydOjQXHHFFRkwYECPtl+Jcyd9JvRobGzMwQcfnKuvvrp7WWdnZ66++upN/moDtmbNmjV5+OGHM3bs2EqXQj8wefLkjBkzZpPvnNbW1tx6662+c9hhf/7zn/PUU0/53qlRRVHkIx/5SK644opcc801mTx58iavH3zwwRkwYMAm3zMPPfRQlixZ4numRm1vzGzJXXfdlSS+Z9hlXsg4fb6Ojo7ce++9xu3/2V6fcvjhh2/y/4okueqqq2r+/xUXXXRR9txzzxx33HE9ep/x9xcvpOdxbmZTzwUeCxYsyB/+8IeMHDmyx9twruIvttc/GX9bd+GFF+bggw/OjBkzevzeah2DvdGP1dq5oh057mttbc0b3vCGNDY25le/+tV2rzTakoqcO6nkLOrP9+Mf/7hoamoqLr744uJ///d/iw9+8IPF8OHDixUrVlS6NPqgT33qU8XcuXOLRYsWFTfeeGMxa9asYtSoUcXjjz9e6dLoI1avXl3ceeedxZ133lkkKb7+9a8Xd955Z7F48eKiKIriS1/6UjF8+PDil7/8ZXHPPfcUJ5xwQjF58uTi2WefrXDlVMq2xszq1auLf/qnfypuvvnmYtGiRcUf/vCH4qUvfWkxderUYv369ZUunQo49dRTi+bm5mLu3LnF8uXLux/r1q3rXufDH/5wMWHChOKaa64pbr/99uLwww8vDj/88ApWTSVtb8wsXLiw+NznPlfcfvvtxaJFi4pf/vKXxd57710cddRRFa6cWrIj321///d/X3zmM5/pfn7OOecUv/vd74qHH364uOOOO4p3vOMdxcCBA4v777+/Er9CxW2vT3n+/rvxxhuLhoaG4qtf/WrxwAMPFGeddVYxYMCA4t57763Ur1BxHR0dxYQJE4rTTz99s9eMv02Vo+d57WtfW3zrW9/qfl5L52a2tf/a2tqKN73pTcVee+1V3HXXXZt8J27YsKF7G8/ff7V0rqIc/VMtj7+i2P6/4aIoipaWlmLw4MHF+eefv8Vt1OoYLFc/Nm3atOLnP/959/NaOle0vX3Y0tJSHHbYYcX06dOLhQsXbrLOxo0bu7fz1/uwr5w76VOhR1EUxbe+9a1iwoQJRWNjY3HooYcWt9xyS6VLoo96+9vfXowdO7ZobGwsXvSiFxVvf/vbi4ULF1a6LPqQa6+9tkiy2ePkk08uiqIoOjs7izPPPLMYPXp00dTUVLzuda8rHnroocoWTUVta8ysW7eueMMb3lDssccexYABA4qJEycWH/jAB6r24Jvt29JYSVJcdNFF3es8++yzxT/+4z8Wu+++ezF48ODizW9+c7F8+fLKFU1FbW/MLFmypDjqqKOKESNGFE1NTcU+++xT/L//9/+KlpaWyhZOTdmR77ZXvepV3cdTRVEUH//4x7t7uNGjRxd/8zd/U8ybN2/XF99HbK9Pef7+K4qiuPzyy4sXv/jFRWNjY3HAAQcUv/nNb3Zx1X3L7373uyLJFo/Njb9NlaPnmThxYnHWWWdtsqxWzs1sa/8tWrRoq9+J1157bfc2nr//aulcRTn6p1oef0Wx/X/DRVEUF1xwQTFo0KBi1apVW9xGrY7BcvVjz39PLZ0r2t4+3Nr4TFIsWrRok+08956+cu6k9H+FAQAAAAAA9Gt9Zk4PAAAAAACAnSH0AAAAAAAAqoLQAwAAAAAAqApCDwAAAAAAoCoIPQAAAAAAgKog9AAAAAAAAKqC0AMAAAAAAKgKQg8AAAAAAKAqCD0AAAAAAICqIPQAAAAAAACqgtADAAAAAACoCkIPAAAAAACgKvz/SaNplj49ui8AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5VklEQVR4nO3deZQddZk38G9n6U4ISYckZDM7S9hC0KAREEThZRFZFGURX5FRGDCAgIzIcdh0MAqMOjoIjgPIKAhyhoAwLC8EAgphTUBACFtIgmQhQLqzkE5I6v2DobXJ2qQ7t1P9+Zxzz+lbt27V03V+qdRT366qqqIoigAAAAAAAGziOlS6AAAAAAAAgJYg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKodmhx/3335+DDz44AwcOTFVVVW666abGz5YvX56zzjoro0aNSrdu3TJw4MB85StfyWuvvdaSNQMAALRZeiYAAKicZoceixcvzujRo3PppZeu8tmSJUsyZcqUnHPOOZkyZUpuvPHGTJs2LYccckiLFAsAANDW6ZkAAKByqoqiKD7wl6uqMmHChBx22GFrnOfRRx/Nxz72scyYMSNDhgz5oKsCAADY5OiZAABg4+rU2iuoq6tLVVVVevbsudrPGxoa0tDQ0Ph+5cqVefPNN9O7d+9UVVW1dnkAAFBxRVFk4cKFGThwYDp08Ni99mZdPVOibwIAoH1rTs/UqqHH0qVLc9ZZZ+Xoo49Ojx49VjvP+PHjc8EFF7RmGQAAsEmYNWtWBg0aVOky2IjWp2dK9E0AAJCsX8/Uare3Wr58eQ4//PC8+uqrmTRp0hoP4N//F0t1dXUZMmRIZs2atdaDfgAAKIv6+voMHjw4CxYsSG1tbaXLoQW1RM+U6JsAAGjfmtMztcqVHsuXL88RRxyRGTNm5J577lnrQXhNTU1qampWmd6jRw8H7wAAtCtuU9R+NKdnSvRNAACQrF/P1OKhx3sH7y+88ELuvffe9O7du6VXAQAAsMnSMwEAQOtpduixaNGivPjii43vp0+fnieeeCK9evXKgAED8oUvfCFTpkzJrbfemhUrVmTOnDlJkl69eqW6urrlKgcAAGiD9EwAAFA5zX6mx6RJk/KpT31qlenHHntszj///AwfPny137v33nuz9957r3P59fX1qa2tTV1dncu0AQBoFxwDl0tr90yJMQMAQPvSnOPfZl/psffee2dtOckGPBcdAABgk6dnAgCAyulQ6QIAAAAAAABagtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKTQ79Lj//vtz8MEHZ+DAgamqqspNN93U5POiKHLuuedmwIAB6dq1a/bdd9+88MILLVUvAABAm6ZnAgCAyml26LF48eKMHj06l1566Wo/v+iii/Kzn/0sl19+eR5++OF069Yt+++/f5YuXbrBxQIAALR1eiYAAKicTs39woEHHpgDDzxwtZ8VRZGf/vSn+ed//ucceuihSZL/+q//Sr9+/XLTTTflqKOO2rBqAQAA2jg9EwAAVE6LPtNj+vTpmTNnTvbdd9/GabW1tRk7dmwmT5682u80NDSkvr6+yQsAAKCMPkjPlOibAABgfbVo6DFnzpwkSb9+/ZpM79evX+Nn7zd+/PjU1tY2vgYPHtySJQEAALQZH6RnSvRNAACwvlo09Pggzj777NTV1TW+Zs2aVemSAAAA2hR9EwAArJ8WDT369++fJJk7d26T6XPnzm387P1qamrSo0ePJi8AAIAy+iA9U6JvAgCA9dWiocfw4cPTv3//TJw4sXFafX19Hn744ey2224tuSoAAIBNjp4JAABaV6fmfmHRokV58cUXG99Pnz49TzzxRHr16pUhQ4bktNNOy7/8y79km222yfDhw3POOedk4MCBOeyww1qybgAAgDZJzwQAAJXT7NDjsccey6c+9anG92eccUaS5Nhjj82vf/3rfPvb387ixYtzwgknZMGCBfnEJz6RO+64I126dGm5qgEAANooPRMAAFROVVEURaWL+Hv19fWpra1NXV2d+9QCANAuOAamuYwZAADak+Yc/7boMz0AAAAAAAAqRegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFFo89FixYkXOOeecDB8+PF27ds1WW22V73//+ymKoqVXBQAAsMnRMwEAQOvp1NIL/NGPfpTLLrssV199dXbcccc89thjOe6441JbW5tTTz21pVcHAACwSdEzAQBA62nx0OPBBx/MoYcemoMOOihJMmzYsPzud7/LI4880tKrAgAA2OTomQAAoPW0+O2tdt9990ycODHPP/98kuTJJ5/Mn/70pxx44IEtvSoAAIBNjp4JAABaT4tf6fGd73wn9fX12W677dKxY8esWLEiF154YY455pjVzt/Q0JCGhobG9/X19S1dEgAAQJvR3J4p0TcBAMD6avErPX7/+9/nmmuuybXXXpspU6bk6quvziWXXJKrr756tfOPHz8+tbW1ja/Bgwe3dEkAAABtRnN7pkTfBAAA66uqKIqiJRc4ePDgfOc738m4ceMap/3Lv/xLfvvb3+a5555bZf7V/cXS4MGDU1dXlx49erRkaQAA0CbV19entrbWMXA70dyeKdE3AQDQvjWnZ2rx21stWbIkHTo0vYCkY8eOWbly5Wrnr6mpSU1NTUuXAQAA0CY1t2dK9E0AALC+Wjz0OPjgg3PhhRdmyJAh2XHHHTN16tT8+Mc/zj/8wz+09KoAAAA2OXomAABoPS1+e6uFCxfmnHPOyYQJEzJv3rwMHDgwRx99dM4999xUV1ev8/su7QcAoL1xDNy+bGjPlBgzAAC0L805/m3x0GNDOXgHAKC9cQxMc703Zk477bT8v//3//LGG2+kX79+OeGEE5o8KwQAAMpA6AEAAJsQx8A013tjplGnJFsnWZxkYbJF1RZ59dVXs9lmm1WoQgAAaDkVfZA5AAAAG8FBSbokWZpkbpKX//fnXZO3lr6VboO6pU9Nn7w++/VKVgkAABuV0AMAAGBT9NH3vX8nyV+SPJhkUZJxyfxr56dTj055p/6djV4eAABUQodKFwAAAEAL6JRk5yQnJNkuyWVJjk1WbLEiPfv2rGRlAACw0Qg9AAAAyqRDks/m3eDj35J8KalbUZcpU6ZUti4AANgIhB4AAABldECS2iS3Jdk12fUTu1a4IAAAaH1CDwAAgDLqkOSTSaYn+UhSdCkqXBAAALQ+oQcAAEBZbZWkOu8+2PxDyejRoytcEAAAtC6hBwAAQFl1SDI6yS+SjEieeeaZPPfcc1m2bFmFCwMAgNbRqdIFAAAA0IoGJKlJ0jVZUbUi22+/fZ5//vlss802la4MSuudd97JnXfemZkzZ2bGjBlpaGjI8OHDs9VWW2X06NH50Ic+lKqqqkqXCQClJPQAAAAos5oknZO88+5riy22SKdOf2sFn3nmmeywww5OwLJRLVq0KG+88UZ69+6dzTffvNLlfGArVqzItGnT8sgjj6S6ujpf+tKXGj875JBDsnLlytV+b8SIEXn66afTtWvXJMlJJ52UoijSu3fvbL311tlzzz2z1VZb+XcJAB+A0AMAAKDMlidZkaQu6dKlS/793/89xx9/fD796U9n8ODBOf7443PKKafk4osvrnSla1VXV5cZM2Zks802y9Zbb13pclgPCxcuTPfu3Rvfn3nmmZkwYULmzp2bxYsXN07v06dPRowYkSuvvDI77rhjJUpdbzfffHMmTZqUqVOn5qWXXsqcOXPyzjvvJEk6dOiQo48+OlVVVenUqVO23HLLzJ07d7XLefnllxu/t3z58lx++eWrzFNVVZWuXbumf//+mTx5cvr27dt6vxgAlIjQAwAAoMzeSvJ2kj8nN954Y2644YZMnDgxEydObJzlkksuyeuvv57LLrus8S/PN6aiKLJgwYI0NDSkf//+SZI333wzX/va1/LKK6/klVdeyYIFCxrn//KXv5z//M//TE1NzUavlVUVRZFXXnklTzzxRJ588sk8+uijmTp1aubNm5cJEyYkSTp37pynn346L7/8cuP3OnfunOXLl2f+/PmNt39qC4qiyNNPP50JEybk+eefz29+85vGKy6+9KUvZcmSJav93sqVK/P66683hhPf/va38+CDD2azzTZLp06d0rlz58bfeeHChY3/1lasWJGPfOQjeeGFF7J06dIsX768sY4lS5bk5ZdfzmabbbYRfnMAKIeqoiiKShfx9+rr61NbW5u6urr06NGj0uUAAECrcwxMc9XX16f2J7XrN/Mvk2yV5KmkWFBk2rRpmThxYu64445MnDixyQnc6urqzJkzJ1tssUWr1P2e5cuX55577smNN96YyZMn55VXXsnChQvzla98JVdffXWSpKGhIV27ds3ft6y9e/fOm2++maIocskll+Rb3/pWq9a5sf31r3/N5MmTs8UWW2TAgAHZeuutU11dXemyGs2fPz+PPfZYFi9enFmzZuWVV17J3Xffneeeey4rVqxY7+X86le/ypFHHpnNN98811xzTb773e+mX79+2WOPPbLDDjtkm222yeTJk3P66aenS5curfgbvevSSy/N7bffnhdffDGzZ8/OwoULm4y72bNnN4Zxu+yyS55//vn069cvW2+9dXbeeed89KMfzVZbbZWhQ4dmyy233OBbUq1cuTKzZ8/OQw89lEceeSTdunXLOeec41ZXALRrzemZXOkBAABQVrOTLEkyPxm73dgkyciRIzNy5Mh84xvfyNKlSzNp0qR897vfzZQpU7Js2bLce++9+fznP58kOeKII7Jw4cLsvPPO2XnnnTNy5MgMGjQoffv2TYcOHda66ieeeCJz5sxJ7969s8suu6Rz585ZunRpTjjhhPz3f//3av9a/v77788ll1ySM888MzU1Nbniiivy2muvZdCgQfnEJz6RrbbaKv/5n/+Zu+++O/vvv39Lb61Ws2zZsrz88suZNm1apk+f3nj1yiuvvJIf/OAH+cxnPpMkefjhh/PFL36x8XsjR47Mk08+2apXtCxbtixz5sxJv379UlNTk6Ioctttt+W///u/s2zZssyaNSuvvfZaZs2alYaGhjUup1OnThk1alRGjx6dpUuX5vbbb88WW2yR2traVFdX55133ml8bb/99o23vXr99dczc+bMzJw5M48++miTZV544YX5wx/+kE9/+tNJkjfeeCNvv/12BgwYkI4dO67193rnnXcyf/78PP7445kyZUpmzJjR+HvMmzcvf/nLX9K7d+8k717p9Morr6yyjOrq6gwcODDz589vDD2mTp3a6uFDhw4d8qEPfSiHH354Dj/88FZdFwCUkSs9AACgwhwD01zrfaXH75O8mqTq3as81qQoihx//PG54oorUlVVldtvvz177rlntthiiyxbtmyV+auqqtK7d+/svPPOOeWUU3LYYYfl61//el5//fW88847ef755/Piiy82zn/AAQfk9ttvT5LsuOOO+ctf/rLGWnbbbbc8+OCDje8HDRqUv/71r0mSAQMGZMyYMRkzZkz23HPP7L777hW5HdeavP7665k2bVqGDh2awYMHp6GhIddee22+/vWvr/GB1qecckqOO+649O3bN3Pnzs0pp5ySt956Ky+99FKWLVuWyy67LCeeeGKL1Ld06dI89NBDueeee3Lvvffmueeey/z585MkBx98cObOnZu//OUvWbRo0VqXs80222T06NEZPnx4unfvns022yxHHHFEBg8e3Oya3gsgXnjhhTz77LN59tlnM2XKlMybNy9JcsEFF+Tcc89Nklx00UU566yz0rlz5wwaNCjdunVL8u54rKqqyvXXX5/tttsuybtXZDz55JNrXO8dd9zRGJwde+yxmTRpUoYNG5Ydd9wxH//4x/N//s//yYABA5r9+wAArcOVHgAAAO3dE3k38EjywG0PrHXWqqqq/PKXv8xbb72VG2+8Ma+++mqqq6szadKkXHfddfnZz37WZP6iKDJ//vzcc889jVeFXHfddU0eTv333juxnrz7V/X/+q//mm7duqVnz56pra1N9+7d06nTu+3poEGDmqxn2223TU1NTV555ZXMnj07t956a2699dYkyZgxY/LYY481zv/+B2e3lmXLluWRRx7Jfffdl5kzZ2b69Ol58sknG0/Ub7nlllm2bFnq6uqafK9fv37Za6+9MmzYsGy++eY577zz8vOf/zw///nPk7x7ZcGQIUMybNiwjB49Otddd13Gjx+fr33ta+ncufMHqrWhoSEvv/xyfvGLX+Tyyy9vfHj2+91yyy2NP3fs2DHdunXLZz7zmRx88MEZPHhwevTokdra2gwdOrRFr3To27dv+vbtm7333rvJ9H/+53/OhRdemAsvvDD77bdfPv7xj6e+vj4dO3bM8uXLM3369FWW9ffjb/PNN2/8uUuXLunWrVt69OiR/v37Z+TIkdl6660bP3/vlmoAQDm40gMAACrMMTDNtc4rPf6c5O4kS5Lb/nBbDjzwwPVa7tKlS/Pv//7v+chHPtJ4S6G33norjzzySFasWJEVK1akoaGh8cHTffv2zZgxY7LtttvmtNNOy7/92781Luuoo47K6aefnj59+qRPnz4bPLYXL16cJ554Io8//nj++Mc/ZtKkSdl7771zww03JEmWLFmSnj17ZsSIERkzZky23nrrjBgxIiNGjMiwYcPSp0+ftV4VUhRF3n777bz11luNr/79+6djx475j//4j7z22muZN29e47Ms1vQw6/fr2LFjevXqle7du+eEE07IWWedlSR5+eWX8/nPfz5LlizJokWLMm/evCbPxfinf/qnXH311Zk3b14uv/zy/OhHP8p2222X7bffvjGE6NGjR7p3757Ro0c33n7ppptuyvjx4zN9+vR07Ngx8+bNa3KVSffu3XPwwQdnn332Sbdu3XLeeedl1KhR2WmnnbLjjjs2PlPjg4YsLWXlypX53Oc+lz/84Q/p06dPHnzwwWyzzTZ55513mtxua8GCBbnkkksyefLknHPOOfne976XJI0PTB82bNg6b8UGALR9zemZhB4AAFBhjoFprjWGHm8k+WOSl5PUv3u7pT59+myUmu68884ccMABSZIzzzwzF110Uas9++C8887L9773vVRVVeWSSy7J6aefnkcffTRjx45d43fOPPPMXHzxxUmSV199NR//+MezbNmyLF++PMuWLcuyZcvWeBXEmnTu3Dm77LJLjj/++Oy8887ZZpttctddd2XAgAGNVzD07NlzvU66v/POO/nrX/+aV155JS+99FI+/OEP58Ybb8wPfvCDHHPMMfnNb36zxu/+5Cc/ycknn5wTTzwxV1xxxSqfb7755tl6660zYMCAfOMb38hnP/vZZv2elbJo0aJ86lOfymOPPZYRI0Zk8uTJ6du3b+Pnd999d77yla9k9uzZqa6uzsUXX5xTTz21ghUDAK1F6AEAAJsQx8A0V319fWq/XZvUJGnIu2HHQ0kWJR3qOzS5YmBjuvLKK7NixYp8/etfb9WHPS9ZsiQnnHBCrrnmmiTJF77whZx88slpaGjIjBkz8uabb2b69Ol5+eWX89JLL2XmzJn5x3/8x3ziE5/IU089lQceeCD33XffWtcxbNiwzJkzJ0uXLk3y7m23zj///AwZMiRDhw7NoEGDstlmm7Xa75i8e1uwt99+Oz179szUqVPz3HPP5dlnn83cuXNTX1+fhQsXpr6+PkcddVQeeOCB3HLLLamqqsrWW2+dXXbZJZ/97Gez3377pV+/fq3+8O3WMnfu3Oy+++6ZN29ebrvttuy5555ZtmxZvvvd7+aSSy5Jkmy//fa59tprs8suu1S2WACg1Qg9AABgE+IYmOaqr69P7dDa5L3z2A3JWaeclR/+8IcVrWtjKooiv/jFL3L66adn+fLljdNHjRqVP//5z43vR44cmeeff361yxg2bFjuvPPOdO7cOZ07d85DDz2UESNGZIcddkiXLl2ycuXKLFy4MFVVVenWrVs6duzY6r9Xc7311ls5+OCD88ADD6RLly65/vrrc8ghh1S6rBb1/PPPZ9GiRfnIRz6SF154IUcddVSmTJmSJDnxxBPzr//6r60eQAEAleVB5gAAAGW3IO06KKuqqsq4ceMyZsyYnH322ZkzZ07efvvtfOhDH2oy39tvv53k3WdZ7LTTThk1alTja6eddkrv3r0b5/3CF77Q5LsdOnRIbe1anp2yET311FPp3r17hg0b1mT6bbfdlgceeCC1tbW55ZZbsueee1amwFa07bbbNv7c0NCQZ555Jr169coVV1yRww47rHKFAQBtktADAACATdbHP/7x3HvvvWv8/Omnn86yZcvSq1evTfaB1j/5yU/yrW99K0cddVSuvfbaJp8dc8wxmTNnTvbbb7+MGjWqQhVuPDvttFOuv/767LrrrqsEXAAAidtbAQBAxTkGprmMmfbliSeeyIc//OHGn1esWJFhw4alV69eFa4MAGDjaM7x76b5Zy4AAADQTuyyyy458sgjkyTHHXdc9tprrxx88MFZsmRJhSsDAGh7hB4AAADQxl1wwQXp0KFDpk6dmsWLF2fzzTfPypUrK10WAECbI/QAAACANm7kyJE56aSTkiRHHXVUbrnllmy++eYVrgoAoO0RegAAAMAm4Gc/+1mee+65XHvttamurq50OQAAbVKnShcAAAAArFuHDh0ycuTISpcBANCmudIDAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUQquEHn/961/z5S9/Ob17907Xrl0zatSoPPbYY62xKgAAgE2OngkAAFpHp5Ze4FtvvZU99tgjn/rUp3L77bdnyy23zAsvvJAtttiipVcFAACwydEzAQBA62nx0ONHP/pRBg8enKuuuqpx2vDhw1t6NQAAAJskPRMAALSeFr+91R/+8Ifsuuuu+eIXv5i+ffvmwx/+cH71q1+19GoAAAA2SXomAABoPS0eerz88su57LLLss022+TOO+/MSSedlFNPPTVXX331audvaGhIfX19kxcAAEBZNbdnSvRNAACwvqqKoihacoHV1dXZdddd8+CDDzZOO/XUU/Poo49m8uTJq8x//vnn54ILLlhlel1dXXr06NGSpQEAQJtUX1+f2tpax8DtRHN7pkTfBABA+9acnqnFr/QYMGBAdthhhybTtt9++8ycOXO185999tmpq6trfM2aNaulSwIAAGgzmtszJfomAABYXy3+IPM99tgj06ZNazLt+eefz9ChQ1c7f01NTWpqalq6DAAAgDapuT1Tom8CAID11eJXepx++ul56KGH8oMf/CAvvvhirr322vzHf/xHxo0b19KrAgAA2OTomQAAoPW0eOjx0Y9+NBMmTMjvfve77LTTTvn+97+fn/70pznmmGNaelUAAACbHD0TAAC0nhZ/kPmG8hBHAADaG8fANJcxAwBAe1LRB5kDAAAAAABUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUmj10OOHP/xhqqqqctppp7X2qgAAADY5eiYAAGg5rRp6PProo/nlL3+ZnXfeuTVXAwAAsEnSMwEAQMtqtdBj0aJFOeaYY/KrX/0qW2yxRWutBgAAYJOkZwIAgJbXaqHHuHHjctBBB2Xfffdd63wNDQ2pr69v8gIAACi79e2ZEn0TAACsr06tsdDrrrsuU6ZMyaOPPrrOecePH58LLrigNcoAAABok5rTMyX6JgAAWF8tfqXHrFmz8s1vfjPXXHNNunTpss75zz777NTV1TW+Zs2a1dIlAQAAtBnN7ZkSfRMAAKyvqqIoipZc4E033ZTPfe5z6dixY+O0FStWpKqqKh06dEhDQ0OTz96vvr4+tbW1qaurS48ePVqyNAAAaJMcA7cvG9ozJcYMAADtS3OOf1v89lb77LNPnnrqqSbTjjvuuGy33XY566yz1nnwDgAAUGZ6JgAAaD0tHnp07949O+20U5Np3bp1S+/evVeZDgAA0N7omQAAoPW0+DM9AAAAAAAAKqHFr/RYnUmTJm2M1QAAAGyS9EwAANAyXOkBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKbR46DF+/Ph89KMfTffu3dO3b98cdthhmTZtWkuvBgAAYJOkZwIAgNbT4qHHfffdl3HjxuWhhx7KXXfdleXLl2e//fbL4sWLW3pVAAAAmxw9EwAAtJ6qoiiK1lzB66+/nr59++a+++7LXnvttc756+vrU1tbm7q6uvTo0aM1SwMAgDbBMXD71tyeKTFmAABoX5pz/NuptYupq6tLkvTq1Wu1nzc0NKShoaHxfX19fWuXBAAA0Gasq2dK9E0AALC+WvVB5itXrsxpp52WPfbYIzvttNNq5xk/fnxqa2sbX4MHD27NkgAAANqM9emZEn0TAACsr1a9vdVJJ52U22+/PX/6058yaNCg1c6zur9YGjx4sMu0AQBoN9yqqP1an54p0TcBANC+tYnbW5188sm59dZbc//996/14L2mpiY1NTWtVQYAAECbtL49U6JvAgCA9dXioUdRFDnllFMyYcKETJo0KcOHD2/pVQAAAGyy9EwAANB6Wjz0GDduXK699trcfPPN6d69e+bMmZMkqa2tTdeuXVt6dQAAAJsUPRMAALSeFn+mR1VV1WqnX3XVVfnqV7+6zu+7nzEAAO2NY+D2ZUN7psSYAQCgfanoMz1a8bnoAAAAmzw9EwAAtJ4OlS4AAAAAAACgJQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlEKrhR6XXnpphg0bli5dumTs2LF55JFHWmtVAAAAmxw9EwAAtLxWCT2uv/76nHHGGTnvvPMyZcqUjB49Ovvvv3/mzZvXGqsDAADYpOiZAACgdbRK6PHjH/84xx9/fI477rjssMMOufzyy7PZZpvlyiuvbI3VAQAAbFL0TAAA0Do6tfQCly1blscffzxnn31247QOHTpk3333zeTJk1eZv6GhIQ0NDY3v6+rqkiT19fUtXRoAALRJ7x37FkVR4UrYGJrbMyX6JgAA2rfm9EwtHnrMnz8/K1asSL9+/ZpM79evX5577rlV5h8/fnwuuOCCVaYPHjy4pUsDAIA27Y033khtbW2ly6CVNbdnSvRNAACQJAsXLlxnz9TioUdznX322TnjjDMa3y9YsCBDhw7NzJkzNXysl/r6+gwePDizZs1Kjx49Kl0OmwBjhuYyZmguY4bmqqury5AhQ9KrV69Kl0Ib9f6+aeXKlXnzzTfTu3fvVFVVbdRa7OM2jO234WzDDWP7bRjbb8PYfhvG9ttwtuGGqeT2K4oiCxcuzMCBA9c5b4uHHn369EnHjh0zd+7cJtPnzp2b/v37rzJ/TU1NampqVpleW1tr4NEsPXr0MGZoFmOG5jJmaC5jhubq0KFVHrlHG9PcnilZfd/Us2fP1ipxvdjHbRjbb8PZhhvG9tswtt+Gsf02jO234WzDDVOp7be+F0m0eFdVXV2dMWPGZOLEiY3TVq5cmYkTJ2a33XZr6dUBAABsUvRMAADQelrl9lZnnHFGjj322Oy666752Mc+lp/+9KdZvHhxjjvuuNZYHQAAwCZFzwQAAK2jVUKPI488Mq+//nrOPffczJkzJ7vsskvuuOOOVR7Utzo1NTU577zzVnvLK1gdY4bmMmZoLmOG5jJmaC5jpv3ZkJ6p0ozXDWP7bTjbcMPYfhvG9tswtt+Gsf02nG24YTaV7VdVFEVR6SIAAAAAAAA2lCclAgAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKIU2F3pceumlGTZsWLp06ZKxY8fmkUceqXRJtFHnn39+qqqqmry22267SpdFG3L//ffn4IMPzsCBA1NVVZWbbrqpyedFUeTcc8/NgAED0rVr1+y777554YUXKlMsbcK6xsxXv/rVVfY7BxxwQGWKpeLGjx+fj370o+nevXv69u2bww47LNOmTWsyz9KlSzNu3Lj07t07m2++eQ4//PDMnTu3QhVTaeszZvbee+9V9jMnnnhihSqmPVqfcfp+v/71r1cZt126dNlIFbc9H6RPueGGG7LddtulS5cuGTVqVG677baNVG3bM2zYsFW2X1VVVcaNG7fa+dv7+Gutnqe9nJtZ2/Zbvnx5zjrrrIwaNSrdunXLwIED85WvfCWvvfbaWpfZns5VtFb/1F7GX7Lubbi6/WFVVVUuvvjiNS6zvYzB1urH2tO5onVtwzfffDOnnHJKRo4cma5du2bIkCE59dRTU1dXt9bltoVzJ20q9Lj++utzxhln5LzzzsuUKVMyevTo7L///pk3b16lS6ON2nHHHTN79uzG15/+9KdKl0Qbsnjx4owePTqXXnrpaj+/6KKL8rOf/SyXX355Hn744XTr1i37779/li5dupErpa1Y15hJkgMOOKDJfud3v/vdRqyQtuS+++7LuHHj8tBDD+Wuu+7K8uXLs99++2Xx4sWN85x++um55ZZbcsMNN+S+++7La6+9ls9//vMVrJpKWp8xkyTHH398k/3MRRddVKGKaY/Wd5y+X48ePZqM2xkzZmykitum5vQpDz74YI4++uh87Wtfy9SpU3PYYYflsMMOy9NPP70RK247Hn300Sbb7q677kqSfPGLX1zjd9rz+GuNnqc9nZtZ2/ZbsmRJpkyZknPOOSdTpkzJjTfemGnTpuWQQw5Z53Lby7mK1uif2tP4S9a9Df9+282ePTtXXnllqqqqcvjhh691ue1hDLZWP9aezhWtaxu+9tpree2113LJJZfk6aefzq9//evccccd+drXvrbOZVf83EnRhnzsYx8rxo0b1/h+xYoVxcCBA4vx48dXsCraqvPOO68YPXp0pctgE5GkmDBhQuP7lStXFv379y8uvvjixmkLFiwoampqit/97ncVqJC25v1jpiiK4thjjy0OPfTQitRD2zdv3rwiSXHfffcVRfHuPqVz587FDTfc0DjPs88+WyQpJk+eXKkyaUPeP2aKoig++clPFt/85jcrVxS8z+rG6ftdddVVRW1t7cYrqo1rbp9yxBFHFAcddFCTaWPHji3+8R//sYUr2zR985vfLLbaaqti5cqVq/3c+Publup52uu5mdUd/7/fI488UiQpZsyYscZ52uu5ipbqn9rr+CuK9RuDhx56aPHpT396rfO01zHYEv1Yez9XtD7Hfb///e+L6urqYvny5Wucpy2cO2kzV3osW7Ysjz/+ePbdd9/GaR06dMi+++6byZMnV7Ay2rIXXnghAwcOzIgRI3LMMcdk5syZlS6JTcT06dMzZ86cJvuc2trajB071j6HtZo0aVL69u2bkSNH5qSTTsobb7xR6ZJoI967xLdXr15JkscffzzLly9vsp/ZbrvtMmTIEPsZkqw6Zt5zzTXXpE+fPtlpp51y9tlnZ8mSJZUoD5KseZy+36JFizJ06NAMHjw4hx56aJ555pmNUV6b1Zw+ZfLkyU3+r0iS/fff3/8Vefc8wW9/+9v8wz/8Q6qqqtY4n/G3eh+k53FuZu3q6upSVVWVnj17rnU+5yr+pjn9k/G3dnPnzs3//M//rNdf2bfHMdgS/Vh7P1e0Psd9dXV16dGjRzp16rTWZVX63EmbCT3mz5+fFStWpF+/fk2m9+vXL3PmzKlQVbRlY8eObbys6rLLLsv06dOz5557ZuHChZUujU3Ae/sV+xya44ADDsh//dd/ZeLEifnRj36U++67LwceeGBWrFhR6dKosJUrV+a0007LHnvskZ122inJu/uZ6urqVZpi+xmS1Y+ZJPnSl76U3/72t7n33ntz9tln5ze/+U2+/OUvV7BS2rM1jdP3GzlyZK688srcfPPN+e1vf5uVK1dm9913z6uvvroRq207mtunzJkzxzHpGtx0001ZsGBBvvrVr65xHuNvzT5Iz+PczJotXbo0Z511Vo4++uj06NFjjfM5V/E3ze2fjL+1u/rqq9O9e/d13p6pPY7BlurH2vO5ovU57ps/f36+//3v54QTTljrstrCuZO1RzLQhh144IGNP++8884ZO3Zshg4dmt///vfrlXoDNNdRRx3V+POoUaOy8847Z6uttsqkSZOyzz77VLAyKm3cuHF5+umnS3mvXFrHmsbM3zcQo0aNyoABA7LPPvvkpZdeylZbbbWxy6SdW99922677Zbddtut8f3uu++e7bffPr/85S/z/e9/v7XLbHP0KS3niiuuyIEHHpiBAweucR7jj41h+fLlOeKII1IURS677LK1zmsf8Df6p5Z15ZVX5phjjkmXLl3WOl97HIP6sQ23rm1YX1+fgw46KDvssEPOP//8tS6rLfzbbzNXevTp0ycdO3bM3Llzm0yfO3du+vfvX6Gq2JT07Nkz2267bV588cVKl8Im4L39in0OG2LEiBHp06eP/U47d/LJJ+fWW2/Nvffem0GDBjVO79+/f5YtW5YFCxY0md9+hjWNmdUZO3ZsktjPsNE1Z5y+X+fOnfPhD3/YuP1f6+pT+vfv75h0NWbMmJG77747X//615v1PePvbz5Iz+PczKreCzxmzJiRu+66a61XeayOcxV/s67+yfhbsz/+8Y+ZNm1as/eJSfnHYEv2Y+31XNG6jvsWLlyYAw44IN27d8+ECRPSuXPnZi2/EudO2kzoUV1dnTFjxmTixImN01auXJmJEyc2+asNWJNFixblpZdeyoABAypdCpuA4cOHp3///k32OfX19Xn44Yftc1hvr776at544w37nXaqKIqcfPLJmTBhQu65554MHz68yedjxoxJ586dm+xnpk2blpkzZ9rPtFPrGjOr88QTTySJ/QwbzQcZp++3YsWKPPXUU8bt/1pXn7Lbbrs1+b8iSe666652/3/FVVddlb59++aggw5q1veMv7/5ID2PczNNvRd4vPDCC7n77rvTu3fvZi/DuYq/WVf/ZPyt2RVXXJExY8Zk9OjRzf5uWcdga/Rj7e1c0foc99XX12e//fZLdXV1/vCHP6zzSqPVqci5k0o+Rf39rrvuuqKmpqb49a9/XfzlL38pTjjhhKJnz57FnDlzKl0abdC3vvWtYtKkScX06dOLBx54oNh3332LPn36FPPmzat0abQRCxcuLKZOnVpMnTq1SFL8+Mc/LqZOnVrMmDGjKIqi+OEPf1j07NmzuPnmm4s///nPxaGHHloMHz68ePvttytcOZWytjGzcOHC4swzzywmT55cTJ8+vbj77ruLj3zkI8U222xTLF26tNKlUwEnnXRSUVtbW0yaNKmYPXt242vJkiWN85x44onFkCFDinvuuad47LHHit12263YbbfdKlg1lbSuMfPiiy8W3/ve94rHHnusmD59enHzzTcXI0aMKPbaa68KV057sj77tv/7f/9v8Z3vfKfx/QUXXFDceeedxUsvvVQ8/vjjxVFHHVV06dKleOaZZyrxK1TcuvqU92+/Bx54oOjUqVNxySWXFM8++2xx3nnnFZ07dy6eeuqpSv0KFbdixYpiyJAhxVlnnbXKZ8ZfUy3R83z6058ufv7znze+b0/nZta2/ZYtW1YccsghxaBBg4onnniiyT6xoaGhcRnv337t6VxFS/RP7Xn8FcW6/w0XRVHU1dUVm222WXHZZZetdhntdQy2VD82cuTI4sYbb2x8357OFa1rG9bV1RVjx44tRo0aVbz44otN5nnnnXcal/P327CtnDtpU6FHURTFz3/+82LIkCFFdXV18bGPfax46KGHKl0SbdSRRx5ZDBgwoKiuri4+9KEPFUceeWTx4osvVros2pB77723SLLK69hjjy2KoihWrlxZnHPOOUW/fv2KmpqaYp999immTZtW2aKpqLWNmSVLlhT77bdfseWWWxadO3cuhg4dWhx//PGlPfhm3VY3VpIUV111VeM8b7/9dvGNb3yj2GKLLYrNNtus+NznPlfMnj27ckVTUesaMzNnziz22muvolevXkVNTU2x9dZbF//0T/9U1NXVVbZw2pX12bd98pOfbDyeKoqiOO200xp7uH79+hWf+cxniilTpmz84tuIdfUp799+RVEUv//974ttt922qK6uLnbcccfif/7nfzZy1W3LnXfeWSRZ7bG58ddUS/Q8Q4cOLc4777wm09rLuZm1bb/p06evcZ947733Ni7j/duvPZ2raIn+qT2Pv6JY97/hoiiKX/7yl0XXrl2LBQsWrHYZ7XUMtlQ/9v7vtKdzRevahmsan0mK6dOnN1nOe99pK+dOqv63MAAAAAAAgE1am3mmBwAAAAAAwIYQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUwv8Hmoix6cPt24wAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAGyCAYAAAC/RgYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA34klEQVR4nO3deZQedZ0v/ndn6yykOySQbZJAWCMhRGSJgVERuCzDsDiOCJcZcOXCjSLieIE7ss/cqKDjOIcLjpf1IgjMgSA6wg8DgUHDGlDWmEBIAtkMmu6snaa7fn9wbSdkbfJ0nu7q1+uc55w89dRT9enKN5X61LurqqYoiiIAAAAAAABdXI9qFwAAAAAAAFAJQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFNodejz22GM58cQTM3LkyNTU1GTatGltnzU3N+fCCy/MhAkTMmDAgIwcOTJnnnlmFi1aVMmaAQAAOi09EwAAVE+7Q4/Vq1dn4sSJufbaazf6bM2aNZk1a1YuueSSzJo1K/fcc09mz56dk046qSLFAgAAdHZ6JgAAqJ6aoiiK9/3lmprce++9OeWUUzY7z9NPP51DDz008+fPz5gxY97vqgAAALocPRMAAOxYvTp6BQ0NDampqcmgQYM2+XlTU1Oampra3re2tub3v/99hgwZkpqamo4uDwAAqq4oiqxcuTIjR45Mjx4eu9fdbK1nSvRNAAB0b+3pmTo09Fi3bl0uvPDCnH766amrq9vkPFOnTs0VV1zRkWUAAECXsHDhwowaNaraZbADbUvPlOibAAAg2baeqcNub9Xc3JxPfvKTefPNNzNjxozNHsC/9zeWGhoaMmbMmCxcuHCLB/0AAFAWjY2NGT16dFasWJH6+vpql0MFVaJnSvRNAAB0b+3pmTrkSo/m5uaceuqpmT9/fh5++OEtHoTX1tamtrZ2o+l1dXUO3gEA6Fbcpqj7aE/PlOibAAAg2baeqeKhxx8P3ufMmZNHHnkkQ4YMqfQqAAAAuiw9EwAAdJx2hx6rVq3K3Llz297Pmzcvzz//fAYPHpwRI0bkr//6rzNr1qz89Kc/TUtLS5YsWZIkGTx4cPr06VO5ygEAADohPRMAAFRPu5/pMWPGjHz84x/faPpZZ52Vyy+/PGPHjt3k9x555JEcccQRW11+Y2Nj6uvr09DQ4DJtAAC6BcfA5dLRPVNizAAA0L205/i33Vd6HHHEEdlSTrIdz0UHAADo8vRMAABQPT2qXQAAAAAAAEAlCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUQrtDj8ceeywnnnhiRo4cmZqamkybNm2Dz4uiyKWXXpoRI0akX79+OfroozNnzpxK1QsAANCp6ZkAAKB62h16rF69OhMnTsy11167yc+//e1v5/vf/36uv/76PPnkkxkwYECOPfbYrFu3bruLBQAA6Oz0TAAAUD292vuF448/Pscff/wmPyuKIt/73vfyjW98IyeffHKS5NZbb82wYcMybdq0nHbaadtXLQAAQCenZwIAgOqp6DM95s2blyVLluToo49um1ZfX59JkyZl5syZm/xOU1NTGhsbN3gBAACU0fvpmRJ9EwAAbKuKhh5LlixJkgwbNmyD6cOGDWv77L2mTp2a+vr6ttfo0aMrWRIAAECn8X56pkTfBAAA26qiocf7cfHFF6ehoaHttXDhwmqXBAAA0KnomwAAYNtUNPQYPnx4kmTp0qUbTF+6dGnbZ+9VW1uburq6DV4AAABl9H56pkTfBAAA26qiocfYsWMzfPjwTJ8+vW1aY2NjnnzyyUyePLmSqwIAAOhy9EwAANCxerX3C6tWrcrcuXPb3s+bNy/PP/98Bg8enDFjxuT888/PP/zDP2TvvffO2LFjc8kll2TkyJE55ZRTKlk3AABAp6RnAgCA6ml36PHMM8/k4x//eNv7Cy64IEly1lln5eabb87/+B//I6tXr87ZZ5+dFStW5M///M/zwAMPpG/fvpWrGgAAoJPSMwEAQPXUFEVRVLuI/6yxsTH19fVpaGhwn1oAALoFx8C0lzEDAEB30p7j34o+0wMAAAAAAKBahB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAA6OZaW5urXQIAAFSE0AMAAKCbam1dnxUrHs877zRUuxQAAKiIXtUuAAAAgB2vqWlx1q17I/X1k1NT07Pa5QAAQEUIPQAAALqZlSufT8+eA1JfP7napQAAQEUJPQAAALqJlpZ1Wbnyqey008T06lVf7XIAAKDihB4AAADdwLp1C7N+/eLU138kNTU11S4HAAA6hAeZAwAAlFhRFFm58rkURXPq6g4VeAAAUGqu9AAAACipP93O6sD06jWw2uUAAECHE3oAAACUUFPTW2lqetPtrAAA6FaEHgAAACWzatVv0qNHv9TVTap2KQAAsEMJPQAAAEqitbU5jY1PZsCA8ende+dqlwMAADuc0AMAAKAE1q9fnjVrXk19/eTU1PSsdjkAAFAVQg8AAIAubs2aOWltbcqgQX9e7VIAAKCqelS7AAAAAN6foijS2Ph0evbsn5122r/a5QAAQNUJPQAAALqohoZfpX//camt/bNqlwIAAJ2C0AMAAKCLqq//cHr1GljtMgAAoNMQegAAAHRRHlgOAAAbqnjo0dLSkksuuSRjx45Nv379sueee+aqq65KURSVXhUAAECXo2cCAICO06vSC/zWt76V6667LrfcckvGjx+fZ555Jp/97GdTX1+f8847r9KrAwAA6FL0TAAA0HEqHnr86le/ysknn5wTTjghSbL77rvnjjvuyFNPPVXpVQEAAHQ5eiYAAOg4Fb+91WGHHZbp06fnt7/9bZLk17/+dR5//PEcf/zxlV4VAABAl6NnAgCAjlPxKz0uuuiiNDY2Zty4cenZs2daWlryj//4jznjjDM2OX9TU1Oampra3jc2Nla6JAAAgE6jvT1Tom8CAIBtVfErPe6666786Ec/yu23355Zs2bllltuyTXXXJNbbrllk/NPnTo19fX1ba/Ro0dXuiQAAIBOo709U6JvAgCAbVVTFEVRyQWOHj06F110UaZMmdI27R/+4R9y22235dVXX91o/k39xtLo0aPT0NCQurq6SpYGAACdUmNjY+rr6x0DdxPt7ZkSfRMAAN1be3qmit/eas2aNenRY8MLSHr27JnW1tZNzl9bW5va2tpKlwEAANAptbdnSvRNAACwrSoeepx44on5x3/8x4wZMybjx4/Pc889l+9+97v53Oc+V+lVAQAAdDl6JgAA6DgVv73VypUrc8kll+Tee+/NsmXLMnLkyJx++um59NJL06dPn61+36X9AAB0N46Bu5ft7ZkSYwYAgO6lPce/FQ89tpeDdwAAuhvHwLSXMQMAQHfSnuPfHlv8FAAAAAAAoIsQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEAp9Kp2AQAAALw/LS0tG7x/4YUXsnLlyhRFkZ49e6ZHjx7p2bNnevbsmf79+2efffZpm3ft2rXp16/fji4ZAAA6lNADAACgizr++ONzzjnnJEn69euXc845JytWrNjkvBMmTMhvfvObtveTJ0/O1772tfzt3/7tjigVAAB2CKEHAABAFzV37tx8+ctfzqpVqzb5eW1tbXbddde0trZm6NChee2117Lbbrtl7dq1aWhoyJlnnpm5c+fm8ssvT01NzQ6unu5s9erVWb58eYYMGZKddtqp2uUAACUi9AAAAOiinnrqqVx00UVZuXJl1q5dmxUrVmTZsmVZtmxZWlpactxxx2XatGlJ0hZ8rFu3Lh/+8IczZsyYvPHGG7nyyiuzZs2aXH311dX9YbaioaEh8+fPT//+/bPXXntVuxy20bp163L99dfn+eefz5w5c7J06dIsWbIkq1evTpIcfPDBefrpp9vmX7lyZQYOHFitcgGAEhB6AAAAdFG77LJL7rrrro2mt7a25u233866devapi1atCgtLS1ZvXp1pk+fvsH811xzTRobG/ODH/ygw2vemldffTUPPPBA3njjjcyfPz9vvPFG3njjjbbbdn3jG9/IVVddVd0i2UBRFHnjjTfy3HPP5amnnkqfPn1y6qmnprGxMStWrMhFF12Upqamjb7Xq1evjB07tu19U1NT9txzzxx44IH5P//n/2T06NE78scAAEqipiiKotpF/GeNjY2pr69PQ0ND6urqql0OAAB0OMfAtNf7HTOtra15+eWX89hjj+WBBx7I9OnTs2bNmrbPf/jDH+YLX/hC1qxZk9dffz3jx4/vkNteNTc35+GHH84999yTmTNn5p/+6Z9y1FFHJUluu+22zT5nZNSoUXnxxRdTX19f8ZqqadWqVVm0aFEWLVqU5cuXZ+edd86IESOy1157pU+fPtUur83atWvz+uuv57XXXsuPf/zjvPzyy2loaMjvf//7NDY2bvX7e+21V2666aYMHz48w4YNy8EHH5xFixZlxIgRGTt2bOrq6vJv//ZvSZIPfvCDmTlzZvr27dvRPxYA0AW05/hX6AEAAFXmGJj2qtSYWbduXWbMmJG///u/z6xZs9KjR4+89NJLee211/KXf/mXGTp0aD70oQ/lgAMOyAEHHJB99903o0aNytChQ9OjR492rWv58uW5//77c/vtt+dXv/rVBmHLEUcckf322y9f+tKX0tTUlKlTp2annXZKY2Nj9tprr3zgAx/I4Ycfnj333PN9/6zV1NzcnNdeey2zZ8/OvHnzsmDBglxzzTVt2/C0007LnXfeudH39t133/z6179ObW3tDqnzmWeeabs92pIlSzJnzpzMmTMnzzzzTJqbm/POO+9s9rt9+vTJ+PHjM2fOnKxbty6DBg1KXV1dBg4cmD59+qSlpSXjx4/Prbfe2vadurq6rFy5crPLPPvss9uuPvr5z3+eurq67LbbbhkxYkR69uy5xZ/lnXfeyfLlyzNr1qzMmjUr8+fPz7p163LcccfljDPOaOeWAQCqTegBAABdiGNg2qvSY6Yoipx77rmZOHFizj333Fx//fU577zz0tzcvMn599tvvzz66KPZZZddcv/99+fv//7vs3z58owdOzaDBg3KnDlz8s4776S1tTX33HNPxo8fv02/sf/ggw/mmGOOSfLuVSdnn332Bp+PGDEiBx10UN55550MGjQo119/fae96uPmm2/O3XffnVdeeSXz589Pa2vrBp/fcMMNGTVqVPr375/rrrsu06ZNy8iRI7PrrrtmxYoVee2117J+/fpcd911OeeccypS07p16/LEE0/k4YcfzsMPP5xVq1Zl6tSpefnll/PSSy/l7rvvzqpVq7a4jPr6+uy5555pbm5ObW1tDjzwwHz5y1/OuHHj0rt37zQ3N6d3797bVM/KlSuzePHiLFq0KHPmzMkrr7ySV155JbNmzcqyZcuSJDfeeGPOOuusDBw4sC0o6927d0aNGpUBAwYkSY488sj88z//c15//fVcd911+ad/+qe0tLRscp1/+Zd/mfvvv39bNxkA0Em05/jXMz0AAAC6uZqamlx//fVt788555w89dRTuemmmzY5/8svv9x2Unn27Nl54YUXkiSLFy/eaN6lS5dm+PDhSZIhQ4YkScaMGZPRo0dn0KBBqa+vz8CBA9OrV6/ssccebd8bM2ZMPvWpT7WdFH/jjTeyePHi/PSnP22b5ytf+Uo+/OEP56WXXsrChQszadKk7Lzzztu5NbZu/fr1efrppzNv3rz8+te/zq9//es88cQT+S//5b/kd7/7XZYsWZIFCxZs8ByL/v37Z9y4cdlzzz3z4osv5vOf//xGy12wYEGKosh//Md/5O67787//J//M8uWLcvatWvTr1+/91XrE088kTvvvDOPPfZYXn755Q2e85Ikf/EXf7HRd3r37p1TTz01e++9d/bee+8sW7Yso0aNysc//vG2v8PN2dbAI0kGDhyYgQMHZp999skRRxyxwWdXXnllLrvsspx77rkZOXJkDjnkkMyfPz8LFy5Mc3Nz5s2b1zbvH68AGjBgQG699daNAo++fftmwIABGTVqVE488cRtrg8A6Jpc6QEAAFXmGJj22hFjZsaMGZkzZ06GDBmSAQMGpKWlJS0tLWlqakpra2tOPvnk1NbW5sUXX8ztt9+eG264oe2385N3b9n01a9+NePGjUtdXV3Wrl2bvn37vu9nhKxevTrPP/98nn322UydOjVLlizJP//zP+e8887L1772tXz3u99N8u4toQ466KDstddeGTt2bPbYY49MmjRpq7eIKooi69atS9++fbN48eK89tprefPNN7N8+fIsXbo0ixcvznPPPZff/va3Wb169TbX3aNHjwwZMiSvv/56dtpppyTJN7/5zfzkJz/JmjVrsmbNmqxatSrLli1LS0tLampqsm7durS0tGTNmjX5+te/nptvvjm77757xo0blw984AMZPXp0262jPvnJT7bdJuuOO+7Iww8/nJaWlrz11lv57W9/mzfeeGODeoYPH54jjzwyv/nNb/Lqq69mn332yfjx49te++23X/bee+92hRcdobW1NZ/4xCfyk5/8JIcddlgef/zx1NTUpKWlJYsWLWoLldasWZPRo0dn4sSJSd4dt48++mj233//HHjggdl9993bfSs2AKDzcXsrAADoQhwD016dccw8+OCDOe6445IkX/va13L11Vd3yEPQk+Syyy7LlVdemZ49e+bb3/521qxZk1tvvTVz5szZ5PzLly9vu0Lh3HPPzb333ptevXpl/fr1aWpqyrp169pux7XzzjvnD3/4wzbVccghh+SQQw7JxIkT09DQkHfeeSd77LFHRowYkaFDh2bo0KEZNGjQNp10f+edd/LWW2/lrbfeymGHHdY2/aijjsrDDz+8ye/88WeoqanJO++8k9133z1vvfXWJucbPnx47r///kycODE1NTX53e9+l0GDBlU93NiSVatW5etf/3quuuqq7LLLLht9/otf/CJnnnlmvve97+XUU0+tQoUAwI4i9AAAgC7EMTDt1VnHzI033piWlpZ84Qtf6LDAI0nWrFmTs88+Oz/60Y+SJKecckq+9a1vZfDgwXnqqafy/PPP55VXXsmbb76Zt99+O88880zmzJmTF154IZdffnlmz569xeX36NEjY8aMyZtvvpkPfvCDOfTQQzNixIj07ds3b7zxRk444YR87GMfS//+/TvsZ/yj1tbW/OxnP8uqVavS2NiYV199NUuXLk1jY2OKosjPfvazrFmzJqeddlrbsyrOOOOMHHnkkW23pxo2bFiH/n3sSEVRpLm5Od/4xjdy9dVXJ0kmT56cX/7yl6X5GQGAjQk9AACgC3EMTHsZM++e/P7f//t/56tf/Wqam5tzxRVX5NJLL02SvPDCCznggAM2+90pU6bk85//fHr37p1ly5bl8ssvz3777ZcDDzwwhxxySPbbb7/07ds3ra2taWlpqerVEH/3d3+X73znO/nc5z6XG264YaPP//CHP+TEE0/ML3/5y/Tt2zd33nlnTjrppCpU2vH+9V//NdOmTcvSpUsza9asJO8+f+Y73/nODgmgAIDq8SBzAAAASq2mpiZTpkzJQQcdlIsvvjijRo1q+2z9+vXp2bPnBg+0HjhwYPbff/9MmDAhJ554Yg488MC2z4488shNrqNHjx5Vfx7EX/3VX+U73/lObrnlllx00UXZe++92z576623cuyxx+all15KfX197r///nzkIx+pYrUd580338z555+ftWvXJkkGDx6cG264Iaecckp1CwMAOh1XegAAQJU5Bqa9jJlt09zcnLVr12b9+vUZPHhw1QOM9+uEE07Iv//7v+f000/P7bffniRZsGBBPvKRj2TBggUZMWJEHnzwwUyYMKHKlXas++67L2eccUYOO+yw3HTTTfmzP/uzapcEAOwgbm8FAABdiGNg2suY6V6ee+65fOhDH0qSPP/885k4cWLWr1+fk046KfPmzcuDDz6Y3XffvbpF7iDNzc2d+uHrAEDHaM/xb9f8NRcAAADoJg488MCceuqpSZJLLrkkSdKnT5/827/9Wx5//PFuE3gkEXgAAFsl9AAAAIBO7sorr0yS3H///XnrrbeSJDvttFN23XXXapYFANDpCD0AAACgk9t3330zZcqUJMmTTz5Z5WoAADovoQcAAAB0Ad///vfz6quv5hOf+ES1SwEA6LR6VbsAAAAAYOt69OiRfffdt9plAAB0aq70AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAANBFtbZWuwIAAOhchB4AAABd1G23JXfemaxZU+1KAACgc+hV7QIAAAB4f848M+nRI7nvvmT9+mTkyOSoo96dBgAA3ZHQAwAAoAvbaafk9NPf/fO8ee9e/VEUyYAByTHHJHV11a0PAAB2JKEHAABASYwd++4rSVasSP6//+/dW1+demrSt29VSwMAgB1C6AEAAFBCgwYlf/3X1a4CAAB2LHd6BQAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEqhQ0KPt956K3/zN3+TIUOGpF+/fpkwYUKeeeaZjlgVAABAl6NnAgCAjtGr0gv8wx/+kMMPPzwf//jH8/Of/zy77rpr5syZk5133rnSqwIAAOhy9EwAANBxKh56fOtb38ro0aNz0003tU0bO3ZspVcDAADQJemZAACg41T89lY/+clPcvDBB+dTn/pUhg4dmgMPPDA//OEPK70aAACALknPBAAAHafiocfrr7+e6667LnvvvXcefPDBnHvuuTnvvPNyyy23bHL+pqamNDY2bvACAAAoq/b2TIm+CQAAtlVNURRFJRfYp0+fHHzwwfnVr37VNu28887L008/nZkzZ240/+WXX54rrrhio+kNDQ2pq6urZGkAANApNTY2pr6+3jFwN9HeninRNwEA0L21p2eq+JUeI0aMyH777bfBtA984ANZsGDBJue/+OKL09DQ0PZauHBhpUsCAADoNNrbMyX6JgAA2FYVf5D54YcfntmzZ28w7be//W122223Tc5fW1ub2traSpcBAADQKbW3Z0r0TQAAsK0qfqXHV7/61TzxxBP5X//rf2Xu3Lm5/fbb86//+q+ZMmVKpVcFAADQ5eiZAACg41Q89DjkkENy77335o477sj++++fq666Kt/73vdyxhlnVHpVAAAAXY6eCQAAOk7FH2S+vTzEEQCA7sYxMO1lzAAA0J1U9UHmAAAAAAAA1SD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBQ6PPT45je/mZqampx//vkdvSoAAIAuR88EAACV06Ghx9NPP50f/OAHOeCAAzpyNQAAAF2SngkAACqrw0KPVatW5YwzzsgPf/jD7Lzzzh21GgAAgC5JzwQAAJXXYaHHlClTcsIJJ+Too4/e4nxNTU1pbGzc4AUAAFB229ozJfomAADYVr06YqE//vGPM2vWrDz99NNbnXfq1Km54oorOqIMAACATqk9PVOibwIAgG1V8Ss9Fi5cmK985Sv50Y9+lL59+251/osvvjgNDQ1tr4ULF1a6JAAAgE6jvT1Tom8CAIBtVVMURVHJBU6bNi2f+MQn0rNnz7ZpLS0tqampSY8ePdLU1LTBZ+/V2NiY+vr6NDQ0pK6urpKlAQBAp+QYuHvZ3p4pMWYAAOhe2nP8W/HbWx111FF54YUXNpj22c9+NuPGjcuFF1641YN3AACAMtMzAQBAx6l46DFw4MDsv//+G0wbMGBAhgwZstF0AACA7kbPBAAAHafiz/QAAAAAAACohopf6bEpM2bM2BGrAQAA6JL0TAAAUBmu9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUKh56TJ06NYccckgGDhyYoUOH5pRTTsns2bMrvRoAAIAuSc8EAAAdp+Khx6OPPpopU6bkiSeeyEMPPZTm5uYcc8wxWb16daVXBQAA0OXomQAAoOPUFEVRdOQKfve732Xo0KF59NFH89GPfnSr8zc2Nqa+vj4NDQ2pq6vryNIAAKBTcAzcvbW3Z0qMGQAAupf2HP/26uhiGhoakiSDBw/e5OdNTU1pampqe9/Y2NjRJQEAAHQaW+uZEn0TAABsqw59kHlra2vOP//8HH744dl///03Oc/UqVNTX1/f9ho9enRHlgQAANBpbEvPlOibAABgW3Xo7a3OPffc/PznP8/jjz+eUaNGbXKeTf3G0ujRo12mDQBAt+FWRd3XtvRMib4JAIDurVPc3upLX/pSfvrTn+axxx7b4sF7bW1tamtrO6oMAACATmlbe6ZE3wQAANuq4qFHURT58pe/nHvvvTczZszI2LFjK70KAACALkvPBAAAHafioceUKVNy++2357777svAgQOzZMmSJEl9fX369etX6dUBAAB0KXomAADoOBV/pkdNTc0mp9900035zGc+s9Xvu58xAADdjWPg7mV7e6bEmAEAoHup6jM9OvC56AAAAF2engkAADpOj2oXAAAAAAAAUAlCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKXQYaHHtddem9133z19+/bNpEmT8tRTT3XUqgAAALocPRMAAFReh4Qed955Zy644IJcdtllmTVrViZOnJhjjz02y5Yt64jVAQAAdCl6JgAA6BgdEnp897vfzRe/+MV89rOfzX777Zfrr78+/fv3z4033tgRqwMAAOhS9EwAANAxelV6gevXr8+zzz6biy++uG1ajx49cvTRR2fmzJkbzd/U1JSmpqa29w0NDUmSxsbGSpcGAACd0h+PfYuiqHIl7Ajt7ZkSfRMAAN1be3qmiocey5cvT0tLS4YNG7bB9GHDhuXVV1/daP6pU6fmiiuu2Gj66NGjK10aAAB0am+//Xbq6+urXQYdrL09U6JvAgCAJFm5cuVWe6aKhx7tdfHFF+eCCy5oe79ixYrstttuWbBggYaPbdLY2JjRo0dn4cKFqaurq3Y5dAHGDO1lzNBexgzt1dDQkDFjxmTw4MHVLoVO6r19U2tra37/+99nyJAhqamp2aG12MdtH9tv+9mG28f22z623/ax/baP7bf9bMPtU83tVxRFVq5cmZEjR2513oqHHrvsskt69uyZpUuXbjB96dKlGT58+Ebz19bWpra2dqPp9fX1Bh7tUldXZ8zQLsYM7WXM0F7GDO3Vo0eHPHKPTqa9PVOy6b5p0KBBHVXiNrGP2z623/azDbeP7bd9bL/tY/ttH9tv+9mG26da229bL5KoeFfVp0+fHHTQQZk+fXrbtNbW1kyfPj2TJ0+u9OoAAAC6FD0TAAB0nA65vdUFF1yQs846KwcffHAOPfTQfO9738vq1avz2c9+tiNWBwAA0KXomQAAoGN0SOjx6U9/Or/73e9y6aWXZsmSJfngBz+YBx54YKMH9W1KbW1tLrvssk3e8go2xZihvYwZ2suYob2MGdrLmOl+tqdnqjbjdfvYftvPNtw+tt/2sf22j+23fWy/7Wcbbp+usv1qiqIoql0EAAAAAADA9vKkRAAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKXQ6UKPa6+9Nrvvvnv69u2bSZMm5amnnqp2SXRSl19+eWpqajZ4jRs3rtpl0Yk89thjOfHEEzNy5MjU1NRk2rRpG3xeFEUuvfTSjBgxIv369cvRRx+dOXPmVKdYOoWtjZnPfOYzG+13jjvuuOoUS9VNnTo1hxxySAYOHJihQ4fmlFNOyezZszeYZ926dZkyZUqGDBmSnXbaKZ/85CezdOnSKlVMtW3LmDniiCM22s+cc845VaqY7mhbxul73XzzzRuN2759++6gijuf99On3H333Rk3blz69u2bCRMm5N///d93ULWdz+67777R9qupqcmUKVM2OX93H38d1fN0l3MzW9p+zc3NufDCCzNhwoQMGDAgI0eOzJlnnplFixZtcZnd6VxFR/VP3WX8JVvfhpvaH9bU1OTqq6/e7DK7yxjsqH6sO50r2to2/P3vf58vf/nL2XfffdOvX7+MGTMm5513XhoaGra43M5w7qRThR533nlnLrjgglx22WWZNWtWJk6cmGOPPTbLli2rdml0UuPHj8/ixYvbXo8//ni1S6ITWb16dSZOnJhrr712k59/+9vfzve///1cf/31efLJJzNgwIAce+yxWbdu3Q6ulM5ia2MmSY477rgN9jt33HHHDqyQzuTRRx/NlClT8sQTT+Shhx5Kc3NzjjnmmKxevbptnq9+9au5//77c/fdd+fRRx/NokWL8ld/9VdVrJpq2pYxkyRf/OIXN9jPfPvb365SxXRH2zpO36uurm6DcTt//vwdVHHn1J4+5Ve/+lVOP/30fP7zn89zzz2XU045JaecckpefPHFHVhx5/H0009vsO0eeuihJMmnPvWpzX6nO4+/juh5utO5mS1tvzVr1mTWrFm55JJLMmvWrNxzzz2ZPXt2TjrppK0ut7ucq+iI/qk7jb9k69vwP2+7xYsX58Ybb0xNTU0++clPbnG53WEMdlQ/1p3OFW1tGy5atCiLFi3KNddckxdffDE333xzHnjggXz+85/f6rKrfu6k6EQOPfTQYsqUKW3vW1paipEjRxZTp06tYlV0VpdddlkxceLEapdBF5GkuPfee9vet7a2FsOHDy+uvvrqtmkrVqwoamtrizvuuKMKFdLZvHfMFEVRnHXWWcXJJ59clXro/JYtW1YkKR599NGiKN7dp/Tu3bu4++672+Z55ZVXiiTFzJkzq1Umnch7x0xRFMXHPvax4itf+Ur1ioL32NQ4fa+bbrqpqK+v33FFdXLt7VNOPfXU4oQTTthg2qRJk4r/9t/+W4Ur65q+8pWvFHvuuWfR2tq6yc+Nvz+pVM/TXc/NbOr4/72eeuqpIkkxf/78zc7TXc9VVKp/6q7jryi2bQyefPLJxZFHHrnFebrrGKxEP9bdzxVty3HfXXfdVfTp06dobm7e7Dyd4dxJp7nSY/369Xn22Wdz9NFHt03r0aNHjj766MycObOKldGZzZkzJyNHjswee+yRM844IwsWLKh2SXQR8+bNy5IlSzbY59TX12fSpEn2OWzRjBkzMnTo0Oy7774599xz8/bbb1e7JDqJP17iO3jw4CTJs88+m+bm5g32M+PGjcuYMWPsZ0iy8Zj5ox/96EfZZZddsv/+++fiiy/OmjVrqlEeJNn8OH2vVatWZbfddsvo0aNz8skn56WXXtoR5XVa7elTZs6cucH/FUly7LHH+r8i754nuO222/K5z30uNTU1m53P+Nu099PzODezZQ0NDampqcmgQYO2OJ9zFX/Snv7J+NuypUuX5mc/+9k2/ZZ9dxyDlejHuvu5om057mtoaEhdXV169eq1xWVV+9xJpwk9li9fnpaWlgwbNmyD6cOGDcuSJUuqVBWd2aRJk9ouq7ruuusyb968fOQjH8nKlSurXRpdwB/3K/Y5tMdxxx2XW2+9NdOnT8+3vvWtPProozn++OPT0tJS7dKostbW1px//vk5/PDDs//++yd5dz/Tp0+fjZpi+xmSTY+ZJPmv//W/5rbbbssjjzySiy++OP/3//7f/M3f/E0VK6U729w4fa999903N954Y+67777cdtttaW1tzWGHHZY333xzB1bbebS3T1myZIlj0s2YNm1aVqxYkc985jObncf427z30/M4N7N569aty4UXXpjTTz89dXV1m53PuYo/aW//ZPxt2S233JKBAwdu9fZM3XEMVqof687nirbluG/58uW56qqrcvbZZ29xWZ3h3MmWIxnoxI4//vi2Px9wwAGZNGlSdtttt9x1113blHoDtNdpp53W9ucJEybkgAMOyJ577pkZM2bkqKOOqmJlVNuUKVPy4osvlvJeuXSMzY2Z/9xATJgwISNGjMhRRx2V1157LXvuueeOLpNublv3bZMnT87kyZPb3h922GH5wAc+kB/84Ae56qqrOrrMTkefUjk33HBDjj/++IwcOXKz8xh/7AjNzc059dRTUxRFrrvuui3Oax/wJ/qnyrrxxhtzxhlnpG/fvlucrzuOQf3Y9tvaNmxsbMwJJ5yQ/fbbL5dffvkWl9UZ/u13mis9dtlll/Ts2TNLly7dYPrSpUszfPjwKlVFVzJo0KDss88+mTt3brVLoQv4437FPoftsccee2SXXXax3+nmvvSlL+WnP/1pHnnkkYwaNapt+vDhw7N+/fqsWLFig/ntZ9jcmNmUSZMmJYn9DDtce8bpe/Xu3TsHHnigcfv/bK1PGT58uGPSTZg/f35+8Ytf5Atf+EK7vmf8/cn76Xmcm9nYHwOP+fPn56GHHtriVR6b4lzFn2ytfzL+Nu8//uM/Mnv27HbvE5Pyj8FK9mPd9VzR1o77Vq5cmeOOOy4DBw7Mvffem969e7dr+dU4d9JpQo8+ffrkoIMOyvTp09umtba2Zvr06Rv81gZszqpVq/Laa69lxIgR1S6FLmDs2LEZPnz4BvucxsbGPPnkk/Y5bLM333wzb7/9tv1ON1UURb70pS/l3nvvzcMPP5yxY8du8PlBBx2U3r17b7CfmT17dhYsWGA/001tbcxsyvPPP58k9jPsMO9nnL5XS0tLXnjhBeP2/9lanzJ58uQN/q9Ikoceeqjb/19x0003ZejQoTnhhBPa9T3j70/eT8/j3MyG/hh4zJkzJ7/4xS8yZMiQdi/DuYo/2Vr/ZPxt3g033JCDDjooEydObPd3yzoGO6If627nirbluK+xsTHHHHNM+vTpk5/85CdbvdJoU6py7qSaT1F/rx//+MdFbW1tcfPNNxcvv/xycfbZZxeDBg0qlixZUu3S6IS+9rWvFTNmzCjmzZtX/PKXvyyOPvroYpdddimWLVtW7dLoJFauXFk899xzxXPPPVckKb773e8Wzz33XDF//vyiKIrim9/8ZjFo0KDivvvuK37zm98UJ598cjF27Nhi7dq1Va6catnSmFm5cmXxd3/3d8XMmTOLefPmFb/4xS+KD33oQ8Xee+9drFu3rtqlUwXnnntuUV9fX8yYMaNYvHhx22vNmjVt85xzzjnFmDFjiocffrh45plnismTJxeTJ0+uYtVU09bGzNy5c4srr7yyeOaZZ4p58+YV9913X7HHHnsUH/3oR6tcOd3Jtuzb/vZv/7a46KKL2t5fccUVxYMPPli89tprxbPPPlucdtppRd++fYuXXnqpGj9C1W2tT3nv9vvlL39Z9OrVq7jmmmuKV155pbjsssuK3r17Fy+88EK1foSqa2lpKcaMGVNceOGFG31m/G2oEj3PkUceWfzLv/xL2/vudG5mS9tv/fr1xUknnVSMGjWqeP755zfYJzY1NbUt473brzudq6hE/9Sdx19RbP3fcFEURUNDQ9G/f//iuuuu2+QyuusYrFQ/tu+++xb33HNP2/vudK5oa9uwoaGhmDRpUjFhwoRi7ty5G8zzzjvvtC3nP2/DznLupFOFHkVRFP/yL/9SjBkzpujTp09x6KGHFk888US1S6KT+vSnP12MGDGi6NOnT/Fnf/Znxac//eli7ty51S6LTuSRRx4pkmz0Ouuss4qiKIrW1tbikksuKYYNG1bU1tYWRx11VDF79uzqFk1VbWnMrFmzpjjmmGOKXXfdtejdu3ex2267FV/84hdLe/DN1m1qrCQpbrrpprZ51q5dW/z3//7fi5133rno379/8YlPfKJYvHhx9YqmqrY2ZhYsWFB89KMfLQYPHlzU1tYWe+21V/H1r3+9aGhoqG7hdCvbsm/72Mc+1nY8VRRFcf7557f1cMOGDSv+4i/+opg1a9aOL76T2Fqf8t7tVxRFcddddxX77LNP0adPn2L8+PHFz372sx1cdefy4IMPFkk2eWxu/G2oEj3PbrvtVlx22WUbTOsu52a2tP3mzZu32X3iI4880raM926/7nSuohL9U3cef0Wx9X/DRVEUP/jBD4p+/foVK1as2OQyuusYrFQ/9t7vdKdzRVvbhpsbn0mKefPmbbCcP36ns5w7qfl/hQEAAAAAAHRpneaZHgAAAAAAANtD6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCv8/EK+Kgrof1WcAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"\n",
"import trajectron.visualization as vis\n",
"# print(node.data.data)\n",
"\n",
"\n",
"for i in range(len(t.history)):\n",
" timestep = i+1\n",
" input_dict = {}\n",
" # print(node.data.data[-1])\n",
" for t in input_tracks:\n",
" node = t.to_trajectron_node(camera, online_env)\n",
" node.first_timestep = 0 # reset loaded track timestep\n",
" input_dict[node] = np.array(object=[node.data.data[i]])\n",
" # print(node.data.data[i])\n",
"\n",
" dists, preds = trajectron.incremental_forward(input_dict,\n",
" maps,\n",
" prediction_horizon=50,\n",
" num_samples=10,\n",
" full_dist=False,\n",
" gmm_mode=True)\n",
" prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories({timestep: preds},\n",
" eval_scene.dt,\n",
" hyperparams['maximum_history_length'],\n",
" hyperparams['prediction_horizon']\n",
" )\n",
" # print(trajectron.node_data[node]._right_index%trajectron.node_data[node]._capacity)\n",
" # # print(len(preds[node][0][0]))\n",
" # print(\n",
" # len(prediction_dict[timestep][node]),\n",
" # len(histories_dict[timestep][node]),\n",
" # len(futures_dict[timestep][node])\n",
" # )\n",
"\n",
" if timestep > 2 and (timestep%10 == 0):\n",
" fig = plt.figure(figsize=(20,5))\n",
" (ax1, ax2) = fig.subplots(1,2)\n",
" vis.visualize_distribution(ax1,\n",
" dists)\n",
" \n",
" vis.visualize_prediction(ax2,\n",
" {timestep: preds},\n",
" eval_scene.dt,\n",
" hyperparams['maximum_history_length'],\n",
" hyperparams['prediction_horizon'])\n",
" [ax.set_xlim([0, 25]) for ax in [ax1, ax2]]\n",
" [ax.set_ylim([0, 12]) for ax in [ax1, ax2]]\n",
" fig.show()\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 3.5313, 7.4048],\n",
" [ 3.4009, 7.4108],\n",
" [ 3.283, 7.4148],\n",
" [ 3.1773, 7.4189],\n",
" [ 3.0799, 7.4246],\n",
" [ 2.9867, 7.4343],\n",
" [ 2.895, 7.4478],\n",
" [ 2.8033, 7.4638],\n",
" [ 2.7102, 7.4809],\n",
" [ 2.6148, 7.4974],\n",
" [ 2.5164, 7.5119],\n",
" [ 2.4143, 7.5233],\n",
" [ 2.308, 7.5314],\n",
" [ 2.1988, 7.5376],\n",
" [ 2.0887, 7.5438],\n",
" [ 1.9807, 7.5519],\n",
" [ 1.88, 7.5653],\n",
" [ 1.786, 7.5849],\n",
" [ 1.6948, 7.6096],\n",
" [ 1.6013, 7.6312],\n",
" [ 1.5074, 7.6483],\n",
" [ 1.4168, 7.6609],\n",
" [ 1.3341, 7.6697],\n",
" [ 1.2634, 7.6755],\n",
" [ 1.2049, 7.6787],\n",
" [ 1.1542, 7.6785],\n",
" [ 1.1072, 7.6745],\n",
" [ 1.061, 7.6669],\n",
" [ 1.0157, 7.658],\n",
" [ 0.9709, 7.6495]])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"position_state = {'position': ['x', 'y']}\n",
"node.first_timestep = 0\n",
"history = node.get(np.array([timestep-30,timestep]), position_state)\n",
"history[~np.isnan(history.sum(axis=1))]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}