1607 lines
320 KiB
Text
1607 lines
320 KiB
Text
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"%matplotlib inline\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import glob\n",
|
||
"import numpy as np\n",
|
||
"import seaborn as sns\n",
|
||
"import pandas as pd\n",
|
||
"\n",
|
||
"from collections import OrderedDict"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def pretty_dataset_name(dataset_name):\n",
|
||
" if dataset_name == 'eth':\n",
|
||
" return 'ETH - Univ'\n",
|
||
" elif dataset_name == 'hotel':\n",
|
||
" return 'ETH - Hotel'\n",
|
||
" elif dataset_name == 'univ':\n",
|
||
" return 'UCY - Univ'\n",
|
||
" elif dataset_name == 'zara1':\n",
|
||
" return 'UCY - Zara 1'\n",
|
||
" elif dataset_name == 'zara2':\n",
|
||
" return 'UCY - Zara 2'\n",
|
||
" else:\n",
|
||
" return dataset_name"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"dataset_names = ['eth', 'hotel', 'univ', 'zara1', 'zara2', 'Average']\n",
|
||
"alg_name = \"Ours\""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Displacement Error Analysis"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 79,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"prior_work_fse_results = {\n",
|
||
" 'ETH - Univ': OrderedDict([('Linear', 2.94), ('Vanilla LSTM', 2.41), ('Social LSTM', 2.35), ('Social Attention', 3.74)]),\n",
|
||
" 'ETH - Hotel': OrderedDict([('Linear', 0.72), ('Vanilla LSTM', 1.91), ('Social LSTM', 1.76), ('Social Attention', 2.64)]),\n",
|
||
" 'UCY - Univ': OrderedDict([('Linear', 1.59), ('Vanilla LSTM', 1.31), ('Social LSTM', 1.40), ('Social Attention', 0.52)]),\n",
|
||
" 'UCY - Zara 1': OrderedDict([('Linear', 1.21), ('Vanilla LSTM', 0.88), ('Social LSTM', 1.00), ('Social Attention', 2.13)]),\n",
|
||
" 'UCY - Zara 2': OrderedDict([('Linear', 1.48), ('Vanilla LSTM', 1.11), ('Social LSTM', 1.17), ('Social Attention', 3.92)]),\n",
|
||
" 'Average': OrderedDict([('Linear', 1.59), ('Vanilla LSTM', 1.52), ('Social LSTM', 1.54), ('Social Attention', 2.59)])\n",
|
||
"}\n",
|
||
"\n",
|
||
"\n",
|
||
"# These are for a prediction horizon of 12 timesteps.\n",
|
||
"prior_work_ade_results = {\n",
|
||
" 'ETH - Univ': OrderedDict([('Linear', 1.33), ('Vanilla LSTM', 1.09), ('Social LSTM', 1.09), ('Social Attention', 0.39)]),\n",
|
||
" 'ETH - Hotel': OrderedDict([('Linear', 0.39), ('Vanilla LSTM', 0.86), ('Social LSTM', 0.79), ('Social Attention', 0.29)]),\n",
|
||
" 'UCY - Univ': OrderedDict([('Linear', 0.82), ('Vanilla LSTM', 0.61), ('Social LSTM', 0.67), ('Social Attention', 0.20)]),\n",
|
||
" 'UCY - Zara 1': OrderedDict([('Linear', 0.62), ('Vanilla LSTM', 0.41), ('Social LSTM', 0.47), ('Social Attention', 0.30)]),\n",
|
||
" 'UCY - Zara 2': OrderedDict([('Linear', 0.77), ('Vanilla LSTM', 0.52), ('Social LSTM', 0.56), ('Social Attention', 0.33)]),\n",
|
||
" 'Average': OrderedDict([('Linear', 0.79), ('Vanilla LSTM', 0.70), ('Social LSTM', 0.72), ('Social Attention', 0.30)])\n",
|
||
"}\n",
|
||
"\n",
|
||
"linestyles = ['--', '-.', '-', ':']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 81,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"mean_markers = 'X'\n",
|
||
"marker_size = 7\n",
|
||
"line_colors = ['#1f78b4','#33a02c','#fb9a99','#e31a1c']\n",
|
||
"area_colors = ['#80CBE5','#ABCB51', '#F05F78']\n",
|
||
"area_rgbs = list()\n",
|
||
"for c in area_colors:\n",
|
||
" area_rgbs.append([int(c[i:i+2], 16) for i in (1, 3, 5)])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 94,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_attention_radius_3_fde_most_likely.csv\n",
|
||
"results/hotel_attention_radius_3_fde_most_likely.csv\n",
|
||
"results/univ_attention_radius_3_fde_most_likely.csv\n",
|
||
"results/zara1_attention_radius_3_fde_most_likely.csv\n",
|
||
"results/zara2_attention_radius_3_fde_most_likely.csv\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>error_value</th>\n",
|
||
" <th>error_type</th>\n",
|
||
" <th>type</th>\n",
|
||
" <th>dataset</th>\n",
|
||
" <th>method</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <td>0</td>\n",
|
||
" <td>0.242668</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>ml</td>\n",
|
||
" <td>eth</td>\n",
|
||
" <td>Ours</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0.158331</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>ml</td>\n",
|
||
" <td>eth</td>\n",
|
||
" <td>Ours</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>2</td>\n",
|
||
" <td>0.095482</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>ml</td>\n",
|
||
" <td>eth</td>\n",
|
||
" <td>Ours</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>3</td>\n",
|
||
" <td>1.069288</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>ml</td>\n",
|
||
" <td>eth</td>\n",
|
||
" <td>Ours</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>4</td>\n",
|
||
" <td>1.734359</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>ml</td>\n",
|
||
" <td>eth</td>\n",
|
||
" <td>Ours</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" error_value error_type type dataset method\n",
|
||
"0 0.242668 fde ml eth Ours\n",
|
||
"1 0.158331 fde ml eth Ours\n",
|
||
"2 0.095482 fde ml eth Ours\n",
|
||
"3 1.069288 fde ml eth Ours\n",
|
||
"4 1.734359 fde ml eth Ours"
|
||
]
|
||
},
|
||
"execution_count": 94,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Load Ours\n",
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}*attention_radius_3*fde_most_likely.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = alg_name\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']\n",
|
||
"perf_df = perf_df.rename(columns={\"metric\": \"error_type\", \"value\": \"error_value\"})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 95,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Load Trajectron and GAN\n",
|
||
"errors_df = pd.concat([pd.read_csv(f) for f in glob.glob('csv/old/curr_*_errors.csv')], ignore_index=True)\n",
|
||
"del errors_df['data_precondition']\n",
|
||
"errors_df = errors_df[~(errors_df['method'] == 'our_full')]\n",
|
||
"errors_df = errors_df[~(errors_df['error_type'] == 'mse')]\n",
|
||
"errors_df.loc[errors_df['error_type'] =='fse', 'error_type'] = 'fde'\n",
|
||
"#errors_df.loc[errors_df['error_type'] =='mse', 'error_type'] = 'ade'\n",
|
||
"errors_df.loc[errors_df['method'] == 'our_most_likely', 'method'] = 'Trajectron'"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 96,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/pandas/core/frame.py:7123: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n",
|
||
"of pandas will change to not sort by default.\n",
|
||
"\n",
|
||
"To accept the future behavior, pass 'sort=False'.\n",
|
||
"\n",
|
||
"To retain the current behavior and silence the warning, pass 'sort=True'.\n",
|
||
"\n",
|
||
" sort=sort,\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>dataset</th>\n",
|
||
" <th>method</th>\n",
|
||
" <th>run</th>\n",
|
||
" <th>node</th>\n",
|
||
" <th>sample</th>\n",
|
||
" <th>error_type</th>\n",
|
||
" <th>error_value</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <td>2186000</td>\n",
|
||
" <td>hotel</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Pedestrian/0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>4.045972</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>2186001</td>\n",
|
||
" <td>hotel</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Pedestrian/0</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>3.717624</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>2186002</td>\n",
|
||
" <td>hotel</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Pedestrian/0</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>5.378286</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>2186003</td>\n",
|
||
" <td>hotel</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Pedestrian/0</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>4.215567</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>2186004</td>\n",
|
||
" <td>hotel</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>Pedestrian/0</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>4.663851</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>77099995</td>\n",
|
||
" <td>zara2</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>99</td>\n",
|
||
" <td>Pedestrian/35</td>\n",
|
||
" <td>1995</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>0.620136</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>77099996</td>\n",
|
||
" <td>zara2</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>99</td>\n",
|
||
" <td>Pedestrian/35</td>\n",
|
||
" <td>1996</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>0.681608</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>77099997</td>\n",
|
||
" <td>zara2</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>99</td>\n",
|
||
" <td>Pedestrian/35</td>\n",
|
||
" <td>1997</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>0.860765</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>77099998</td>\n",
|
||
" <td>zara2</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>99</td>\n",
|
||
" <td>Pedestrian/35</td>\n",
|
||
" <td>1998</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>0.545317</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td>77099999</td>\n",
|
||
" <td>zara2</td>\n",
|
||
" <td>sgan</td>\n",
|
||
" <td>99</td>\n",
|
||
" <td>Pedestrian/35</td>\n",
|
||
" <td>1999</td>\n",
|
||
" <td>fde</td>\n",
|
||
" <td>1.027843</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>25700000 rows × 7 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" dataset method run node sample error_type error_value\n",
|
||
"2186000 hotel sgan 0 Pedestrian/0 0 fde 4.045972\n",
|
||
"2186001 hotel sgan 0 Pedestrian/0 1 fde 3.717624\n",
|
||
"2186002 hotel sgan 0 Pedestrian/0 2 fde 5.378286\n",
|
||
"2186003 hotel sgan 0 Pedestrian/0 3 fde 4.215567\n",
|
||
"2186004 hotel sgan 0 Pedestrian/0 4 fde 4.663851\n",
|
||
"... ... ... ... ... ... ... ...\n",
|
||
"77099995 zara2 sgan 99 Pedestrian/35 1995 fde 0.620136\n",
|
||
"77099996 zara2 sgan 99 Pedestrian/35 1996 fde 0.681608\n",
|
||
"77099997 zara2 sgan 99 Pedestrian/35 1997 fde 0.860765\n",
|
||
"77099998 zara2 sgan 99 Pedestrian/35 1998 fde 0.545317\n",
|
||
"77099999 zara2 sgan 99 Pedestrian/35 1999 fde 1.027843\n",
|
||
"\n",
|
||
"[25700000 rows x 7 columns]"
|
||
]
|
||
},
|
||
"execution_count": 96,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = perf_df.append(errors_df)\n",
|
||
"errors_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 97,
|
||
"metadata": {
|
||
"scrolled": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n",
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n",
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n",
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n",
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB/IAAASvCAYAAAAaDLIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hkVZn48e/LAIIkiaKgYMKACJINrGBGVFQQEJGgq+KurjkLK+KKcdc1/QyrDggqiIKKGZCoRBFJogIDwwgISA4CM+/vj3PLvnW7qruqunq6uuf7eZ5+Zu6tG05XV91z73nPeU9kJpIkSZIkSZIkSZIkaTQsN9MFkCRJkiRJkiRJkiRJYwzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkSxo5EbEgIrL6WTDT5ZEkaVkWEefV6uU7J9n2xbVtMyLeNaxjS5I0qiJi/0b9t79lkiTNZaNYz4ximTQ3NT5np8x0eTS3LT/TBZAkSZIk9Sci1gC2ATYCHgKsDNwF3AosAP6SmQtnrICS5qyIWBnYEngcsCawCnAPcDtwDXAFcGVmLpmxQmrOioi1KfXfIyj134qU+u8W4CpK/ffXmSuhpLnIuk+SNFMM5EsaWDVafqPaqp0y85SZKY0kSUVEfAg4tLbqvMzcZkjH3g04trbqRmCDzLx/GMfX7BQRLwZ+XFt1SWY+eRrOsyKwD/AGYFsgJtn+JuBc4CTgZ5l5aeP184Cthl3Ohrb3IiKeDFzUYbslwMaDdj6IiGOB3Tq89MXMfPMgx5Q0JiICeClwIPBcJm9PuiMizgdOBX4GnGtwY+6pRjp+s7bq1MzccRrO82Bgf+D1wBY9bH89cA6l/vtpZv6l8foC2tsypkPbexEROwK/7rDdvcD6mXnbICepRgE+q8NLh2Tmhwc5pqTCuk+DiIizgO0aq3fMzFNnojySZj9T60uSJGmuOQLI2vLWEfHEIR17v8bytw3ia2mIiK2A3wFfpzQMTRjEr6wD7Ax8GrgkIh4zfSWcsuUonRT6FhFrAS8ZbnEktUTERsCJwPHAC+ltUMhqwI7AfwJn4XdUA4qIf6F0APsiPQTxK+tTgm//C/y5ymIzqlYC9hhkx4jYGPiXYRZGUmHdp0FExBMYH8SH8e0I/Rxz40Ya9/kDHOOU+jEGLctc4RQMmm0M5EuSJGlOycxrGD/iad+pHjci1qU04tQdPtXjSpOJiB2A04BNO7x8F3ApcDZwMXDdRIcafumG6jUD7rcXJbWypCGLiEcDZwLP7vDyfcDllJHPFwILKdk1Oh5qWgqoOa3KeHMi8OgOL99OqffOBi4B/jbRoYZfuqEa9D51X0b/d5NmHes+TUG3gP3uVXYZSeqbqfUljZzM3HimyyBJmvUOp73hZZ+I+OAUUxvuDaxQW/5DZl4whePNCpm59UyXYVkWEesBPwLqDT//AL4EzAcuysxs7LMOJfX+i4FXAA/tcvh/A1bvoRgr0T51AJQ09rf3sO+dk7y+hLEO5k+MiG0y89wejltXbzCrH0/SFETECpTv/ga11QkcBXwFOCszH2jssyplyo6dgd2BUc4EMjSZOZ9yTdaQVFlkvkf7vdddlFH2R2bmZR32WZ8yEvKlwMuAtboc/tXAyj0U46HAkY11z+thP4BbJnm9Xl89IyIelZlX9XjslnoHAOs/aQis+3pn3dcuIpaje8fk1SjPT99aeiXSdMpMO+poqTGQL0mSpLno+5QUrKtWyxtSAvsnTuGYzdFSjsbX0nAo8JDa8g3A8zPzD912yMybgJ8CP42ItwC7Au+gfcoJMvOcXgpQNU42nVadZ6ouAB4LtNIe7wv0HMiv0lduW1t1MmUOU0lTdyDwpNryvcBumfnTbjtk5p2UuYFPBd4XEc8C3g4sns6Cak76JKUjWctVwPMy84puO2Tm9cAPgR9GxIGUlPVv77Ddmb0UoEpd39x3KveSdWdSOh2sSBm1uy9wSK87R8QzaQ8WWv9Jw2Hdp0E9j/YOIGcAz6wt74+BfEkDsKemJEmS5pzMvIsyiqtuKvPSbQpsWVv1AONHaElDFRErUtLG1/3rREH8psxcnJk/yMxnThT8mEH3AsfUll9VjYTqVf17fRelE4+k4WjWm4dMFMjoJDNPzcyXZWYzq4fUVUSsSRlVX7d3P/VYZt6fmUdl5taZeetwSzgUfwd+UlvuN71+/ft5A/CLKZdIElj3aXDNz86HgfNryztFxCOXXnEkzRUG8iVJkjRXNUfMv7zLyOJeNB/Kf56ZE83FKg3DdrSnvl9Ee6P/XFH/rq4N7NLLTlX6yn1qq37A5Kn8JfUgItaipAluWQJ8bYaKo2XPjrRnEf1DZp41Q2WZTvX679HVKPtJRcTKlGwDLd+mdDKVNAXWfRpURKxBmdKlZRHwa9o7/7eyr0hSX0ytL2lOq0Z0PR14MiUt7e3AQuDUzJxszrpez/FIYGvK/HlrArcB1wNnVqn9pnLsFYDHU9J6rU+ZU+kuSu/9PwK/a87NNQwRsQHl4eXhlAb1W4HjMvOvwz6XJE2j0yhpWB9VLa9CmbNwfj8HiYh5lLlU63o+RkSsRqmHHk+Zq3VlynX1JuD8zPxLP+Xp8ZxBySCwJbAucA+lbjojMxcO+3wzofq7bAJsCjyMEvC+h1JH/gk4LzPvm7kSDsWGjeXLMzM7bjmLZeaZEfEXSop9KA1cx/ew63Nof48Op3wWJE3dBo3lmzLz5qVdiIjYgvIstB4lzfrfKM9zZ2TmPUM8z+OBpwDrUOrqe4EbgcuAC6e7PomI9Sj3Co+hPLcuT6nPrgfOnupz5SzUrP/+OCOlmH4/pdwPrlMt70tJxTyZl9He0e9wYKfhFk1aJln3WfcNag/Kc37LdzJzSUR8B/g0MK9avy/w0aVduOlSPZNvTXmOWw94EOUzdBWlXfwfQz7fesAOlDaeFSh16KXAWZk566ayqL6DT6W8d6tQfp+/Ur7rt03D+Tan/L3WA/5B+a79JjMXDPtcGi4D+ZJGTkQsADaqFq/OzI0n2PbDwH/WVu2UmadExIOA9wBvo9yMNi2OiGOB92bm1QOUcUXgTcAbaJ87qy4j4nzg0Mz8UR/HXodyA/hiys3JRKNH74qI7wIf7ycQFBH1IMCpmbljtX4Xyhy6OzI+a8siemtUl6SRkJkZEUfQXk/sS5+BfMp8ow+vLf8dmDBNYkQ8CXgV8AJKMH3eBNsuAr4AfCkzb++lQBHx4kYZ3p2Zn65e2w84GHh0l31PB96ZmT3NQx4R5zE2MuWuzBw0q8GURcRDgN0o6Xafxdi86p3cGxHHAR/LzIuXRvmmwWqN5a6fozngW4zNDbxLRKyVmX+fZJ96poyFlFEve09H4aRl0Ixdf6oOcO8FDqC9/q27NyJ+Dhw06DW+eu56N6W+fsQEm94VEb+ijMr8WacOVRGxP/DN2qoDMnP+BOcOyry5e1Dm1H38JGW9CPgMcNR0dOQeQctE/ZeZ91dBnrdUq14ZEf+RmfdOsmu9/vtDZl4YEQbypamz7htj3def/RvLRwJk5g0RcSKlXQDgcRHxjMw8c7IDNtrH6/arnvm7OSAz53doM68fe6LO4f9sJ56gbBsDB1E6lnVqdwe4OyJ+ABycmVdNdLzacRfQISYQEZsAHwd2pXOW8Zsj4mPA5zPz/gnK3K0c34yIb3Z5DeBRzWB3t7b1yVQxi7cAB1I6sXTyQEScCnw4M3vp4EdE7Eh5Hm45JDM/XL32KspnoeN3LiLOBt7V67m09JlaX9KcU40mPwv4CN1vJuYBewLnRcRT+zz+dpQRAZ+lexAfSsqkrYEfRsSPImKVHo69JnAd8EVgZyYO4kPprfc64OLqBnogUXweOAF4NtYPkuaOw4H6A9aOA8xL10x/952JRidExF7AJcCHgG2YvAFoA+Aw4MKIeEqfZaufd+XqQXk+XYL4lR2AMyNijwm2GVXXA/9HCeRPFMSHMnrlVcDvI+Jt012wadKc03eL6sF/LjqCse/qipS/XVdVY+fLa6uOzMwl01Q2aVnUvP6sHRGP7bjlEEXEs4C/AB+keyADyjX+ZZRr/H8NcJ43Uhpz38PEgQwoz1wvo0xt0qlBfRCfomQOejOTBDIqm1Hq919Xo9Hmuubnb9tqOpW5qJ5e/yGUIEVXEfFwSifTTvtLmhrrvjHWfT2KiMdRssG2XJyZF9aWj2zsMlEQfuRFxIeAy4HX0r3dHeDBlGnQ/hgRr5vC+XYHfk959ut2L7A2pdPHcRGx0qDnmm4RsSklg8Cn6B7EhzIA+znA6RHxjSpj7yDnWzEijqRMwTPRd2474JSpxBY0vebqTbCkZddDgBOBLWrrFgHnARdT0sbUrQP8KCJWpwcR8RJK77ZHNV66j3ITcw4lyN/sKfoS4OQebibmMT5bymLKjfbvgbOr4zd/jwdReg8OOtfSxyg30i33VOc5nxI0kaRZqer5fVptVQCv6XX/DsFCmLzBtNO1/m5KPXEu5dq6gPYOBgAbA6dFRLOO6UUAR9Ne1puBC4ELKFPL1K0AfCsinjzAuWZSM4i9BLgG+AOljryUUofVzQP+JyLeMf3FG7pLGstrUBr45pxqhMPptVWT3dO8ktI41HLEsMskLeOupKTYrftENZpuWlTZwX5OSfdZdy/VtGKUdK1184APRMTX+zjPZ4EvM77TdOu561zgog7nGqZO9wq3UNIZn0159ruuwzbPpDxXrtzhtbmkWf89gvbn1TkjM8+n/fedrP7bh7FOoouBo6ajXNIyyrrPum8QzcB887p8PKU9oGWPEf5duoqIeRExHziU0vG67mbKM/l5lHb4uhWB/4uItw9wzl2A7zI2bcH9lGn0zqG0qTTtAnyy3/MsDRGxNeV5tzno4n7gz5T3rtOUtgdQYhfN97wXh9M+TeQtlL/T7xjfcWke5e+0zQDn0TQzkC9prvkM8ARKIP0LwGMzc8PM3CYzN6P00HsXpZJs2ZAeGsWrXnNH0z7n0emUFPhrZOYTMnO7zHwipUfiG4AbattuC/xPj7/HecAHKKmMV8nMR2fmUzNz++r4q1J64f+isd8XI2KyXrVNT6L0xoVy4/BKYK3MfGJmbp2ZD6P0gv1Dn8eVpFHRDLz30+nplbRf9y/tMSX9A8APgX+l9LRetaontq2urY8C1qQ8lF1Z228NxvfY78WBlE5jVOfdBlg3M7fIzC0p9d+etDfMrAj87wDnmmkXAx8Gtqe8rxtl5uZVHbkpJSXmDsAPGvsdVtXls0ZmXgI0pwA6KCKOrKZvmGvq39Vto8wZ2E29weyczJyr8ydLM6JK7X1SY/UrgJMi4hnDPl/1DHMk7Y38NwOvp9RnT8zMrTJzPcqot2bqz9dGxIE9nOetwFsbq6+kpMRdt3ru2jYzn1Kd65FVGU4e5PeaxB2UlMS7Aw/PzLUy80lVffbUzHw45Vn1fbQ3tm5KSS87l/2W0thc99mI+EpETJR1aLaqd0Z7fkQ8dIJt6/XfLzLzhq5bSuqLdZ91X7+qbDH1gQJJI5CfmXfSPlXpGpRsB5N5NWUKgn0a639Zre/202orPqK2rtmmO9H+7+xSnoNpr4Pup7QnbJqZ61TP5Ntk5obAY4Gv0D544ZMRUc9cMJk1KNOvzQOupWQAWDszH1+1vz8K2ISSNaLu37s8919f+x0/1XjtU0z8nkxpkFs1QOR7lDaglrsp7fHrZ+Ym1Xu3AbA546e2fSEl83A/XgPsVf3/58DTKO/f5pm5FWVw48tp7zwwjxJP0YhpjvqUhmbj9/9k42k8/LULDttl0rlxNn7/TzZk+j7n1y84bJfJ5i1j4/f/ZH069zjs2YLDdlkwlf2XMY+mjFZ/RWb+tPliZt4FfCYirqc9ULJ/RHxognl0lqe9ByCUuWUO7TRPVGbeAXwtIn5KGcH/uOqlAyPiq5l5QZfy3wU8LTPPmuiXrOaGOonyMHEQY5X5qpSRCu+daP+Gdat/TwdeVN1gNs83W+cWlia19eGbbTzTZZjIeftdtKCX7Sb4Pa4/b7+LJq2vtj58synXV9B7eZey7wGfp6QHBNgkIraf7Fpbafau7yV96ZmUOdSunWijzLwNmB8R36PMd9+a2/TpEbFDZp7efe9xWo3a78vMT3Q41wPAMRFxGaWzWKs3904R8djM/Esf55pJz87MX0+0QWYupjRynRERbwK+VL20IvAOypQ0s8lhlNEzda8GXh0RF1PuB86iBLOvbO48y7S+q62R9vvSobNllbVih9oq0wovJQ987avLUxpXNb2uXf71bxiFuWA/ThnZVLcT5fp6NaUh+beUUVGXTXF6iy9Rsqu1LAR2yMxmZyYy87dVGuL5tDeefyYifpSZnUYzUWWhaTbcHgvsk5nNjGetcy2kTOnyfxGxFeODy4P6JvCBzGxmzGmefxFlNOh3ac8M9/qIOCQz/z6k8oyUzLwvIj4DfLS2Oiid5d8QEedT3o+zgHMz85oZKOYwHUmp75ejtGHtTYdBANVovnpHPuu/GXLtBo/YuMtL12+4aOGkz17XbvCI1emckvq+DRct7HgN63CMbm2eN224aOG4dp0O+z+Y8aPAAZZsuGhhT9+pazd4RLdnyFs3XLSwOdqz0/4rbrhoYdcpy2aIdZ91Xz92onR8aDmtev+ajqRc21v2B74z0YEz80z459zudddl5omTFax6NryyOsYtjdcm3b+uCsB/qLbqJmDnzDyvy7mvoLSB/5qS1r1Vv/0/SqC6F63vxu+AF2bmuGwRmfnniNiVMlXsC6vVy1EGVLy9se29lCy+RETzeebSft+TPn2MkoGx5TZgp07xgcz8A/DyiPgo7c/C746IYzLzdz2es9VGdGhmHtzhPIuB4yPiUkoWx9Yz+LYRsXljegjNMAP5mk5XTeOxH0Xn9ClNZzC8eXyadgJO6WG77wLPmuK5pi2F0xz1vk5B/LrMPCoi3kKZAwbKw8tWlIaATnYH6umHv5KZk/aEy8xFEbEbJT1UKwvKOxnfm7K1/T0TlKHbOQ6NiOcx1qC9P/0F8qHclO/RKYgvLQOms74ahl7rgG6/x9Ksr2AE66zMvLOaO77e4LEvk1xvqwfmerBwMaVH+GTn+3Of5bsrIvamPGS3OowdQHua8V4c1SmI3zjXRRHxNeDfq1VBeeCdFb2uJwvid9j+/0XE8xkb8fCqiPi3bo1WI+qrwPMpo4Ganlz9vBUgIv5O6UhyCnBCZv5pKZVxKDLzjog4nrFGrn2qjpbNTpP7MnatuY9y/dLSsSGjX2/OBb0+706rzDwjIg4FDurw8kaU0Xqvr5bvjIhzKNefn3Vr2O2kyr5RD5osAXbvFMiolW1JRLyWMqXaZtXqBwNv6lJeKBnP6nOMngHs2WsQJksK9KHo91iZeXVEvJ6qAZpyv7AXY53V5qJPAM+ufpq2qn4AiIi/Uf6epwA/muizM4oy868RcSKlvofSkbRTNr96B9NbgR9Nd9nU1VSfvV5L57/xhbRPFTmRbm2eB1CCvZN5PnBch/W30R5cnki3Z8hDKBm0JvMkSnvZyLDuG3dO676J7d9Y7pZd71fA3xjrPPPciNig6rQwGxzMWLv2EmDXXj7vmXl01Rnk3dWqp0TEc/sImt9OGazXdcqHzFxcpe1/YW31zjQC+TMlIh5CuebXvW6CQX4AZOaHImJLyu8C5f1/O31MFQn8sFMQv3GeP0XE52mPJexMqY80IkytL2muWQR8scdtj24sbznBtm+r/f9u4P29FigzL6KkOW7ZNSLmddt+QPW0TetFxGP73P+LmTmlNEGSNOLmN5b36mGOsXqwEOBXmdlpzr4pq67B9TSO/aScg9LJ4EOTblX0U//NBfXGlJWBp85UQQZRBbH3Aj5LaTSZyFqUKRY+A1weEadHxM6T7DNq6qMLH8lYpgoAqjlK69NjnDBio3KkOaVq/Hsr4+cMblqVEnD9CHBuRFwcEa+tUs5O5nW017ffycxzeijbA4w1DLe8vtNcxhHxMGCP2qolwGunOJJyqcrMk2ifO7jfe4VZpfr7vhj4Rg+br0fp8PY54KqIODEi/mU6yzcN6vXf5hGxWf3F6r71VbVVx1SjCyUNmXXf6Bjluq9Kl17vbP0PSoaxcaq/W73zcTMl/8iKiCcCL6itOjozf9PHIT5BmXqwZbc+9v1yL53zskyzVp8+4HERsWof55lOezM22h3gzMz8fo/7vqOxvEdErNHHuT/Q43bLWhvRrGMgX9Jc84Nu6fE7aPb67Ti3fESsTZnfvuWEzOw3rdQva/9fleEHEZq9wfs9/oTpnCRpDvg17XONr8nYnPLdNB+s5w+zQB3Ur+WbRMSDu2453jmZuaDHbXuq/+aQqdaRMy4z78/Mt1NG3xxNaSTqxTOBn0bE8RGx+rQVcLhOpHTMbNm38fozGUsTCKYVlqZdZn6OMlXYlygjNXuxKfB14JyImCxLXnM0Zy+B25ZfUeZNbXkoZb7UpudQ5v1s+Vm/GXRGxILa/2ddfdavzLwnM19HyaT3Q8p8vJMJyt/71Ig4IiJWnmyHEXEcZeRhS3N6p12AtWvL1n/SNLLuGykLav8fpbrvlbQHaE+ops/rpjlav3mdH1XNjuGTZimsy8ybgXo2hh26bdtBM8A8kXo7x3LABn3sO50G/q5XHRTqnSZWBLbvcfeLMvPSHre9mPbOFnO9jWjWMZAvaa7pOY0VJaVRXbcebc+kvZdsP+doac4v9sTJdoiIFSLiJRHx+Yg4LSKujYjbI2JJRGT9B/hFY/d1+ijbHcBlfWwvSbNONaq5+cDZDBD+UzUHXD27ya20Z1fpSUSsFRFvjIjDI+KCiLg+Iu5uXsera/lb6rvS3lg7mZ7rpsy8g/bRJf306B4JETEvIp4fEf8TESdHxDURcVtELO7wvjZTOPZTR46UzLwoM/eiNNbtTUm7fymTj9TflTKv52rTXMQpq0YI1TMN7RYRq9SW6w1eNwI/WyoFk5ZxmXltZv475frzUkpK6PMo01tMZCtKQOMxnV6MiAfRnkb6fkra317LtYTSWa+uUwNns9F4wqnYlqaI2Dgi3hMR34uIyyLixoj4R5d7hafVdp219Vm/MvOczHwZ8HBKGuNvAn8CmlOvNL0GOLH6nI20apq9Y2ur9m5k8qvXf3/pczSkpAFY902fOVL37d9YPqrTRi2ZeS6l7mp5QkRs1237EdL8HE21XfwJnTJIdHA//aV377Wdf2lr/o1P7nP/kxrLvQby+2kjup/S5tUyKu+dKsvPdAEkacialfZE7mosd+up3wy6fzIiPtnHeTpZq9sL1c3Ma4GPMTZ3Ur96nc8M4OoOc89K0lw0n/b08ztHxLpd5ltr9o4/up/0pdXo548Cb6T0mh7EQ4CFPW7bT/0HpQ5cqfr/bBmpBkBE7Al8mjJX9yD6qSNHUjXS4zvVD1Wg+6mURpYXAP9CeydEKPNofpX2tLyj6nDgPdX/V6WkrPxWNarylbXtvtNHJiZJQ5CZ/wB+XP200n1vBjwDeC7lGtSs99YDvh8RW2Xm4sZr6ze2/2NmThYgabqQ9iw6j+ywTTOYMkgj9FBVozX/lxIc6qVBu2nW12f9ysybKHXE4fDP+60tKfXeznRu3H465b7hLR1eGzWHMzaP7sMoc5j/LCLWAV5U2+6IpV0waVlm3Tc8c6Xui4hHUwZ+tdwC/KSHXY8CDqkt7wecPcSiTYdmu/jfeovDdzUPWJ3JM138vcN3ZyK9tvMvNVUbf310++19ZFJsaXZm6PRd72SQNqJWR5kZf+/UzhH5kuaaqcwR1+0upJ8Rkb3q2LOtmkfrCOD/GDyID9DPiIPbJ99Ekma/zLyC9pEOK9AhqFmNkNijsbrn9KXVXITnUhqMBw3iQ3/X8umo/0ZORHyOMrfgoEF86O99nRUy867MPCMzD8vMHSmNdt/usOleEbFFh/UjpUoBWM+k0Mqe8XJKo0+LgQxphmXmfZl5fmZ+LjNfShkx/Smg2fC6ObBXh0Os2Vi+aYBiNPdpHhPGd6Tut3FzqCJiW0rD7K4MXg9P5R5jTsjM2zPzlMz8SGY+DXgS8KMOmx4YERsv1cIN5nTapwRq1X97U+5boWQh6CutsaThsu4bzByr+/aj/Xf4Xo+dMZrp9feaBVljllq7eMNU2jhgNNo51qA9BnvzAMfo5bveyTLRRrSscES+ptOjpvHY106+CVB6xk3X5/z6Hrfbi7ERb5qdpqO3Z7eOVAcB+zTW3Q6cQmnQXkhJdXMv7UJtblYAACAASURBVPMDbk4ZZTAIR7JpWTed9dXS1O33sL5qdzjtPef3Az7X2GZX2q/9f8rM3/Zy8KrH9fGMn6NwAeVafhnlPuZOyrW8nhL9DbSPNlZNRPw740fT3QWcRhldcg3lwbhZR24MfG0pFHFkZOZVwKsj4vdAM4vQq2mfP3BUHU5JSwrw7IjYgPZMGZdkZnPaBE2/a5k79eYo6/V5d+RU86C+JyJOo9SH9dTg+zA+7eyqjeXmaKpeNPfpNI1Ic92dA5xnKCJibUp642Yj9h8ogdy/AH8F7qHUafXsaZ8BnrIUijkrZeZlwK4R8XHgvbWXlgf2BD4xIwXrUWZmRHwLOLhatWuVdaBe/502wGg+Dd9Un72+QblGNvUzKrtbm2evQeFf0vn3mGzKprpuz5C3dljXSa/zN480677JzaW6r3rmb07TtyAintvjIa5i7Lu3JiU7wfeGVLzpsDTbxeeapfVd1xxnIF/TZsFhuywYgTLMeAPIgsN26fUmXqPr7sbyZ+ktXdJErmyuiIiH0t7YAHAY8LHMnPBmuzF3nqQ+nLffRQtmugzDMNXf47z9LlpW6qtjKIH7VqqwLSNi08y8pLZN86G859H4lBH+29aWbwVeD3x/smlMImLXPs6zTImIVYFDG6u/CHwoMydsKIyIrSZ6fS7LzE9FxG60z8vXnONwVH2H0mi3AqWh572U1KUt/XwvNSTLv/4ND1A6JkkTyswTIqKeJhzaO9K1NJ9zVhngdM197uiwTXPdqgw2AnIYPkj76LY/A/tk5jmT7RgRzWdTdfZBShaXesfKHRjxQH7lCMYC+StTUjBvWXvd+m8EbLho4YIp7n87U8yOuOGihVNq89xw0cK7mWKdvuGihVN6htxw0cJ+08mPNOu+Cc2luu9ZlM7idR+bwvH2Z7QD+XfTnhVtZ+CBKR5zWWl/Wlrfdc1xBvIlaXLNm9zrMvPEaTjPrrTPQfPVzPxAj/s202VJkjrIzNsj4jhKitKW/ajm4646Vb2g9toS+kvf3UyduG9m/rjHfb2Wd/d82lPI/SAz39zjvsv6+/o92gP5G8xUQfqRmTdFxE8p90fQno1hMeNHNkkaPcfQHsxYNSLWyMz6nKi3NPYZJH3rOo3l5jEB/t5YXo+Z65SyZ+3/9wIvzMxxHb27WNbrtJ5k5uKI+AHwvtrq2VL/XRERZ1Lm3gZ4W+3lu4Fjl36pJPXBuq+zuVT37T/k470gItbPzFENbt9EeyD/d5k5o9M0zCK3UdqUWhkIpuu7rjluWUlhIUlTcVVj+bHTdJ7tG8tf6mPfTYdZEEma4+Y3ll8dEa374r1p7+x6cmb2M9qlfi1f2EcQH7yWT8Q6cnALGssPnolCDKjbqMMTM/OvS7UkkgaxoMO65jXoOtpTST8hIvqd/3bzxvLVHbb5c2N56z7PMRQR8UjKXMotP+81kBERK+PUFv1Y0FieC/XfcZnpSDxptC3osM66b47UfVWmuN2HfNh5jJ9mdZQsrXbxOafKyriwtmr1iNi4z8P08l3XHGcgX5Im9+vG8rOn6TwPbSxf3se+01UmSZqLTqJ9/uGHM5ayu5lWf36vB62mOan3sP5TH/uuCzy51+2XQdaRg2um4pupdJqD+Alwc4f1/WTJkDRzOqUPbftOZ+Z9wAW1VSvSOQ1xR9U8tTs2Vp/VYdPTG8sv6vUcQzaV+mwHynQj6s1srv+OoYxYbbL+k0afdd94c6nu2432v/EpmRn9/jB+urP9JjjnksZyDFDutmNUn6FeLa128aVpGO9pr5rfzX7fv+b2nb7rmuMM5EvSJDJzEXBxbdVjImLnaThV86ahp964EbEF8LThF0eS5qbMXAJ8q7F6v4jYDNiitu524Lg+D1+/lvczquKNlJ746mzQOnIjZq7BalRs01i+ZkZKMYCqkfO7jdWDfC8lzYzm9ef66nvddGpjef8+zvE84BG15esys1NHupNon89154h4XB/nGZaB6rPKvw2zIMuA2Vz/3Qb8sLF6ETAdU/xJGi7rvvHmUt23f2O5+azSqzNpH6n95IjYqsu2dzWWB8kwM5Vj/Lyx/IaIGKXOFYMYxnvaq4G/6xHxeMam2gH4B3D2EMqkWcZAviT15lON5c9GxBpDPkdzLqRJe+NWoz/7SS8sSSrmN5ZfRvsc3ADfy8y7ez1gZi6mfbTXlhEx6QNhRDwaeG+v51lG9V1HVr7ELO4gERGbRcRzprD/Q4FXN1b/YmqlWureBqxW+1k/M++Z2SJJc19ErBMRe9emnul3/xUZX692u/58Hcja8qsnaMyun2Me8MnG6v/rtG1m3kB7Y/tywNcH/f2mYKD6LCJeBOw6/OKMpojYLiIG7qweEY9h/Ps12+q/19Be/z226owqaZpY902bOVH3VZ3En1VbdT9w7CDHqlKuH91Y3W1U/u3A4tryIFMN/L2x3PMxMvN82kflPwL46ABlGCUDvx8D+A7tHQd2iIiX9bjvZxrLx1Sd/bSMMZAvSb05CriktrwJ8LOIeHiX7ceJiBUiYr+I6Bas+U1j+dBqLqhux5sHfANH40tS36oRC/WUZA8GXt/YrNv8pBOpX8tXAQ6ZaOOqHjkBWHWAcy1LmnXkQRN1qIvis8z+0fgbASdGxKkR8aKq7u9JNV3Dj4A1a6vvpaTrnTUy84HMvLP2YxBfWjpWpTwDXRQR+0z0XNIUESsBRwKbNl7qmBa8qpNPqK1aDvh+RGw4wTmCEriozxt6F/DlCYp2GGUkU8sOwHcj4kET7FM/59ZT7cydmddQRla3bBMRe05y3m0p7+ey5InAbyLiZxHx7H5SAEfEIyj1X/0ze2u1btbIzPsb9V+nVPuShsu6b/w5rfvG7Ed7doETM7PTNGC9+k5j+VWdRrpn5v20T9u3RdVhrR+XNJZ373P/g2hPR/+eiDi4z/p5w4j4VEQ0s1bMhOb78dLpyjKQmbdS2u/rvhERT5lov4g4BNiltmoJ8D9DLp5mieVnugCS5pStImKg60pmjnSKuMxcHBG7UdLXtG5gnwZcHBGfB47qlMaqGgm3DfAS4OXAunQPDB0H/Deltz3AlsCvI+KtmfnPtDnVe/wc4L+AVm/dyyiNHZKk3s0Htu/y2hWZ2ZxTsBdH0D5q4F0RsTrwkWqqFgAi4iHAq4CPAOtUq72Wd/cL4AbG5ld8LHBGRLwFOLUa0UA1umQH4FDG5h2cifd1lYh47oD7LszM5ryR/1L9XBcR3wZOBn6bmbc0d67SZe4BvJP2ID7AJ6uGNEnq1ZMo09F8MSKOAX4JnJGZ1zU3rDqnvQx4N7Bx4+UfZObJE5zn3yjX7YdUyxsBF1SdoI/OzH+OZIqI7YFPUK6Lde/KzL92O0FmXhoR7wI+X1v9SkoGnUOBHzWvq1VA5YWU7CY7UkZsTXUk1BHA++vLVXaeL2bm7Y1zHwi8C3gQpTPW9Yx/b0fJmlOo/67MzCsb615Y/Vxd1X+nAGfV3yf4Z3DricDewFsZ30Hy4Mxsjr6TpG6s+6z72lT1zL6N1c1AfF8y83cR8SfKYDEo7QIvpvM0Yr9k7Jl2HnBaRHwV+ANwJ+3ZHS7p8Fn9FeXz03JQlWHgZOBG2qdguKUahV8v65kR8UFKx5CWQygB8E8Dv+jwOZpX/W47ALtR5npfHvhJh99vqcrMv0XEhYx1inkc8NuI+BZwBeVzV3fGFDvUfZASG9i4Wl6T0mHxP4Fv1N+7iHgy5b19ReMYn8rMC6ZQBs1iBvIlDdOnp7Bvzz34ZkpmXh4RLwe+z1jD+JrAwcDBEXET5ebyLmB1yg3Yun0c/+bqJrqeIms74KyIuIEyp99KlBv71Wvb/BF4H+Pn0JMkTexo4LOUa2tTx5ETPTiO0si8Y23dG4DXR8QVwM2UuuNRQL3H91eBOzCQ31Fm3hMR76e9J/uTKSn+bo6Iqyjv50aMNYRBmXfwLSz9OWU3pjSWDOKLwJu7vPYwSoD+nUBGxN8o0zncQckA8UjGOhw2fZfScUSSBrE68K/VDxFxM+X6cyulHn0YsF6Xfc8GDpjo4Jl5bUTsQ3nWao0SXIeSevgL1XX+Hko6107n+UZmTjQisXWeL1SBg7fXVj+G0rlvcURcTamrH1T9Tj0/z/Xh05S06a1RlysCHwM+EhGXU54n16XUJfXn5P+gBFU2noYyDctTGLz+OwT4cJfXNqIEgN4PLKnVf3dSOsI/krEO8U1fAr4wYJkkLdus+4Znttd9z6S8Zy33AscP4bjfpbQrt+xP50D+l4A3MtZ28XC615kH0JhKMDMviIiTKcF0KBkg9qfzfO2n0t6e0TrGxyNiPdo/R1tROjQsiYhrKJ8jKM/kD2N6556fqs/Q3u6zFWMD5poeBSwY9ESZeUdEvJLSIaMVU1iF8r04rPqu3055zzbocIif0/450TLG1PqS1IfM/DVlhP25HV5ehxJU2I4SiOl045uUoEK3438K+EqHl1oj+zejPYh/EfA8SmUvSepDleKsUyeoZMBAfjUyfA/gwsZLQRlFvh2lV3o9iP9N4N8HOd+yJDO/SfsIgJa1ga0pvenrQfwrgOdSRvLPVn8FmqMTW4Jyf7ApJbPEZnQO4t9DSYW4T2Yu7vC6JHVyJ+Prsrq1gcdT6rXN6RxgWEJJ9/u85gjqTjLzJ8ALgL81XlqZMjpyqw7nWQwclpmvm+z4tfO8g1Lv3t14aR7waMpz11OYnkAG1cjwlzK+flqeck3fltJg3ApkLAHekZlfm47yjKgFwLVdXlsOWJ/y7L095T3rFMS/A3gb8OZW5h5JmoR1n3VfN/s3ln+SmXcM4bjfbSzvXE2R1qbKAvsaymd0UK8BfjeF/Vufo/0onVnqlqN0tmgFwx9D5yD+HR32nRGZ+S3KYLqlco+QmedRMmo0n+9XoLQRbU3nIP584KWZed+0FlAjzUC+JPUpM6/IzG0pN6AnA5NVpIuB31J6zj02Mw+a5PgHUtI1dWu4h3KDfxCwTWZ2a+CQJE1ufod1p2bmgkEPmJk3Ak+npK6b6EH798BumfnazHxggu1UycwPUKaquXSCzW6hBPy36DTtzWySmb/LzMdQpts5mHLf0Wx86+bPlNGNT8jMjxrEl9SPzLwpM7egNMS+A/gx5frai+uA/6Vch9/UT0N3Zp5K6fj2MUpnpm5aI+GeWtUNfcnML1F+t88xeYevWymjzZ4zlfuDxvkvoDR0H0l5Xuy4GWV0+/aZuUzNiZqZp1BG2W8PfBQ4nfY5nidyCfABYJPM/F+D+JJ6Zd3XxrqvEhEPpkxHUNcMwA8kMy+jvfPICpQMBJ22PZYS8H0fZeq5hYxPqz/Ruf5KqVdfCXybUl/eSnta/V6OcwQlaH8Q0Mvz9i3AsZS27vUz8/f9nG86ZeZ7gS0oI+PPoLS3TyWF/mTnu5jSQefdTNzu/wBwErBDZh6QmfdPV5k0O4T3s5I0NdUN3faUVFdrU3rN3klJt3U5cFl9Xqs+jhuUm4mtKKP9g3JDcTFwng3ykjT6ImJl4BmUkRsPoTRCLwLOycwrZrJss101d9y2lFEj8yj17iXA2XO5Y0RELE8ZNbMJpcf+6pQ0mHdS5q68BrgwM2+asUJKmpOq55ONKNef1lQeK1M6GN1BCT5cOMyOxhGxBWWk3nqUa92NlIbrMzKz145Nk52j9dzVyqq2GiXF7/WUjmMXT+ezV0SsRRmhtVHt3FcBv8nM5gjNZVZErEAJdG1CST27OiXg0ar/FgC/rzIuSdJQWPdND+u+uSMiNqBkdFiP0i6+hJI5dhFwGXBFZi6ZuRKOroh4AvBUynv3YMrUBIso3/XbZrJsGi0G8iVJkiRJkiRJkiRJGiGm1pckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZKWERGxfkRk7ee7M10mSZIkSZIkSeMtP9MFkKS5LiL2B75ZW3VAZs6fmdIUo1gmSZIkSbNLRKwEbAk8DlgXWAm4B7gBuBz4fWbeP3MllCRJkqTZy0C+hm6PPfYIYI2ZLsccddsxxxyTM12IiUTEyow15KwJrEJpyLkduAa4ArgyM5fMWCE1MiJieWAzyufl4cCDgSXArdXPX4CLM/PeGSuk5izrq2k3Y3VWRGwMXLUUTnVIZn54KZxHkkaKdei0mg3PfAG8FPhX4HnAgybY/K6I+Anwlcw8eWmUT5IkSZLmCgP5mg5rALfMdCHmqDUpwc2RUmvIORB4LpNfW+6IiPOBU4GfAeca2F92RMQKwCuBvYFnAytPsssDEXEJcDxwdGZeNqRyfBx4b2P1hzPzkCkccz6wX2P1YuBJmfmnKR7r5Zl5/KBlU0fWV9NrJOssLVsiYn3gutqqozNzr5kqjzSHWIdOn5GuPyNiS+CrwFY97rIKsAewR0ScDLwxM/8yXeWTJEmSpLlkuZkugKTZLSI2Ak6kBFlfSG8dhFYDdgT+EzgLeMl0lU+jJSL2Bq4EjgJ2YfIgPpTP1OaUz8ulEXFGROw0xXLMA17T4aV9q44pwzQPGLhzgCRJkjQKIuINlOe3TkH8eyj3+ecCVwP3ddjm2cAFEfHSaSukJEmSJM0hjsiXNLCIeDRwGrBBh5fvo6Q1vo2SanGtartOHYiGHTjViImI1YBvALt32WQJcDNwE3AnsA7wUEqq/aZnACdHxH9m5kcGLNJzKan8mx4N7ED5XA/TnhFxWGb+YcjHldTZ9ZRUv714PvDu2vIfgHf2uO+V/RRqFGTm9VjvSpL6FBFvB/67sTopHXQPB36dmYtr269IqWNfB7ysts+qwA8iYq/MPHZ6Sy1JkiRJs5uBfE27p772ncxbcaIp89TN4vv+wQXf+MxMF6OjKj36j2kP4rcacr4CnJWZDzT2WZUyemNnSkD3MUuntDMrM+cD82e4GDMmItYAfgls23jpPuAI4ARKw9/tHfbdiPJ52QV4Ee0dQdabQrH2n+C1/Rh+ID+AQ4Fdh3xcDdHz9l6ZFVY0vjmo++9LfvXte2a6GABk5r2UbDGTiogNG6tuycye9pUkFe9b/4mstNy8mS7GrHTvksV8/PqhzBw1bSLi2UDzwfQa4DWZ2fG+OTPvo9znnxARL6F06l2nenkecEREXJyZf5ymYkuSJEnSrGcgX9Nu3ooPYvmVesmerVnmQOBJteV7gd0y86fddsjMO4FTq5/3RcSzgLdT5hDX3DWf8UH844C3Z+bVE+1Yvf5l4MsR8XjgYGAvpjA1TNWxoD4q6CpK1ojWCP1XRsRbMvPuQc/RxUsjYrvMPHvIx9WQrLBisMKDDORLktSvlZabx8oG8uekiFiL0vm2fpP0V2CnzOwpM01m/jgiXgCcDKxRrV4Z+HZEbF8F/SVJkiRJDQMHQiQt8/ZrLB8yURC/k8w8NTNflpk/HmK5NEIi4p20B82hpOTcbbIgflNmXp6Zr6akvl84hWLtCaxUWz4K+E5teTXgFVM4ft1vGsv/NaTjSpIkSUvDf9GehW0x8NJeg/gtmfk7YJ/G6qcCb5ta8SRJkiRp7nJEvqS+VaMytqqtWgJ8bYaKoxEVEQ9jfOD62Mzsde7pjjLzNxGxBSWgP4j9G8tHUkYEvbOxzZEDHr/uC8CjgIdVy8+JiJ0y89dDOLakWaS6Jm5Nyf6xDnAb8MPM7Noxqcog8mRgE2AtSvaQW4EbgfMy86rpLvcEZVsZeDrwCGBdyr3AjcBlwPmZuWRI51kX2B54KOV9W0J5D/4M/D4zbxnGeaYiItYEnkb5264H3AX8MjMnzZUdEU+h/I3Xo3QyuxG4FjgjM+8acjkD2AbYgvJe3g1cB5yemX8d5rkkzQ0RsTbjO3B/MTPPH+R4mXlCRBxPe0fft0TEfzenZRs1EbEB5Rn44cDalLrouG7Xz4hYjpLB7imUenI1ytRid1I6Jf8FuHxY9aUkSZKkuclAvqRBbNBYvikzb17ahaiCuU9irPH7b5RGkTMyc2gTNVcp3Z9CafReizKNQCtYceF0p4KMiPUojfyPAR5CuXb/HbgeODszr5/O80/BWylBp5abgDcN48CZ+Xfgh/3uFxGbUIItLedl5uXVa5cAm1brd4qIR0wUYOvRPZTODF+orfsvSvBL0hwSEfcyds07OzO3r9Y/H3gX8GzKnMB1NwHfbRxnc8oUIs+nBFy7ZtCKiKuBzwFf6TXoGxHrU4K3LUdn5l697Fvtvx3wIeC5tGc3qbsxIr4OfDwzb+v12LVzrAAcQKkzNqc9nXPdkog4m5Ly+Vv19yAi/gg8vsM+e0bEnhOc/k2Z+eVGeerHuiEz16/WbwN8AHgRsGLjOO+n3CeMExGrAO8GXgds2KUc/4iIXwIHZ+bvJyhv/bh70Z5h5k2Z+eUqgP+GqqyP7LLvScC7ej2XpGXGGygdXlvuBw6d4jEPpj2QvyGwO436ECAi5tPekeBRmbmgl5NExI5AvfPsIZn54Qm2z9riqZm5Y7V+F+AdwI6Mr5MXAcc3jrM68D5Kx+CHMbHbI+I04MjMPHqSbSVJkiQtgwzkSxrEao3lpTYhZkSsBryX0sD/8C6b3RsRPwcOysyLBzzPOpRG9ldRRht2c1dE/IqSkeBnmZnNDSJif+CbtVUHZOb8Cc4dwDOBPYDn0TkQUd/+IuAzwFGjMpIlIlYFDmys/mpm3jQT5alpjig6svH/w6r/Lwfsy3BS4X+NEsTbuFp+WkS8ODNPGMKxJY2wiPg07dk+Jtv+X+kvw81GlOv/GyNi18z8Y59F7Fk1Av9rwKt72HxdShDjdRHxssxsTjMy0Xm2oQRzHt3D5stROme1Omh9eYJthyoi3kqZKqavqcoi4unAsUwe3HkQ8BJgl4j4H+Ddne4xejjfqsAxwM6TbPoc4LcRsYdTHkmq2a2x/OOp3s9n5kUR8Ttgy8Z5xgXyZ1L1TPY54M197LM58FO6P6c2rQ68mDLFgIF8SZIkSeP01fAkSZVbG8trR8Rjp/ukEfEsSgrCDzJx48hKlFEev4+IvgOxEfFG4CrgPUwcxAdYpTrXTygBlWH4FHAapdFowiB+ZTNgPvDravT+KHgWsEZtOYGvz1BZgH+mt3xNbdVi2hsMv00pZ8u+wzhvlbHhkMbqQ6vGQUlzVET8J+1B/HuBPwLn0T4ivq7TCPc7gcuBc4HzgWs6bLMJcHpE9Bo46EuVWvnXdA7iLwJ+B/yeki2mbl3gpIh4do/neQVwKp2D+NdV5zgfuJr26/VSFRH7AZ9l7Fnqfkqq/3MpafE7li0ingf8ivFB/H9Q/sbnU7IL1S1H+Rx9a4B6Y3ngONqD+DcCFwAXAnc0tl8JOHpp3NNJGn1VR6DNG6u/P6TDN4/zjCEdd5g+RnsQ/x5KPX4+JTNam4h4KHAS459THwCuoNQR5wJ/otwTSJIkSdKkHJEvaRBXUhof6gGHT0TE7oOMFutFldLwWMYHOe4FFlDmeW3N09syD/hARKyfma/r8TyfpaSEb1pMCZ7cVJVh/ca5hqlTIOcWSoPR7ZRReg9lfCDgmcDJEbHNMKcWGFBz/vrLMvPKGSnJmGfT3jHjxMy8obWQmddExOnAv1SrNomIp/czknQC36JkknhCtbwF8ErKKElJc89jgIOq/19JSWn+o/q1OSKeSAkAN90H/Lj6ORW4ulm3VnOy716do3VdW4eS/eUFw/s1/jki8Uhgu9rqmymdzr5Vnxu42nY7Suel51erVwKOiojNM7MZpK6fZ3PgKNrrwDspGQe+lZlXNLZfg1LX7FH9NB1A6Wy3Ju3X2lOYONvKZPPar8rYdCl/o/wNjq5PIRARj6zOWy/v+pS09w+urb6VkoL/qMy8o7bttsDHgZ1q276a0gnks5OUr+7tjHWKOAY4rJ46PyJWBPYE/rdW3pUp7/mufZxH0ty0HePbjM4f0rGbx3lYRDwqM68a0vGn6kmMPc/8mVKPn5CZ/wzAR8STKc+gLQcDa9eWr6R0QP9xc/qbiJhH6bD9Akp93nHaE0mSJEkykC+pb5l5bzWX6i611a+gjLo7KDPPHOb5IuIRlCBCvXH/Zkra3u9m5p21bZ8GfJIS1G55bUSc25zztsN53sr4IP6VwEcoAZhbOpTrBZT0+z2NNuzDHZSOCz8BfpOZ40ZvRsQGwD6U9+Eh1epNKY3/nTojLE3NQP55M1KKdvs3lo/ssM2RjAXyoaTin3IgPzMXR8TBtAeTDomI72fm4qkeX9LIWaf692zgBZ3mic/MTgHjE4GNMnPcSL/GvrcAX4uIo4GfM5Za/vkR8dTMvGDwoo/zH8ALa8u/A17cqV6qOhycFREvpAT6WxkJ1qfMqfzGTieIiBWA79Fez/+Z8t51DOpU7+kJwAkR8V4agfPM/G117PUbu96QmSd2OmaPVqn+/QuwU2Ze26Fs1zA+c8LnaQ/wXAfs0OygUO1/TkQ8B/gq8K+1lw6LiON7nR+asSD+mzPzix3Ocx9lpP/llLquNVXSLhHx8HonDUnLiRauFwAAIABJREFUpCc0lu+ijCYfhk711BMpWdFGQavD9unAi+rPmy0dpnDbvfb/G4GndevAVt3/X1r9/E/VuU+SJEmSxjG1vqRBfbzDup2AMyJiQUR8NSIOiIhNq5TmU/ElxgLVAAuBrTLz/5qNKlXD/bMoI6DrPjNRyuFqRMWnGquPBZ6UmYc3g/jVuRZWZXgOsDVl1PwwfBPYMDNfm5nf7xQsqc6/KDM/QRndXW/0en1ErDWksgxqk8byhTNSikpErAa8vLbqLkq64abvUVIct+wZEZ0yJAziWEpa6JYnMKT0/ZJG0h3A7p2C+N1k5h8nC+I3tr+d0pnsgdrqA3ov4sQi4kGUEeMtNwIv7FYv1cqVwLspGQVa9o2IbplsXgU8rrZ8K/DcXkdmZuZ1mXlpL9sOyWJgz05B/E4iYmNKh8eWrPYfF8T/5wblPTyQ9lGrKwH/3mdZv9IpiN841zm0d26bx1hGBUnLrubzxA1DzL52I7BkkvPNtFuAPToF8Zsi4iFAfYqz70+UhaapS+c+SZIkSTKQL2kwmXkGZXRdJxsBrwe+AVwM3BYRJ0XEQRGxdT/niYjH0z7yfwklMHL1BGVbArwW+P/s3Xu4bed8L/DvLzt3iUh2hLiTtKXuRfT0tFK3k2rrVrcKR1RpewhK3am4tKXoaWlQbYNS6k4Eh1IRVBH3ewgJQeKyReSeyH7PH2OuZq6x122uNdeaY+/1+TzPfPYaY44x3t9aKxljzfEd7/t+cWz1vkn+zxJNPS3JHmPLH013k/3SRbbvt/npScKaFRzrZxNs/+10P+85+yT5/WnUsgZX6y3/aCZVXOn+mT+c8Tv6Q1wmSWvtp+lGQZhzQJJ7TaOA0Y3PZ/RWHzca2hjY9bxipUHvWoyuAR8dW/VrUzz8A9NN5TLnL1prKzqfj855fzW2au8kv73I5n/aW376qFf7UL29tfaZCbZ/WOZ/7npba+0jy+006rH5Z73VDxsNybwSlyV51gq3fWNv+VdWuB+w6+oH61P5rJP89zWi/3lnaEH+Syd4uG6f3vJCU+cAAABMTJAPrFpr7ZnphnC/ZJlN90s39PxzkpxaVV+qqoetsKf+HyapseV/G/UcW662n6frDTjuEaP5e+epqkMzf37d7UkeNnogYKfQWvuPdMP0zplmkDOR0bzF/albVnzjr6quU1V3WeHr0BUe9qG95YWG1V/svf6+q9Zae3fmD9U/99ALsOv5tw1sa7zn+i2mMBLOnPHgvaWbw34Sp6QLk+f0p11JVR2c5NZjq85L8i8TtrPRJv3dHtlbfuVKd2ytnZJkvOf+QUlutsLdT5kghPpcb/m6K9wP2HXt31ve4SHYNeofr9/erE1yrv9x5l/vfnf0mQgAAGBNBPnAmrTWXpJuONyXZeVh7U2TnJDkk1V1/WW2XfXN7yTvTzLeG/Ia2XHI9yS5c66cFzZJ/l9r7RsTtDMUZ459fevFNtoAC92Em+TG373S/e5W8jpquYNV1WFJfn1s1Q9G+y7m3Zk/TcJdlpqWYRWe3l+uqn4vHmDndkmSL6zlAFV19ap6ZFW9tqo+X1U/qKqLqqr1X5k/nP4e6UYTmYbx4P2M1tq2SXYejWrzg7FVC80B3A/3P7zQiCkDs+wDhXNGvefHRyPanvlTDqzEB3vLv7rC/T41QRv9IaAFUMD5veWrTPn4/eP125ul85OseLj71trlmX9uv2GSk6vqqCk+XAcAAGxCPlAAa9Za+25r7VHpgvJ7JPnbdDePL1tyx+Q26cL8wxZ6czQ3763GVl2e+cMHL1fX9iQn91YvdPO7HyK8Z6VtrLequkFVPamq3lxVX62qH1XVpYsEOf9jbNeDZ1VzFr4JN+0bf5M4prf8xtFwxQtqrV2Wbj77OVuS/O9pFdNa+1DmP0hwaJJHT+v4wCB8dzQyzMSq6qCqekWS7yd5aZIHJ7lFurl3V/rQT396k9XUcbUk1xxbdaOFrj3LvTK/Z/dCwyb3/waYJHyehZ9POGXCwZk/tcs3V/Ggwud7y9db4X6TzM98RZLx6YQ8YAb8pLc8tQd8RqOkXXWZ9mbp26Ph/yfx3HQPa825dZL3Jvl+Vb26qh46mjYOAABgxQT5wNS01i5trZ3UWnt8a+126Xpm3zbd8PsnZeFg/5Akb11kvtdrJhmfP/xro5B1Eiu5+T24EKGqrl9V70jyrSR/neS+SW6cLhBYyZzqaw5x1uBnSfpB+Ux69o1uEj6kt3qpYfUX26b/MMBaPaO3/OSq6t/MBHZe/Xl/V2Q0Ss2nk/xRdpyiZBJ7rWHfOVuncIy+ha4F/XB/xeHzjEz6uz2wt/zjVbTZ36d/zMUsN/XRUnaYigjYdPrB+iELTVO2SlfPjvejhhTkT3wdb619JMnDs+Nn3muk+yzxqiRfq6qzq+pfq+ruVbXH2ksFAAB2ZYJ8YN201i5rrX26tfaS1to9klwryQuzY8h7yyS/v8AhNurm96BChKo6It0DCPfM6m+kryTsXxej3ivn9lavOBBqrR3fWquFXpl8OOLfTDcP/ZzTWmunrmC/jyT59tjyTUa/l6lorX0yyYljqw5K8vhpHR+Yucsn3aGqdk/yriQ36L31zXTT0TwpydHprg1HJbnr2Otda6h1MevxQNhCnz3607FcsA7tTtOkv9v9esurmTZg6PNIA7um03rL+6WbUm0aFpoGbMVD2W+Aia/jSdJae1W6z7ZvyOKj010zyYOSvDPJ16vqgauqEAAA2BTW0tMHYCKjuXWfVFUfTvKOzJ+X/sFJXtfbZaNufg8mRKiqremG9u/3WvxCunD59HTDLV+crqfd+JCPf5Nu+OUh+HrmD+9/q8U2XGcP7S1/rqrussJ9P5v5DwEckwnmRV6BZyS5e64Mth5XVX8/6RzUwC7jYUluNrb84yQPa62dtNyOVfWgdajnot7y6Un+zxqPeekC6/rTsfSv/Tu7/t8Uq5lqZsjzSAO7ro+newB7/DPbbdP9nb9Wt+ktn91aO2MKx5251trXkjywqg5M8r/SPVh8hyQ3yY4Pad8gyeur6ojW2uM2sk4AAGDnIMgHNlxr7V1V9S/pQos5v77Apht183uhEGE1vf+n4emZ33v9G0kePOrBvaSq6ocus/SRJL82tnzbjS6gqvZLcp/e6geMXqvx+1X1+NbaQkHUxFprX6qqN6TrYZt084Q+JckTp3F8YKfTH5nm/q21k1e470Jzz69V/zq4pbX2gXVoZ4ehm9ehjVla9Qg1Yw7uLfePCTB1rbULqurzSX5lbPV9krx+Cofv/43+n4uVsYY29l3DvmvWWjs3yRtHr1TVwUmOTHKPdNOmjdf3p1X1X621N214oQAAwKAZWh+Ylf5Niv2qqt8LfaNufg8pRBgPmS9J8lsrCfFH1iPIWa2P9JZ/uapusME13Dere/hjMQel60E/Tccl+fnY8qOq6tAptwHsHH517OuvTRDiJ8lNp11Mkm2Z/6Dbtatqn3Vo5xu95Q1/8Gud/TjzRzc4vKomDZdu2Vv+9oJbAUzfW3vLdx8F0qtWVTfL/IcDkuRti2x+SW95kuvQ1SfYdt211n7cWntra+2YdKN+vae3yZ/NoCwAAGDgBPnArJy5wLr+je2zM39uwRtX1aRzv6/k5vcgQoSqul6Sa42tem9r7Vsr3HefJDdcl8JW55Qk540tV5I/3OAaHjr0Y7bWTk/yqrFV+6Qbch/YRKpq/8wPJ/rzEi+17/WSHDbtmlpr29Ody+fsmeR/TrudJB/N/B6Xd6iqaT6Etb233B/WeF211q5IcurYqt3SDbM8iTv2lj++lpoAJvCPmR+m75G1/636nN7y95K8eZFtf9ZbvsYE7dxugm03VGvtx+lG5RqfBu62VbXXjEoCAAAGSpAPzMpCN+nnzQ3eWrss3Tzlc/bMwkPwL6iqKjveLF/o5ne/9/hvr7SNKevfmFpxkJPkN9LdWBuE1toFSV7RW/3HVbWaURUmNur9f4exVRcmuUprrSZ5pXu4ZLxH6lFVNckNxJV4bubPG/3wGYxeAMxWP1ye5KG1R06zkJ739pYfPe0GWmvbknxqbNUBSY6ZYhMX9pZnMdTyKb3lh650x6q6Q5LDx1ZtS/KlKdQEsKxR4Pya3upjq6o/x/2KVNXvJrl3b/Xft9Z+vtD22fEh7FuvsJ09FmhnUFpr52X++Xy3DGuENQAAYAAE+cCs9HtInDMK7vtWffM7yV2TXHds+ezW2tcX2O4/Mn9487tV1S9M0M60DDXIWa0XZ/6ICldP8tINavuYzP95ntRau2ixjRfTWrs4yYljq3ZP8uA11tZv46wkLx9btWeSZ02zDWDYWms/S3Lx2KojVjICTVX9cpLHrlthyavTDQ0/5+5V9Xvr0M6Le8t/WVXXXXDLCbXWLsz8h6VmMXrNKzN/ZID7VtWvLbdTVe2W5EX9Y41GSwDYKE9LN1LanC1JTqyqic6nVXXrJP/aW/35JH+7xG6f6S3ff4XNPTrzRzobqpVMAwcAAGxignxgYlV1cFUdPbrBvJr998yOvfret8jmJ2T+kLsPWkkPkKrakuQFvdX/vNC2rbUfJHnD2Krdkpyw2u9vDc7pLa9o9IGq+u0k95x+OWvTWvt+dhx68wFV9fzRaAnrYnTsh/RW/9saDvmG3vI0e4rOeV6SC8aWH5zkxuvQDjBcHxv7emuSpy618WjkjpOS7L1eBY1C8L8cbzbJa6rqPpMcp6puVVWvW2LI4Dcm+erY8tWSfGClo5NU1aFVdZMlNvnK2Ne/vMy2U9da+3bmzzNdSd60gu/vZZn/4OMl2bgH4gCS/PfIKcdk/meyayc5eTRqyLJGPfH/Pd2oK3MuSfKgRR7mnvPpJD8cW/7Vqjp6mbZ+O8lfraSuaamqO40+46z44YGqunfmT43zldbaJYttDwAAbE6CfGA19kvyuiRfrKoHj+ZnX5Gq2jtdT4yb9t7qD9mYJBn1oH/X2Krdkry1qq6zRBuVLrS/5djqC5P8wxKlPS/ze+z9RpI3rHSewqq6bVUdsPyWi2utfSfdHJFzbldVD1im3SOyY8+WIXlRuqBp3JOTvHHS3pZVdWB27LWykN9IcqOx5Z9mx+GhJ/HvSX4ytnzzqvqVNRxvB621H2Z+j9QtSW4/zTaAwetfB4+rqhdX1TXHV1bVQVX12HS9FOfOdV9bx7penOTtY8tXSfKWqjqxqu4yuq7PU1V7j66LT66qU9NNk3N0FpmffjSk8gMyf1SCX0zyhao6bqFen1V1QFX9blW9NskZSY5c4nv49/Fd04VPz66q+1TVXUffx9zr2kscZy0ek/lTCF07yaer6o+qar/xDavqdlX1gSR/3DvGU0cPBQBsqNba+9P9DT/u+kk+VFWvrao7jx6k/m9VtUdV/U5VvS3d54Hxv+OvSPIHrbUvL9Pu5elGhxn3qqr6s6qaN1VbVR1WVS9J8s4keyX55gq/vWm4arqfz5lV9Z6q+sOq+sWFHl6uqutW1XPSPcQ27p82olAAAGDnIsgH1uKXk7w2yTlV9U9Vdb+qOnShDavqWlX1yHQ97u7Xe/ttrbUPLtHOI9OFsXOun+SzVfWwBW7g/GqSD2XHIfifMOohvqDW2leSPKG3+n5JvlxVx4xC5Hmq6jpV9fCqOjnJqUl22GYV+kHOa6rqqVV11QXa/oskHx61e0mSM6fQ/lS11lq6Hjz9YTHvl+QbVfXy0Q2+/XbcO6mq/arqjlX14nTfX/8BkIU8tLf8tmV6+ixpdAPxrb3V69Er/0WZ/985sLm8Lsknx5YrXfj7/ao6rao+XlVfT/KDJH+XK685/zc7TkMzNaPz+EOSvL/31j1G686rqq9X1Seq6rNVdUaS89NdF5+f5LYrbOeL6cL+8TB//3RTjXyrqr5XVZ+pqk9V1Znphh8+Kd0IJss9dPcP6R7om3ONJM9M8pZ0If/7x153X0m9k2qtnZPkgUnGp3k5KMkrkvyoqr4y+t7OSfffwZ17h3hddpyCAGDDtNZemORRmT8lWaU7D38gyflVdXpVfbKqvpXuWvCu7DhX/YVJ7tda6496tZi/zPyHnfdM93fztqr6YlWdWlVnJTk93ahvW9I94Nb/bLcR9khyt3QPlZ+W7hp52ugaeWpVfS/Jd5L8+WjbOR9N8vcbXi0AADB4u8+6AHZ9V1x26fIbsaCd6Gd31SQPH71SVdvSzan703RD/h6a5JBF9v1Ekj9Y6uCtte9W1YPThalzN+sPTjfs/vGj0ODiJNddpJ1XttaW6o0/187xVXWjJI8bW31Yul4gV1TVt9P1pttr9D1dfbljrsKLkvzvJHMjDuyZbmjI51TVaelufF09yQ0yv2fjY5I8aLR+UFpr51bVHdM9pDA+BcBeSf5k9Lqiqn6c7r+b89P1+DwwXY/FxYbhf2e6m4b/rar2TXLf3nYrvUm4lH9L8oix5aOr6gmjkH8qWms/raoXZv4w1mygyy9ry2/Eovz81qa1dsVomN0PJBkf+r3S9U5fyEuTPDHdEOzrWdsFVXW3dOenx2d++LBnkl9YwWG+l64H5lLtvGN0vXhjuof2xl0rq5zvuLV25mgo5tem+5tlJlpr76+qu6Z7gGD8wce9M/93Pm57uvmjnzh6qAIG6ZLtS/7vzRJ2pp9da+1lo5FW/jHJrXpv75Pus9NhO+x4pVOS/HFr7bQJ2vxZVd0j3VRs473690pyswV2+XyS38nKrk3rbf/RaynvTDfFwM7zHwIAALBhBPmsu8++8m9mXQLTd0G6GyS3XOT9raPXUranuwH0pNba+cs12Fp7d1UdleRNmR/W75NuZICFXJHkBa21py13/LF2Hl9Vpyd5YZJ9x97akm4I4xstuOOUtNZ+MrpR9f/S9Rics3sW7o2+Pd1oA/9UVQ9az9rWorX2syT3qqqHpJvGoB/GbEn3/V6jv+8CPpbkuNbaBxZ47z6Zf7Psh0mWGu1hpU5JcnauDF4OTneD8B1TOPa4Fyd5bBZ/8IV19P7XX7z8RrCOWmvfr6rbJ3lOkj/K/OvQuFOTPKu19p4kWWDk3vWo7YokT6mqlyd5UpLfS3LNpffKd9L1cn9Lkn9vrW1fQTufqKpfSjes/J9k8YA7SS5P14vxNVnmoa3W2jur6hfTPSx3p3TX1IPSPTi2/j/AK+v42KiOJyZ5WK58cK/v0nQ/u2e21j67UfXBaj3/nK/OugQ2SGvt1NE0U/dK9yD3XdI91LWYi5K8J8k/tNb+Y5VtfqaqbpNupJf7p/vs0PfTJC9J8rzW2iVVtZFB/ruT3DXdqC5z15ilri1XpPuM8pLW2ruW2A4AANjkBPnAxFprP05yq1Hv9XsmuWOSX8/KhpY/O10Yf8JoGN1J2j2lqg5P8pR0w6cv1jPvknRzoj9z0jZG7bxsNJfjU9PN2btUuPzTdKH7P7fWzpy0rUXa/+zYjaoHZuEbVS1dr82nt9ZOnUa7G6G19pqqekO6G3BHp/tvZ4f5lXsuT/KldL1wXtVa+/oS2/aHvH/zNHq3tNa2V9Wb0oXscx6aKQf5rbULq+qv0g2bDWyA1tqrs+P8u6s5znLnspUe5/wkj6uqZ6S7tv5Ckqulu7adleQT/etNa21udJPVWDZc77X17XRDKz+qqm6aLqw4ON3fAJcm+Vm6Oeu/2lr77moKaq1dmi6MeUlVXTfJEekecDpo1MZPknw9yedaaxdMcNwfpBv55kUT1nPjSbZfwfEuSHJckuOq6hZJbp7u+9sr3cg0ZyX5aGvtwsWPsuBx35A1jEIzrf+GgV3faISQtyd5e1Xtk+Q26a5XV093Lrsk3VQwpyX57FqmuRpr8zvpRsV6ZJLfTDca2wFJzkvy5ST/Obp+zG3/oUzwoFZrbdUPdY1G6frA6JWqOiDd9fGwdD+TfdNdv36a5Bvprl+m1AIAAJZVRmhk2u5///tfLd28pUzfgW9605sG+YG/uu6A1083/O/10t1U2SddD4zzk3w/yedXe1N/kTZvle4GydzN7x/lypvfFy217wRtVLphI2+S7ibM/umGtz8nyVeSfGk9h0GsqoOS3CHdz3au7TOSfKy19sP1anejVNWe6QKMX0jX233fdD1Uzh29vpPuRtclMyuSXZbr1bob7DVrM6uqG6S7jsz559baIxbeGmBhrqHryvUTAACAJHrksz7Oy8p6ZjO582ZdwGJGvTLOHL02qs3PJfncOrfRknx29NpwrbWfZPrDtw/GqHfOp0cv2GiuV+trsNesTe7g3rLfE7AarqHrx3kZAACAJHrkAwDAplFVD03yqrFVf9xa+8cZlQMAAAAALGK3WRcAAACsv6rakuQPeqs/OYtaAAAAAICl6ZEPAAC7qKq6XZKtSa6X5CFJ/ufY219rrd1kJoUBAAAAAEsS5AMAwC6qqj6e5PaLvH2v1tqJG1kPAAAAALAyhtYHAIDNZXuSJwrxAQAAAGC4dp91AQAAwLpqSc5PclaSU5K8tLX2ldmWBAAAAAAsxdD6AAAAAAAAADAghtYHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAzI7rMugJ1TVR2Q5MixVWcluWxG5QDDtGeS644tn9JaO29WxUyDcx+wAs59wGbk3AdsRs59wGbk3AdsNjM97wnyWa0jk5w46yKAnco9k7xz1kWskXMfMCnnPmAzcu4DNiPnPmAzcu4DNpsNPe8ZWh8AAAAAAAAABkSQDwAAAAAAAAADYmh9Vuus8YV3vOMdOfzww2dVCzBAp59+eu51r3uNrzprsW13Is59wJKc+4DNyLkP2Iyc+4DNyLkP2Gxmfd4T5LNal40vHH744bnpTW86q1qAncNly28yeM59wKSc+4DNyLkP2Iyc+4DNyLkP2Gw29LxnaH0AAAAAAAAAGBBBPgAAAAAAAAAMiCAfAAAAAAAAAAZEkA8AAAAAAAAAAyLIBwAAAAAAAIABEeQDAAAAAAAAwIAI8gEAAAAAAABgQAT5AAAAAAAAADAggnwAAAAAAAAAGBBBPgAAAAAAAAAMiCAfAAAAAAAAAAZEkA8AAAAAAAAAAyLIBwAAAAAAAIABEeQDAAAAAAAAwIAI8gEAAAAAAABgQAT5AAAAAAAAADAggnwAAAAAAAAAGBBBPgAAAAAAAAAMiCAfAAAAAAAAAAZEkA8AAAAAAAAAAyLIBwAAAAAAAIABEeQDAAAAAAAAwIAI8gEAAAAAAABgQAT5AAAAAAAAADAggnwAAAAAAAAAGBBBPgAAAAAAAAAMiCAfAAAAAAAAAAZEkA8AAAAAAAAAAyLIBwAAAAAAAIABEeQDAAAAAAAAwIAI8gEAAAAAAABgQAT5AAAAAAAAADAggnwAAAAAAAAAGJDdZ10ATMsVV1yRbdu2rfk427dvz7nnnrvgewceeGB22206z79s3bo1W7ZsmcqxAAAAAAAAgF2HIJ9dxrZt23LsscfOuowVO/7443PIIYfMugwAAAAAAABgYAytDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCC7z7oAmJatW7fm+OOPX/Nxtm3bluOOO27B95797Gdn69ata24jydSOAwAAAAAAAOxaBPnsMrZs2ZJDDjlkXdvYunXrurcBAAAAAAAAbG6G1gcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEB2n3UBXKmq9kpy6yQ3SXJgkn2S/CzJD5N8JsnprbU2uwoBAAAAAAAAWG+C/AGoqtskeVyS+ybZa4lNv1dVJyR5cWvtJxtSHAAAAAAAAAAbytD6M1RVu1XV85N8MsmDsnSInyTXTvLMJF+pqt9a7/oAAAAAAAAA2HiC/Nl6RZInZ8eARt72AAAgAElEQVTfw0VJvpgu4P9mkv5w+tdIcmJV3W3dKwQAAAAAAABgQwnyZ6Sq7pvk4b3VX0nyO0kOaK3dorV2+9ba4emC++OSXDa27Z5J/qWqDtyQggEAAAAAAADYEIL82Tmut/ypJEe01t7TWvv5+ButtR+11p6T5G5Jxt+7epI/Wd8yAQAAAAAAANhIgvwZqKobJblZb/UjW2sXLrVfa+2DSU7orb77NGsDAAAAAAAAYLYE+bPxS73l77bWTl3hvm/tLR8+hXoAAAAAAAAAGAhB/mwc1Fs+a4J9v9NbvtoaawEAAAAAAABgQAT5s3Feb3mfCfbtb/vjNdYCAAAAAAAAwIAI8mfjc73lm1TVVVa47xG95U9OoR4AAAAAAAAABkKQPwOtte8m+djYqr2SPGa5/apqryR/2lt9whRLAwAAAAAAAGDGBPmz8+Qk28eWn1NVxyy2cVVdLclbktxkbPVJrbWT1qk+AAAAAAAAAGZg91kXsFm11j5aVccmeWmSSve7eHVVPSrJ25KcluTiJAcnuX2So5McNHaI9yd54IYWDQAAAAAAAMC6E+TPUGvt5VV1WpKXJLnpaPXtRq/FfCvJC5L8U2tt+xLbrVhVHZLk6hPudtg02gaYFec+YDNy7gM2I+c+YDNy7gM2I+c+YFcjyJ+x1toHq+p2SZ6T5HFJtiyx+XeSvCjJ66cV4o88MslxUzwewM7AuQ/YjJz7gM3IuQ/YjJz7gM3IuQ/Ypew26wI2u6r6kyTfTPKELB3iJ8n1krwsyZlV9bD1rg0AAAAAAACAjSfIn5Gq2qOq3pLk5UkOHa3+Sbqe+UckOTDJnkmuleQeSd6epI22OyjJCVX1wg0tGgAAAAAAAIB1Z2j92Xl5kvuMLX8yyT1ba+f0tjs7yUlJTqqqeyR5Y5K9R+89oaq+0lp71RpreVmSN0+4z2FJTlxjuwCz5NwHbEbOfcBm5NwHbEbOfcBm5NwH7FIE+TNQVb+Z5A/HVv0wye+21n601H6ttXdW1aOSnDC2+oVV9YbW2sWrrae19sNRDStWVattDmAQnPuAzci5D9iMnPuAzci5D9iMnPuAXY2h9WfjMb3lv1suxB/z6iRfH1vemuT3plEUAAAAAAAAALMnyN9g1T3edafe6pNWun9rbXuSd/dW32GtdQEAAAAAAAAwDIL8jXdgkgN6686Y8Bj97a+9+nIAAAAAAAAAGBJB/sbba4F1P5/wGJf3lresshYAAAAAAAAABkaQv/G2LbDuWhMeo98D/0errAUAAAAAAACAgRHkb7DW2mVJzu6tvtOEh7lzb/mbq68IAAAAAAAAgCER5M/Gf/SW/7Sqdl/JjlV1ZJL/sczxAAAAAAAAANhJCfJn4197yzdL8rKqWvL3UVWHJ3l9b/U3kvzXFGsDAAAAAAAAYIYE+TPQWntfkpN7qx+R5JSqunO/d35Vba2qP0vyqSTX6u33tNbaFetXLQAAAAAAAAAbaUXDubMujk7ysSQ3HFv360k+kOSCqjojycVJtia5UZJa4Bh/01p7y3oXCgAAAAAAAMDG0SN/Rlpr5yQ5MsmHFnh7vyQ3T3JEksOyY4h/eZKnJHniOpYIAAAAAAAAwAwI8meotXZWkjsnuX+6QH/7Mrucl+TlSW7eWvvr1lpb3woBAAAAAAAA2GiG1p+x1tr2JG9O8uaq2j/JbdMNpX+1JHsn+VmSbUm+kOQro+0BAAAAAAAA2EUJ8gektXZ+kpNHLwAAAAAAAAA2IUPrAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEB2n3UBk6qqPZNcJ8kBSa4yWn1hkvOSnNVau3xWtQEAAAAAAADAWg06yK+qPZIcmeQOSW6b5JZJrpGkFtmlVdU5Sb6Q5FNJPpzkw621yzagXAAAAAAAAABYs8EF+VW1d5J7JDk6yZ2T7Dv+9nK7J7lWkkOTHJXk6UkurqoPJnl9kne01i6ZetEAAAAAAAAAMCWDCfKr6vAkj05yTJL951aP/m29fxftkd8/bLoHAX5n9Lqgql6d5PjW2jemUDYAAAAAAAAATNXMg/yqummSZye5V7rgvR/eZ2zdpUnOHr0uSHLR6L19kuyXK3vj77lQU+keEDg2yaOq6sQkz2qtfXGa3w8AAAAAAAAArMXMgvyqum6Sv05y/1wZ4I+H95cm+USSU5J8OskXW2tnrvDYN0xy8yS3SXJkkiOS7D22yW7pHhy4Z1W9KclTWmvfWcv3AwAAAAAAAADTMJMgv6qeleQJ6XrSjw+Tf2GStyV5e5L3rXY++9baGUnOSPLOUXt7Jzkqyb1Hr/1z5cMDD0gX6L+gtfbs1bQHAAAAAAAAANOy24zafWbmh/ifSvLwJIe21h7aWjtxtSH+Qlprl4yO+dB0Q+8/PMmpo7fnhuZ/5rTaAwAAAAAAAIDVmlWQn3QB+vuS3Km1dkRr7ZWttQvXu9HW2kWjtm6f5E6jGgAAAAAAAABgEGYV5P9nkju01u7WWvvQjGpIa+1DrbW7JbnDqCYAAAAAAAAAmKndZ9Foa+03ZtHuYlprH00X5gMAAAAAAADATM1yaH0AAAAAAAAAoEeQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBAdp91AWtRVXsn2SdJTbpva+0n068IAAAAAAAAANZmpwnyq2r/JPdLcrckt05y3ay+/raGfQEAAAAAAABg3ewUYXZVPTrJc5PsP7dqhuUAAAAAAAAAwLoZdJBfVZXklUkekivD+zZ6CfMBAAAAAAAA2OUMOshP8pgkx4y+ngvvK8n5Sb6aZFuSi2ZTGgAAAAAAAABM32CD/KraI8mz0gX4SRfgfzzJM5N8sLW2fUalAQAAAAAAAMC6GWyQn+TIJAfkyiD/3Unu3Vr7+exKAgAAAAAAAID1tdusC1jCL47+rdG/jxLiAwAAAAAAALCrG3KQf8Do35bkG62178yyGAAAAAAAAADYCEMO8s8b+/qnM6sCAAAAAAAAADbQkIP8L419ffWZVQEAAAAAAAAAG2jIQf7HkvwkSSW5QVVde8b1AAAAAAAAAMC6G2yQ31r7eZKXjK167KxqAQAAAAAAAICNMtggf+Svk3whXa/8x1bVUTOuBwAAAAAAAADW1aCD/NbapUl+K8nXkuyR5B1V9aSq2mu2lQEAAAAAAADA+th91gUsp7V2TlXdPsnLkxyd5HlJnlhV70nymSQ/SnLJKo77tqkWCgAAAAAAAABTMPggP0laa+dX1T8muXWSmyTZmuTBo9eqDpmd5HsHAAAAAAAAYHMZfJhdVVdN8sok9x6tauNvb3xFAAAAAAAAALB+Bh3kV9V+SU5Ocqt0of1ciC/ABwAAAAAAAGCXNOggP8nz0w2n30avSnJxunD/S0m2JbloZtUBAAAAAAAAwJQNNsivqq1JHp4rA/wkeWGS57bWLphZYQAAAAAAAACwjgYb5Cf5zSR75sre+M9vrT19phUBAAAAAAAAwDrbbdYFLOGGo38ryeVJnjfDWgAAAAAAAABgQww5yG9j/55mOH0AAAAAAAAANoMhB/nfHfv60plVAQAAAAAAAAAbaMhB/lfHvr7OzKoAAAAAAAAAgA002CC/tfaFJF9KUkmuUVW3mHFJAAAAAAAAALDuBhvkj7x47Otnz6wKAAAAAAAAANgggw7yW2snJHlrul7596iqv5hxSQAAAAAAAACwrgYd5I8cneQ16cL8p1bVe6vqiBnXBAAAAAAAAADrYvdZF7CUqnrJ6MufJTkzyQ2S3DXJXavqe0k+neRHSS6Z9NittcdMp0oAAAAAAAAAmJ5BB/lJjk3SxpZbup75SXKdJNdexTFrdBxBPgAAAAAAAACDM/QgfyFt+U0AAAAAAAAAYOe0MwT5tfwmAAAAAAAAALBrGHqQf/NZFwAAAAAAAAAAG2nQQX5r7cuzrgEAAAAAAAAANtJusy4AAAAAAAAAALiSIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgMwkyK+qP6+qfWfR9kKqat+q+vNZ1wEAAAAAAAAAs+qR/+wkp1fVY6pqnxnVkKrap6oem+SbSZ41qzoAAAAAAAAAYM4sh9a/RpK/TXJWVT27qq69UQ1X1XWq6rlJvpPk/45qAQAAAAAAAICZm1WQ//EkNXodlOQZSc6sqndV1QOqar9pN1hV+1XV71fVu5OckeRpSbaOakiS/5p2mwAAAAAAAAAwqd1n0Whr7deq6iFJnpfk0NHqLUnuNnpdVlUnJzk5ySlJPtdau2ySNqpqzyS3TnKHJHccvface3ts07OTPKW19tpVfjsAAAAAAAAAMDUzCfKTpLX2mqp6c5JHJ3liut7xSRey75XkqNErSa6oqtOTnJbku+nC9wuSXDzafu8k+6d7KOA6SX4pyeGZP+LAXHjfRv9uS/KCJMe31i6e9vcHAAAAAAAAAKsxsyA/SUYB+guq6qVJHpHk2CQ36m1W6eq8cbqAfiXGe9y33ntnJPn7JP/cWrtw4qIBYECuuOKKbNu2bc3H2b59e84999wF3zvwwAOz227TmY1n69at2bJly1SOBQAAAAAAu6qZBvlzRoH631XVi9P1wn9wknsmucrcJr1dKgtrvX9r9LooyYlJXpvkfa21/vEAYKe0bdu2HHvssbMuY8WOP/74HHLIIbMuAwAAAAAABm0QQf6cUcD+3iTvrap90s1rf1SS30hy0yR7LHOIuYD/8iRfTvKRJO9LcrLh8wEAAAAAAADYGQwqyB83Ct7fM3qlqvZMcpMkN0xy3SQHJNl3tPlFSX6a5KwkZyb5amvtsg0uGQAA4P+zd+dhlp11vei/v6pO0k1P6VSnM8NBQAYHFPEICBfFQKKA54gGJ5CjAe69EFGDwvUApxNAlIMyaIsDxAmvegyCKJFBBIGjAkIQFDSADJI5qTQZOlN313v+qF3UTld1V3XvXbVWd30+z7Ofvda71vvub6V9lj5+91obAAAAAEbW2yL/QINi/hODFwAAAAAAAAAckya6DgAAAAAAAAAAzFPkAwAAAAAAAECPHDWP1gcAFpqamsquXbtGXmd6ejo7d+5c9NjFF1+cqampkT8jydjWAQAAAACAY5kiHwCOYpOTk9mxY8eKfsbU1NSKfwYAAAAAADDPo/UBAAAAAAAAoEcU+QAAAAAAAADQI4p8AAAAAAAAAOgRRT4AAAAAAAAA9IgiHwAAAAAAAAB6RJEPAAAAAAAAAD2iyAcAAAAAAACAHlHkAwAAAAAAAECPKPIBAAAAAAAAoEcU+QAAAAAAAADQI4p8AAAAAAAAAOiRdV0HOJiq+vokTx0aemtr7eNd5QEAAAAAAACA1dDbIj/JdyV5cZKWZCbJb3QbBwAAAAAAAABWXp8frb9h8F5JrmytXdNlGAAAAAAAAABYDX0u8q8fvLck13UZBAAAAAAAAABWS5+L/KuGtrd1lgIAAAAAAAAAVlGfi/y/T3JnZh+tf9+q2tpxHgAAAAAAAABYcb0t8ltrtyZ5+2B3MsmPdBgHAAAAAAAAAFZFb4v8gZcn2TfYvriq7tNlGAAAAAAAAABYab0u8ltrn0zy3MHu9iR/W1WP7DASAAAAAAAAAKyoXhf5SdJae0OSpybZneQ+ST5YVZdV1dOq6mur6rhuEwIAAAAAAADA+KzrOsChVNUtQ7vHD94nkpw7eM2dd3eSvYexdGutbR09IQAAAAAAAACMV6+L/CSbkrQkNXhvg/E64LwTBq/lakufAgAAAAAAAACrr+9F/rADy/vkyAr5xdYBAAAAAAAAgF7oe5F/edw9DwAAAAAAAMAa0usiv7X28K4zAAAAAAAAAMBqmug6AAAAAAAAAAAwT5EPAAAAAAAAAD2iyAcAAAAAAACAHlHkAwAAAAAAAECPrOs6wKiqamuSbUk2J7k1ye7W2s3dpgIAAAAAAACAI3PUFflVdVqSn0jyfyX5z0m2LHLOLUk+nOT9SX63tXbtqoYEAAAAAAAAgCN01Dxav6pOqqo/SPLFJC9NcnaSrUlqkdfWJI9P8vIkX6qq36uqk7rIDQAAAAAAAACH46go8qvqMUn+OcmPJjkus2V9krSh12L7NTj/6Uk+WVWPXq3MAAAAAAAAAHAkev9o/ar6liSXJdk0GGqZv/O+JflSkhuT7EmyMcn2JPfJPcv+SnJ6ksuq6jtaax9ftT8AAAAAAAAAAA5Dr4v8qlqf5K2ZLfGH77J/e5LfSfLe1toti8zbkuQ7k5yf5ElDczcneWtVPai1ducKxwcAAAAAAACAw9b3R+s/P8mZmb+r/sYkZ7fWvre19ueLlfhJ0lq7pbX2ttba9yb5riTXDx0+K8nPrHBuAAAAAAAAADgifS/yn5X5Ev8rSb69tfbew1mgtfa+JI9JcvPQWs8ec04AAAAAAAAAGIveFvlV9XVJ7j3YbUle1Fr73JGsNZj3osyW+Ely76p6yOgpAQAAAAAAAGC8elvkJ/mGwXsluSvJm0Zc702DdeZ844jrAQAAAAAAAMDY9bnI3zF4b0m+0Fq7bZTFBvM/v8j6AAAAAAAAANAbfS7yNwxt7xnTmrcfZH0AAAAAAAAA6IU+F/k3Dt4ryVljWvPMRdYHAAAAAAAAgN7oc5F/5dD2jqp62CiLDeafcpD1AQAAAAAAAKAX+lzk/+8kdydpg/1XjLjeLwxt353kgyOuBwAAAAAAAABj19siv7W2J8nfZPbR+pXk8VX1uiNZq6peneSczH4poCV5T2vt9nFlBQAAAAAAAIBx6W2RP7Az8+V7Jbmgqj5YVd+6nMlV9fCqen+SnxpaoyW5aGXiAgAAAAAAAMBo1nUd4FBaax+tqtcneW7mi/hvT/KhqvrXJO9N8skkNybZk2RjkqkkD03yuCQPHiw1V+C3JL/eWvvYav4dAAAAAAAAALBcvS7yB56X5LQkT8lsEZ/MFvMPyXxRv5gavA/f0f/mJD+9MjEBAAAAAAAAYHR9f7R+WmstyXlJXpRkb+55d30G+we+knsW+HuT/HySHxysBwAAAAAAAAC9dDTckT9X5v9iVV2a2Tv0fyzJlkNMmSvzb07y+0l+rbX27yubcryq6oGZ/YmAM5PcK8kdSa5L8pkkn2it3dVhPAAAAAAAAABWyFFR5M9prX0uyfOq6sIk35Tk25LcJ8m2JJuS3JZkd5IvJflQZgvvfR3FPWxVtTnJTyZ5ZpL7HuLUu6vqI0ne3Fp73aqEAwAAAAAAAGBVHFVF/pxBOf/RweuYUFVPSvLGJKcs4/Tjkzw6yQOSKPIBAAAAAAAAjiG9LvKramJuu7U202WWlVRVP5PkVzL/kwBz7kxydZIbk2xIclqS7aubDgAAAAAAAIDVNLH0Kd2oqv+WZO/gdXdVndNtopVRVecneXXuWeK/I8l3JzmxtXa/1tq3tda+sbV2cpIzkjw9yZ8luXvVAwMAAAAAAACwovp8R/5pmS+3b2mtvavLMCuhqu6fZNfQ0N4kz2it/fHB5rTWrk7yh0n+sKq2rXBEAAAAAAAAAFZZn4v8PYP3luRLXQZZQb+dZP3Q/o+21i5d7uTW2u7xRwIAAAAAAACgS719tH6Sa4a2ZzpLsUKq6r8k+c6hoUsPp8QHAAAAAAAA4NjU5yL/isF7JTmzyyAr5NkH7F/cSQoAAAAAAAAAeqW3RX5r7ZOZL/OnquphXeYZp6o6I8k5Q0P/1Fr7VFd5AAAAAAAAAOiP3hb5A28c2t7ZWYrxOzfJ5ND++7oKAgAAAAAAAEC/9L3If12Sj2b28fpPqqqLuo0zNt96wP4n5jaq6pur6ler6hNVtbuqbq+qL1bVX1fVzw7u5gcAAAAAAADgGNXrIr+1ti/JE5N8LLNl/kuq6h1V9fBuk43swCL/81W1qaouSXJ5kp9M8o1JTkyyIcl9kpyd5FVJPltVr6iq41YzMAAAAAAAAACrY13XAQ6lqi4cbL41yZlJTknyhCRPqKovJPlIki8kuSXJ3sNZu7X26jFGPVz3P2B/JskHknzzMuZuSPLzSb61qp7SWrt13OEAAAAAAAAA6E6vi/wkv5ykDe23zN6ZnyRfk+S+I6zdSZFfVRNJNh8w/KuZL/Fbkrcn+askVybZODj29CSnD805O8nvJfn+MWTakeTkw5x2v1E/F6BLrn3AWuTaB6xFrn3AWuTaB6xFrn3AsabvRf6cynyh3w514mGu1YWtmf8ywpyHDd6nk3xfa+2DBxz/X1X18iS/leRHhsafUlU/1lr7gxEzPSfJzhHXADjauPYBa5FrH7AWufYBa5FrH7AWufYBx5SJrgMsQw29j+PVtU0HGd+f5ImLlPhJktbabZm9K//dBxz671XVh78LAAAAAAAAgDHo+x35T+46wAq48yDjb2ytffhQE1trM1X1/yb5bOa/hPHAJI9N8rdjSwgAAAAAAABAZ3pd5LfWLus6wwq47SDjb1jO5Nba56vqPUmeMDQ8apH/+iSXHuac+yV52wifCdA11z5gLXLtA9Yi1z5gLXLtA9Yi1z7gmNLrIv9Y1Fq7o6r2J5kcGr41yccPY5n3555F/sNHzHR9kusPZ46n+QNHO9c+YC1y7QPWItc+YC1y7QPWItc+4FgzsfQprIAD/xfJ51prM4cx/4oD9neMmAcAAAAAAACAnuhtkV9VP1BV/zH0enzXmcboXw/Yv+Uw5x94/rYRsgAAAAAAAADQI70t8jP7uyRnDl7bkryv2zhj9ekD9k84zPnrD9i/fYQsAAAAAAAAAPRIn4v8vYP3luRLrbV9XYYZs8sP2D/lMOcf+Cj96RGyAAAAAAAAANAjfS7yrx7avqOzFCvjsiQzQ/v3raqTDmP+txywf8XokQAAAAAAAADogz4X+Z8f2j69sxQroLV2fZK/O2D4KcuZW1XrknzfAcN/O4ZYAAAAAAAAAPRAb4v81tpHknw5SSU5taoe1HGkcfutA/Z/rqpOWMa8ZyU5dWj/liTvGlsqAAAAAAAAADrV2yJ/4PeHtl/QWYqV8cdJ/nlo/2uT/FZVHfTfpKq+Lcn/PGD49a21m1cgHwAAAAAAAAAd6HuR/8rMPmK/kvxYVf14x3nGprU2k+RnkrSh4WckeVdVfcvwuVW1taouTPKeJJuGDn0myStWOisAAAAAAAAAq6fXRX5rbU+Sc5N8MbNZ31BVv1lVpx5y4lGitfY3SX7+gOGzk3y0qq6pqn+sqk8nuT7Jr+SeJf50kh9ord26OmkBAAAAAAAAWA3rug5wKFX1lMHmLyW5OMkpmf2N+J+oqg8k+UiSL2T2d+L3Hs7arbW3jDHqEWutvbKqbs9sUX/c0KFTB6/FXJHkya21z650PgAAAAAAAABWV6+L/CRvzj0fPd8y+5j9dUm+c/A6Ei09+ttba79WVX+d5KIkT8k9C/1hX0jy2iS/2Vq7e5XiAQAAAAAAALCKelNmL6EyX+i3RY4d9Vpr/5bkh6pqS5JHJXlAkq1JbktyXZLLW2tXdBgRAAAAAAAAgFVwNBT5dcD7Ma21dkuSdw5eAAAAAAAAAKwxfS/yf7LrAAAAAAAAAACwmnpd5LfWfr3rDAAAAAAAAACwmia6DgAAAAAAAAAAzFPkAwAAAAAAAECPKPIBAAAAAAAAoEcU+QAAAAAAAADQI+u6DrBaquqEJGfM7bfWPt9hHAAAAAAAAABYVKdFflV9YGj3p1trly9x/ihl/KOTvHtuatbQlxgAAAAAAAAAOHp0XWY/OrOlepKcuMzzRynj6zDPBwAAAAAAAIBV1XWRn8yW623Js+55PgAAAAAAAAAckya6DpDDK/EBAAAAAAAA4JjWhyIfAAAAAAAAABhQ5AMAAAAAAABAjyjyAQAAAAAAAKBHFPkAAAAAAAAA0COKfAAAAAAAAADoEUU+AAAAAAAAAPSIIh8AAAAAAAAAekSRDwAAAAAAAAA9osgHAAAAAAAAgB5R5AMAAAAAAABAjyjyAQAAAAAAAKBH1nUdYMjLq+rGJc7ZPrxTVX9xGOtvX/oUAAAAAAAAAOhWX4r8SvJtRzDniYc5pw3mAQAAAAAAAEAv9aXIbyt0LgAAAAAAAAAcVfpQ5LtDHgAAAAAAAAAGui7yf7LjzwcAAAAAAACAXum0yG+t/XqXnw8AAAAAAAAAfTPRdQAAAAAAAAAAYJ4iHwAAAAAAAAB6RJEPAAAAAAAAAD2iyAcAAAAAAACAHlHkAwAAAAAAAECPKPIBAAAAAAAAoEcU+QAAAAAAAADQI4p8AAAAAAAAAOgRRT4AAAAAAAAA9IgiHwAAAAAAAAB6RJEPAAAAAAAAAD2iyAcAAAAAAACAHlHkAwAAAAAAAECPKPIBAAAAAAAAoEcU+QAAAAAAAADQI4p8AAAAAAAAAOiRdV0HOJSqetjQ7hWttT0jrLUxyQPn9ltrl4+SDQAAAAAAAABWQq+L/CQfTdIG249P8t4R1npEkncPtlv6/7cDAAAAAAAAsAYdDWV2Zb7MH8daAPG55lMAACAASURBVAAAAAAAANBbE10HWIZxlfgAAAAAAAAA0HtHQ5EPAAAAAAAAAGvGWiry7zW0fUdnKQAAAAAAAADgENZSkf+1Q9s3d5YCAAAAAAAAAA5hTRT5VXWvJD8+2G1JrugwDgAAAAAAAAAc1LquA1TVhcs89byq+qbDWTqzj9O/b5Jzk5wydOzvDmMdAAAAAAAAAFg1nRf5SX45s3fJH0wN3p89wmfU0GfsT/IHI6wFAAAAAAAAACtmTTxaP7Ml/twXAl7UWvtsl2EAAAAAAAAA4GD6cEd+Ml+yj3rOwexN8oEkr26tvWOEdQAAAAAAAABgRfWhyH/yQcYryV9k/pH4L0nyicNYdybJniQ3JflMa+3uI04IAAAAAAAAAKuk8yK/tXbZwY5V3eMm/A+11t678okAAAAAAAAAoDudF/nLMMoj9QEAAAAAAADgqNL3In/z0PYdnaUAAAAAAAAAgFXS6yK/tban6wwAAAAAAAAAsJomug4AAAAAAAAAAMxT5AMAAAAAAABAj/T60foHU1VnJjkrydYkG5LU4a7RWnvLuHMBAAAAAAAAwKiOmiK/qr49ybOTnJtk+4jLtRxFfzsAAAAAAAAAa0fvy+yq2pTkN5P88NxQh3EAAAAAAAAAYEX1usivqhOSXJbk0Zkt8NvgpcwHAAAAAAAA4JjU6yI/yQuSPCb3LPD3JflAkn9Kcn2SPZ2lAwAAAAAAAIAx622RX1Xrkjw/97wD/4+TXNhau66zYAAAAAAAAACwgnpb5Cf59iRbMn83/p+01n6020gAAAAAAAAAsLImug5wCF87eJ+7G/+FXQUBAAAAAAAAgNXS5yJ/++C9Jfn31tqVXYYBAAAAAAAAgNXQ5yL/zqHt6c5SAAAAAAAAAMAq6nOR/+9D29s6SwEAAAAAAAAAq6jPRf4Hk+xLUkm+pqq2dpwHAAAAAAAAAFZcb4v81truJJcOdieT/HCHcQAAAAAAAABgVfS2yB94YZJbBtsXVdXpXYYBAAAAAAAAgJXW6yK/tXZlkvOS3JVkR5L3VNWDuk0FAAAAAAAAACun10V+krTW/jrJ45NcleRBSS6vqt+uqrOr6sRu0wEAAAAAAADAeK3rOsChVNUtQ7vHDd7XJzl/8EpV7cvsHfuHo7XWto6eEAAAAAAAAADGq9dFfpJNSVqSGry3wXgNnXNc5kv+5WpLnwIAAAAAAAAAq6/vRf6wOmD/SMv4A9cBAAAAAAAAgN7oe5F/edw9DwAAAAAAAMAa0usiv7X28K4zAAAAAAAAAMBqmug6AAAAAAAAAAAwT5EPAAAAAAAAAD2iyAcAAAAAAACAHlHkAwAAAAAAAECPrOs6wCiqamuSk5JszeyXEq5ore3pNhUAAAAAAAAAHLmjqsivqokkP5Dk+5M8OsmpB5zy+CTvXWTe45KcONi9sbX2gZXMCQAAAAAAAABH6qgp8qvqu5O8Psm954YOOKUdYvpjk7x4sL2nqk5vrd025ogAAAAAAAAAMLKJrgMsR1W9LMnbk9wnh1fgz9mV5O7B3I1JnjrWgAAAAAAAAAAwJr0v8qvq+UlelNkSfq60vzXJZUl+IwuL/QVaazckeffQ0JPHHBMAAAAAAAAAxqLXRX5VPSjJL2W2wG9J9iV5YZJTW2tPbq09d3Dqcu7Kf8vcskm+o6p6/bcDAAAAAAAAsDat6zrAEl6WZHKwvS/Jk1tr7z7E+Yfyd0PbW5LcP8lnRsgGAAAAAAAAAGPX27vSq2pDkidl/m78141Q4qe19rkktw0NPXi0hAAAAAAAAAAwfr0t8pM8OskJmX0UfpK8dgxrXjO0ffoY1gMAAAAAAACAsepzkX/voe3/aK1dNYY1bx7a3jyG9QAAAAAAAABgrPpc5G8fvLck141pzT7/vQAAAAAAAADQ62L7jqHtDWNac/vQ9vSY1gQAAAAAAACAselzkX/94L2SnDnqYlW1PbOP62+DoXHd5Q8AAAAAAAAAY9PnIv+Koe0Tq+obR1zviYP3Grx/eMT1AAAAAAAAAGDselvkt9Y+ntm78ufuoH/Oka5VVZNJfm5orU+11m4YLSEAAAAAAAAAjF9vi/yBN2f2DvpKcn5VPeYI13lVkocM1mlJfnc88QAAAAAAAABgvNZ1HWAJL0/y35JsSDKZ5C+r6odba+9YzuSq2pjktUl+IrMFfmX2Lv/fWJG0AAAAAAAAcAT279+f6enpsaw1MzOT3bt3L3ps27ZtmZgY/V7fqampTE5OjrwOsLheF/mttWur6v9L8quZLeK3JHl7Vf11kj9I8rHBqXN32k9V1YOS3D/J45I8I8mJg+NJMpPk2a21O1fvrwAAAAAAAIBDm56ezgUXXNB1jGXbtWtXduzY0XUMOGb1ushPktbarqr6miQ/nfm76h8/eA2rJH+yyFgbmvc/Wmt/ubKJAQAAAAAAAODIjf7cjFXQWrswyU8luXtouHLPor4Njc3dgT83tjfJs1prr1itzAAAAAAAAABwJI6KIj9JWmu/luRbkvxRkn1Dh2r4tEXGL03ysNbaJSubEAAAAAAAAABG1/tH6w9rrX06ydOq6mcz+2j9xyR5cJKpJCcmuT3JjUm+kOR9Sd7dWvtiN2kBAAAAAAAA4PAdVUX+nNbatUneNHgBAAAAAAAAwDHjqCzyAQAAAAAA4FgyNTWVXbt2jWWt6enp7Ny5c9FjF198caampkb+jHGsARycIh8AAAAAAAA6Njk5mR07dqz450xNTa3K5wCjmeg6AAAAAAAAAAAwT5EPAAAAAAAAAD1yVD5av6rOTHLvJFuSbEhSh7tGa+0t484FAAAAAAAAAKM6aor8qnpskvOTfHeSk0ZcruUo+tsBAAAAAAAAWDt6X2ZX1YlJLknyX+eGOowDAAAAAAAAACuq10V+VW1J8t4kD81sgd8GL2U+AAAAAAAAAMekXhf5SV6Z5JtyzwL/jiR/m+Sfk0wnub2rcAAAAAAAAAAwbr0t8geP1P+J3PMO/F9J8tLW2q2dBQMAAAAAAACAFdTbIj/J45Icl/m78X+ptfaibiMBAAAAAAAAwMqa6DrAIdx78F5J7k7yix1mAQAAAAAAAIBV0ecif/3gvSW5orV2W5dhAAAAAAAAAGA19LnIv25oe29nKQAAAAAAAABgFfW5yL988F5JzuwyCAAAAAAAAACslnVdBziY1tonquqzSR6QZEdVPbS19omucwEAAN3av39/pqenR15nZmYmu3fvXvTYtm3bMjExnu89T01NZXJycixrAQAAALA29LbIH7g4yR8Oti9K8n3dRQEAAPpgeno6F1xwQdcxlm3Xrl3ZsWNH1zEAAAAAOIr0+dH6aa39UZI/yuzj9b+3qi7uOBIAAAAAAAAArKheF/kDz8h8mf/iqvqrqnp4x5kAAAAAAAAAYEX0/dH6aa3tT/K0qnpfklcmOSfJOVV1ZZLLk9yQ5M4jWPd5Yw0KAAAAAAAAAGPQ+yI/SarqXknOSLI3s3fmJ8lZSc48kuWStCSKfAAAAAAAAAB6p/dFflV9U5I/z2xxn8yW8AAAAAAAAABwTOp1kV9V90vyniQnDYZa5u/IBwAA1qCpqans2rVr5HWmp6ezc+fORY9dfPHFmZqaGvkzkoxtHQAAAADWjl4X+Ul2ZbbEn7sLv5L87yR/keRfkkwnub2baAAAQBcmJyezY8eOFf2MqampFf8MAAAAADiY3hb5VfU1Sc7J/F34tyT54dbaOzoNBgAAAAAAAAAraKLrAIfwmMF7ZbbMf64SHwAAAAAAAIBjXW/vyE9y2tD2LUn+pKsgcCzav39/pqenR15nZmYmu3fvXvTYtm3bMjExnu8LTU1NZXJycixrAQAAAAAAQJ/1uci/bfDekvx7a21/l2HgWDM9PZ0LLrig6xjLtmvXLr9TCwAAAAAAwJrQ50frXzm03ecvHAAAAAAAAADA2PS5yP9YZu/GryT/qar6nBUAAAAAAAAAxqK35Xhr7ctJ3jvY3ZzkCR3GAQAAAAAAAIBV0dsif+Blmb0rP0leWVXruwwDAAAAAAAAACut10V+a+0DSV6Q2cfrf32St1XVSd2mAgAAAAAAAICVs67rAEtprf1KVU0n+bUkZyf5l6p6bZI3t9Y+3206OHpNTU1l165dI68zPT2dnTt3Lnrs4osvztTU1MifkWRs6wAAAAAAAEDf9brIr6pPDu3enmRjklOT/GKSX6yqW5LckOTOw1y6tdYeOp6UcHSanJzMjh07VvQzpqamVvwzAAAAAAAA4FjT6yI/s4/Tb0P7c9s1eN86eC1XG8xtS50IAAAAAAAAAF3oe5F/MIp4AAAAAAAAAI5JfS/yb4rSHgAAAAAAAIA1pNdFfmtte9cZAAAAAAAAAGA1TXQdAAAAAAAAAACYp8gHAAAAAAAAgB5R5AMAAAAAAABAjyjyAQAAAAAAAKBH1nUdYFRVVUm2ZvZLCTe31vZ3HAkAAAAAAAAAjthRV+RX1X9O8v1JHpPkwUk2J6nB4ccnee8icx6cZMNg95bW2udWISoAAAAAAAAAHLajpsivqocm2ZXkUcPDQ9vtENP/7yQ/OdjeXVWnt9buHnNEAAAAAAAAABjZRNcBlqOqnpnkQ5kt8efK+7n3QxX4c16TZGYwZ1uS/zrujCuhqv64qtoBry92nQsAAAAAAACAldP7Ir+qfjjJbyU54YBDn0ryjtzzrvxFtda+lOT9Q0O9L/Kr6slJfqjrHAAAAAAAAACsrl4X+VV1ZpJLBrsts6X9byQ5q7X2Da21Jw4dW8qfzS2b5LvGGnTMqmprZv9OAAAAAAAAANaYXhf5SS5Ksj7zd92f31p7bmvt6iNY6wND29ur6r6jhltBr0pyxmB7T5dBAAAAAAAAAFhdvS3yq2pdkqdm9m77luT3Wmu/O8KS/5rkzqH9B4+w1oqpqu9I8szB7kySi7tLAwAAAAAAAMBq622Rn+RRSTZl/m78V46yWGttJslVQ0NnjbLeSqiqDUnemPm/+deS/GN3iQAAAAAAAABYbX0u8u83tH1Na+0zY1jz5qHtLWNYb9xelvm/+z+SvLjDLAAAAAAAAAB0YF3XAQ7h5MF7yz3vpB/FzNB2r77EUFXfmuSnh4ae21q7raoONuWYsH///kxPT3cd4x4OladvWedMTU1lcnKy6xgAAAAAAADAGPS5yN87tH38mNY8aWj7pjGtObKqOi7JJUnmmthLW2tv7zDSqpmens4FF1zQdYxl27lzZ9cRFrVr167s2LGj6xgAAAAAAADAGPTqrvQDXD94rySnj7pYVW1J8p8ye4d/ktww6ppj9PNJvmGw/ZUkz+swCwAAAAAAAAAd6nOR//mh7e1Vdf8R13t8Zv/euWfVf2zE9caiqh6S5EVDQy9srV3bVR4AAAAAAAAAutXnIv8jmb07fe4O+meOuN7zh7Y/31r78ojrjayqJjL7SP25nw74YJI3dJcIAAAAAAAAgK71tshvre1P8peZvYO+kjxvcPf6Yauqn03yiLmlk/z/Ywk5uudlPtfdSZ7dWmuHOB8AAAAAAACAY9y6rgMs4aVJfiizOdcneXdVfU9r7ZPLXaCqXpTk4swW+JXk1iSvXYGsh6Wq7pvk5UNDv9ha+7eOsuxIcvJhTrvfSmQBWC2ufcBa5NoHrEWufcBa5NoHrEWufcCxptdFfmvt36vqVUn+e2aL+NOT/GNV/U6SNyX5+IFTqmp9kvsneVyS5yR5QGYL/AzW+LnW2ldWI/8SfjvJxsH2vyV5RYdZnpNkZ4efv6iHnPfMHL9py6p/bpuZyd17bl302PEbN6cmunmQxd233ZJPX/rGTj4bjlG9vPYBrDDXPmAtcu0D1iLXPmAtcu0Djim9LvKTpLX24qp6QJLzMlvEH5fk2YPX3GPoa7D9ztzzbxou8CvJb7fWOv8N+qo6P8nZg92W2Ufq391hpF46ftOWrN+6rZPP3rBtqpPPBQAAAAAAAOjm1uLD96NJXjPYHi7vJwb7c0X9cYP3udfw783/Qma/jdWpqjotyS8PDb2xtfbBrvIAAAAAAAAA0C+9vyM/SVpr+5I8v6rekeSiJI9a7LSh7Rp6/8ckL2qtvWdFQy7fryc5cbB9bZIXdJhlzuuTXHqYc+6X5G0rkAVgtbj2AWuRax+wFrn2AWuRax+wFrn2AceUo6LInzMo499TVd+S5HuSPCbJg5NMJVmfZF+Sm5J8Icn7kryztfaBjuIuUFXnJfm+oaGfaq19pas8c1pr1ye5/nDmVNXSJwH0mGsfsBa59gFrkWsfsBaN49q375prsm/Llq/uT558cmr9+iXXmbn11sx8ZeH/y7OOOy6Tp566rCz7rr4m2b9vwfjESSdlYuPGpTPccUdmbrxx4YGJiaw744xlZdh//fVpd921cIktWzKxdeuS89vdd2f/ddctemzyjDNSE0s/LHf/TTel7dmzYLw2bszkSSctnWFmJvuvumrxDKeckjr++CXXmLn55szccsvCDCeckMkdO5acnyT7rroqmZlZMD6xfXsmNmxYOsOePZm56aaFBybXZd3ppy0rw/5rr03bu3dhhhNPzMTmzUvOb3femf033LDosXVnnbW8DDfemHbHHQszbNqUiW1L/8Rs27cv+6+5ZtFjk6edllq3dN0zs3t3Zm67bcF4bdiQye3bl5zfd/7vPuBYc1QV+XNaax9L8rHhsao6/ij4nflXDW1f1lr7086SAAAAAAAcxI0/8rRce9xxX93ffumfZv2jHrnkvD1/8r9y80UXLxg/7iEPySl//a5lffYN3/eU7L/yygXj2179K9n4g09dcv5d739/ps9/1oLx2rIlZ/zrp5aVYfo5z83d//ChBeObL/yZbH3+hUvO3/uZz+b6c85d9Njpn/6X1DK+DHDzS1+W2y9984Lxe533Aznpta9ZZMY9tVtvzbWPWOzhtsmOd70zx3/91y25xq1vvCS3vnrhZx3/yEdkx5uXd+PzdWc/IW2RLwNMXfKGbDh38f9Gw+54+2XZfeHzF4xPnnlmTvvwPywrw41Pf0b2fvrTC8a3XrQzm5/1zCXn33X5x3PjeYv/z96ZV315WRl2v+CFufNd714wvun883PiSy9acv7+a6456L/nqR/6+2V9oeCW17wut11yyYLx9ec8Idt/Z+E4AN06Kov8xRwFJX4y/0j9JHliVbWDnnlw91lk3je31v5phFwAAAAAAAAA9MTSz+8BAAAAAAAAAFaNIh8AAAAAAAAAeqT3j9avqpOGdve01u46gjVOSLJxbr+1dtM4sh2B/5LkuCXPuqeHJvnlof3rkjztgHM+N0ooAAAAAAAAAPqj10V+VZ2d5F1DQ49K8uEjWOqbk/zdYLtV1WNba393qAkrobX2/sOdU1X7Dhi6s7X2njFFAgAAAAAAAKBnel3kJ3l2khpsf6C1diQlflprH6qqf8jsFwEqyTMzX+wDAAAAADBk+x/9YU594AO/uj958snLmrfxh34wG849Z8F4Hbf8B5We/Na3JPsPvL8pmTjppEXOXuiExz42p37o7xcemFj+L81Ovf7X0+5a+HDYiS1bljX/uK99wOIZktTmzctaY+v/eEm2PP/ChfM3blzk7MU/52AZJk85ZVlrbH7m+dn41PMWrn3CCcuanySnvOfdyczMgvGJ7duXNX/Dk56YEx71yIUHJpdfb2x/0++n7d27MMOJJy5r/gkP++aD/rdcrm3/85VpF1+0MMOmTcuaP3naaQf/9zzttGWtseVnfiqbnnX+gvHasGFZ8wFYXb0t8qtqXZJzkrTB0B+NuOSbMlvkJ8mTRlwLAAAAAOCYte6007LurLMOe97E5s2ZWGZRfdDPPn15peRBM2zYkIkjyD5scseOkebX8ccf0X+/e2Q46aRkmV9eWDTDxMTIGSa2bs3E1q0jrbHujDNGy7BxYyaW+eWFg5k89dSR5tf69aP/ey7ziwsHzbBu3ej/ntu2ZWLbtpHWAGD1LP8riKvvG5Nszvwd+e8ccb13DG2fVFVfN+J6AAAAAAAAADB2fS7yHzy0Pd1a+49RFhvMnx4aesgo6wEAAAAAAADASuhzkT/37KKW5OoxrXnV0PZoz2cCAAAAAAAAgBXQ5yJ/w9D2nWNac3idTWNaEwAAAAAAAADGZl3XAQ5h99D29jGtOTW0fduY1lxRrbW/TVJd5wAAAAAAAABgdfT5jvwbB++V5Kyq2jzKYoP598nso/qT5IZR1gMAAAAAAACAldDnIv9fBu8ts08O+J4R13vSYJ25u9uvGHE9AAAAAAAAABi73hb5rbV/TXL1YLeS7KyqySNZazDvJRm6G7+1dvnoKQEAAAAAAABgvNZ1HWAJlyb5qcwW8A9M8sYkP34E61yS5EGD7Zbkz8aSjq/ad8012bdly1f3J08+ObV+/ZLz2m23Zduddy4Y31/L/47JhukbUvv3Lxi/e/PW7NuwYcn5k3fdmRNu/srCA1W5/eRTlpVh/e6bMrH37gXjezduyt6Nm5acP7F3b9bvnl702O3bdyQTS//32H/TTWl79iwYr40bM3nSSUvObzMz2X/VVYsemzzllNTxxy+5xvp9+7Jh3775Na++Ovvuuit1wgmZ3LFjyflJsu+qq5KZmQXjE9u3Z2IZ/54ze/Zk5qabFh6YXJd1p5+2rAz7r702be/ehRlOPDETm5f+lY92553Zf8Piv96x7qyzlpfhxhvT7rhjYYZNmzKxbdvSGfbty/5rrln02ORpp6XWLX35n9m9OzO33bZgvDZsyOT27UvOBwAAAAAA4Mj0vcj/pSTPSrIhs3fl/1hV7UjyzNba4g3VkKo6PbPl/zmZLfAryZ1JfmHFEq9RN/7I03Ltccd9dX/7pX+a9Y965JLzZt72F3nJxz6+YPyqjffK3yzzsx/3kp/OxhuuWzD+kef8XL74necsOf+UT3wsj37VzgXjd99rY/7899+2rAyPeO3Ls+PTn1ww/qnznp5PPfUZS87fcuWX8oQX/D+LHnvr7/35sr4McPNLX5bbL33zgvF7nfcDOem1r1lyfrv11lz7iEctemzHu96Z47/+65Zc47FXX5NzvnzlV/f3PvHJuTbJ8Y98RHa8+dIl5yfJdWc/Ie2WWxaMT13yhmw499wl59/x9suy+8LnLxifPPPMnPbhf1hWhhuf/ozs/fSnF4xvvWhnNj/rmUvOv+vyj+fG85666LEzr/rysjLsfsELc+e73r1gfNP55+fEl1605Pz911xz0H/PUz/098v6QsEtr3ldbrvkkgXj6895Qrb/zsJxAAAAAAAAxqPXRX5r7bqqenGSV2e+iD83yReq6i1J/irJR5Ncn+S2JJuS7Ejy8CTfk+QpSY4bzMtgjZe01q4OAAAAAAAAAPRQr4v8JGmtvbaqvi7J+Zn/jfvjk/zg4HUoNZgz9yWA326tvXqlsgIAAPTJ/v37Mz29+E84Ha6ZmZns3r170WPbtm3LxDJ+Dmo5pqamMjk5OZa1AAAAAI5WvS/yk6S19qyq+j/s3Xl8W/Wd7//3V0e2pHiV5ch2FiBQtrCnDFuhFFoIA5SWJaU7tyR0zb1t6aPtdHrBcTqdebT3dqB33G0gdGMoSwot04W9ZUrZWmCgNPCDQgJZnMWKk3hfpO/vD1u2bG3HlmTJ1uv5ePhh6budjyRHSfw+56stktZJcjQR6Jt0czQ5wB/R6JX43yhgmQAAAABQUiKRiNauXVvsMqalvb1d4XC42GUAAAAAAAAUVX4umZgF1tqvS3qbpF+NNSWG+DbhSwn9VtIvJJ1GiA8AAAAAAAAAAAAAmAvmxBX5cdbapyVdYow5VNJ5ks6SdJikBkk1krol7ZX0qqQ/SHrQWrulONUCAAAAAAAAAAAAADB9cyrIj7PWvi7pB2NfKAGNt92q5iOPHL/vLFzoap7nPZdo3e8eSWqPGo8OdXnsR752o0w0mtQ+VFPnav6uE96qX33n1uQOk+mTGyZ78nP/W57hoaT24apqV/MPLDk4dQ2ShgMLXK1Rd/11qv3CtUntpqrK1XxTU6PmJx9P2ec0Nbla49FFLXo6PPHar1+/XqFQSMbnczVfkpoeekCKxZLaPY2NruYHLr5IvjNOT+5w3L/dNf70x7LDw8k11Ne7mu9bcVLa59Kt4De/Idu2LrmGanc/U05LS/rXs6XF1Rq1n/+sqq9ZndRuAgFX8wEAAAAAAAAAADAzczLIR+nxtrTIu3TptOeZ6mp1+f05Hbs/5O6kgXSiPr/6ws05rTEQbMhpfqyiIucanIYGqWHmdRiPZ0avYaIBr1cD3om3FbNokbzT/HxT7+LFOdXgqaqSx+XJC+k4zbm9Fsbvz/m5dFyeuJC2Bq835xo8waA8wWBOawAAAAAAAAAAAGD6PMUuAAAAAAAAAAAAAAAATOCKfAAAAACYp0KhkNrb2/OyViQSUWtra8q+trY2hUKhvBwnX+sAAAAAAOa3aDSqSCSSl7VisZi6urpS9gWDQXk8uV8bHQqF5DhOzuugfBDkAwAAAMA85TiOwtP8qKOZCIVCs3IcAAAAAADiIpGI1q5dW+wyXGtvb+f/zpiWOR/kG2OqJPmmO89au7cA5QAAAAAAAAAAAAAAkJM5FeQbYw6S9FFJZ0g6SVJI0kz2oLCaY48dAAAAAACUp7m2ZajEtqEAcjfX3vt43wMAAPk2J8JsY0ydpHZJ75cU/1eVKV5FAAAAAAAAs2OubRkqsW0ogNzNtfc+3vcAAEC+lXyQb4xZKum/JB2k0fDeaiLEt4lDE24ntqfqBwAAAAAAAAAAAACgJJV0kG+MqZT0S0kHJzZLelHSZknvHmuzkv4gab+kBklHSwom9EnSK5L+UuCSAQAAAAAAAAAAAADISUkH+ZKulnSiJsL4v0r6sLX2BUkyxsQS+tqstY/EJxpjTpL0GUlXaXQ7/kMl/dBa+41Zqh0AAAAAAAAAAABAAYRCIbW3t+dlrUgkoljSywAAIABJREFUotbW1pR9bW1tCoVCOR8jH2ugvJR6kP85TWylv0vSudbaTjcTrbXPSVpjjNkgaaOkFkn/bIwJWGvXFaheAAAAAAAAAAAAAAXmOI7C4XDBjxMKhWblOMBUJRvkG2MWSzpCo0G+lfR1tyF+ImvtE8aY8yQ9Kala0nXGmIestY/ltWAA81o0GlUkEsl5nVgspq6urpR9wWBQHo8n52NIo/+wcBwnL2sBAAAAAAAAAABgdpVskC/plLHvRqNB/u1Zxpt0HdbaTcaYf5H09bGmr0k6J+cKAZSNSCSitWvXFrsM19rb2zlDEAAAAJgn5tqWoRLbhgLI3Vx77+N9DwAA5FspB/lNCbe3u7ga35+lf4NGA3yPpLcbY1qstR25FAgAAAAAAFBobBkKoBzx3gcAAMpdfvZwLozg2HcraXeaMQMJt6syLWat3S1pc0LT6TMvDQAAAAAAAAAAAACAwijlIH8o4fZwmjHdmthSf5GLNROv6j94JkUBAAAAAAAAAAAAAFBIpRzk70u4XZdmTOKV+ke4WDNxncC0KwIAAAAAAAAAAAAAoMBKOch/Zey7kdScZsxfEsacnWkxY0xQ0uEa3apfkg7kWiAAAAAAAAAAAAAAAPnmLXYBGbyo0dDdSKozxiyy1u6YMuYpSe8fu32UMebt1tr/SrPetZKcsdtW0mv5LhjA/BUKhdTe3p7zOpFIRK2trSn72traFAqFcj6GpLytAwAAAAAAAAAAgNlXskG+tbbLGPOipOPGms6SdMeUYXdK+pZGw34j6afGmIustS8mDjLGfErSP2jixIAhSX8oYPkA5hnHcRQOhwt6jFAoVPBjAAAAAAAAAAAAoPSV8tb6kvRgwu2LpnZaazs0Gu4bjYb0SyU9Z4x51Bjz78aYHxljXpXUrtGr8ePjfmSt7Sl49QAAAAAAAAAAAAAATFOpB/nxK/CNpMvGPud+qmsl7R67bTUa2J8pabWkj0g6TBMBviS9IekfC1UwAAAAAAAAAAAAAAC5KNmt9SXJWvsnY8xXJPnHmhZL6poyZpcx5hxJ92n0inw7eZXx+0bSy5IusdZ2CQAAAAAAAACAeSAajSoSieRlrVgspq6u1L9CDwaD8nhyvz4wFArJcZyc1wEAYD4r6SBfkqy133Ax5iVjzFGSPi/pSknHJXZLekHSTyR9z1o7UJBCAQAAAAAAAAAogkgkorVr1xa7DNfa29sVDoeLXQYAACWt5IN8t6y1/ZL+WdI/G2MCkpo0ehX+bmttb1GLAwAAAAAAAAAAAADApXkT5CcaC/W3FLsOAAAAAAAAAAAAAACmK/cPswEAAAAAAAAAAAAAAHlDkA8AAAAAAAAAAAAAQAmZl1vrA271792j1x68R/179yh8zFt10JnnyXgcV3N3Pv+Utj31e3l9AS0792LVLT20wNUCAAAAAAAAAAAAKAcE+ShbfZHd2rRxg4b7eiVJO555TEO9B/SWlZdnDfO3Pfk7bX3iYUnScG+3XrrnJzrqkg+p/pDDC143AAAAAAAAACQKhUJqb2/Py1qRSEStra0p+9ra2hQKhXI+Rj7WAABgvitKkG+MubYYx01krf3XYteA4pka4sd1vvyCJGUM8xND/DgbHdHL9/4HYT4AAAAAAACAWec4jsLhcMGPEwqFZuU4AACgeFfk/19JtkjHjiPIL1PpQvy4TGF+qhA/jjAfAAAAAAAAAAAAQD54il1AEZhiF4DiyRbix3W+/IL+dv/PZWPR8bZMIX5cPMzft+XVvNQLAAAAAAAAAAAAoPwUM8g3RfpCmUoX4gcWHaKl7/2YjLdiUntimJ8uxG951+WqW/7WSW2E+QAAAAAAAAAAAAByUayt9d9dpOOiTGUK8Q9536fk+PzyVPr15t03y44Mj/d3vvyC+jp3q69zZ9KaLeddodCKs9Rw0pmSpP2bnhnvY5t9AAAAAAAAAAAAADNVlCDfWvvrYhwX5clNiC9JNcuO0kGXrUkK8zOF+JJkPB4tuejDktKE+e/5kOoPJswHAAAAAAAAAAAA4E6xrsgHZoW1Vq/+9q6sIX5cujA/UWKIH5cpzH/1N3fqpI9dK68/kI+HBAAAAKBAotGoIpFIXtaKxWLq6upK2RcMBuXx5OeT7kKhkBzHyctaAAAAAACgdBDkY56z6tvTkdTacu6lSSF+XKYwP1WIH2c8HjWf8151v/oXxYaHxttHBvo12L2PIB8AAAAocZFIRGvXri12GdPS3t6ucDhc7DIAAAAAAECe5ecSAKBEGeNRw+HHJLW/cfdNGkgR8MfFw3xTURlfSC3nr0ob4kvSSF+Pttzx3UkhviQFQmEtCPGLNQAAAAAAAAAAAADucEU+5r3DzrtUwz3d6u54c7wt2tejzbe3a9n718q/sCXlvJplR+nwNf+ons0va0HLQfKHF6c9xkhfjzb/rF2DnZNPDvDV1uuo93xExsNWlwAAAAAAAAAAAADcmbNBvjFmkaRTJC2TVC+pWlKPpH2SNkt62lq7o3gVolR4fX4ddelH9fI9P5l2mF9ZG1TDCadnXD9TiL/8itXy1wVzfxAAAAAAAMCVaDSqSCSSl7VisZi6urpS9gWDQXk8uW92GQqF5DhcAAAAAABgsjkV5BtjFkpaLelqSYe5GP+6pA2SbrHW7i5weShhuYT5mRDiAwAAAABQWiKRiNauXVvsMlxrb29XOMxH8gEAAACYLPfThmeJMeZTkl6V9HVJb5FkEr4mDU34Omxs/KvGmE/PXrUoRfEwv6bloEnt8TB/YE9HmpmpEeIDAAAAAAAAAAAAKISSvyLfGOOV9B+SrtBEaG/j3VO+J0ocUyPp34wx50j6gLV2pEDlosRlujJ/y53f0+HXfFVOpS/rOtZavXnPBkJ8AAAAYB4JhUJqb2/Py1qRSEStra0p+9ra2hQKhfJynHytAwAAAAAASkvJB/mSbpW0auy21cTV9jsl/UHSi5IiknolVUkKSTpO0pmSmjU50L9MoycFXDlLtaMExcP853/6bxrq3j/ePtKzX71vvKLaw4/Lusbw/r3q2/b6pDbjOFp++ccI8QEAAIA5ynGcWdneOhQKsY02AAAAAADIqKSDfGPMlZLep8lh/POSviLpAWttLMNcj6SVkv5F0vGaOAngCmPMldbaOwpZO0rbzueemBTiS5I8HvlCTa7mexdUy1lQrWhfz3ibjUa19YmH9ZaVl8t4nHyWCwAAAAAAAAAAAKCMeIpdQBbrxr7Ht86/SdJbrbX3ZQrxJclaG7PW/lbSirF5RhNh/roMUzHPbXvyd9r6xMNJ7S3vuly+BndXxXgqfVr67o/KeCsmtXe+/IL+dv/PZWPRvNQKAAAAAAAAAAAAoPyU7BX5xpjjJR2piavxH7TWfmK664wF/p8wxhwi6byx5iOMMSdYa5/PR62YO9KG+OddodBJZ05rrepDjtRBl63Rm3ffLDsyPN7e+fILksSV+QAAAAAAFEEoFFJ7e3te1opEImptbU3Z19bWplAolPMx8rEGAAAAgPmnZIN8jW6HL01cSf8POa73DxoN8uMnBhyv0W36USYyhvgrzprRmjXLjiLMBwAAAACghDiOo3DY3Y57uQiFQrNyHAAAAADlqZS31l+UcHuntfa/c1nMWvucpA5NbNPfnMt6mFtmGuJbaxUdHJCNpf8kh3iYzzb7AAAAAAAAAAAAAPKhlIP8eHJqJW3P05qJ69i0ozCvdDz3xIxC/JG+Hm254zt66cYv628//IYG9nSkHZspzH/94XtnXjwAAAAAAAAAAACAslPKQf6bCbdr87RmTcLtrXlaEyXM2pjefOyBpHY3If7mn7Wr941XJUmDnTu1+fZ2d2G+M/kTK3a/+IwG9kVm+AgAAAAAAAAAAAAAlJtSDvKfGPtuJB1ijAnmstjY/EMTmh7PZT3MHcZJ/oz6aF9P2vHxEH+wc3JoH+3ryRrmxwb6UmzDb2Q8pfxHDQAAAAAAAAAAAEApKdl00Vq7VdLvx+5WSFqT45IfH1vHSnp0bH3Mc8Z4dMjZFya17/7jfdr92G+T2tOF+HGZwvz9Lz2rrf/5U8lODvIXvfVt8tXmdB4KAAAAAAAAAAAAgDJSskH+mC9Lio7dXmeMOWUmixhjTpPUqtEQPyrpi/kpD3NB+JgVWnbuu5Pap4b56UN8M+leqjA/XYjffOJpOuislbk/CAAAAAAAAAAAAABlo6SDfGvtnyR9UqMBfEDSw8aYaV2Zb4y5RtKDkvxj63zCWvtMvmtFaWs+4dSMYX66EN9XW6/jP/IZ1bQcNKk9MczPFOIf8o6LZMzkEwEAAAAAAAAAAAAAIBNvsQvIxlq7wRjTIelmSc2SfmCM+aKk/9Do1vsvWmv3xscbY0KSjpV0tqQPSXqLRi+p7pC0xlqbvJ86ykLzCadKkjY/8p+T2nf/8T5FnntM0b6eSe2+2notv2K1/HVBHXXpR/XyPT9Rd8eb4/3Rvh5tvu3/KTo4QIgPAAAAAAAAAAAAIG9KOsg3xhxIuOvV6BX1RtLhGt0qv3VsnJU0KMmnyfugx29bSUFJd0wjWLXW2roZF4+SlC7MzxTiS5LX508d5g/0JR+DEB8AAAAAAAAAAABADkp6a31J1ZKqxr77xtqsJgL9+JdHo1vve6a0x8dqbH71NL8wD6XbZj9uaogfFw/zp26zP2ltQnwAAAAAAAAAAAAAOSr1ID+RmfIlTQT1qb5mMidxLuaxdGF+uhA/LlOYT4gPAAAAAAAAAAAAIB9Kemt9Sc+KYB0F0nzCqTLGaPPvfi0bi8ofbNTRl16VNsSP8/r8Ovqyq/TyvbfqwNbNkqSWFW/TwW+/gBAfAAAAAAAAAAAAQM5KOsi31p5c7BowvzUdf4rqDj5cgwe6VNNykDxed38knEqfll9+tbp3vCmvz68FjU0FrhQAAAAAAAAAAABAuSjpIB+YDf66YNar8FMxxqh28cEFqAjAfBeNRhWJRIpdxiSZ6im1WiUpFArJcZxilwEAAAAAAAAAQEEQ5AMAMMsikYjWrl1b7DJca21tLXYJSdrb2xUOh4tdBgAAAAAAAAAABeEpdgEAAAAAAAAAAAAAAGACQT4AAAAAAAAAAAAAACVkXm6tb4xZIultkholdUl6xlr7/xW3KgAAAAAAAAAAAAAAsivpIN8YUyPp6ISmV6y1+zKMr5P0A0lXSDJT+h6TdI219pVC1AoAAAAAAAAAAAAAQD6UdJAvaa2kfxq7PSjp4HQDjTEBSY9KOk5TQvwxZ0l6yhhztrX2hXwXWu469vertqtv2vMi+wc16K1K2Rez1tUa3f0jsi7HTtcCnyOvk/0TKHoHRhSNFaYGf6WjSm/2Gvb2Dql3aKQgNdT6K1QXqMg6bsRToaincvz+jv2DGqyY/s9FKlWVXjVUVWYd1zs4or19Q3k55lQ+r0fhGn/WcQPDUe3pGUzZl+ln3s3z5fUYtdQFstYwEo2p48BA1nEztTS4oGBrAwAAAAAAAACA/IpGo4pEInlZKxaLqaurK2VfMBiUx5P7p7uHQiE5jpPzOnNZqQf5l2o0lLeS7rbW7skwtk3S8WNjrSaH+fGEtU7SPcaY5dba1CkbZuSjtzytyoW7Zjb54CtSNi8fjMlNVLjxj9vU3V+YAPuy0xdpSWP2Ku57dqe2RwoTmr7rxLCWL63NOu7rv3lJP392W0Fq+Ow7D9fn33VE1nE765ZrR8OJ4/ffe0v+zpm5fMUSfWvVCVnH/ebFDn1xY2HO1Tl1WYPu+PjpWcc9t3WfPnDTk+kHpPmZd/N8La4P6I9fPjfruI4DAzrrm7/LOm6mtvzLRQVbu9wtX7VGldXZ/8znm43FNNTbnbKvsqpGJg//8JquoZ4D2nTXzbN+XAAAAAAAAACYbyKRiNauXVvsMlxrb29XOBwudhlFVbJB/tgV9idqIoS/N8PYkKTPaHKA/wtJf5TUKOkqSU1j7Ydo9Er/b+W9aAAAclRZXSt/XbAoxw4EQ0U5LgAAAAAAAAAAmGz2L69z7ziNnmgQD+YfzTD2/ZICmrh6/wvW2sustd+y1n5FoycEvKmJoP/qglUNAAAAAAAAAAAAAEAOSjnIX5ZwO2KtzbRv+3sTbm+x1t6Q2Gmt3S3pq5o4KeAoY8zS/JQJAAAAAAAAAAAAAED+lHKQH98K30ramW6QMaZS0hlj46yk29IM/YWkxA9SPzHNOAAAAAAAAAAAAAAAiqaUg/yqhNvdGca9VRPb6kvSb1MNstb2SXo9oYkr8gEAAAAAAAAAAAAAJcdb7AIysAm3fRnGvS3h9oCkP2UY25Vwu2YmRSG1n1x9io48evm050U6I2ptvT5lX9VZH3e1xhVvWyJrbfaBM7DA57gad8GKZkVjhanBX+muhq9eeLQ+967DC1JDrb/C1bjm/Zu0sPtv4/fb2tYr1BjKSw1Vle7eri48tkWnHZqfY07l87o79+mkpfX6w5fOSdmX6WfezfPl9ZiM/XEttf60NQAAAAAAAAAAgPISCoXU3t6el7UikYhaW1tT9rW1tSkUyj2nyccac10pB/kHxr4bSYsyjIsnVVbSn6y1wxnGJqaR7tIwuNJSF9DS4IJpz/MN98g30puyz2PcvUQ1geL/GFf5i19DQ1WlGqoqi1qDNzYsb2zij+CiOp/CM/i5yEWVz6sqX3FfD3+Fk/bPQ6af+Xw+X17HM6M/kwAAAAAAAAAAYP5xHEfhcLjgxwmFQrNynHJQylvrv5Fwu8kYkxTmG2NqJJ2riav3f59lzYaE25m26wcAAAAAAAAAAAAAoChKOch/bux7PKS/OsWYqzS67X780u1H0i1mjPFJWpKw3vY81AgAAAAAAAAAAAAAQF6VbJBvrd2hic+7N5K+aoy5LN5vjHmHpK9pIpjfJemxDEueoNGPEoiH/n/LMBYAAAAAAAAAAAAAgKIo2SB/zL9pNHi3Gr3y/i5jzE5jzDZJD0uqS+j/vrU2lmGt8xNu90l6qTAlAwAAAAAAAAAAAAAwcyUd5Ftrb5V0nybCeiMpLGlRQpskbZb0rSzLrYovK+lpa2007wUDAAAAAAAAAAAAAJCjkg7yx1wu6Zea2BI/kZH0uqSLrLW96RYwxpwm6ThNBP/357tIAAAAAAAAAAAAAADywVvsArKx1vZLutQY8w6NXlV/hKSApB2SHpT0U2vtQJZlrpWUeAX+LwtQKgAAAAAAAAAAAAAAOSv5ID/OWvt7Sb+f4dz35bUYAAAAAAAAAAAAAAAKZC5srQ8AAAAAAAAAAAAAQNkgyAcAAAAAAAAAAAAAoIQQ5AMAAAAAAAAAAAAAUEII8gEAAAAAAAAAAAAAKCHeYhcAAAAwW6LRqCKRSM7rxGIxdXV1pewLBoPyePJzrmQoFJLjOHlZCwAAAAAAAAAwdxQlyDfGvDClyVprT3AxLl9SHg8AAMxvkUhEa9euLXYZrrW3tyscDhe7DAAAAAAAAADALCvWFfnHSrJjt03C7XTjTJ6OG18r3fEAAAAAAAAAAAAAACiqubK1PsE7AAAAAAAAAAAAAKAsFCvI3yt34bzbcQAAAAAAAAAAAAAAzAtFCfKttY35HAcAAAAAAAAAAAAAwHzhKXYBAAAAAAAAAAAAAABgQrG21gcAAJh1oVBI7e3tOa8TiUTU2tqasq+trU2hUCjnY0jK2zoAAAAAAAAAgLmFIB8AgBka6ejQSG3t+H1n4UIZvz/rPNvTo+DAQFJ71LjfKCcQ2SMTjSa1D9XUaSQQyDrfGRyQb/++5A5j1LewyVUN/q698gwPJbUPV1VruKo663zP8LD8XZGUfX2NYVc1RPfule3tTWo3VVVyGhqS2h3HUTg8sbaNxRTdvj3l2k5Tk0xlZdYa/CMjCoyMjN9vGBxUw+CgjM8nJ+zucYxs3y7FYkntZmhIcvF6xnp7Fdu7N7nD8cq7qMVVDdGdO2WHh5PaPfX18tTUZJ1vBwYU3bMnZZ936VJ3NXR2yvb3J9dQXS1PMJi9hpERRTs6UvY5LS0y3uz/9I11dSnW05PUbgIBOY186hMAAAAAAACA2UGQDwDADHV+8MPaWVExfr/xrjvlP+P0rPNiv7xX1z3zXFL79qoFetjlsc+97nOq2rMrqf3pT39RW85ZmXV+0/PP6Mz/k3xF+dCCKv3ix790VcNpN/6TwpteSGr/66qP6K/vuyrr/Nptb+j8L30yZd89P/qFkk91SLZ//dfUd9fGpPYFq65Qw403ZJ1vu7u187QzUvaF779Plccek3WNs3d0aOXWbeP3hy96t3ZKqjz9NIU33pV1viTtetf5sgcOJLWHNtykwAUXZJ3f/6tfq+vaLyS1O0uWqOWpJ1zV0PmRqzS8aVNSe926VtVcsybr/MFnn1Pnqvel7FuyfaurGrq+9GUN3P9AUnv16tWqX78u6/xoR0fa17P5ycddnVBw4IZvq2fDhqR2/8rz1XhLcjsAAAAAAAAAFIL7S/8AAAAAAAAAAAAAAEDBlfwV+cYYI+lESSdJOlRSi6RqSZWSBiX1SNoh6TVJz1lrky8NBAAAAAAAAAAAAABgjijZIN8Yc5qkT0q6WFL2D0WdmBeR9EtJP7DW/rlA5QEAAAAAAAAAAAAAUBAlF+QbYw6V1C4p/gG/Js1Qm6avUdLVkq42xvynpM9aa9/Ie6EAAAAAAAAAAACYN0Y6OjRSWzt+31m4UMbvzzov1t2t2L59Se2mokJOc7O7Y+/okKIjSe2ehgZ5qqqy19Dfr1hn5/h9G4koODAga4z2+Xyuaoju3i07OJhcQ22tPHV1WefboSFFd+1K2ecsXizjyf6J39G9e2V7e5PaTVWVnIaG7DXEYopu3566hqYmmcrKrGv4R0YUGJl4LeyOHRoZHJTx+eSEw1nnS9LI9u1SLJbU7mlslCcQyDo/1tur2N69yR2OV95FLa5qiO7cKTs8nFxDfb08NTVZ59uBAUX37End6fZnqrNTtr8/uYbqanmC2a/jtiMjinZ0pOxzWlpkvNmj7lhXl2I9PUntJhCQ09iYdX4xlVSQb4y5WNKtkmo0EdLbqcOmfM805t2S3m6M+YC19v581goAAAAAAAAAAID5o/ODH9bOiorx+4133Sn/Gadnndd7+x3av64tqb1i+XI1Peguntpz6WWKbtuW1B7812+p6sr3ZZ0/+Oijiqy+ZlLbdZL6HUdfPe0UVzVEPv0ZDT3xZFJ7zbWfV90Xrs06f/iVV7V75QUp+xZtelHGxckA+9d/TX13bUxqX7DqCjXceEPW+ba7WztPOyNlX/j++1R57DFZ1zh7R4dWbp14LYYverd2Sqo8/TSFN96Vdb4k7XrX+bIHDiS1hzbcpMAFqZ+jRP2/+rW6rv1CUruzZIlannrCVQ2dH7lKw5s2JbXXrWtVzTVrss4ffPY5da5K/bNX+dwzrmro+tKXNXD/A0nt1atXq379uqzzox0daV/P5icfl3fp0qxrHLjh2+rZsCGp3b/yfDXektxeSkomyDfGvFvSRknxd8h4OJ8Y2L8hqVPSPkk9Gg386ySFJSW+Uolz6yX90hhzibU2+ScFAIAZarztVjUfeeT4fWfhQlfzPO+5ROt+90hSe9R4dKjLYz/ytRtlotGk9qGa7P8YlqRdJ7xVv/rOrckdJt1GOMme/Nz/lmd4KKl9uKra1fwDSw5OXYOk4cACqXt/1jXqrr9OtSn+E2FcnKUsSaamRs1PPp6yz2lqcrXGo4ta9HR44rVfv369QqGQjMuzUiWp6aEH0p6h60bg4ovkS/WfSsf9P/Uaf/rjtGfouuFbcVLa59Kt4De/Idu2LrmGanc/U05LS/rXs8Xdmcq1n/+sqq9ZndRuXJwpDQAAAAAAAAD5UhJB/th2+rdqNMRPDOEHJP2HpLslPW2tjWRYo1HSKZJWSbpSkj9hrUpJPzPGnGStfbMgDwIAUHa8LS2uzvibylRXq8vFllyZ9IfcnTSQTtTnV1/Y3bZe6QwEs29llUmsoiLnGpyGBsnFllrpGI9nRq9hogGvVwMJWziZRYvkdbnFVpx38eKcavBUVbnaYi0Tt9u8pWP8/pyfy1y3sjJeb841eIJBV9t6AQAAAAAAAEAhZf8witnRrtGr6xND/JskLbXWXmOt/W2mEF+SrLWd1trfWGs/ptGr82/W5Kv56yV9O/+lAwAAAAAAAAAAAACQP0UP8o0xp0m6QKMhvpEUk3SVtfYT2cL7dKy1EWvtxyVdNbZufO1LjDFvzU/lAAAAAAAAAAAAAADkX9GDfEmfGftuNBq4r7fW/jQfC4+tsz5hbUlam4+1AQAAAAAAAAAAAAAoBG/2IYVjjPFJeo8mrph/zlr7tXwew1q73hjzHkknjh3jUmPMx621w/k8DgAAAAAAAAAAAOauxttuVfORR47fdxYudDWv6v1XKnDByqR2U1Hh+tgL77lbio4ktXsaGlzN9519tpqffHz8fiQS0fXXXy9rTIZZk4W++x3ZwcHkGmprXc2vOOLwSTUkMjU1rtaou/461X7h2uT5VVWu5puamrQ1OE1NrtZ4dFGLng5PvPbr169XKBSS8flczZekpocekGKxpHZPY6Or+YGLL5LvjNOTOxz30W7jT38sO5wch3rq613N9604Ke1zuddlDcFvfkO2bV1yDdXVruY7LS3pX8+WFldr1H7+s6q+ZnVSuwkEXM0vpqIG+ZJOkxR/paykGwp0nBsk/WTsds3Ycf9QoGMBAAAAAAAAAABgjvG2tMi7dOm053lqauRxGVSnPfYid6Fk2hoCAXkSajc+n7r8/mmt4YTDOdVgKitn9PxNqqGhQXJ58kLKGjyenGsY8Ho14J2IUM2iRfJO87nxLl6cUw2eqip5XJ68kI7T3JzTfOP3p38ud+92V4PLExfS1uD15vx6eoJBeYLBnNYolmJvrX9Gwu0eSbcX6Di3S+rWxPb6Z2QYCwAAAAAAAAAAAABA0RQ7yD9m7LuV9CdrbbRITuLZAAAgAElEQVQQB7HWjkj6k0a31pekYwtxHAAAAAAAAAAAAAAAclXsIP8tCbefLPCxEtc/rMDHAgAAAAAAAAAAAABgRood5Dcl3H6zwMdKXD+3D4UAAAAAAAAAAAAAAKBAih3kNyTc3lfgY8XXN1OOCwAAAAAAAAAAAABAySh2kO9LuF3oIH9/wm1/gY8FAAAAAAAAAAAAAMCMFDvIr5Rkx26PFPhYietXFPhYAAAAAAAAAAAAAADMSLGDfAAAAAAAAAAAAAAAkMBb7AIwP+zu26VgT/2050X6IhoODKXs6412amR4OKe6qivCrsb1DO9O2R5w6uV4KrPO7x/pUtTmVms2g9H9aZ+rXX07NdKT/vihQKN8ji9tf1xnf6eGooNJ7TWVNaqprM06P+qNKlYRdV3XbHP7OLqHDqh7qDupvdLxqTHQmHX+YHRQkf7OlH2ZfuZn6/nKx+NYVL0432UBAAAAAAAAAABgDEE+8mLtg59QYJN/ZpPPTd28NfIVKTLzmiTpg4dvdDXu3i2fTtn+zsXr1LTg2Kzz/7jzBu3u3zSt2mYkzXP1sUc/lHHa91feopOb/y7r8v/46Bf17K4/J7Vfc8Kn9IkTUz9HifYv26t9R0wEv9nqmm1uH8dtm27VTc9/L6l9RdPJ+vcLfph1/l/2vKBP3n91+gEzfB3zJR+P489X/SXfZQEAAAAAAAAAAGBMKQX5Zxljpn9Jt3vHFXBtAAAAAAAAAAAAAADyolSCfCPp+lk4jh07FgAAZatn5za9/sh/aqS/V4v/7mw1HZ99xw5Jsjam7X/6L+16/mn5gyEd+s73KBDM/jENAAAAAAAAAABgejzFLmBMPGAv9BcAAGXtwPY39NeNt6h313YNHtin1x/+pbY99fus86yNafMjv9LWPz6koZ4DOrB1s/56583q37un8EUDAAAAAAAAAFBmSumKfMxhC22VauyCYpeRpGZowNW4FluTsr1+OOpqjXDMLyfNGqWgsm9Qtrs767iGEV/K56J6UGnne/p61ej3S5IqvFUK2MHcii2gTI9j6rhUz0PDiM/V/Mq+wbQ/U6UgH4/DzXzb2zvt2lBYB7a/oZfu+bFiw0OT2rc+/pAkacmp70g5Lx7i73rh6Untw309+utdG3TMqtUKNCwsSM0AAAAAAAAAAJSjYgf5z2r0anzMcd8eea+OGV5U7DKSvfqUq2Ef0/9I3bFtn6Tsa3xMb5P0NtdlzbqHNymqTVmH/ZNWSFqR3PGCFH3hZynn1Ev6f2edOdEwPLMSZ0WGx5HoSnl1ZaqfiQ4penv2+csl3ZPuZ6oU5OFxuJkf3bFjmoWhkNKF+HHpwvx0IX4cYT4AAAAAAAAAAPlX1CDfWntyMY8PAEA5yBbix00N87OF+HGE+QAAAAAAAAAA5Jen2AUAAIDCSRfi17zlWDWfe2nS+K2PP6RtT/0+fYjv8WjxhR9UYNEhk5rjYX7/3j35fggAAAAAAAAAAJSdYm+tDwAACiRTiL/0PR+Tx+uVcRx1PLhxUv/Wxx9S1+svq2fntskLejxaeslVqjvyRNUecby23Pl99e/YMt7NlfkAAAAAAAAAAOQHV+QDADAPuQnxJSm04iy1nHdF0vxMIb4kOb6ADnnfJ9Nemd8X2Z2/BwMAAAAAAAAAQJkhyAcAYJ6JDg/plV/fnjXEj0sX5o+bEuLHZQrzX/3NnbI2ltPjAAAAAAAAAACgXLG1PvLC+fsL5Rx99LTnRSKduv761pR9y1etka+mLtfS5o3B7v3adNfNKfvWr29TKNQ4yxWNyvQaFrOuUlVOz5fz0kvSurZil1GWhrr3a7i3e1Kb8VZo0fmrkkL8uNCKsyQpaZv9dCF+nOMLaNHK9+m1H35zUntf507FRkbkVFTO8FEAAAAAAAAAAFC+CPKRF6aqSqamZtrzYv396hwYSNl3wFspf6U/19LmjQFv+ucqtmBmz38+ZHoNi1lXqSqn58tUVRW7hLLlr2/QgsYm9XXuGm+zI8Pactf3tez9a+VdUJ1y3kSY/3NJVsbjaMklH00b4kvS0L5Ovfnzm5La6w4+XB5vRW4PBAAAAAAAAACAMkWQDwDAPGM8jo685MPatHGDBg/sG28f3NOhzbe3Zw3zFyw6RH3bN6t62VHyNYTTHmdoX6c2/6xdwwe6JrUvWNisw/9+lYwx+XlAAAAAAAAAAACUGYJ8AADmIX9dUMuvWD2jMD/QvFSB5qUZ188U4i+//GpVBBbk/iAAAAAAAACAEheNRhWJRIpdRpJMNZVivaFQSI7jFLsMoKQQ5AMAME/lEuZnQogPAAAAAAAAjIpEIlq7dm2xy5iW1tbWYpeQpL29XeFw+t1BgXLkKXYBAACgcOJhvq+2flJ7PMwf6euZ1nqE+AAAAAAAAAAAFB5BPgAA81ymMP/Nu2+WtdbVOrGRYW2583uE+AAAAAAAAAAAFBhb6wMAUAZGw/yr9fxP/k2xkeHx9r7tmzW0d7d8oaasa/RufU1DXZ2T2ioWVBPiAwAAAACAOSWfn2kei8XU1dWVsi8YDMrjyf16Sj47HADKE0E+AABlwNqYdvz5sUkhviR5fAF5q2pcrVFZ3yh5PFIsNt423NejXS88rSWnviOf5QKYh/L5i7J8yVRPqdUq8cs7AAAAIF/m2mea89nhAFCeCPIBAJjnrI1p8yO/0q4Xnp7c4fFoyYUfkON3dzW9L9iolndepo4HN05q3/r4Q5JEmA8go7n2i7LW1tZil5CEX94BAAAAAACUD4J8AADmsUwh/tJLrlLtESdMa73QirMkiTAfAAAAAAAAyGL5qjWqrK4tyrFtLKah3u6UfZVVNTJ5+NiH6RrqOaBNd90868cF5iqCfAAA5qlsIX7dkSfOaF3CfAAAAAAAACC7yupa+euCRTt+IBgq2rEB5G72T7cBAAAFl0uIb62VjUZlrU07JrTiLLWcd0VS+9bHH9K2p34/07IBAAAAAAAAAIC4Ih8AgHnpjT88MKMQf2hfRFvv/bH6O95Q9bKjtOTij8i7oDrl2ExX5juVPrWcdHpuDwIAAAAAAAAAgDJFkA8AwDwz2HNAHc/8cXKjcRPid2rzz9o1fKBLktSz+WVtvr1dy96/dtph/puPPaCm4/9OHod/agAAgLlvpKNDI7UTn23qLFwo4/dnnRfr7lZs376kdlNRIae52d2xd3RI0ZGkdk9DgzxVVdlr6O9XrLNz/L6NRBQcGJA1Rvt8Plc1RHfvlh0cTK6htlaeurqs8+3QkKK7dqXscxYvdvX5rNG9e2V7e5PaTVWVnIaG7DXEYopu3566hqYmmcrKrGv4R0YUGJl4LeyOHRoZHJTx+eSEw1nnS9LI9u1SLJbU7mlslCcQyDo/1tur2N69yR2OV95FLa5qiO7cKTs8nFxDfb08NTVZ59uBAUX37EnZ51261F0NnZ2y/f3JNVRXyxPMvv2wHRlRtKMjZZ/T0iLjzf7/kFhXl2I9PUntJhCQ09iYdT6AuS0UCqm9vT0va0UiEbW2tqbsa2trUyiU+9bm+VgDADD38Nv1IjPGGEmHSDpO0hJJ9ZIGJXVJelXSn6y1A0UrEAAwf2TYKn9qiB83uKcja5if6heRADAdy1etUWV1bfaBeWZjMQ31dqfsq6yqcRUs5dtQzwFtuuvmWT8ugMw6P/hh7ayoGL/feNed8p+Rffeh3tvv0P51bUntFcuXq+nB+10de8+llym6bVtSe/Bfv6WqK9+Xdf7go48qsvqaSW3XSep3HH31tFNc1RD59Gc09MSTSe01135edV+4Nuv84Vde1e6VF6TsW7TpRRkXJwPsX/819d21Mal9waor1HDjDVnn2+5u7TztjJR94fvvU+Wxx2Rd4+wdHVq5deK1GL7o3dopqfL00xTeeFfW+ZK0613nyx44kNQe2nCTAhekfo4S9f/q1+q69gtJ7c6SJWp56glXNXR+5CoNb9qU1F63rlU116zJOn/w2efUuSr1z96S7Vtd1dD1pS9r4P4HktqrV69W/fp1WedHOzrSvp7NTz7u6oSCAzd8Wz0bNiS1+1eer8ZbktsBzC+O4yjs8iSsXIRCoVk5DgBgfipKkG+MSf4fy+yy1trs/0ssEGNMUNJ7JV0g6VxJmU7zHTbG/FrSjdbaR2ejPgDA3OarrtWit75NO555bKLRxrT13p9IkuqOOmnS+HQhflymMD/y50fV8fDdSXMOOmslV+MDcK2yulb+uuxX3xVCIMiVLQAAAAAAACg9xfoNe7UkK8kU6fjpL0ksMGPMdyStkZR9z7ZRFRoN/d9rjPmJpP9prS32iRAAgBJ30FkrFR0Z1q7nn5poTBHmZwvx41KF+WlD/Ledp5YTT8vTIwEAAAAAAAAAoPzM/l6Rk9kifBXbqUod4kclbZP0jKQXJO1PMeajkh40xqTZ2xgAgFHGGC0752I1nXDq5I6xMH//y8+lDfEXLGzWcR/8lHy19ZPa42H+SF9PxhB/8Sln5/3xAAAAAAAAAABQTop1Rf6zKo1Qvdj2SbpN0q8l/cFaO/4BncYYR9JZktaPfY87RdKPJF0xe2UCAOaieJgvKeWV+d4F1RrpnbzJy4KFzVp++dWqCCzQ8itWa9PGDRo8sG+8f3BPh/72w29qpCf5fDNCfAAAAAAAAAAA8qMoQb619uRiHLeEbJH0T5Jus9b2pxpgrY1K+r0x5hxJ35X08YTuy40x51hrf1fwSgEAc1qmMD9TiC9J/rpgyjCfEB8AAAAAAAAAgMIq1hX55axV0oPW2iE3g621UWPMpyWtkJR4AsQaSQT5AICs0ob5CaaG+HHpwvxEhPgAAGC+a7ztVjUfeeT4fWfhQlfzqt5/pQIXrExqNxUVro+98J67pehIUrunocHVfN/ZZ6v5ycfH70ciEV1//fWyxriuIfTd78gODibXUFvran7FEYdPqiGRqalxtUbd9dep9gvXJs+vqnI139TUpK3BaWpytcaji1r0dHjitV+/fr1CoZCMz+dqviQ1PfSAFIsltXsaG13ND1x8kXxnnJ7c4bj/FV/jT38sOzycXEN9fYrRyXwrTkr7XLoV/OY3ZNvWJddQ7e7TJJ2WlvSvZ0uLqzVqP/9ZVV+zOqndBAKu5gMAAACFRpA/y6y1v57BnKgx5puS7kxoTv5NAAAAaWQK89OF+HGZwnxCfAAAUA68LS3yLl067Xmemhp5XAbVaY+9yF0ombaGQECehNqNz6cuv39aazjhcE41mMrKGT1/k2poaJBcnryQsgaPJ+caBrxeDXgnfpVmFi2Sd5rPjXfx4pxq8FRVyePy5IV0nObmnOYbvz/319PliQtpa/B6c67BEwzKEwzmtAYAAABQSAT5c8cfptwPGWMWWGv7ilJNnkSj0bR9g93JWzeXs0zPR6bnEQDi4mG+x+Oo47nRq1eqmhbr6EuvShvix8XD/Jfu/pEG9kUkY3TQmedr8clnzUbpAAAAAAAAAACUFYL8uaMrRVudpDkd5O/bl3qbZkl6aeOGWaxkbtu3b59aXG4dB6C8GWN0yDsu1MLlJ2q4v091S5fJeBxXc/11QZ3wkbXav/V1+WqDWhDK7cosAAAAAAAAAACQGkH+3JFq77XIrFeBktTV1aXdu3cX5diRSPofw0x9xRQKheQ47oJLYL6qCi+a0TyPt0LBZUdmHwgAAAAAAAAAAGaMIH/umLp38RvW2qGiVIKSc+ONNxa7hJRaW1uLXUJK7e3tCuf4GY8AAAAAAAAAAABAocy5IN8YUyHppLGvRkn1knzTXcda+7/yXFqhXT3l/m+KUgUAAAAAAAAAAAAAoKDmTJBvjDla0rWSPiApkMtSkqykORPkG2MulPT2Kc0/KkIpAAAAAAAAAAAAAIACmxNBvjHmc5L+RVKlRoN4aTSMNwnD7NRpKZaaOqbkGWMaJP1gSvMvrLVP5/EYYUkLpzntsHwdHwCKgfc+AOWI9z4A5Yj3PgDliPc+AOWonN/7rLWKjQzL4/XKGM+05saiUVkbk+OtKFB1AGaq5IN8Y8xnJf3r2N3EIN6kuD/V1P5UY0qWGX23vVXSkoTm/cr/bgKfllSUDzOvr69P23f0Favlq6mbxWpK22D3fr20cUOxywDmk6K99wFAEfHeB6Ac8d4HoBzx3gegHJXle99wf69e/c2d2v/ma1qwsFlHXHilAg3uzmfY+9pLeu3BX2hkoE8tJ52ug8+6QMYzvRMBABROSQf5xphjJP1fTQTyRtIvNBpub5H054S+NZL+W1KDpGMknSvpQknO2JhNkv6npN2zU31e/B9Jfz+l7RPW2q3FKKYQHMdJ2+erqZO/LjiL1QAAAAAAAAAAAMwNw/292rTxFvV17pIk9e3Zqb/etUHHrFqdNcyPvPKiXvnNnZKNSZI6nn1cI/19Ouz8ywjzgRJR0kG+pH/UaBAvjYbxn7bWfj/eacykC+y3WGufHbv9kKRvG2MOlvRdjYbhR0u6RdK7rLWvFbrwXBlj/peka6c0f9Nae0cx6kHpO/MSvwLVs7/pRCxmNdiX+lMrfAuMPJ7ibITR32P12L0DRTk2AAAAAAAAAACFNDXEH2/v68ka5k8N8eP2vPTfkkSYD5SIkg3yjTEVki7VxBX3dyeG+G5Ya9+QdJEx5kaNbkd/sKTfGGNOstb25bXgPDLGfFDSjVOafyTpHwp0yO9Kumuacw6T9MsC1IIZClQbLagpzl+s1SX5CQix7ENQ7njvA1COeO8DUI547wNQjnjvA1COyua9L12IP96fIcxPF+LHEeYDpaNkg3xJJ0vyj922km6Y6ULW2s8ZY1ZIOlPSWyR9RdJ1OVdYAMaYiyX9WKMfIxB3t6Q11trUlz3nyFq7W9P8yIEpuyEAwJzDex+AcsR7H4ByxHsfgHLEex+AclQu733ZQvzxcSnC/GwhfhxhPlAaSjnIPyLhdr+kJ7KMr8jSf52k32k0IP+UMabV2izvVLPMGHOORs8WS3xdHpT0AWtttDhVAQDS2d23S8Ge+mnPi/RFNBwYStnXG+3UyPBwTnVVV4RdjesZTv3/moBTL8dTmXV+/0iXoja3WjMZjO5P+zzt6tupkZ7Mxw4FGuVzfFmP09nfqaHoYFJ7TWWNaiprs86PeqOKVUz8Ne2mttnk9nF0Dx1Q91B3Unul41NjoDHr/MHooCL9nTOqcTbk43Esql6c77IAAAAAAABcSxfiV9Q26ODL12j7fXeov+ONifEJYX5f566UIX7DSWeq5rDlevOeDbLRid9xEeYDxVfKQX7D2HcraXOaq9Fjmrhy3Z+iP9F/SdonqV5SUNKpyn5ywKwxxpwq6V5NfhyPS7rUWps6xQAAFNXaBz+hwKZsf/2kcW7q5q2Rr0iRmdckSR88fKOrcfdu+XTK9ncuXqemBcdmnf/HnTdod/+madU2bWmep489+qGsU7+/8had3Px3Wcf946Nf1LO7/pzUfs0Jn9InTkz9HCXav2yv9h0xEfy6qW02uX0ct226VTc9/72k9hVNJ+vfL/hh1vl/2fOCPnn/1TOqcTbk43H8+aq/5LssAAAAAAAAVzKF+Ms+uFaVdSEdcuWntOWO7yWF+S/eeZNGBgZShvgt510hY4wOunSN3rznZsJ8oISU8p+6QMLt5MvDRvVoIsgPZVps7ESANxKajpl5aflljDle0m8lVSc0PyfpQmttb3GqAgAAAAAAAAAAQLEND/RlDfElyfEFdMiVn1Kg5eBJ40b6+zKG+JJUc9hyHXTpGhnHmTRuz0v/rdceuFsF+vRnABmUcpB/IOF2IM2Y/Qm3D3KxZuI+t9n3Vp0FxpgjNbp9fjCh+SVJK621+1PPAgAAAAAAAAAAQDnY9sQjWUP8uHRhfqKpIX5cpjB/798KvDMngCSlHOR3JNxO9wHEf0u4fbKLNZcl3C76Z84bYw6W9JCkxA8z3izpPGvtnuJUBQAAAAAAAAAAgFIxsC/5szjrjjoxKcSPyxTmpwvx46oOPkL+pqUpatg7zaoB5KqUg/y/jn03kpYYY3wpxjyfMObtxpjadIsZY87W5O33ixqUG2NaJD0saUlC83ZJ77TWbi9OVQAAAP8/e3ceH9V92P3+e86ZXRrtEpJASDI72Cy2scGA8b4bOzEktpMnbZo0TfL4tmnvfdL7vHprYvf1enJve1+992lplrZJe9PExMZpbGK84RgvbN4w2AaxGBAgJJA0aNfs53f/EAdpNGebTTOSvu/XizacOefMb+TRMHM+c36HiIiIiIiIiIgKyYylNyQt637/TXTue91wGy3m+2bNubKs8vr1phFfjcVw9rc/Q7C9NXFfLjeqFi5Nb/BElDZHvgdg4jhGps4vxcgXDpYC+GDcOq8A+B4AAaAIwN8A+LPxO5IkyQ/gHy+vp706vZ+TUdsgSVIFRqbTnzNmcRdGzsQ/nZ9RERERERERERERERERUaGpmLMITbfcj9a3diQs73xn5O81q+/S3U5xe9H8+BMYbjsFxe2Fp2am4X1oEX/wVOIU+orLjUVf+AO4/aUZPgoiSlXBhnwhhCpJ0tsANlxedA+SQ/7vAbQBmImRQP/E5TPdfwzgGAAXgLUA/hrAPIyEfAHgiBAiLxfzuPylglcBLBmzuBfAXUKIlnyMiYiI0rPlzp9iwaIFKW8X6A7gyc1P6t62eNM3J+xN8YamH+ku9ypGV7RJtKb2zxEX0WwOKUF4oA9Htv2r7m1PP/U0Kqv0pw7TVHqrbN3P/1j/d4jEw0nL/S6/re1LT1fA3zb638zO2CaS3cfx+OKv4sG5DyUtdyl6kyIlu6Z6KbY/8mpKY5tIU+VxEBEREREREdH0VLdiNQCkHPMlSUZRw1zTfVtFfH/97HSHTUQZKNiQf9l2jIb8RzByxv0Vl2P/fwOwFaNn2z9y+c9Y0pjbBYC/yuGYrWwHsHLcsr8HUCVJ0h0p7usjIURPdoZFRESpqvHNQH2x8bdYjTiGnXAGXbq3FSlV8DjLMx2aLcXOmoy29zpyO06HYvxzmuGrRU1xZuPXVNkM/kaUmAIlplz5ezbHNpH8rhL4XYZXKbLkVtxp/T4UmqnyOCiZECp6z3wOCIGypnmQJPtXGYsOD6Lv3CkU1dTDW57ZawYRERERERFRutKN+WYY8YkKV6GH/N8A+BFGzqxfKknSeiHE22NXEEI8K0nSGgBPYCTSA6PT519ZbcyyHwohtudwzFZu0Vn2dJr7uhXAW2mPhIiIiIhoGohHIzj2u2fQd+ZzAEBpw1VY8NBXoTj1vyw0Vn9bK45u/yXi4RAkWcZVdzyEmiXX5XrIRERERERERLqyGfMZ8YkKW0GHfCFEHwCPjfX+VJKkYxgJ4nqnB0oALgL470KIf8/qIImIiIiIqGDFoxEce/GX6Dt36sqyvnOncPSFX2Dhw18zjfn9ba1oeeEXUKMRAIBQVZx8/QVAADVXM+YTEdHUEI/HEQgEsrIvVVXR06M/eWR5eTlk2f6MOEYqKyuhKIr1ikRERFOYWcz3VNejZO7VtvZz8Z3fMeITFbCCDvmpEEL8kyRJ/w7gLgCrAMzASMC/AGAvgNeEEKH8jZCIiIiIiCaSXsTX9Le1msb88RF/lMDJnS8AYMwnIqKpIRAI4Iknnsj3MGzbsmULamom36WsiIiIsq1uxWoMdbaj68jHCcsHTh62HfIHTh5JWtZ86wOM+EQFYsqEfAAQQgwB+O3lPwVJCDF+2n8iIiIiIsoys4ivMYr5xhFfw5hPRERERERE+RU4/hm6Wg4lLS+adZXtffhmNiNyqTNh2Zl3X0Nx7Sx4K6ozHiMRZSbz+ayIiIiIiIgKiFHEVzw+KB5fwjIt5scvR3ujiO8qH38AYyTmd372UdbHT0RERERERGQmcPwzHH/5OUCoCcsrVqxF6eLrbe+n7vYvwFvXmLAsOjyIw9t+huClrqyMlYjSN6XOyCciIppIYmgIYmAg5e3k4SFUeTy6t5XEInBHeCUYAHDFIoY/J3k4vZ99tpj9N8z32Ci/xNBQvocw7ZlF/KYvfxeQZbRu3YJ4aPjKbVrMr195M46/9OukiO+fdw0aHvpDdO15FV37do65ZWLPzM/W9Ytzcf/5HpseXkOZiIiIiIimIrOIX3fnRkiS/YmhFbcXTV/+Dlqf/TGCHWeuLNdi/pJN3+CZ+UR5xJBPRESUpvgrLyN+6GDK25UB+Id1a/VvvHAUuJDZuKYUo5/Tzp2IT+xIEpj+N8zz2Ci/4u3t+R7CtGYV8b21DQCApsee0I35/W2tSfvUIr6sOFCz7n4AyFvM37x5c073n4lCHBuvoUxERERERFNNNiO+hjGfqHAx5BMRERER0aQnhMDxl7ZaRnwA8NbM1I35442N+AAgSZJpzFdcblTOvzp7D4qIJr14PF5wM1Zwdg0iIiKiySmTiB/u6YbsdMFZXKJ7O2M+UWGalCFfkqRZABoAlALwAkj5K0ZCiP/M9riIiIiIiCg/+s+3orf1RMIy2e1Nivgaq5g/PuJrtJgvhED3/jfG3CJwds9OhnwiShAIBPDEE0/kexi2cXaN6amyshJbtmzJyr4CgYDh8+ipp55CZWVlxveRjX0QERFNNn1tp9OK+GoshvMv/wp9LQcgyQpmrH8AVTfcpruuVcxf9rU/hdPry96DIiJLkybkS5K0BsC3ANwDoCrD3QlMosdORERERETmZDn5bE0RjyEeCRluYxTzjSL+mD0jHhxKWirxjFEiIpqEFEWZkC9LVFZW8ksZ0wRnI8kcZyMhovE6PtydFPHLl662jPjnXvgZBk4eAQAINY4Lu16EGo+hZvVduttoMf/0M/+IUOf5K8ujw4PoavkY9deuydIjIiI7Cj5mS5JUDOAnAB7TFuVxOEREREREVICK6xpQuWApAsc+ubJMxKI4s+2naNz0JyiePU93O2/NTDQ/9gTaXn4G4e4LKF+6CrW3f8Ew4guhov2159BzaF/CckmW0XTzvdl7QERERNi8YVQAACAASURBVESTFGcjyRxnIyGi8Ry+oqRlwQtnEQ8OweErTrptfMQfq/OdHQBgGPPDgU5E+i4lLXd6eDY+0UQr6JAvSZIbwA4AazES8MXlP4z5RHmgqgLtp2IQKjBzjgOyYv9XcXhAxcWzcZRVyyiv4TeKiYiIKLskScLcux+BiMdx6fPDV5bbifmempmY+4f/zfI+zCL+/PsfRVmT/v6JiIiIiIiIMtGw+nb0nT2JyEDflWWhzvNoffZHaPrydxNivlnE1xjF/OH2M2h97sdQw8GE5aWN81C1cFk2HoqhfM+QwtlbqBAVdMgH8H0A65AY8GMA3gFwEEAngOQ5LYko66IRgX0vB3Hpwsj0PSc/jeKm+71weaxjfue5GN57LYR4bOTvS1a5MG+5K5fDJZoQyr33QVm0KOXtAoFuPPmk/jf+F2/6Jtz+0kyHNiWEB/pwZNu/6t729NNPobIy0yvtpM/sv2G+x0b5pbS0AD94Kt/DmLZkRcG8+76EEy8/l3LMt2IV8SvmLs5o7KlYu8EDb/HEf7dZVQXCw0L3NrdPgixP/JiCgwK7txtfPoGIiIimHyES368YTTmdre2IiCaC21+KJZu+gcPbfmYa840ivuxwQo1FE5aNj/lmEX/hhschyXIuHtoVhThDiqYQx8bZW6aHgg35kiQ5APyvSDwDfyuAvxBCXMzbwIimoWhEYN+OIC5dHL0GT2+Xij0vBbHmAfOY33kuhv2vhqDGR5cd3h8BAMZ8mvSkoiJIfn/K26nBILpD+tGh3+GCx+XJdGhTQshh/HNSfen97LPF7L9hvsdG+SUVJU91RxMrFzG/kCI+AHiLJfj8uT2AYqS44L5rplqvQkRERNPG+BivLbOK8uluR0Q0kTylFaYxv3Hjn6D9tV8nRXzF5caiL/wBBi+eR+tbOxJu02J+ceMC04gvO5w5elREZKZgQz6ANQBKMHo2/q+FEF/J75CIph+9iK/p6zaP+XoRX8OYT0RERLliFfObvvRtFDXMtbUvIQTaX99WMBGfiKaOxZu+CVdxyYTfr1BVRIYGdG9zFflzfqaVnshgv+FMTEREdunF+LG3GUX5dLcjIsoHs5h//J//BmLcWfdaxPfXz4a/fjYA6Mb8LsfrSdsy4hPlXyGH/PmX/7+EkZD/l3kcC9G0ZBbxNUYx3yziaxjziYiIKFfMYn7bjl9h/p/8NSTJOlYNth5Dz8G9CcsY8YkoG1zFJfCUluflvr3llXm5XyKiXDGL8WPXGR/l092OiCifjGK+WcTX1K1YDSA55jPiExWmQg752sVlBYCTQoi2fA6GaLoxivhun4AsA8HB0Q8w42O+UcQvnyHQczHxgw9jPhEREeWKrCioXX5jQsgHgGhfD6AKQLHeR7S3O2mZt7IGpY32zugnIiIiolG5mI2kt/U4Tu96CbCI8kUzZqFhzR2QlZFD4mo8jrZ9b2Cw45z5HUgSZt98LyrmLMrWkAFwNhIiyoxRzNfoRXyNUczXMOITFY5CDvljLzwbyNsoiKYhs4h/66MqZAew6xlZN+bPX+7ER7vCSRF/9mIVN94vcPxDCYd2JZ79xphPREREudDf1oqjL/4yaXn5stWQFBsVH0DJguW4+O7LiAeHriwb7rqAoy/8Agsf/hoUJ9+/EBEREdmV7dlIAicO4/SuHUkRv2ThCgyePppwreehi23o+GgPFm54HICE4y9tTYr4sssN/5wl6Gs5MLpQCJx55xU4fUWoXrgsa2MnIsqUUcw3i/gao5jPiE9UWAo55J8c87/zM9cc0TRkFfFLq0f+fuvjqm7M/+CNcNI+tYgvy8DCGwQAlTGfiIiIcqq/rRUtL/wCajSSsNw/7xrU3fmI7f04fMVoevS/onXrFsRDwwn7Z8wnokI3cKENHR/thsPjw6wbb4Wr2G9rO6HG0XFgH/rbz6C8eT5qrr6e00oTUcEJnDiM4zueBUTiMayKFWtQd+cmBC+cReuzP06I+X1nTuDo9l9BlhX0nD6WsJ3scqNp03fgndkER1EJAh++NXqjEPj81ecBgDGfiAqKFvOPbf8VhrsvwlVcgvn3P2oa8TV1K1ZDVhS0vv0K1FgUlfOvxty7H8lrxF+7wQNvcX7ed6qqQHhYf3YXt0+CLE/8uIKDAru3h6xXpCmrkEP+uwBiGBnjVZIklQohkucHIaKsEULgvVdDlhEfAPzl+jF/vLERX2MW810eCY0L+W0/IiIiSp9ZxG946A+vTKdql7dmJpoee4Ixn4gmlZ7Tx3Dsd89AxEemS+ttPY4lm74Bd4n5uRJCjePEK9sQOP7ZyH5OtmC4+yKabrmfMZ+ICoZVxJckCb66RjR9+Ts6Mf/zpP1pEd83qxkAUHvbwyP3w5hPRJOAp7QCS7/yXYT6euAqLknp8+mMpTegYt4SxCORrM6Yki5vsQSfX7ZeMUeKS/N21wZU61VoSsvfb4MFIUQPgG2X/6oAeCyPwyGaFgIdKrrbE+fEd3mTI75Gi/neYv1vqelFfM3CGwSW3ZL8j9DRDyPJKxMRERHZlO2Ir9FivuLxJd3f0Rd+gXiU72GIqHCMj/gAEO7vxeFtP0O4v8dwu/ERX3Ph4H60vrUDwuL600REE2HwwnnLiK/RYr7s9hrub3zEBwBJklB728OovP6WxJUvx/yB9rNZeSxERNkiyQq85VVpfcnc6S0qiIhPRMkKNuRf9pcA+i//7x9IklSfz8EQTXUOnX/jo2FgsNd4G6OYbxbxAUBVgZ7O5OVOF8/wICIiovSkG/GFEOg/8Sm69r+BSF/AcP+M+UQ0GehFfI1ZzDeK+BrGfCIqFF0tHydF/JIFy5MivsYs5utFfI0W80sXX5d4gxDoPHwgswdBREREZEMhT60PIUSbJEmbALwIoAbAG5IkfVEIcTTPQyOaksqqFDQvceL04eiVZUKVsOcFGWseVjFznv52/nLgtq+o+PBVGX3dQPM1AlevM4/47+2QcPZI4gqyAixd687WwyEiIqIc6OgLoqRn2HrFcQJ9YYQdRbq3qTaj0EAwZhiQYsFhfL79l2lEfBXtr21Dz6G9AIDOva+hceO3UDxb/42P2TT7x9/4HWau32DrsejxuBRb6w1HXQgHczOVv8cRhdcZtVwvGHUiFMvN5ZBcSgxFLusvRYRjCnrDHoQd+m862/vCCDtTf64CgNsho8bvsVwvFI2jazCse5vZc97O2ByyhLpS47MHNbG4io7+3F0zsaHcZ70SFQyziK/RYv7YafatIr7mwsH9AMBp9okorzzlVUnLBk+3IHi+VTfIA9CdZt8s4muCF85i4OSRpOXeiuQxENHUkM5nXrP3/gOhOFx+Yev66mafeTPlcytwKNbn9g6FYoiruRmD3c+8QxEXIvHc5Et+5h3Bz7yjCv0zb0GHfAAQQuyUJOlOAL8GsBDAAUmSfgngOQAfCiFMzhUmolQtXeuCGhc4czR2ZZmdmF9cBtzyqPX1Wswi/qp7PKiqt/ePeSYCAeMz7fJ53/kcl5HKykooSu7/mxAR0eTxtZ+/D1f1xfQ2btyou3hxWIWdj03P72nDQDCme1vp0DnMDyd+sHMUl6Jhwx9YRPzn0HNo3+iyaARnnv9ny5g/895Hcfa3P09Y3nniKHbG0r9e6h3La3BVifV6vz+7DJ90Gx9wzsRtzUdw+5zkg9Xj7T07D2+eXpyTMayoa8XGJR9arne4cxZ+c2Ql0Kh/+8M//yTtMdzYXIFnv7Xacr2Pz/XisX/Zb7yCwXPezthmlnmx5y9vs1yvoz+EdX+7y3K9dLX+8P6c7Zuyyyjily66FqGuDoS7O64sGxvzXcUluhFfcjhRef16dL/3ZsKZrxMd8/P9OYmf4YgKz4xrVqKv9QR6Th+7skyNhNG67cemYd5X14irvvo9dO55FRACNWvuhqfaeALY4Y4zCeFfU9o4F7XLVmXnwRBRwUn7M6/Be/9D7/fiD28vRYnPOgqbfebN1BdX12NWlfUn71cPXMD5QG6iqd3PvK+cWIqPO5pyMgZ+5h3Bz7yjCv0zb0GHfEmS+sf8VXuV8wD4xuU/kCQpBkD/6yDGhBCiNPMREk09kiRh+fqRs+JTjflWrCJ+TcPEvCRt3rx5Qu4nVYU4ri1btqCmpibfwyAiIrI07K5EXHJAEaPvX2KDfWh/fRtm3vsoJCnx/YdexL9ym0XMD/d0o/2N/0xaPuCdkYVHQkSUOqOIX3b1Ssy893HEg0M4/et/0o35vuo69JxsSdhOcjjR+Mgfo7hpAbw1M3Hud/+Rt5hfiJ+TNIU4Nn6Go+lAVhTMf+AxHH9pa8ox31NVi9kP/aHlfZhF/AUbvgLZkdtjWPn+ohC/xERERFQYCjrkAygGIABIl/+/Np/H2E+JToxGfrt4QTciE7mI+YUS8YmIiGhqijp8OFm7HnM7dkHGaGzq/fQ9AEiI+WYRX2MU88M93Ti99R8RG0icGGzIXYEz1dbfZiciyjariC/JMhxFfjQ/+l91Y364P/H1bGzEB0bO6AeQ15hPRDSe7HCkHfOtWEV8xZGbqZbHKsQvCmkKcWz8EhMREU1Vk6mcjf9UmG6M56dLIhusYv7aL6qon2NvX0IA7zPiExERUY71FTXg87pbTWM+AP2IL8nw1zVgoP3MlUXjY75ZxD9WfzfiijtHj4yISF+oN4Bjv9tqGvE1RjF/rPERX2MW873lVahdzimmiWji5SLmF0LEJ6L8muGIw+fI7vT2pdEQiiNxy/XqlBhKsnzfmvJ4GP6I/rXWx6qVokCOxlCphlESU1HlMb42e3HcjWoJmJmrMUCCL2r92b0SUs7GUC3B1hjKVSVnY6hCBGJgwHI9V3AoZ2OolaO2xqAMBXM2BgCWYxBDQzm7bzsKvZ4dAM+eJ8obs5j/wSsyHvyuCtn63350nALOMOITERHRBLCK+ZIsJ0V8FRKqb/4C5i5bihMvP4dLnx++cpsW8+vv3IiL777MiE9EBaXn1DGIeOJBLW99U1LE15jFfKOIrylddC0ifQFcfPulhOXdxz9jyCeivLGK+Vd99XvwVNfb2leo+wIjPhHh3+sCWFKf5c93bRdtrfb1XE4s0X0R6LYxhhIANq5jn5bBi8AggHVrjde5BGzyAJht72eWuhLg3LWWaz0o5XIMTntjAPC/52wMFxH/9THLtZYBeHt2joYAIP7rM5br1OR8DFvNb29vz92d21DQBU0IcX2+x0A03UmShPqrHAkhHwDCw5dPxLAR8kODyRNhFJVIKKvmtauIiIgo+6xi/lgqJJysvQWNsxdAVhTMu+9LujH//MvPJG3LiE9E+VZUkxyngu2tuHRoLypX6B8g1Yv5VhEfAEJd7eh+f1fS8uIZM9McPRFRdpjF/M7dr2D2F75haz9de19jxCciIqKCUtAhn4jyr/NcDO+9FkpaPvdaAcXmK0jDQoHDewSGB0aD/kCPwJ6XgljzgBcuD694QURENFn84o9uwIJFi1PeLtAdwObNT+reVrTuW7b2sXHNLAhhd8KuRgy0VuPczucgVFV/FVlG4x2bcE3zQvjcI18wNIr543mqarHg/q/hBo/X5niseVwK1KE+y/Vun30Idy1oydr9JozBEbW13k2zT+Da+tacjMGl2Jsyb0lNG2pdF7H7xeT3qgDw1FNPo7KqMq0xuB02vq0KYEVDGd79/q26t5k95+2MzSHbe49cV+IxHANNfSWzmtCw+nac2/f7hOUdr28DANOYf9VX/hTd77+J2NAgKq+/2fSM1VBXO05v3YJ4MHFaSf/MRjSsvi3DR0FERERERER6GPKJyFDnuRj2vxqCOu7yPbMXq1h+m/2rXjjdwC2Pqdj1jIzgmLPz+7rVvMX8b1fPQanimtD7BABVCAzE9Q+Q+xUnZGniv9TQF4/gJ10nJ/x+iYhocqor9aKh3Jfydu7oINwx/euK2f33z+9N7eNLyeKr4XU7cPylrRDj3tBIsoz59z+KirnJX0qwivlFNXVY9MjX4fSk/nOwop+kE/mcEfi8ubs+nB1eZxRep73onytuRxxl7ijcsaDu7fWlbtSk8VxNhcepGP4+mD3nszk2hyKn9TtJU8esVbdCQKBt35sJy61ivuLxYcbND1ju3yziL3r4a1BcEzMrydoNHniLJ/7zkqoKhIf1P/+6fRJkm1+6yabgoMDu7Xb+xSCaHtRYLOlsfACQXW7UrL3X9n6qb7obA6daEs7K7zvzOY5tfwYLNzwOmWflExER0QRjyCciXWYR/8b7BXQut2jKXw7c+njhxPxSxYUKx8SHfACocnL6XSIioolSMWfhlalWtZhvFvE1RjE/lxGfiChdDatGzopPNeZbKZSIDwDeYgk+f4ofRLOkuDQvd2vCYKYZomnILOI3bfqO6Wwj43mqatH05e+g9dkfj4v5J3A0TzGfX2IaxS8xERHRdMSQT0RJsh3xNYUW84mIiGh6qJizEIu++Ac4u/t1CCEwe82dKGuca7mdFvPb9v0egc+PoLh2FppuuY8Rn4gKUrZjfiFFfCLKj46+IEp6hlPeLtAXRthRpHubavMySQPBmOUlldR4DOde34bBs8cTlmsR3zer2d6Ax/DVNRrG/MO//SUa7n4UsiPzQ+oel2JrPeF2I5yjE1E8DvMZlrQvMQWjToRio19gyOacTC4lhiJXxHK9cExBOOxE2KH/c2vvCyPsTP25CoxcUqnG77FcLxSNo2swrHub2XPeztgcsoS6UutLdsXiKjr6c/dlBs7yRERUeBjyiShBuhFfCODMYQl93UDjYoGyGv31GPOJiIgoH0obrsI1j3075e1kRcHstXdh9tq7cjAqIqLsMov5ituHssXX2tpPtL+XEZ+I8LWfvw9X9cX0Nm7cqLt4cViFnVT4/J42DASNLyUkiTjmduxC2XBbwvJMIr7GKOYPtp3E/q3/hhO1t0HImR1Wv2N5Da4qsV7v92eX4ZPu9B+Lmduaj+D2OUcs19t7dh7ePG08k1UmVtS1YuOSDy3XO9w5C785shJo1L/94Z9/kvYYbmyuwLPfWm253sfnevHYv+w3XsHgOW9nbDPLvNjzl7dZrtfRH8K6v91luV66Wn94f872PZn8meMF+J2F96WGDU0/trXe9tbv6C6/acb3UOVdYLn9ngt/j0DoREpjm0j3ljejzu23XO/lwElciCZf6mxFUQ1W+Gstt/944AI+HupMa4wToeR0Bf7n1/8RlZVVpus9c+Q/8OuWXyYtX1K1FD9c/3eW9/Np1yH81TvfT3ucuZaNx7H9kddMt1VaWoAfPJXW+LKBIZ+IrggNq3j/9dQjvqoC7+2QcPbIyArHPhBY87CKmfP01zeL+YfeDWPlndbfgiUiIiIiMhMIBAr2/vM9Nj2VlZVQFHtnB1Jha1h1GyCAtv2JMb9rz6u2Q37g43eTI379bEZ8IioIklDTjvih7gvo2vMqhBCoWXO34dT7RjG/dLgd8y68iRN1t0NI/HeTaCrqkoYwKMWtV5xgAy57x8w7pAHd5b1OBW4b++iUQ+g02Ech6HeEUOq0nqmkSx5EhzSYtLxRKcawU392jbEuKcOGP8tCEIy5ofqKIPnNv9Qw6NZ/TtQ5wpbbAkBkyF3QP4dsPA6r7aUi/RlXJkpeQr4kSf8wfpkQ4k/trJctevdHNN31dauIjZsfy1MssPIe+xEfAIQqYe8LMm6yiPnX3a1i928SP/R0txfemyQioukoHo9nLTSpqoqenh7d28rLyyGne82WcRihiGiszZs353sIhgpxbFu2bEFNjcG0WjSpCDWO4KXks4dkl/2pmWWdWB8Z7EcsNMyQT0R5V913LK2IP9xxJiHMD55uMd3GLObX9B7FxfIlWXg0RFRottz5UyxYZH3m+liB7gCe3Pyk7m2LN30Tbn9pNoZmy4amH+ku9ypltrZfU/vniItsXkQjUXigD0e2/avh7ese8sBTZHycqEhxGt421n2VcxATatJyt2zvuNEK/wwsLjI/230ihIZUvPti8iU15Ki9x/H44q/iwbkPJS13Kfbe019TvRTbH3lV9zaz5/3TTz2NyqpKW/eRiWw8jkKXrzPynwCgXeRIuvy/9cL62PWyxez+iKa18hoFTjcQHfOFtNCghP0vyVi9QcX4NqIX8UdvM4/5fd3AB68kb1fTwABDRFQIAoEAnnjiiXwPIyWMUERENN0JNY4Tr2xD4PhnCcslhxO1t3/R9n4qr70ZfUcOINzdcWVZuL8Xh7f9DEs2fQPukvKsjZmIKFWeaF/SsuLmRfDObDLcZnzEBwA1Ekbrth+bxnxv7Wz45yxG35GPLMdARFNDjW8G6otnprSNY9gJZ1D/S5NFShU8zol771TszOy4iNeR27E6FOOfFQD4ZTd8jsxP+LAb/I14ZAc8GV5GJRucsgpnMPkLCXb5XSXwu2xcy8WAW3Eb/j6YPe9n+GpRU1w4x+jMHkehy87pT0Q0Jbg8Em682wtl3L9P549L2LddRnzMyfJmEX90nZGYf37cJXX6uoFdW2WEh6WE5RUzZCxdy7M7iIiIiIiIUmUW8Rsf+WMUzbrK9r4UtwfNjz0Bd1VdwnIt5of79WfaISKaCN3+uRBIPKbUf+wgOnZugxDJ54TpRXyNFvOH204n3SaEwIU3X0iK+AISAv65GT4KIiIiImv5DPnS5T9218vWHyIyUVWvYPV95jHfKOLLCjBjduIZ9eNjvlnEX32/F04Xf02JiIiIiIhSYRXxi5tSmx4WABy+YsZ8IipIw54qnKxdnxTzL328Jynmm0V8jV7M1yJ+4MO3EtYVkHBqxjoMegvnLEMiIiKauvI1L8Q1WV6PiLJIi/n7Xg4iHhtdrsV8xSF0I/6qezyonqXg4NthnDk6uqEW85feItCyX2LEJyIiIiIiypJcRHyNFvNPb93CafaJpqFf/NENWLBoccrbBboD2Gxwzdyidd+ytY+Na2bpnl0/qhF9p6rR9sbzwJj1Ln28BwBQd+cmBC+c1Y34JbPnQFEc6Dl97MqysdPse2c26UZ8SBJm3foFXD0v80PWHpcCdch6ev7bZx/CXQtaMr4/3TE47F0D+6bZJ3BtfWtOxuBSYtYrAVhS04Za10Xs1rlONAA8lcG1mN02p/Be0VCGd79/q+5tZs95O2NzyPaOidaVeAzHQEREU1NeQr4Q4nA21yOi7DOL+eMnt9Aifk3DyEvK8vUj0+OPj/kH30x+U8qIT0RENLmIoSGIgYGUt5OHh1Dl8ejeVhKLwB3RPyg33bhiEcOfk6Y47oYnmtvJ1eJxgYsdURQXKygpU6w3GGOgP46B/jhqap1wOHL7Hk+Oq6jymB3kJ7vk4fR+t4GR1wXKDyEETrzyfFoRPxy4iAu7XkBseBBVN9yO0oXLddezjPlf/hbcxelfd5OIClddqRcN5b6Ut3NHB+GO6f/bIEv23hv4vdaHrUuuXgafS8Hxl58DxOj1gy99vAex4DAGTx9NiviljXOxYMNXIEHC8Ze26sZ8/5wl6Gs5kHhnkoS592xE9cJltsZvh513vz5nBD6vvdidK15nFF6nveifK25HHGXuKNwx/ZkV6kvdqEnjuZoKj1Mx/H0we85nc2wORU7rd5KIiCavfJ2RT0STgFHMH2t8xAcASZJ0Y/54jPhERESTT/yVlxE/dDDl7coA/MO6tfo3XjgKXMhsXFOK0c9Jc+nynxzpDgbxw48OoH14GBKAx+fPwwNNTba2feNcG549ehRxIVDt8eC/X3ct6oqKcjdYAJvW5XT308fOnYinuWm8vT2rQyH7ek62IHD804RldiJ+qKsdp7duQTw4Eh3OvfhviA1vROW1+r9QZjH/3O7XMfeejVl4NEREqaucfzXmA0kxv//ox0nrahFfcTgBAPMfeEw35k9ExCciIiKygyGfiEyZxXy9iK+xivmM+DSdxePGh8nDA9ZT600XZj8Ls58hZUdlZSW2bNmSlX0FAgFs3rxZ97annnoKlZXpTYE4Xrb2QzSddQeD+JsPP0JncORsJwHgV8dPQBXAhuYm0213njuHn7ccvfL3rlAIf/PhR/jr66/Lecwnmq7Cg/1Jy9wVNfDWNRpuMz7iazp2Pg8AhjFf8RahuHlhQsgHgIjOGIiIJpJRzB9rfMQHANnh0I35CRjxiYiIKI8Y8onIkl7MN4v4GqOYz4hP011vb6/hbS3P/2wCRzJ59fb2oq6uLt/DmNIURUFNTU3O76eysnJC7oeIrI2P+GNtPXECgHHMHx/xNT3hMGM+UQ5VLViK8++9hejw4JVloc7zOLPtJ2jc9G0o7sRLdRhFfI1RzBdCoHP3Kwh8sCtpm9oVN2X6MIiIMmYW8/UivsY05jPiExFNSUIIdLbFMXBJRf0cB3zF9i9dF40ItJ2IweEEZs51QJbZOCi3cnthRSKaMqrqFax7yIuaBgXVsxSsfdBrGvE1WsxfssqF8hoZzVc7GfGJiIiICoxZxNdsPXEC20+3Ji03ivgaLeZ38DrqRFnn9PqweOMfwelL/KLM8PnTOLPtJ4iHR6/AbBXxNR07n0fgwLtX/q5F/K69ryWte9UdD6FizsIMHwURUXZUzr8a8+/7EiCNHvI2i/gaLeaXN4+5JAkjPhHRlCSEwKd7Iti3I4TP9kXw5rPD6O6wN/Pn8ICKXduGcejdMD56M4x9O0KIRUWOR0zTXV7PyJck6e/H/PVHQojP8zYYIrJUVq3gpvu9KW8nSRLmLXdh3nJXDkZFRERERJkwivieYoHQYOKXL8efmW8U8b3FAsEx2/LMfKLc8VXWYPHGb+DI8z9DdHg00msxv3HTtxHtv6Qb8f31jShpaMb5995KWK6dmV+xYq1pxJ9xzcrsPyAiogxUzr8a15SUofPwAXjKK1G79EbIDutD4LLDgfkPPo6Ln7yPYKAT1YtXwF8/ewJGTEREE0UIgU/2RHD6s+iVZbEosG9HEKvv96KqTjHcdnhAxe7tQQwPeTq0xgAAIABJREFUjIb7rvNx7H81hFX3eOBw8sRFyo18T63/PYxcdhEAXgJgGvIlSSoFcOVrkEKId3I3NCIiIiIiypa4quJSOJzvYUxqFW43FDm7k6oZRfySKoFbH1Vx5oiEg28m3qcW870ORTfiL1mjYv71Am89K6PnAmM+0UQwi/mtz/4TIr0B3Yi/6Atfg+JyQ5JltO17M+H2jp3PY+DkYQyeakm6P0Z8IipkxbWzUFw7K+XtZEVB3YrVORgRERHlm17E18Rj5jFfL+JruhnzKcfyHfIBQMJozLdyPYDXL/9vgcIYPxERERHRtKHcex+URYtS3u7kieP46//z/8rBiKaPcpcLiixj3UMeeIoyD/pDg3G8sa8fQ8HE68hqEd9TBCxYKQCohjF/vCVrVFy9duTj3S1fVnVj/l99vA+331eKklLjsx3sCg2pePfFkOk6366eizKT6XSnk95YFD/p0v/+/NNPP4XKyqq09qu0tAA/eCqToVEWGMX8YMfZpHXHRnwAaFh1GwAkxXxGfCIiIiKa7MwivsYo5ptFfA1jPuVSIYTwVC8gwd8CIiIiIqI86ZIG0SH1p7xdJ3h99Ex1SoOABHRIEXgk/ZBfpDjhMLhtrJ6hCN57OYLQQOLysRFfYxTzxxsb8QHA5dGP+cFhgddf7sX1DzngLsrs411IUtEhJYd8OapAiY0cfIlG44gL/S8NDMkRDCmRpOVOoaA8Zn1JqYgUR68jaLlevox/HNFYHN2h5J+XKqvowAAiUvKlsOqLZ1rej8QZFgqGUcwfa3zE1xjF/LEY8YmIiIhoMjGK+JIkUF4LXOoY/Uw6PuYbRfySSoHQEBAJjW7LmE+5Ugghn4iIaFopKyszvG3Rxm/A7S+dwNEUrvBAH1qe/5nubWY/QyLKrSd2/gm8Rzwpb+cYdmI25uZgRNNHx01nEfNF8cwAgAH9dTZWzUeDp8RyX29+0A1lIHE9vYivsYr54yO+xijmR4aBV/Z34tKSTsuxWroteVHZ8SpUnKi23HRH9TFsqz2ctHzxYDWeOnm75fYnfN34wdxdtoaZD3YfR7gsiK+//RXd2z78g0+zPSzKMbOYbxTxNWYxnxGfiIiIiCYTs4i/6kGBmfMF9r0o4/yJ5Ji/fL0bLe9HkiJ+aZXALY+pCA4Ab/1aZsynnGPIJyIimmCKYjyVsNtfCk9p+QSOZnIy+xkSEZENOvOiyTJgdjK/Ucw3ivgaSQJ0X7ZTnZuNiGzTi/n+mY1Y9LBxxNc0rLoNEiSc2/f7K8sY8YmIiIhoMrGK+LMXjXwgXf2QqhvzP/p9OGmfWsT3+ACPD7jlUZUxn3KOIZ+IiIiIiGiaUecMQpzxwhEavXZ8b6eEt56VccuXVbgNZpVfsFLA4VRxcJcEoQLX3CwuB3590TDw9jYZgfOJBzDirhj65lzKymMhIn2+yhos+y//Czo/+wgOjxfVS66FrNg7DDRr1a0ormvAwPkzKGueD39dQ45Hm39CFTh2IIr20zFU1MhYssoNp9vewdfBXhWf7QsjNCwwd5kTs+Y6rTciIiKiKSMejxveFh7om8CRFL6J+nkc+yhqGfGBkS+d68X88cZGfE35DOOY/+EbIdx4jweSxJhPmWHIJyIiIiIimm48KjpWn0XdvtmJMf+idcyfs1yg+ZqRAx+yyQQpZhG/Y/VZxL2xjB8GEZlz+oox84b1aW1b1jgXZY3T45IoQhX46M0w2j4feV3qD6joC6i46X6vZczvv6Riz++CCAdHXhc/fCOMcFBgzjWunI+biIiICkNvb6/hbUaXjaTcOv5xJGnZqgcSI77GKubrRXyNFvPffEZGLDK67YUzcQz0qCipyN2sooFAIGf7zvT+8z02PZWVlZNylleGfCIiIiIiyrmYJ4qzt36es/1vaPqRrfW2t35Xd/lNtd9DlWe+5fZ7Lvw9AqHcPQ4zMU/UeqVU9lcUTTvmmwV8wDriR/3JB1WIiPJhfMTX9HSq2LsjaBrzx0d8zad7Rl7jGPOJaDKIRQWCgwJFJRJkJbUzR4ODKoQAfH6T6zMREeWByy0hNJz4Hu3iWaBh0cjl38YzivlmEV/TfV5KiPjAyGXrHK7cno2/efPmnO4/E4U4ti1btqCmpibfw0gZQz4REREREeWeDMR82Q3RY3lKy22tZzQGp78IHp/1PsSAhJicu8cx0TKJ+UYY8YlosjCK+BqzmG8U8TWM+UQ0GfR0xvH+ayEEhwSKSyXceK8X/jLrKC+EQMv7ERw/GAUE0LzEiaVrXJBkTiFNRIVh+Xo33nstBKGOLjt1SAag4vq7hWnM//QdCW3HJFTUCVx7pzCN+CcOSDiwM/l1c9FKF3zF/JITZY4hn4iIiIiIbNty50+xYNGClLcLdAfw5OYndW9bvOmbcPtLMx2aLUZn7nuVMlvbr6n9c8RF7kJ+eKAPR7b9q+k66x7ywFOkf0CgSLF3Xeb7KucgNuaIRrBa4OMdMYSHRtfRYv6tj6pweWztFtGIfsR3eoAb7vegqDz1546Z0JCKd18MJS2Xo/amy7u/awFuudSctNwp7G0/b7gK/3TkAVvr5oPdx+Hu9eLf1v8KlVWVOR4RUeGwivgavZhvFfE1jPlEVMh6OuPY81IQscvfsRzsE9izPYi1G7woNon5Qgh8tjeCk5+Ovic+fTiKeExgxXo3Yz4RFYTaRgduuNOD93emHvOX3yqw/Fbz93mAccRfuNKF+Sv4/o+ygyGfiIiIJp18X2eJ14Ci6azGNwP1xTNT3s4x7IQzqP9Btkipgsdp74z6TBU7M5tGzevI7TgdivHPSeOX3fA5Mvtm//jgX1oB3LxBxe7tQQSHRg9Y9F6U8Ok7Eq67y/ogBgC07JOSIr7LI2HtBk9Org3olFU4g6r1igaKVBeK1PQPsLiEgppocdrbFwpZlTHDV4ua4sk3zSBROowivqwIrLhd4PAeCaGh0deysTE/OCR0I35lvUBts8DhPYmvz4z5RFSIxkd8TWhYYLdJzNeL+Jqzx0ZeUxnziahQ1DWnF/PtMIv4C6/j+z7KHoZ8IiIimnQK8TpLmkIc22S9BhQRTayiUhmNi5w4+mHiEd3+gATAXsgfWTdRwzxHTiI+EVE6zCL+ukdU1DYDNbMFdm2Vk2L+npeCCA4K3Yi//ksqnG5AVlR8+g5jPhEVLqOIrzGK+WYRX8OYT0SFJhcxnxGfJlIhhfxlkiSZz2cGLBv7F0mS1gFI6x2BEOKddLYjIrJDFQKv91/AvsFuVCgubKpoQL3L5GI6Y3RFw9h26SwuRIO4tqgCD5TVwyHxejpERESUW6cPR5MiPgA0X2Mv4o+sq+L8icRof/LTKDw+CfM4tSBNYh19QZT0DKe8XaAvjLCjSPc2Vdj73RoIxiBsrpsqn1uBQ7H+rDEUiiGu5mYMHpe9L/oMR10IW8xYYkWoAkd396PztHHEB4CSSuDWx9SkmN/blTwDyNiIDwCLVwsA+jF/OOrCrEX6nwtdSgxFLoOqNkY4pqA37EHYYGaW9r4wws7Un6sA4HbIqPFbX0slFI2jazCse5vZc97O2ByyhLpSr+UYYnEVHf3Jl1bJloZye5/fiSYbo4ivOATisdHXu/Ex3yjiS9JIAFPV0W0Z82k6KiszvlTboo3fmLBLyU0G4YE+tDz/swm9T7OYL8kqrrc5Ax0AnDzEiE8Tq1BCvgTg/05jm7fSvD+BwnnsRDTFqELg+Z5z+HDoEgDgvBrET7tO4o+r52CWRczviobw066T6I+PfDDaO9iN3lgEX61qYswnIiKinDl9OIpD7yZHmSVrVDRdbf+gxsx5wPLbVBx8M/F9y+H3Ro4WM+bTZPW1n78PV/XF9DZu3Ki7eHFYhZ1U+PyeNgwErc57SM8XV9djVpX1KF49cAHnA7mJpncsr8FVJdbr/f7sMnzS3ZzRfc3oOYzZgQ8Slo2P+BqjmD/W+IivMYr5J98fxEvnb8agN3mmpBV1rdi45EPLx3C4cxZ+c2Ql0Kh/+8M//8RyH0ZubK7As99abbnex+d68di/7DdeweA5b2dsM8u82POXt1mu19Efwrq/3WW5Xrpaf3h/zvZNlC9GEb+2WeCG+1Ts/k8ZlzqSY/6aDV60Ho7qRvwbHxBwugT2vCBDjTPm0/RldjlDt78UntKJuZQcGTOK+Sc/ltF8dRyV9db7iISAj3+f/JqWz4j/7eo5KFXyc9+qEBiI68/S4leckNO9bkEG+uIR/KTr5ITfby4VSswWsH9m/dijSHwXQEQFZXzE1wTVOP7FIuaPj/iaI6F+/LK7lTGfiIiIcsIs4l+9NvUzcBesHAlYjPlEVGhKgh1JyxatEkkR/8r6JjHfKOJrFq8W6DwjcPFM4nb+YIduyCciyiWziL/2iyoUB7D+Syrefi455r/1/DDi475PpkX8xsUj7xXXPKwy5hNRwSutkuH2SAgNJ37ODQftbR+PAfFo4uuZJANV9fm7lFyp4kKFI3+fsauM3gxT1hRSERI2/6SzjdH2RERZYxTxNVrMb4skTyVoFPE1WsyPieSpHImIiIjSle2Ir1mwUmD5bcnvWw6/F8GJj62njiYiyoV+X13Sspb9EtpNTtrRYr6naPQ10SriA8DhPVJSxDcaAxFRLvV1W0d8AHB5RmJ+RV3ie0CriA8A9XNHYr6sJG579lgMB9/RvxQHEdFEGh5QsXt7MCnil80QqG2ytw9vMdB0deLnXKEC+3YE0d0Rz9JIiRLl+4z8s2BcJ6IpwCria/TOzLeK+BqemU9ERETZlG7EV1Wg7agEVQANCwWMZpHkmflEVGguli6CL3wJVQOj5V6NS9jzWxlrvqCifo7+diWVwN1/pOL0JxKcbqD5GnElfOk5vEfCZ7uTP7O1Vq/CkIdn49PkIYaGIAYGUt5OHh5Clceje1tJLAJ3JDeX6phsXLGI4c9JUxx3wxPN7BjQ3t19lhH/ypg8+mfma/QivkaL+ePPzD9zNIZ5c2TU1DozehxyXEWVR/89qjyc3nM1W8ye8/keW7aJoaF8D4EoZVrEHx5IfA0prRr5cqacwgn1198jEA0LnD8x+joXj43E/NX3e1FVl7+z82lqymvIF0I05fP+iYiywSjiKwC+6Z6Bd6L9aFFH5+cZG/Pdkqwb8ZtkNx50VuCfwxcQHvN9J8Z8okRrN3jgLZ74KfpUVSA8rH8Awe2TIOdh2sDgoMDu7TwgRkT2dLfH04r40TDwzvMyuttGXueOfyCw/ssq3F799c1ivr9CRm1jvr9bTkTTiiTjdM0aAEg55nt8I9PwWzGL+F2lC9MbN1GexF95GfFDB1PergzAP6xbq3/jhaPAhczGNaUY/Zw0ly7/ycC7g/sADCYsq5pl/IUko5hvFvE1ZTUjr5fD47r10vPNWBnN/ItMm9YZ3LBzJ/J5Lqzpcz7PY8u2eHt7vodAlBKziH/LYyo8+lfBNaQowOqHVOx7UWbMpwnBoyZERBkwi/jfdddhmaMIS5UibAl16MZ8ByQMqIlzlDXJbvyFpx4+ScH3pHr8v6F2xnwiA95iCT5/fn4PikvzcrcmeOkNIrKv/VQsaVnDQuuI//Y2GYHzowcrei5KeOtZGbdYxPyBSypOHkx8vT5/MsaQT0QTL4OYb4URn4gK0YbmJvzTp58lLPvsXRmyrBp+QUmL+XtfkHHxjASHS2DlPQKzFxm/VxzuB97cKmN4IPGL7bOLi7Giqirjx0FElKpsR3wNYz5NJB41ISJKk52IDwBuScYTnjrdmD/e2IgPAPMUL77nYcwnIiKi7CqvSX7/0HZcQttxgVnzk9fXi/iaXouYf+E00PpZ8nYVM3hggyaPX/zRDViwaHHK2wW6A9i8+Und24rWfcvWPjaumQUhcnNVQp/b3u/hPdfWIq7mZgwelwJ1qM9yvdtnH8JdC1qydr9CFTi214OLJ0dnNMok5htF/Lk3FmP9wlMATplu71KSv2ClZ0lNG2pdF7H7Rf2ZmJ566mlUVlXa2td4boe9z5YrGsrw7vdv1b3N7DlvZ2wOmzNb1ZV4DMdARInW1tVhIBLFL44dS1j+ydsyAIuY/2UVgz2A2zfydyNaxB/qTfwdnllUhP9+3bVwyDx2RUQTK5OI33l25PNxRR3QuFhA0nl7wphPE4Uhn4goTQeHeywjvsYo5o81PuJrzGL+3sFu3OznNRaJiIgoNbPmORDoiKO1ZTQcCVXC3hdl3PSQmhDzzSK+xijmXzgN7P5PGfFY4raz5jrQtIgfR2nyqCv1oqE89VN23NFBuGP615KV9Y4I6vB78/+7UuTJ7RjsXBzI54zA57UXu+1adbuCA4oD546P7leL+Xf8FxXlM+zt59Qh/Yi/dK0bV10NAMPZGTAAtyOOMncU7pj+58r6Ujdq0niupsLjVAx/H8ye89kcm0OR0/qdJJqu7m2cDQApx3xJAvwV5vs2i/j/x/XXocztTnvcRETp+uj3obQi/okDEg7sHH1f13VOxfV3px7zP3g9hDse88HpmvjLb9LUwq/CERGl6Xwk+cDJMqUISxWDAxqXY/4iOflUNaOIr5mneLHK4bc1BiIiIiIrkiRh2c3upJiuxfy24yN/N4r4Lo8Eb1HiMi3mhy+/PTGL+Nfe5oZk86xLIqJckWQJ197iRv1ViZ/D1LiEkwftv0Yd/yh53SWrXLjqamfGYyQiypZ7G2fjawsWJC3/5G0ZLfvTe1/GiE9EhSpwIfkSlNffk1rEB4BTh2R8+JoEowmyFAVYea8KhytxhXBQYKiPl8GkzDHkExGlaZmvDOM/5hyID+H5aMBw6kst5i9RRmP+VRYRHwBeifTg7Vh/0vLlvrK0xk5ERERkFfNbP5MMI/7aDR6s3eA1jPlnWyTTiC8z4hNRgRjoFQh0JB9k9ZXY34feuu2nYoiEc3M5AiKidGUz5jPiE1Ehm9GYfKx974syBnr019eL+BqzmB8NA+/+RkYskvha6PNL8JczwVLm8j8/GxHRJDXbXYQvVczGc5fOYuy/4a9FewEAG52VkHTm3HFLMv7MXY9P4sOIQWCFUgTFZFrNVyI9+E00kLT8gbJ6LPKWZvw4iMicUAW62uNwuiSU16R2bavgkIq+bhXlNQrcXkYrIio8WswHkDTN/ns7kl+3tIhfUjHyerh2gxe7twcRHBp9N9R7UcK+7cnbTtWIH1LjeKm3HafDg1jg8ePesno4JXsHbFrDg9jR24GYUHFXaR0WeVMoh0SUsf5LKvb8LohwMPGobGW9wPzr7Ef4Fber6LkgIzQ0+vrW06leuT6qyz21Xvdo+vgzxwvwOwvvEgYbmn5sa73trd/RXX7TjO+hypscs8fbc+HvEQidSGlsE+ne8mbUuZNnbxzv5cBJXIiOueTFXEBRiuA8knhyyCdvy6iaFUf1LHv3/96O5IivFkdxctXn+Lr7uL2dZEHJ6Qr8z6//Iyorq0zXe+bIf+DXLb9MWr6kail+uP7vLO/n065D+Kt3vp/2OHMtG49j+yOvWW6vtLQAP3gq5fERTbTrbvVgz0tB9HWPfmEzOCBh11YZtz6mwl8+uq5ZxNecOjRyKZKx0+wbzWDn9kpYda8XioPvASlzDPlERBm4rmjkQmGpxnxZkrDcUWS5f7OIf7O/Jr1BE5FtkbDA/peDuHRx5E1/02IHlq1z6/5ej3fhTAwf7AwhHgOcLuDGe7yoqk/tiwBERBPBKOaPNz7iA0BRqawb88ebyhH/512n0BoZOTjeNRhGVyyMr1U1W8b8E6EB/Fv3KcQun9bx792n8FhlI5b7yk23I6LsMIv467+kwuGyvy9/OXDrYyp2bWXMp6mlSxrCoBTP9zCSDLg8ttbrkAZ0l/c6Fbht7KNTDqHTYB+FoN8RQqnT+sWqSx5EhzSYuLB5APO7ixHtTMwD3W0SqmfZ+yJTd1vysgvXtCPsmdjLQAZjbqi+Ikh+8y81DLr1nxN1jrDltgAQGXIbPqcKQTYeh53tpSLr45lEhcDlkbDmAa9lzDeK+LPmOnD+VAxizMRNY2N+LGIc8dc86EVJBc/Gp+zgM4mIKEPXFVXgSxWzk6bZfy3aazrNvhVGfKL8ioQF9r40GvEBoPVIDAffDlv+Xl84E8N7r41EfACIRoB9LwfR3V54B8GIiADjafY1ehFfo8X88dPsa6ZLxNccCw3gF92nERXG10McH/EBQADYGjiDg8MGcz0SUdZYRXxnGrNBl1SOxHxPUeI+tZjPafaJqGAIoOJITVLElySBujn2X6vq5yYvqzlQD8egM9MREhFlhRbzS6sSU6gW8z97Vz/iL1zpwvV3eHDDnR6M/372qUMyPnhF/zJ0jPiUCzwjn2iKCA4aHyicjib655HumflGGPGJ8kuL+L1dya8lZ46O1Pnl6/XPzNci/vh+E4+NxPzV9/HMfCIqTEZn5ptFfI3RmfnTLeJrtJivd2a+XsTXaDEfAM/MJ8qRXER8jRbzeWY+ERWsyxG/9HRFwmJJErjxAYGyavu7WnmviuEBGZc6Rl/XHGEn6vbNRsfqs4gVR7M1aiKitJmdmX94b/L7soUrXVh43chsJ3XNDtxwpwfv70w8znf60+RQz4hPucKQTzRF7N4ezvcQpj2zmF8jObHeae969gdig4z4RHlkFvE1RjHfKOJrGPOJqNBpMd9TLKP1cBRFpRKW3+yBv9z6YERRqYy1D3lx8O0w+ntUzF7gwKKVrmkX8TV6Md8s4msY84lyZ6g//Yh/4oCEI3slON3AdXeqmNGkv55VzF/7kBeKMrVeF4lokrCI+I2LU5s5xOUB1n9JxdvPMeYTUWEzivnjjY34GqOYPxYjPuUSQz4RURZdV1SBvngUr/Z1JCzfHxuwHfL3x5KvU7W2uJoRn2gCGEV8t08gGgJUdfTgxPiYbxTxvX6B4MDodoz5RFToJEnCwuuSD2DYUVQiY82D3hyMqjAYRXw/FGxyVWJrpBtBjP5DMDbmt4aHdCP+DUox/JKC38f6rixjzCfKjaMfRtKK+If3SPhs98iB2dAQ8M7zMtZ8QUX9HP31zWL+2WMxNC/mtNM0OWy586dYsGhBytsFugN4cvOTurct3vRNuP32jo9kakPTj3SXe5UyW9uvqf1zxEXuQnR4oA9Htv2r6TrrHvLAU6QfhooUe68l91XOQVSN4/P3VLSdTvzAmm7E15jF/Dnvz8GK+x3wlWbny0uhIRXvvhhKWi5H7X2ufnzxV/Hg3IeSlrsUe1OxXFO9FNsfeVX3NrPn/NNPPY3Kqkpb95GJbDwOoqnMKubrRXyNWcxnxKdcY8gnIsqirmgIewe7k5bPku3Pz9ggu3Egnnhw+KPhS7i2qByzXL6Mx0hE+owivqdY4LbHVPQHgL0vyLoxv7bJgfdfT34z33yNiuvuEtj3OxnnjzPmExFNZmYR/3/z1mOm7Eat7ML/E2pPivn/3Pk5zkeDuhH/G+4Z0A75MOYT5VY8lrzM6wfMWtjYiK9R4xL2/NY85ru8I39C4ybviEfTi2VE+VDjm4H64pkpb+cYdsIZ1I8hRUoVPM6J+Xet2JnZCRFeR27H6VCMf04av+yGz5FZHPLJDny2X0XbZ6lH/HgM6DwLFJWOfElJj1HMjwwDh3bEsXaDF8VlmQcup6zCGUz/Upp+Vwn8rpK0t3crbsPfB7Pn/AxfLWqKC+fkHLPHQTTVGcV8s4iv0Yv5jPg0ERjyiYiypCsawk+7TqI/nvht7SbZjS+4Kgy2Sna3swzH40G0qMEry4JqHP/SdRJ/XD2HMZ8oB6wivr8C8FcANz2s6sZ8LeiP1XyNipX3CkgSsHqDin3bGfOJiCYrOxEfAK5SPPhzT31SzD8TGU7apxbxlcuXaHnUVQWAMX+qicfjhreFB/oMb5tuJupnMX+FExfPxhKCftsxCft/J2HVgwLyuGOwehFfYxbzQ8PAW1tl9HcnnoXq80toXMiz8YloYp38JIqTnyYeq7IT8Yf6gbeflTFwSYIkCSxdL7DwRv31jWJ+aFhgz0tB3P5lHxxOXlaEiPLP5RmJ7y0fRDBwSUXjQgca5tt7f1bX7MCaB704cSACh1vC4pUuFJUy4lNuMeQTEWWBWcT/C089fJL9SOeSZDzhqcOWUAdjPtEEUOMC+3aYR3zNzHn6MX+8sREfABTFPOave8iLsmrGfCKyJziY/plIU81E/Sx29LZbRnyNUcwfa3zEB0YuaWAU858NnMUspw9VZnN/U0Hq7e01vK3l+Z9N4EgIAMqqFay6x4P9r4YSYv65ozIANSHmm0V8jV7M1yJ+n07EX/OgF043QxYRTazWluTLA1x7p3XE37VVxlDvyGuWEBIOvSVBCBWLVpnH/Nf/v9HtACA4KHDxbBwz5zBFEFFhcLklLFub3merqjoFVfdP3cvJUeHhv55ERBnKZsTXuBnziSbM+ZMx9HRaR3yNVcwfH/E1ZjG/5YMIVt/HDwFEZM/u7eF8D2HaOR0eTFq20VWZFPE1ZjFfL+JrJEnCl1xV+Cw+jItjrskbh8DZyBBDfh6JoSGIgYGUt5ODybMxUGrKXS4osoziuBueaOZnPDXOcMN9pwtvv96PsRMmjI35Lfv0I/51q3241B3H6ROjr8NjY35FnX7ELyqWcfu9JSj2KkAWLrctx1VUefRDmjyc3nM1W+ThIVR5PIa35XNs2SaGhqxXIioARaUyBnsTZ4g5eVBCw0IBt87H0PERf6xP3h55rTSK+eeOSrrbFZXyS0xERETpYMgnmiLWbnDDW8xpXDTBQXVCDnJnEvHDly+m45b0/7sx5hNNDKFz/EG68n/0GcV8o4g/dr+6t/FSqUREBW2htwSdA10Jy7ZGulAruzBH0Q9WejHfLOIDgCoE/i3cmRDxAcApybjKXZyFR0Lpir/yMuKHDqa8XUkwaL0SmfrBDStR7fUClzDyJ0tWLw/g7z4+iIg6+mWbc0dl9HeLpBAPAF9fuBB3+RugFgv8dOjs1ZLyAAAgAElEQVQw3mnvuHKbFvN9JcBgT+K21R4P/nrF9aju9QLGEzSkbNM6gxt27oTxBR1yrwzAP6xbq39jnseWbfH29nwPgciWpWvc2B0IIjg4+sGzt1PCW7+WccujakLMN4v4GqOYf/KghA9fSz7GtfB6F8qqOAMdERFROhjyiaYIb7EMn58hfyINxKNpR/w3o734/9m78zjJqjrP+99zb6y5Z0ZmVmUVBQXFvimrCii4Lw2iNu49CkrTtMtM22rPzDOjZdE9Tz/92NrjdLZdjbiM3ToKogJ2266AAqKigkIhSkFRRW2ZGVWZlZkVe5z5IyuqMiJurBkZERn5eb9evDTOvefGL25FnIy433vP/VoyqoysrvQP6Ur/oIzHAd2yYf7Edr1/zalcmQUs0XEn+/TUo6m8qfVjc0Z3f9nRi9+WVW+JWxKvP0W69A1Z/fzfHSXmpdMusjr3itIhfjYj/eQuR88+kb+C65NOvyjQqJcDAFgGr+of00Qqod/GDx1ti8vq7+K79YHQ+rJh/k3h4/VgelYjjl8XuN2e3/mkhRD/c4kJPZjJv1rVJ6N3RDZqwMffCqCRzo5E9OHznlsU5pcM8Y/fIElyjNGfnHWWJBWF+XMH8/uNhEL6yEUXLpyIAAAt0t3n6LKrwrrvrvJhfqkQP9RlFD+cH9oXhvmlQvzTLvDr9Av5DgMAK1naZvWr+YPKyOr8riEFnOpzqMlUQttiMzouENamUO8yVtm5SP0AoE4/mZuqK8T/dvKgvpycUlJWGUl3pA7oa6morNdlwToW5p/h5B/8idmM7p2dWPLrAFY7xzW65Mqw+ofzvxblwvzZgyU6Slq3SXrte7K65kNZPefF9YX4z391SIOjXJ0AAO3MZxy9Y3ijTg/15bXnwvztmXjJvoOOT68ODOpCX09dIf47h0/UaeE+z34AliYX5pc7GLk4xM/JhfkvWjdWsh8hPoB20t2/EOaHe/K/i+TC/IP7vUP83kFHV1wT1tmXFIfxv77X0eMPmrIh/hkXcfEJAKxksWxa/zjxpG47uEtfP/is/n7/7zSbqe5eUY/HZvTJfb/Vv87s0T9Nbtd3Z/aWzEBQGlfko20l5w5VXmkZ2GxWyXnve7YFuntlajjbqJFatT9Qms9jSvzDNqu4teoqEeZ9O3lQt6eiRe3fSS3MsXiNP+J5gDclq/mC+6su1MA9xoBGCASNLr0qrPvvimlmqrYr840pMV3+EZVC/JH1fB0DgJUgF+Z/cWpHzVfml0OID7RWqSvzJe8QP6fUlfkSIT6A9pQL872uzP/uF4pPLu8ddHTpVSGFuhydfO5CkP/oA8m8dRauzC9GiA8AK18sm9Ytk09pV/Lw0bb96bhuntiuG0Y3qdf1l+z7eGxGX5zaocyi+4l+/9B+SdLL+9aWPMkdxThyjLa17bZbWl0CUNYLeob1y/kDmkgnjrZN2JT+Nr5bHwqt15CTP8SWCvFzSoX5czajT8b3aGc2kbd+v+vXFX1rGvFSAGhpYX4phPgA0FkaHeYT4ne+oWBQn7rs0laXsWJkrNV0Iv93Tyab1WQsVqJHY6zp6tIfn3mmPrNtm5LZrIykazZt0nkjwxWf+w0nnaREJqOf7l+YLS0SCuk955wtSctet5ehYFBuiy5AAND+SoX5hRaH+DmlwvxChPgAsPJ5hfg5lcJ8rxA/hzC/dhw9BoA6hR1XN4yerJsnnqwY5pcK8Y2U9+esMMwvF+LfOHqy+suc9QagdpXC/Je8LaueKsP8bJYQH8DyuOy1QYV7CGkkKTaX1X13Jiqv2ECVwvybwsdryKnuO9rXU1FC/A7nOg5XZddgMhbTTQ/9omXPn5vq00r62lNP6WtPPVVTP0mKxuMtfQ2fuuxS3nNouUwmU3JZYnamiZW0t1bti0phvleIn1MpzCfEB7BUsbniWWlXs1bsj3Ihfk6pML9ciJ9DmF8bjiADwBL0uf6KYf5P07OeIf6VA+vU7fh064GdnmH+q/2DZUP8iI8fRsByKBfmP/QdR1e8pbov0DseNYT4AJZFuMdRVy9Bfivlwvx/mtiuZ5LzR9vjsnowPafXBKo76+vuVPEB/LdFTiDEb0Puq18j94wzau4XjU7pox/d7LnszDder2Bv/1JL6wiJ2Rltu+0WZbKtPXBb74HEdjoAeeiyy7T2lFNb9vzl3vM33bRFkchwkytaPu7jj0sf29LqMtrS9PR0yWWPf+2zTawEpZQK88uF+DmlwnxCfACN0OwTtZGvVIjfb1wFZDRp00fbCsP8UiH+Jiek7dl4XhthfvU4igwAS1QuzL8ptlNzHve2v3JgnV7UO3r0sVeYf3/qUFFfQnygOQJBo5PP9esXP8z/8XDoQPXbOORxJ42R9a6G1xXfexAAsPI8lZjX7lTxFQojTvU/s4eNX7tt/kHwB+ejOi3cJ7/hZI12Yrq7ZXp7a+6XjcU0FY97LjvkCygUqP5WDJ0s7iu9n1CbbLirrvdqw56/zHs+21Xf56hdme7uVpcALEl3v6PLXhvWQ9+P6+BEVsPrXV340mDZED/n5HMD8vmMHv1JQtZKZ1wU0MnPCTShagDAcikX4n84tF4BGX08vtszzL+8b1S3H9hVFOJf4uvVtYFR/Th9SP+cnMxbRphfHY4MAEAD5ML80YKAvZoQ/4LuIb1p6HgV/qkixAdaZ98zaf3ynuIzgE86t/S0UIU2nmXlOPnr73smo4fvTeRNvwoAWHl+F5/VF6aeUrpgPL/Y7dEFbk/V27kuOKpwwc/y38Vn9b+nnlbKMqUkAABYXt19jl70+rCuur5bl15Z/kr8QhvP9Os113brD67rJsQHgBWuUoi/1gloyPHrw6H1GjH5J6/vT8d164GdJUN8xxhd7u/XfwiMFD3v9w/t1/cO7eNYaRlckQ8ADVLqyvzFCkP8nAu6hyQVX5mfQ4gPNM++Z9L66XfiKsxPTjwnq7Murf5L5cCodMnrsnrgm46y2WOn6jzz24WzVp97eZCzTQFgBSoX4r87uEZODWP7RjekD4TW6e/iexRbdBJnLsx/5/CJXJkPAACWlTFGbp0pgeO2x2/aaNRjSrw2ef5W1+YlEonIdZktEMCCrLX6/OTTZUP8nFyYX3hlfqHFIX7O5f6F24p5XZnf7fh0aW9x0A+CfLRYJBLR+Ph4q8vIE41GtXmz9/3ctmzZokgk0uSKjilXG9pDuTC/VIifUyrMJ8QHmqdciH/Rq61qzd3Xn0KYDwCdpFKI79Yxpp9EmL8iTBzer8G5gZr7RQ9HlQonPZfNZ6aUTqWWVFePv/Tvi8XmUhOe7WF3QK5T+SrKWPqgMnZptZaTyMws7Kes5E9wVedym00e0mxytqg94AY1HK58D/tEJqFobMpzWbn3/P7D+5SeW773UU4jXse6nvWNLgvAMmrn46XtWNv4+LhGR6v7DgGg8z2TnNeO5HxeW4+cohA/p1KY7xXi51zu71dW0pcKwvwfHtpPkF8CQT5aynXdFfWlIRKJrKh60Rq5MP+zk9u1NxWXI+nKgfW6rIo/RBd0D8lI+trBXUpbq4gvoOtHNhHiA03Q6BA/hzAfADrDcoT4OYT57e993/sThbfVeT/7l3g374r+V2mJF+m97ZSvVbXenTve49n+0vUf05qusyv2v3/f32kitq2m2mr2EklZyRf319z11UMnal2w8m0t/nVqu/alDhe1n9c9qvP71lTs/8tD+/Wree+TItpB39ODGhiofMLJl7f9iz7zyD8WtZ+/5kLd/KrPV+z/m8lf68bvvKv0CiXe89fd+/aK226ERryOh975m0aXBQAA0JbCTvEMHfPK6plswjPIl0qH+eVCfEnKWKsnMrGi9u56p4ZZBdgzALAM+ly//uOa07QzOa9+16+hGoL487uHtCnYo6l0UicEu+TjoC2w7OoN8a2V9jwpxeeNNpxhFSjxUSfMB4CVbUdivq4QP2utbk9FdXdqRsPGr2uDozrJ9Q6Dy4X5/zy1Q9cNn8jfCnQ+R0p31X7FdrBH6gpV8bspllE6Wbx9tyerrt7K/d1sVullnJlgqbL+LFMloy2UO6HkjGverWBvfxOraV+J2Rk9/rXPtroMAGgrl702qHAPx8NzYnNZ3Xen9218G2WtP6wrekd1z+yxE1atpFsS+yVJz/P1evZbCPOP05eTk9qdTegFvj5d6R8sG+J/JrFfD2Xm8tr9xuj1g8c15sV0IIJ8AFgmrjE6sYqrQrz0+wLq9zGlJNAM8zNZ/ey7tYf42Yz04F1Gu55Y+HHx2ANWL35rVr2D3uuXC/N7Bh2d8hw+8wDQrv5tek9dIf7nEhN6MLMwffUem9Qn47v1gdB6baoxzP9t/JCeiM/q9HBfg14RAADLp9wJJcHefoX6S/xoAgCseuEep6oTLNFYr+4fU8Za/Xju2JT31YX5Pr0vNFZx++VC/OuGT6o7R1kNCPIBAMCqtn9XWtlMftvQmK0Y4v/kLkfPPnFshdis0d1fdvTit5UP8895kdUj9+RveO9TaYJ8AGhjGdmitm7jqtThpcIQPycuq7+rEOaHjCO/MYoVPKVXDQBQKBqtfL+G+fl5z/ZUKqWJicq3Dpg+eLDmupqpU14HAABAsxhjdOXAOkmqOcyvpFKIf3Kovu2uFgT5AABgVRscKb5a5MBeoyd+bnT6xcWhiVeInxObKx/mH5yQHv9pcb/BNUyBCgDt7BV9a/X5qae0ePKWu9MzMpLeGhjOm/K+VIifUy7M35NN6m/ju3XI5p9htjHQrTNCXI0PoLLNmzdXXOfAKZPSqcXtv//97/W+f35fxf6xoXnpBfVU1xyd8joAAACaaTnCfEL8pSPIBwAAq9rgGldnvSCgx36SzGt/5G5HUjYvzC8X4ueUCvMPTkj3fMVRMpbfNzLm6IyLuBofANrZaeE+vTVygv5P9Jm8MP+H6RlJx8L8SiF+jleYXyrEPz7QpetGTip5n0EAAABIN45sUr/bmt/WWWs1m0l5Lut1/S35HjeTSWrr5PamPy+Ala1SmO/K6EJfddPgW2t1CyH+khHkAwCAVe+U5wQkKz32YOkwv1SI7/qkrl5HswePRTuFYX65EP8FrwnL5yecAYB295yuhbOzSoX5bw4M6/MeIb5PRm8f3qifzkX12/iho+2Lw/ywcUqG+O8e2aSww8wtrTb+8n/SaWecVnO/6FRUH938Uc9lZ77xegV7+5daWlVeu/HTnu1hd6Cq/peu/YAy1jugaITE7Iy23XZL2XVeeHVIoW7vG1p0u/6qnuc1kU1K22xRe7DKz9h5vWt0ZvdwVesup/h8Vj++I17U7qSqex39Tw+p99ni957JVnc/2uB0WBt+uKmqdVuhltfx+cu/pMhwZJkrAtAM/W5AQ77WnSQ/7A+27LkBoJHKhfn/kpjQc91u+ao4QenRzGH9nBB/yQjyAQAAJJ3y3IUf/F5hvs1mdWCf8Qzxn//qkPqHXd1/V0wzU8Vh/vkvy+rn3yHEB4BOUC7MfyxzWPsLgk6fjN45fKJOC/fptFCvvji1wzPMDxiHEL/NjXat0bqe9TX38x32yx/zDhW63WGF/B734lkGPf7RJfUP+5a3Tp9bej/l9DpBdfmqC2hLqTbwLyXk+BRyWn8oze9k5Y8Vn5BQLTftyk3XP7Y4WUdOhX+vlcDJOlrTtVajPUv7fAAAAHQaY4xODvXovrlJLb7x6LyyysjKp8rHM+cKfuNKUp/r1xp/yGNtlNL6Xx8AAABtolSY/+t7iw8a50L8kfULX6cuvSrsGebf/83ig6SE+ADQPDPpZOWVarAh0K2rBtbrzundeQc0CkN8V0ZvGNygEX9IB47UcOXAOqUOZrU9ceyqhLis4gUHONb5w3rD4AbFshnFssUHP+pVbl9kMo17HgAAAADAyvV4bEZfnNqR95tXkl7mG1DQVHdy7fm+Ht2VOqiJRb+Vo+mkbp7YrhtGN6l3iSfZrhYE+QAAAIuUCvMXKwzxJSkQNJ5hfiFCfABorq1Ty3Nv0MIDGoUysrpteldxP1upp7QnFdOnJn5XZ2X1mZ6e1tjYWFOfEwAAlBebq3/2jU7DvgCA5siF+JmCX72X+Hr1xkD1tyQKGkcfCq3Tx+O7NWnTR9v3p+OE+TUgyAcAAChQLsz3CvFzKoX5hPgA0DmMMWVDeVPinoGV+pXrCwDVunFkk/rd5Z3+PmutMrLyL7oqK2utZjMpz/V7Xb+cI+Nb2mZlZOQ2YbybySS1dXJ5TuoCltt9dyZaXQIAYBUpF+JfGxg9+l2uWkOOXx8OrSfMXwKCfACrUqOnWF3JmGIV8OYV5pcL8XNKhfmE+ADQeUqF8pWC+HJhPiE+gEbodwMa8i1fkL8zMa//c+AZRdNJnRPu15uGjlfQWbil1LA/WLKftVbfPbRP9xyaUMA4unpwvc7vHlq2OgEAAFCdRof4OYT5S0OQD2BVWq4pVjsNU6xitTvluQEFQkZP/DIpf8Do3MuCiqwtvud9oVyY/+sfJzS1J6M1x7s659IgIT4AdKDCUL7aIN4rzCfEB7AS7EzM65bJ7YrbhZNWfxOb0dzUU3rX8ElHw3wv1lrdOb1b989NSZJiNqOvHNiplLV6Xk/107QCAACgseoN8TPW6r70Ie3OJvU8X682uSHP9Qjz60eQDwAAUMYJp/t1wum1f5EMBI0ufJn3l1cAQGepN4AnuAew0hSG+DlPJ+b1uTJhfmGIv9jtB3dJEmE+gLaXsVa/mD+g2UxKF/ZE1F9D6HQgndAv5g9qyBfQeV2DdV/ZCgCNNptJ6cvRZ2oO8dPW6pbEfj2UmZMk3Z2e0fXBNXqer9dz/XJh/u0HdunakZMa9Io6C0E+AAB12jsTU9/BwzX3i84klPB1ey7LVrhnbs5sLF3x/rr16gq68rlOxfXm42llsstTQyhQ+ap3STqcCigRW54pQ0O+lMJ+7/t7LhZL+RVPL88ZowE3re5A5VuBJNKuphMhJXze/257ZhJK+Gt/r0pS0OdotLfyCQnxVEaTc973byz3nq+mNp9jNNYfrlhDOpPV3kPxiuvVa8Ng17JtGwAAoN2VCvFzSoX55UL8HMJ8AO0ulc3qC1NP6/eJWUnSj+YmdcPIJq0PVP6duCMxp1smn1LyyPj5aGxGb4+cIJ+pfOwFAJbbvlRciYLvd33G1dsDI1WH+JJkJd2S2C9JZcP8twZG9L8Se/PadyTnl/AKOhtBPgAAdXrH536mwMj++jqfcI1n85mJrKqJCr92/7OajaUrr1iHN7xgnY4brlzFv/9yn3ZHlyc0fdlzR3VSX+X1frDzOfr11InLUsNLTtyml27aVnG9B3aeoh8+feay1HDe2A5dc9ZDFdd7bOI43b7tIukE7+Wv+9yv667heScO6as3vKDier/aNa23fubB0iuUeM9XU9v6gbDu/88vqbje3kNxvfD/v7vievXa8dd/sGzbBrB8bhzepP5lvE/0SjKTTpa8xdTAwECTqwGwklQK8XMKw/xqQvwcwnwA7aowxJekWDajmye3VwzzC0N8SXosNqMvRZ8hzAfQFo4LdKnH8Wkue+xY8yGb0acT+/S+4Fr5C8YprxA/p1KYvyub0OcSxcfTzwhVcSB4lSLIBwAAAAB0rH5fQEME+RW5bnWz4QBYfUqF+Ge7XbraP6RPxfdoTseW5cL864ZP0ndm9haF+I6k64NrtCeb1LdSB/OWEeYD+S57bVDhHoJeSYrNZXXfnd6zwC0nrxD/aE0VwnyvED+HMB9Auwg7rq4bPkmfmXwy7/veY5nDGi8I88uF+Dmlwvxd2YQ+Edud971Rkk4Mdut1g8c18BV1FoJ8AAAAAC2VnDvUkue12ayS88UH5CQp0N0r4zT/gFqr9gUAAF7KhfjvPXJQ94Ph9UUHZZ9OzOvjex/XbDZ/FrFciH+xr/forcII84HSwj2OunoJeVulXIifUyrMLxfi5xDmA2gXG4Jd+uORk8uG+UbGM8T3G6PTQ336TWzmaFthmF8uxC+8LRPyEeQDWJWYYvUYplgFALTatttuaXUJAACgwK7E4YohviRtcIKeYX65EF+SjDG62j8kyTvMdyRdRJgPoEVKhfhdcjTmBLQ9e+xWg4VhfqkQ/1QnpGeyCSVkj7YR5gNoF+XD/L0Ky/UM8a8bPkmbgj26a3qP7pubPLosF+ZPZlP6fmqaEL9OBPkAViWmWK0OU6wCAAAAwOp064GdFUP8nFJhfk5hiJ9TLsz/xvSzOi3cpz7X34BXAwDVKxfi/3loncacgP4+vle/zcaOLsuF+a/uH9O3pvcUhfjPcbt0Y3BMT2fj+lR8D2E+gLZUOsyPFa2bC/FPDi18v7tqYJ0kFYX530wdKOpLiF89/ioAAAAAAAAAyDOVLr4X9Ut9/UUhfk4uzO8pONxYKsTPMcbohb4+hQv6pa3VTCZVX/EAUKdKIf5GN6SgcfT+0JhOd8J568SyGX394LMlQ3y/MTrVDes/hdYpKJO3Ti7MT5eZih8AmiEX5ofKnFhUGOJLC9/prhpYp8t6RspunxC/NlyRDwBAnb74rot12hln1twvOhXV5s0f9VzW/cIbqtrGNZced/Seko3WFazuS9Srzl+rTHZ5aggFXGXnZyqu99LjH9ErTnt8eWrwVXfQ8JLjf6/z1+1YlhoCbrrySpLOGn1WawP7dd8dcc/lW7bcpMhwfdOSBn3Vnfd53oYB/fgvXuy5rNx7vprafI4puzxnrC9UsgYAAADU5gU9Ed03N5XX9o+JfXq/GdMZbpdnn1yY/6n4Hk3bjAIyujY4WjLEl6RoNqWPx3crVnAl/4ZAl9b7wyV6AcDy+OqBnWVD/JxcmF94ZX6hxSF+Ti7M97oy/5sHn9U1Q8c38BUBQO1KXZkveYf4ObkwX8q/Mj+HEL92BPkAANRprD+sDYPeB7DKCabmFEzPey5zTHWBZW+49X/Cu0PLW4N3JJ2vy59UV7i6sHu5hP0phf2tvVIo6MtoIJhSMO198GBdf1CjdbxXaxHyuyU/D+Xe842szec6dX0mAQAAUOwPBtbrUCatX8emj7YlZfX38b16f6h8mP9X4RO0PRPXmBPQkFP6d0MuxJ+y+d/p1/pDum74xKp/HwFAI0ynk3ljniS5UlGIn1MpzPcK8XNyYf7H47u1+BKJn80f0JUD6xUi5OoYyblDLXtum80qOT/ruSzQ3SvjNH/S7lbuD9TGK8wvF+LnlArzCfHr0/oUAAAAAAAAAEBbcY3RWyMnSFHVHOaHjKOzfOVPsCwX4t8wskk9rn/pLwIAahB0XAWNo8Siq08zkh7KzOkEJyjjEciXCvPLhfiSlLVWP03PqnCew27HJx8nMXWUbbfd0uoSgLptCHbpvWtO1Xdn9ipjrV7av1YbApUvosmF+aP+oB45PK3jAl16ed8aBQjxa0aQDwAAAGDZRSIRjY+Pt7qMPNFoVJs3b/ZctmXLFkUi9d2SohHK1QYAQLMsJcwvhxAfQDsKO67eMLhBXznwTF7A/u+phfHvD/2RsmH+N5JRPZGN6Sy3S1f7I2VD/C8lJ3VvOv/KZEfSNUMb5CtzX2oAaLY1/pD+w/CJNfczxuj5PcN6fs/wMlS1ehDkAwAAdLhoNNq2z9/q2rxEIhG5LmcIN5rruhodHW11GVWLRCIrql4AAJZLo8N8QnwA7ey87kFlZXXrgZ01h/lvCY5U3H65EP/tkY06K9y/lPIBrDIz6WSrS2gr5fZHJpNpYiWNQ5APAADQ4dr5qt52rG18fJwAFwAAYJFyYf4/xPfqf4RPUL9T+TBj1lr9Q2IfIT6AtnZB95Ak1RzmV1IpxD+na6DekgGsUluntre6hBVjenpaY2NjrS6jZszRAgAAAAAAAKCsXJgf8QXy2uOy+t2i+0KXM2Mz2plN5LU5kq4dPpEQH0BbuaB7SG8aOl6Fcf2/p6Z1eyoqawvvbl8eIT4AoB4E+QAAAAAAAADKstbqW9O7FS2YstQnaaMTqmobvcbVGpMf2GclffXATiWyK3O6UwCdq1yYf2fqQE3bujU5RYgPAKgZU+sDAAAAAAAAKMlaqzund+v+uam8dkfSu4JrNOJUdzW9zxjdGFqrT8R2a07Zo+1PJ+b1uamn9K7hkxR03EaWDgBLUmqa/W+lDuoyX58iVYx/u7MJfT89k9dGiN9ZIpGIxsfHW11GkWg0WvKWhlu2bFEkEmlyRQvK1QUgH0E+AABYsWJz2corrRLtsC+8phas9r6BhX3rud8gAAAAGq9ciH99cI0u9vXWtL0NTlAfDK8nzAewYkR8AfmMo5Q9NmZZSSlVN71+wuO3csA4Giy4VQlWLtd1NTo62uoyahKJRFZczcBqRJAPAABWrPvuTFReCU1R6v6A1tqKobxX32r6AQAAYHk1OsTPIcwHsFLsSMzplsmn8kJ8SbrY7dFap7og/kQnqHPcLv0mc/hoW9xm9ZnJ7bphZJPWB7oaWjMAoHMQ5AMAAKwSN45sUr/b+DP+s0ful7otfqho2RpfSG8aOl5p6z1jQCKb1VcOPqPDHvdEvbxnRM/vGW54vZI0k0lq6+T2Zdk2AABAJ1hKiJ+xVvtsUhHjV8g4nusQ5gNod7kQP1nwe/Y5bpfeFVxT9XaMMboxuFZ/H9+r32ZjR9tj2YxuJswHsAQ3Dm9SP7N7HDWTTmrrlPfxvoGBlXkrE4J8AADaSHKuOAhtBpvNKjk/67ks0N0r43gffFtOrdoXnazfDWiowV/uM9bqqwd2eob4krQ/HdftB3fphpFN6nLzv3ruS8X0z9EdniG+JN0zO6Eux9UVfdUfIMHyS+/dq3Rf39HH7siITChUsV92dlbZ6emiduP3y127trrn3rNXyqSL2p2hITnd3ZVriMWUnToWRthoVIPxuKwxmg4Gq6ohMzEhmyieDcTp65PT31+xv00mldm/33OZu359VeOtfy6pYLx4JotMyFW6t4rPeNYqGI17Ljz1p2sAACAASURBVEoOBmV9lWtw51PyHS7+t8j6HaUGqtuXwam45DEjR6ovoGywcnDjxNMKRxMajOe/lqwxmqny31OxeclrDAqEJH8V+zKTluKHvZd193m3F4rHpEyquN0XkIKVP1vKZqXYnPeycI9UxXuqK5WS3bNH6YL3tgmH5Q4vzwlVANrfDw7tryvEj2ZT+l/xvdptk+qVqxtCa3SG6x1QlQvz/yW6Q+8aPolZmgC0RLkQ/0+DY/LVODYFjaP3h8YI8wE0VL+v8cf6OpXrrswTRAnyAQBoI9tuu6XVJQBVy4X4Dx8+WHa9PanY0QMTuTB/Xyqmmye2ay5bHAQu9m8zeyWJML+NTL3tj7TP7z/6ePi2WxW65AUV+81/5aua+diWonb/mWdqzfe+U9VzT77+Dco8+2xR++AnP6HuN7+pYv/Evfcq+u4/zmv7iKSY6+q/Pf/iqmqIvue9Sv7kwaL23j//gPo/+OcV+6d+93tNvPJVnsvWbXtUpoqTAU7/+pM67qf7itr3XTamJ244q2J/N5bW8z94v+eyh/7yeZo/ofI0ycd9Z6c2fvPpovbp0wf0yP9zYcX+knThf3/Q82SAR//TuYpeUPlejSM/n9Dpn9mmKwraDwSD+qsLz6+qBt+P/k1mOlrUnnnuJcqedm7F/ia6X7677/JclnrzjVXV4D50r5zdO4prOOUcZc+/tPIGYnPyf+vL3jVc+baqTih4xa5nlfqDq1T4rgq98hUa/txnK9cAoCPdPTtR1PbuKkL8j8d3a8oujO+zyujv43v1/tBY2TD/Q+H1+pvYbsUWhflPxGe1NxXXukB4ia8EAGrT6BA/hzAfAFArgnwAAADUrFSI75PR2wLDuit1UAftsYBucZh/KJvyDPE3OSGd63bpG6kDee2E+QCATsRMTMcwE1N76nF8OphJ5rU9ljmsi9weOR4hVmGIn5OUrRjm/z4TzwvxpYWr/8NMrQ+gyXYk5usK8bPW6oH0rJ7IxnS226WL3R7PGUUI8wEAtSDIBwAAQE3KhfjvD47pLF+XTne79PH47qIw/58mn9RsJu0Z4v9ZaJ3CxpHfOLo1mT+NK2E+AKDTMBMT2t0fDm3Q5yefUkbHboPyQHrhJJBrA6N5YX6pED+nXJh/d2pGX0pOFvV5Zf+YBpkqFkATpbJZfSm6o64Q/0vJSd2bXjgx7SfpWe3yJ/SH/kjNYf6Xos/og2tPl8ttRQAAIsgHOkZszkoFZ683QzZrlThcfG9TSQp2GTlOa750LuwPAJ3ustcGFe5p/lVj7Sg2l9V9dxbft7vRqgnxJWnU8evDofVFYf7eVPF9uReH+JL0Cv+AJBHmAwAAtNCpoV69Y/hEfXHq6bJhfqkQ328cpRaFYV5hfqkQ/+V9a/VivvMBaLLZbEozmVRemyvpLYGRqkP8nH9PTUtS2TD/rcFhfSy2S4uPYk6lE0rYjLoM0Q0AgCAf6Bj33VkcjABApwv3OOrqJchvpvvnJiuG+DmlwvzFCkP8nHJh/oZAlzaFKt/DG+hUGe+Pk9Ipq8OzlU/s9B0uvU58PltyG4tP4Byd814nk1FVNUiSLXHeZSJW3etIxjhxE1hNOHn9mGpOXJ9JJyuuU401/pDeMHicvn7wWc8w/yr/kD7hEeKP+IJ609Dx+sGh/fpt/Fi4tTjM35dNeYb4l/WM6ILuIR1o0Gsoty8ymUxDngNAZxhwAzo+0KWdycNH2zKS/md8jz4UWq9BJz9OKRXi55QL8yezKX0qvleFI/opwV6FDbcVAQAsIMgHAABA1bbH54raXukfKArxc8qF+aVC/JxX+Ae0LXNYj2YO57U/lZgnyMeqtn9XRid4tO95OqPvfTnmsSRfKJ3Wy0sse/DbCe3pqfwzsXtnRmd4tB/cn62qBkm6Imnl92h/5EdJPfpY5W1ctD+pc6t6JgCdgJPXa7N1antDt2eLoqaFMP/n6TmlPJZNphP69OSTsh5nbSVl9an4XqU9+knS/fNTun9+ynNZo01PT2tsbKwpz4UFyTnvwHO52WxWyflZz2WB7l4Zp/kniLdqX6A0xxi9Y/hEbZ14UlPpYzPe7bcp/W18d16YXynEz/EK8yePzGRyoOA38pg/pLdFTvC8gh8AsDoR5AMA0GSRSETj4+OtLiNPNBrV5s2bPZdt2bJFkUikyRUdU642NN9poT49Hi+cMvCgNjpBnefr8eyTC/P/dtGBikohviTdlTxQFOJLC9O8onWGv/wvWnvaaUcfuyMjVfXrfsubFX7VK4vajd8ryvU28o2ve16O7gwNVdU/ePnlWvvgA0cfR6NRffSjH5Wt4UBZ5NP/IJsovo2F09dXVX//qafk1bCY6a3uvX3XxhP0nQ3HFbUn3equ3Em4rv7ygvM8lx0KVHcv4nvXjelno8X/9ukaDoJ//LznyHgEPHNVviceGY7oyf7i/Z6t4d8z/aLXSFmPqzEDoar628gapa58W9XP5yVz4eXKnHdJ8YJq7wsd7ildQ9h7XC703Q3H6aW3fKbo770Jh6urAUDHM8Z4hvJeIX5u/XL9SoX4hFedb9ttt7S6BKCsPtevG0dPLhvm9xvXM8R3JD2vZ1gPzk3ljXKLw/wpmy4Z4t8wcrK6XSIbAMAx/FUAAKDJXNfV6Ohoq8uoWiQSWVH1Ynk9vyeivamYfjofPdqWkbQ1sU83am3ZMH9zeIPuSx9SWI4u8fWVvMegtBDi35E6UNT++sHjdEKwe8mvA/XzjY3Jt2FDzf2c3l45VQbVJZ973dKumHPCYTmLajfBoA6Gqgtsc9wljocmEKhr/y027/drvoYTIApZY2p+3YXiPp/ivqX9nJwOBpfUP+m6VZ+8UFJ4ieOJ65O6qzuJo6RQWNISAnPHWXINh/1+mXXr5OPvPYAySoXyXus1oh8AtEqlMH+TGzp6i5EcR9LbIxt1TteAjg906dYDO4vC/JjN6jeZw4T4AICq8ZcBAAAAVXOM0esHF64ErjXM7zauXukfrPgc5UL8F/QM11c4AAAtwExMtWEmpvZXKZQvFcbX2w8AWqVcmL8/ncpbd3GIL0kXdC/MGFYY5ntNw0+IDwAoh78OAAAAqMlSwvxKCPEBAJ2EmZjQiUqF8pXC+Hr7AUCrlArzFysM8XNKhfmLEeIDxWJzVlK2Jc+dzVolDnt/YoNdRo7T/O8sC/sDqxl/IYAVhKs5asPVHACwfJYjzCfEBwAAWBkKQ/lqw/jcerm+hPgA2l25ML9UiJ9TLswnxAe83XdnvNUlAG2FvxLACsLVHACAdlIpzP8v5jid6FZ3H+4fpw4R4gOLcAJnbTiBE+gMjH21mZiY0E033eS57MbhTer3BZpcUXuaSSe1dWq757KBAe/wDQAW8wrzK4X4OV5hPiE+AKBa/KUAAABA3XJhftxm9Mjh6aPtGS3c/6/aIP+H6emittf0jxHiY9XiBE4AqxFjX+P0+wIaIsivyHXdVpfQkTgppzackLgy9Ll+vWf0FP3g0D4dyqT0wt4RbQxWNwvdBd1D6nP9+snclAbdgF7Wv0Zhh2gGAFAZfy0AAACwJBPpuLbH54rah031XzWHjV+7lMxre/jwtC7ujqiLqxQAAACAFYOTctCpelyfrj4yK12tTgn16pRQb4MrAgB0OqfVBQAAAGDl2peK6eaJ7ZrLpvPaNzkhvdxf/VSlbw4Ma7Ag+N+Tiunmye06nEmX6AUAAAAAAAAAnYkgHwAAAHUpF+L/WWidgqb6r5rDjl8fDq0nzAcAAAAAAAAAMbU+AAAA6lApxA/XEOLnjB4J8z8e362D9th2c2H+DSObmGYfAAAAAABgBYtEIhofH291GUWi0ag2b97suWzLli2KRCJNrmhBubrQ+TgSCgAAgJosR4ifQ5gPAAAAAAtic1ZStunPm81aJQ5bz2XBLiPHMU2uKLcvSptJJ5tUycpQbn9kMpkmVgIUc11Xo6OjrS6jJpFIZMXVjM7AUVAAAABU7UA6UXeI/8PUtO5MHlDIOHp7YETn+Lo916sU5r939BT5He4QBQAAAKCz3XdnvNUlrBhbp7a3uoQVY3p6WmNjY60uAwBQBY6AAgAAoGrfn9lfV4h/V/KAvpyc0pyymrJpjSf26lfpuZLr58L8QZN/3umeVEw/m48u7UUAAAAAAAAAQJsjyAcAAEDVUh7TOvYYR36VnlrxruQB3ZE6kNeWkbQ1sa9smB8yRmGPr6tpW35KRQAAAAAAAABY6QjyAQAAULWX9K5RoODK+0cyh7U1sc8zYPcK8XPKhfmHbFqfiO3RHpt/X79BN6CLe4bqfwEAAAAAAAAAsAIQ5AMAAKBqY4Gw3j1yUlGY/3BmvijMLxfi53iF+bkQf3dBiD/kBnTj6MkKOz4BAAAAAAAAQCcjyAcAAEBNTgz2VAzzS4X4rxs4Ts/rjuS1LQ7zy4X4fzJ6sgZ9gYa/HgAAAAAAAABoN1zOBAAAsErMpJOVV6pSvxvQG4c26NYDO5VadBX+w5l5fSy2U/tsqqjPK/rW6vRwn04L9SphM3r48PTRZbkwf8j4NGnTBc/l15uHjpeVdKBBr6HcvshkMg15DgAAAACoJBKJaHx8vNVl5IlGo9q8ebPnsi1btigSiXguW24TExO66aabPJfdOLxJ/Zz4fdRMOqmtU9s9lw0MDDS5GgBAvQjyAaxKM5nGhVm1yFqr2UxxuCVJva5fjjFNrqh1+wJA85X6Eb8UdlGIn+MV4kvS92b363uz+0v2y0hFIb4kzWRSy1J7KdPT0xobG2va8wEAAABYvVzX1ejoaKvLqFokEmnLevt9AQ0R5FfFdd1WlwAAqBJBPoBVaetk8wIhAMsnNmclZZv+vNmsVeJwcRAtScEuI8dp/kk5C/ui+YwxnqG813r19PPqCwC14ATOYziBEwAAAACAlYMgHwAArFj33RlvdQlQ5VC+VBBfTZhPiA9gqTiBEwAAAAAArEROqwsAAADAylcurK+nXzV9AQAAAAAAAKBTEeQDAACgIbymz6+2X719AQAAAAAAAKATMbU+AAAAGmYpATzhPQAAQGPMZJIted6stZrNpDyX9bp+OS34vteqfQEAAAAsFUE+AADAKnHj8Cb1+wKtLqMtzKST2jrlfd/sgYGBJlcDAADQWFsnvb/nAAAAAFg5CPIBdKxIJKLx8fFWl5EnGo1q8+bNnsu2bNmiSCTS5IrKa7d6ACxNvy+gIYL8ilzXbXUJAAAAAAAAAFY5gnwAHct1XY2Ojra6jKpFIpEVVS/QLJyUU5tytQFAp+JvxdK1Wz0AAAAAAKx2BPkAAKCtcVIOAKAS/lYAAAAAAFabmUyyZc+dtVazmZTnsl7XL8eYJlfU2v2xXAjyAQAAAAAAAAAAAGAF2Tq5vdUlYJk5rS4AAAAAAAAAAAAAAAAcwxX5bcYYs0nSxZKOkxSQdFDSbyU9YK2Nt7I2AAAAAAAAtIdIJKLx8fFWl5EnGo1q8+bNnsu2bNmiSCTS5IrKa7d6AAAAgMUI8tuEMeZ1kj4i6fwSq8wZY74gaYu1dqpphQEAAAAAAKDtuK6r0dHRVpdRtUgksqLqBQAAAFqNqfVbzBgTNMb8i6RvqHSIL0k9kt4naZsx5kVNKQ4AAAAAAAAAAAAA0HQE+S1kjHEkfVXS2wsWZSQ9LelhSTMFy0YkfdsY84LlrxAAAAAAAAAAAAAA0GxMrd9aH5Z0dUHbVkl/aa3dIx0N+6+W9D8lHX9knS5JtxpjzrbWFgb9AAAAAAAAAAAAAFa4SCSi8fHxVpdRJBqNavPmzZ7LtmzZokgk0uSKymu3eqpFkN8ixpiIpP9W0PxfrbX/3+IGa21W0jeMMT+TdJ+kjUcWHSfpzyV5f0oAAAAAAAAAAAAArFiu62p0dLTVZdQkEomsuJrbFVPrt85fSOpd9PhHkv6m1MrW2t2Sri9o/sCREwIAAAAAAAAAAAAAAB2CK/Jb4Mh0+dcVNH/MWmvL9bPW/sAY82NJLzzS1CvpTZL+sfFVAgCATjOTSbbkebPWajaT8lzW6/rlGNPkilq3LwAAAAAAAACgGgT5rXGJpJFFj5+SdE+VfT+rY0G+JL1OBPkAAKAKWye3t7oEAAAAAAAAAEAVmFq/Nf6g4PH3Kl2Nv3jdgsdXGGO6G1ATAAAAAAAAAAAAAKANEOS3xnMLHj9QbUdr7R5JOxY1BSSd2YCaAAAAAAAAAAAAAABtgKn1W+OMgsfbauy/TdLGgu39fCkFAQAAAAAAAACwEs1kki177qy1ms2kPJf1un45xjS5otbuDwBA4xDkN5kxJizp+ILmXTVupnD90+qvqHNkMhlFo9Elb6fcNhqx/ZxIJCLXdRu2vVqxv2rD/kK74r1ZG/YX0Bn4LFevUftKYn/VajXsLzQP783arLT91erPMfsL7Yr3Zm1W+/7aOrm9YdsCWmm1f5Zrxf6qDftr5SHIb75hSYtPwUtJmqhxG7sLHo8uqaIOEY1G9b73vW9Zn2Pz5s0N29b4+LhGR1v3T8f+qg37C+2K92Zt2F9AZ+CzXL1m7CuJ/VWrTtlfaB7em7VZafur1Z9j9hfaFe/N2rC/gM7AZ7k27K/asL9WHoL85uspeHzYWmtr3MZ8hW3WxBgzKmmkxm6blvKcANBqjH3oVJFIROPj40veTjQabejB/GbYsmWLIpHIkrfTiG20K8Y+AKsRYx+A1YixD8BqxNgHoNMQ5DdfYeger2MbsQrbrNV7JK2sI/UAsHSMfehIruuu2jNVI5HIqn3tNWDsA7AaMfYBWI0Y+wCsRox9ADqK0+oCVqFQweNkHdtIFDwO11kLAAAAAAAAAAAAAKDNEOQ3X+EV+IE6thGssE0AAAAAAAAAAAAAwArF1PrNN1fwuPAK/WoUXoFfuM1afVrSbTX22STpjiU+LwC0EmMfgNWIsQ/AasTYB2A1YuxDx4lEIhofH2/ItqLRqDZvXjkzsG/ZskWRSKQh22rUdtoUYx+AjmKsta2uYVUxxmyQtHNRU0pS0NbwD2GM+YikmxY1fdZae32DSqy2hrMkPZp7/Oijj+qss85qZglFMpmMotHokreTzWZ18OBBz2WDg4NynMZMZBGJROS6bkO2VQ/2V23YX7V77LHHdPbZZy9uOtta+1ir6mkExr6la/V7k/1VvUbtK2l17K8cxr7m4LNcPT7LtWF/1Yexb/nx3qzNSttfrf4cs7/qw9i3/Hhv1ob9VRv2V30Y+5Yf783asL9qw/6qXavHPa7Ib74pSVaSOfLYL2lU0v4atrG+4PFEA+pa8VzX1ejoaEO2tXbt2oZsp52xv2rD/kK74r1ZG/ZX9Rq5r6TO319oLj7L1eOzXBv2F9oV783asL9qw/5Cu+K9WRv2V23YX2hXvDdrw/6qDftr5WnMadaomrU2pvwr8iXp+Bo3U7j+b+uvCAAAAAAAAAAAAADQTgjyW6MweD+zxv5nVNgeAAAAAAAAAAAAAGCFIshvjYcLHl9SbUdjzJikjYuaUpK2NaAmAAAAAAAAAAAAAEAbIMhvjW8VPH6ZMcZU2fcVBY/vttbONaAmAAAAAAAAAAAAAEAbIMhvjQckTS16fJKkK6rs++6Cx3c0oiAAAAAAAAAAAAAAQHsgyG8Ba21W0hcKmjdXuirfGPNSSS9c1DQr6dbGVgcAAAAAAAAAAAAAaCWC/Nb5G0mLp8S/XNJ/LrWyMWa9pFsKmj9lrZ3yWh8AAAAAAAAAAAAAsDIR5LfIkQD+/y1o/mtjzKeNMetyDcYYxxjzOi1Mx79x0bp7JH1i2QsFAAAAAAAAAAAAADQVQX5r/Y2kbxW0/amkncaY7caYX0qKSvqGpOMXrROT9CZr7XRzygQAAAAAAAAAAAAANAtBfgtZa7OS3ijpKwWLXEknSTpP0kDBsqik11hr71/+CgEAAAAAAAAAAAAAzUaQ32LW2ri19q2SrpH0cJlV5yV9WtKZ1tp7mlEbAAAAAAAAAAAAAKD5fK0uAAustbdLut0Yc7Kk50laLykgaVrS45Lut9bGW1giAAAAAAAAAAAAAKAJCPLbjLX2SUlPtroOAAAAAAAAAAAAAEBrMLU+AAAAAAAAAAAAAABthCAfAAAAAAAAAAAAAIA2QpAPAAAAAAAAAAAAAEAbIcgHAAAAAAAAAAAAAKCNEOQDAAAAAAAAAAAAANBGCPIBAAAAAAAAAAAAAGgjBPkAAAAAAAAAAAAAALQRgnwAAAAAAAAAAAAAANoIQT4AAAAAAAAAAAAAAG2EIB8AAAAAAAAAAAAAgDZCkA8AAAAAAAAAAAAAQBshyAcAAAAAAAAAAAAAoI0Q5AMAAAAAAAAAAAAA0EYI8gEAAAAAAAAAAAAAaCME+QAAAAAAAAAAAAAAtBGCfAAAAAAAAAAAAAAA2ghBPgAAAAAAAAAAAAAAbYQgHwAAAAAAAAAAAACANkKQDwAAAAAAAAAAAABAGyHIBwAAAAAAAAAAAACgjRDkAwAAAAAAAAAAAADQRnytLgArVmDxgyeffLJVdQBoUx7jQsBrvRWGsQ9AWYx9AFYjxj4AqxFjH4DViLEPwGrT6nHPWGub+XzoEMaY10q6o9V1AFhRrrbW3tnqIpaCsQ9AHRj7AKxGjH0AViPGPgCrEWMfgNWmqeMeU+sDAAAAAAAAAAAAANBGCPIBAAAAAAAAAAAAAGgjTK2Puhhj+iVdvqhpl6Rki8pBe9ik/CmIrpa0vUW1oD0EJG1Y9Phea+1Mq4ppBMY+eGDsQyHGPqwGjH0oxNiH1YCxD4UY+7AaMPahEGMfVgPGPizW0nGPIB9AQxhjzpL06KKms621j7WqHgBoBsY+AKsRYx+A1YixD8BqxNgHYDVi7EM7YWp9AAAAAAAAAAAAAADaCEE+AAAAAAAAAAAAAABthCAfAAAAAAAAAAAAAIA2QpAPAAAAAAAAAAAAAEAbIcgHAAAAAAAAAAAAAKCNEOQDAAAAAAAAAAAAANBGCPIBAAAAAAAAAAAAAGgjBPkAAAAAAAAAAAAAALQRgnwAAAAAAAAAAAAAANoIQT4AAAAAAAAAAAAAAG2EIB8AAAAAAAAAAAAAgDbia3UBADrGpKQtBY8BoNMx9gFYjRj7AKxGjH0AViPGPgCrEWMf2oax1ra6BgAAAAAAAAAAAAAAcART6wMAAAAAAAAAAAAA0EYI8gEAAAAAAAAAAAAAaCME+QAAAAAAAAAAAAAAtBGCfAAAAAAAAAAAAAAA2ghBPgAAAAAAAAAAAAAAbYQgHwAAAAAAAAAAAACANkKQDwAAAAAAAAAAAABAGyHIBwAAAAAAAAAAAACgjRDkAwAAAAAAAAAAAADQRgjyAQAAAAAAAAAAAABoIwT5AAAAAAAAAAAAAAC0EYJ8AAAAAAAAAAAAAADaCEE+AAAAAAAAAAAAAABtxNfqAgBgtTPGfEHSOxc1nWit3dGaagBg9TDG3CPp8txja61pXTUAVgPGHSw3Y0xY0nmSNkkakdQlaV7StKS9kh6y1k61rkIAaDzGPqA8Y8yApHMknSppUJJf0kFJ+yT91Fq7t4XlAQDKIMgHAAAAgCpxoBhY3Ywx10r6/KKme621V9S5rSsk3b2o6Rlr7cY6thOS9EeS3irphVo4OF9u/ackfVPS/7bW/rpg2TmSflGwjZdba79fa12LtvkF5Z+4fL+kF1lrs/Vus5mMMRslPb2MT1H3ewi1McZ0SbpA0sWSnnfkf08oWO3F1tp7mlxa22Psqx1jX0WMfcvIGONIukLSVZJeJunsCutvk/QPkr5grT287AWiZYwxr5L07YLme6y1L25FPQAqY2p9rDjGmB3GGNug/163aLv3NHC7pf7bUfBaNhaus4T90rBttROPf5drl7CtLxRs62ONqxSoH+Nayf3SqePaFeX2Yau2BbQLY8y1Be/re5awrYZ8RowxIWPM9caYH0ia0cKB2C9K+oSkv5T0SUmf08IBkUljzHZjzCeMMed6bOscY0yyoK6X1fsaj2yz8DvOfWbh4N2K4vH38IolbKth3yGBdnbkvb1D0mckvUQVgqwjTpL055IeOfJZuSC3wFr7G0l/VbD+Z4wxPXXW9yrlB1lxSe9aKUEWVj5jTNAYc7Mx5mFJhyT9SNLfSnqjikN8rBCMfUBpxphXSnpW0g8k/ZkqhPhHnKmFIP9hY8xFy1geWu9aj7bLjTH8TQTa1Io7uAMAAID2VhigtboeYCk4UAygHRljeo0x39DCFbJrPFZJStot6VeSfi1pUpLXuHC5pJ8bY65a1PbXkh5Z9HijpL+pp0ZJNxc0f8Ra+7tat9Xh+K60vMKS/ljScyS5La4FS8TY11EY+5bPKZLGSiw7IGmbpJ9L2lmi773GmBctU21oIWNMv6SrvRYp/zclgDbC1PoAAAAAUODIQdgvSnpdiVWSWjg4PKGFYGBMUkTFJ0vnDhRfba2960jbX0t6gxZCBenYgeL31lEjB4qBVebIQdjvaGFq8MXikm6RdIekH1lrkwX9uiS9XAvT7L5FUndukRbGL0mStTZljLlO0s907LjRnxpjbrXW3ltDqR+XtGHR459K+rsa+reLfVrYb43w37Xwd2Gx8QZtG7VLaOFvOMdHVwDGvqZj7OsMVtL3JX1FC9OnP7V4oTHmeEn/UQtX7udOdgpLussYc4a1dk8zi8Wye4ukUIll75B0UxNrAVAlvqiiE3xI+WfM1mJxvw9KGqyy3/cKHv+RpP1V9ItVuX2sItbaa+U9rRFWL8Y1AGghDhRjuXAvWDTI51Q8Pt0h6f3W2l2lOh255+0dku4wxvx3SZslXS+PY0PW2l8ZY/5a0keONBlJnzXGnFvNvXONMS+WdMOipoSk66y1mUp92421Nq6FEGRJjDFvUnGQ9Qlr7e1L3TaqkpH0uBauQv3Zkf/9taTfiyn2VwrGviZi7FvxkpL+SdInrbU7Sq1krd0p6UPGmG9L+ldJwSOL+rRw8jFXaXeWaxf9fyvpAUmXcPnDVgAAIABJREFUHnm8yRjzQmvtj5teFYCyCPLRCX5hrb1nqRux1v6i2nWNMYVN95f7UgQANWJcA4DW4kAxgLZkjHmfFmb0WGyrpPfWcksNa+0+LZxA9M+SSoUpfyXp9Tp2b91Nkv6HpA9UqLFLCyc9Lf6C+TFr7ePV1tdpjDFnSPpsQfOPJf2XFpSz2sxrIUT8hbV2vnChx+8gtCHGvpWJsa9lHpB0qrX2mWo7WGt/YIz5C0mfWtT8ZmPMe621cw2vEE1njDlV0vMXNd2vhVnh7lrU9k4tfEYBtJHCaR8BAAAAYNUqc6D4DeVC/EL2/7Z333GSVWX+xz9fRoYsSAYJQ5DoChJFgR1QVNQVyQgrDD9dRTGBAV2UqOhiXAwYWGVgUEAMqCiIkgQcsiKgIhlR0hCGHGae3x/nFnXrdIVb1dXd1VPf9+vVr5l764bT1d2n7jnPOc+JuDci3ksKHtzb4rDPADeUtmsdxZ3K6I5isyEkaSVSJo6yX0fEe7sJZJVFxOXAFqT1cvPXngUOJM1krvmgpFd3uOxngbVL21czstxDQ9KSpIDhkqXd9wJ7RcTzE1Oq4RERz0XEJc2C+DY5uO6bnFz3TZyIuLabIH7JicCjpe1FgOl9KZQNghnZ9izgXODB0r49i7ammQ0Qz8g3MzMzMzOjfUdxr9eMiMslbQG8tMlrzxYp9mdTX5Pyg5J+VHQwt+KOYrPh9AEa1zWdS2Nmjp5ExD3APS1eu1rSF6jPnlwI+J6kTYu0yw0kbUNaa7fmWZwt5HvAhqXt50mBrFaDvFqStBawMbAGsHRxrYeAO4HZYzFrsgjGvQZYFViZtMzMxRFxbZtzFgU2In3fK5CWmnkMmAP8Gbih1wCsDSXXfZOT675JVvcVy3/NBt5Q2r3GRJXH+kfSQsA7SrueBc6MiOclnQEcXOx/MSkjyWnjXMSeSJoGbA6sSFpa9BHSgKHLIqLKcqHd3OtFwDak5XhWIQ2q/3NE/LrNOVOA9Uj1wqrAUqS65CHS0j5XR8QzfSrf+qQBaquQ+hb+BVw1FoP9i+9rK9JEhBWAqcADwG3A5fkShDZ6DuSbmfWo+IDcmvRBPA+4H7jSs+HMbLKRtAz1TorlgcdJddp1EXHzRJatrGgsbAGsS2qoLUJqLNxOaqj1pQFkQ80dxdaUpE1I9c+KpGUM7iV1UtwxkeWy4VHMjsoHFZ0UEf8Yh9sfBexCPSCzPnAM8PHyQZIWIQVuytkfj42IcuaRoSLpEGDPbPdhVdefLYJCbyZlitmRFExqZZ6k3wGf62aZLkkXUVq/OiJU7N8I+BTpZ5/PzvtfoCGYJWk1YJ+ivNtQX2e5mYclfZ+0TvY/q5bVho/rvsnJdV9Lk6HuezjbXnpCSmH99lpgtdL2ryKi9rOeRT2QD2nmfttAvqQ1gDuoZ4j7e0Ss122hJL2BlBWg5scRsUeHcxYB3k9awm6DFoeFpCuBYyLiVxXL8nngsNKubSJitqTlgcOBfUltwbIrgIZAvqSlSXXXLqQ6Zpk2t31a0tnAcRFxfZVyNin3W0iZ/jZp8fqfgMMj4pxiezb1ZQSfiYhFm53X4lrrkJYG3IXW39fjks4CjoyIu6pe29pzan0zsyYkTZMUpa+TS6+9XtJVwF+BmcDngOOBk4GbJN0k6T+6uNfJ2b2mNTnm69kx7+zx+7owu84WvVzHzBYMkrYvOj0eAH4JfAc4DjgBOB34m6S/SzpE0tQO1zqqVrdQ6hApXos2XxdVKOc0Sf9HGlwwm9TQ/DKp/j0J+B3wkKRTi9kaZl0bgI7i8kDAWkdxA3cUjw1J07N66ajSa2+X9Ffgj6T65jjgS6TOrdslzZa0bRf3uqh8rxbH/DIrz2t7+J4k6bbSNZ6X1K4T3AbfvwPLZvtOGo8bFwPlDgTKswgPlbRVduhRNHaoXgd8fmxLN7iKuuH4bPdZEfHlLi5zKXAWqfO409/wFOD1wIVF+7HnyTuS9iP9/N7OyEBWs+NfAdxFyg4znfaBLEiz5g4ltZ937rWcNhRc900yrvvamgx1X55FbM6ElML6bUa2Pav2n4iYDdxaem3HYoBKS0WA9sLSrpcVA867dUC2PbPdwUX9cjPwRVoH8SENMNgaOEfSWZIW66FsFP3mNwAfZmQQv5V7SG32dsHumkWBvYFrJX20y7ItJOm7wC9oEcQvbAL8shio0JOibXkMqc/iANp/X0uSft9ulvSONsdZFxzINzPrgqTjgfNIM7Ja2RD4uaRP9/HW+YPM/t1eQNKaNAbXboqIq0dVKjOblCRNlXQKcDFphkO7zo51SUHzGyS1ayiNCUmfAv4G/D9GduKVLQ78J/DXXgc72dBzR7G9oKgnZwE/IA2saGVr4CJJM/p4+1E/9wHbAeWBTef1ksrWBsp22fbN45kJLCKuID0P1EwhZQ+ZCiBpM6DcAfkcKVvIUK6DXAycOZPGZ6za80w3ms2S+iepU3k2KVXzo02OOZg0QLNrkt4EnEJKkwrps+lW4CpSGutmGWCmUp+VV/Nscd51wJWkFLL578PSpM7lHXopqw0F132TiOs+YBLXfZKWADbLdg9Mhj7rjaRauvyaR0kTOcrKM/AXolr7Y1RtlqJcbyvtup9sdnt2/O7Abxm53MMzpMl2V5Lqm/zvbXfgN50mpzSxNikGsFJp3z9Iy9rdTEqR30xef80nDfi5njSD/ybgqeyYKcAXJH2c6r5LykqQe4CUOeQm4MnS/sMkHdrF9YEXlhQ4jTQTf+Hs5QdJ39fVpDq6bBHgFEnv6/aeNpID+WZmFRUj1z5W2vUYcCPpw+qBJqccI2m3ftw7Iq6icabeds1m7newP40NjLajHM1swVTM6D2HxvXRav5FvVHyXPbay4BLJb1ybEuYSJqilA3lWOqdKTVzqDcW8nTlU4GTlNI5mnXDHcVWNhPYr7T9MKneuZa09mLZFFK9s2Wf7v1zGtOa7lZ0rHajq9ktNinkddREDMj9NI0d+hsDR0haGPg+jYGbz0XEn8azcIOi6PA8g7RGac0TwG4R8VgPl7yLlAnktcDSEfHSiPi3iNgmIl5BmuG5CXAijYGmAyXtOvJyHdUyvzwKfARYKSLWjYitImIaabbmD1qcezFwCPByYInivM0iYusi5e5SpE77K0vnLATMUlqP2iznum+ScN23QNR9ewHlZ865wGUTVBbrn72A8oz0s5osSzgr287bEs38mLQsY83eRX9TVXtm5fpBq7atpE1JweTy9S8EdibVDxsWf28bAMsB7yMFmWu2Bf6ni7JBapsvSxoYcAKwTkSsHhFbRsT6pGUp/7vFuTcCR5OW21gqItaMiE0i4lURsTGpTtiWlHmk7DNFpo+2JO3LyAFSFwBbR8SKEbF5cZ/lSRNeakH244DVO10/81lSlpKaZ0nvzYYRsULxfW0ZES8lDYD/v+z8r8oZgUfNgXwzs2q2p75OzhWktF3LRsTLI2JL0ui8HUgjAMtOGE1ar0y5A1Y0D8K1Uz5+PiMf0sxsOBwHvC7b9zNgk4hYtdQoWZm0/mN5pPBywI9adDacAuxUfOVre+3U5usjLcp5BI2Nx+dIaxJuHBHLlxoLq5GyBnwbKKepPl7Sq1tc26wZdxRbzTtIa51CWrNxG2C5ot7ZnNQhsiuNsw6mAF/vx82LjrUzSruWJK2zWEmROrK8tuQjpMEBNrnlWXGuG+8CRMTTjMwechhpibFyp+P1pLU6h9XnSe3HsndFxE09XOu9wNoR8dGIuCAi5uYHRHJ9RLyP1KFd7pz/RA/3XAm4F3hVRHw5Isod4UTEfRFxZXbOXcDLI2J6RHw1Im5s1hkfEU9HxNmkerWc9WZVum/f2nBw3Td5uO6bxHVfsczYEdnu0yIiH+Bvk08elB/RHxwRf6dxoMl6nVLlR8QTpGB+zUuAykvNNilX04HHxcD2M2gM4n8iInaMiHPzQQkRMTciTiRl07299NKHJG3URflWIgWtd4uID0XEbdl9noiIC5qc97oiXnBURMyOiCfzAyJiXkRcFhF7Au8uvbQwrfvIgBf+Vr+a7f6/4r4NdVREPBURp5EybdxMeg9XbXf97F470Dip8V5gq4j4SETkMRAi4uaIeBfpZ1vrn1sY+EbVe1pz/QoumU2kzXsMlN4fEXmgYcJJyoMrVa3U+RAbhVpq0pNJDZGGlFoREaS0qtuT1lCtfSi+FHgzcHYfyjCLFICrDcLanzRTtaMimPWy0q7zIyJPeWODw/VaMiz12qKjeI/arYM1QjFbNJ+pfkxEHJkfGxEPkVJ7XUAa2fvi4qV1SB1UH86Ovw24rbjPw9lrv+2ynK8GPlXa9SCwc7RYDiQibgUOknQhaZbEQqTn3BPp8j2yoTYQHcWSDgR+T/3z/jDSc4g7isfP2sW/x0ZE3qFJ8Rz4M0k3kX5PamuobiVpkz4NsJgJHFTaPgA4teK5u1KvswHOKIIQNrnla1HePxGFiIjLJZ1A/TngRaQ1jGueJ2ULGcqO/yLta94Be0JEnN7L9SLi910ef76kL1B/jtpK0kY9BNJmNOugbXPf++nidzIi5ks6mDQYfp1i94GkZzezMtd9k4DrvsrHD3Ld90VgWmn7CdzemPQkrUOa+V1zNymDRDOzgPLSbgcAf+hwi5k0BuT3Z+Qs82blWisr1/UR8ccWh+8LrFfa/t+I6Di7PiLulLQnaXkMFV+H0jwdfSvHRcQvujieiLioy+O/K+n11Adi7y3poIjI0+/XvB1YobT9Z+CgIjbR6h73Fe/FtaQB6FUdST277zzgP6q0dSPilGIW/geKXVtJ2jYiLu3i3lbiQL4tCL7Y43ln07gOy6A4f6ILYC1dDbw7D+KXRcQDko6l8SF8Z/oQyI+IeyT9lpQNAGBdSa+OiMsrnJ6vU+T0qoPN9dpwWYnxe48OoXGJjV82C+KXRcQ1kt4NlDth3iXpyIhoti5hPxxBPYg5H9ilVRC/LCLOkLQ59RHDr5D0um4HEtjQckexlZ3dLIhfFhE3S/oa9axNkJ77Rh3Ij4jZkm6m3mm1g6TVIuIfFU73c98CRtLSjOy/yZd4GE+HA28hZcTJHR8R145zeQaCpPVJ2VPKLqdxWZTxMIvGAZGvJq2TWtWlEXFef4s0UkQ8K+lH1GfOvlLSYm06rm3IuO6bHFz3dWcQ6z5JbydlQSj7pCcALRBmZNs/aBPwPZ2UMr1W7+4t6cMdBgRfBNwJrFlsv1HSChHRbAnasm6Wfy1PIplLymJXSdGfdS6pjQawq6T/ahf0zu71har3GqVZ1AP5iwCbA62C3nlb79PNMoHkIuJ6ST+gYhaQYlnNfy/tOqVKv1zJccDB1Pv2dqf192QdOLW+mVl1R1TsND8z296sj2XIH2zyD+8RivWJ9i7tmktKo21mQ0TSMqQH55qgQ8quFw6MOAOYXdq1BI2Bxb6RtCHwhtKuMyoOWKr5H1Kgs2b3Vgea1QxoR/EtLV4b2o7icdZqvcPcGdn2WD33LURa37AtSavQuHzKzRHRaSaNDb6lmux7YtxLUShShL6TxiVtoL4e6NCRtATwExp/VvcDe03AwKvbs+1Xdnn+D/tVkArKZX0RaX1psxrXfQPOdV/PBqbuk7QVI9e0/hV9WjLKJo6kZsuytlxmtQi+/6a0axlgl3b3KALi5axhC1Otr6hcrueB05odJGlVGrMs/iwiHqtw/bLy97Qsafm6Ks5ulhZ/jFSqv4ol98pZEx4h/b1W1c0yuztn21WzwwEQEfeSsgXU5EsZWhccyDczq+ZRoNLI3CId9V2lXav3sRw/JQXia/YuAvXtvJXGWYZnepaD2VDaBpha2r40Im5udXAT38u28/UP+2W0jYU5wDWlXW4sWBXuKLayP3eRivUGGgcP9fO571Qa1+PtOICTFOwvp0s8pY/lsYnTrMNyiXEvRUlEXEKacVn21Yh4diLKMwBOAsrrrs4D9omIe/p1A0lbSTpO0q8k3SbpIUnPSYryF43rRAMs3+Wt8jWguy3n4pL2kfRtSbMl/VPSY5LmNynrt0dZVluwue4bfK776uWcdHWfpHWBXwCLlXb/FXhHxRnLNth2oD5THlL6+hs6nJMH1GdUuE9Xk84kbUt9aQmA8yLivhaH5/053cwIr7kr296w4nmjrRMWkrSTpK9IukDSXZIekTSvSZ2QZ3RrVSe8HFi0tH1Vl4OmZjOyj6GV/L2/pulR7ZXf+6rvuzXh1Pq2INih27VHBllEqPNRI0maxsjRW9Y/10bE/M6HveB+YI3i/0v3qxAR8ZSkM6mv57MMKVD/ozanHZBtO73q4HO9xlDVa3dGxLReTpQ0Hbiw4uFbZ9sXdHm732Xbr+ry/Kr61VCrfb8bSJI7IqyDgewolnQ58JrS7mHuKB5PleudiHhO0iPUO1v6+dx3t6QLqM+w31DSlhFxVZvTyh1n+QwZm7zmkoIj5UEafftdG4U8jWfHtJ79UCyj85KKh18TEQ+PcXk+BOyT7T48Iqo+o3W6/nakmZGv6PES+dIxnfT0/F3MEjuUlFWm2QC5Krotqy3YXPeVuO7rmuu+NoqZzr8BViztvht4fTFBySa/Gdl2ldnYPwMeB5YstneStEpE/KvVCRFxi6TLqLdbN5O0cUTc2OKUbpYBy4O/JxTL0I3GshWP67k/UtIewJeoxwa61apOeGm2/ZduLhoRcyXdA6xW4fD8vX80JXno2eKSFomIfNCVVeBAvplVImkjYNWKh9/Y7gN+kup2ndzyLL7FWh7Vm5nUA/mQHoCaBvIlrUhjiupbI8Lr0ZgxlPXamtn29d2cHBG3SXqMeufE6mMUIM8bC/ePsrEwBXgxKbOKWSvuKC4ZtI7iCdDLc18tkD8Wz33lVPn7A00D+ZI2ozE164URkc9AsUkoIkLSwzTOzlmx1fFD4Es0rtnZzg6k9VvHhKRXM3L91LOB4/t0/fcAJ9K4jmy3OmVwy83tfEgjSYsBvwR27PbcTLdltQWY674RXPd1x3VfC5KWJQXx1yrtfgDYKSLuHs+y2NiQtCSwW2nXfOAHnc6LiCcl/ZR66vspxf87/W3PpHEA+gHAx5uUa1Fgr9Kuh4Gft7nucp3K3IOq7fyu6wQASV8GDunl3JJWdUIe4O+ln+sRqgXyx+q977atbTiQb2bVfZyRM7tbORA4eeyKMiGenugC1ETEpZJupZ6G6I2SVoyIZh+E+9FY1zu9qlndsNVreVDuwR6uMYd6IH9K8f+eGjdtjFVjwYF8a8kdxSMMTEfxBBnNc9+oRh418RPgm9Tr3rdLOrRFCkVnYRof+YCa0XS+L5ptt0uN+Vdg29J2t2v/Wp9JWok0oHrh0u5bgAP6MdBR0g6MDGQ9D1wKXAHcSeoMfZqRKaXP7/W+Pa5r/U1GBrIeIH0+/Ik0y3Mu8BRp4FzN64GP9XA/G3+u+wxw3ZeZdHWfpKWAc2lcJ/xR4A0R8beJKJONiT1pzDB3Mym7V5X05rdl2wfQOZB/JnAC9fp9P0mfaJLddhcaA+lndJihPRbZKqouN951nVAMQsqD+E8Cl5AGY99F6ld7Bihn2ludkctZNpN/9vaSra/jjHhJU6hnZegnL/XeIwfyzWzQTVRjcdCdQn2N3BcB+wJfbXJcnl7VgXyz4ZU/hPey/nd+zlgE8ieyoWaDwR3Fw8vPfZliVsxZpAFlkAY7vZmU9vIFRVrXt5d2PQ78eFwKOXweybZH08mVp+DNr132exrrqC1GcV8bpaKD83Qaszs9BeweEf0aPPglGgNZ5wAHRcQ/OpRtvGd2bkrjQKLnSANmv9lpORhJ67R73QaK6z5z3dd4v0lX95UyCGxZ2v0k8OaIuG4iymRjJh/guwG9D3TZqNPyXhHxqKSfUV9uY1VSVrHfdChXp4HHT2bbxzOKATuFv4/y/KYkLQ58Ntv9LeC/O2Wwk7RJxdvk9Wwvn8Uv7nRARMyT9Az19niQBiCNlpft6JED+WY26CaqsTjoTgGOot642Z8skC/p34BNS7suiYg7xqNwZjaQHs+2e1n/Oz+n2brio/UkjQ2LnRl9OvF7R3m+jS93FA8vP/c1N5N6IB/Sc9/PsmN2BlYobf84InoZsGWd5b9LK43iWnnmj0511CdL2+tLWn8YZ89FxPSJLgPwOWB6tu89EdHV0kWtSFqPxgFlNwC7dQoOFaqu/dove9EYdDsyIpoNMm9mvMtqvXPdN8Fc93Xkuq8NSVNJgzy3L+1+BnhbRFw23uWxsSNpLRp/zv1wAC2W9yqZST2QXzvnhUC+pJVpDAbfHBGzO1wzzyR5T0T8tsM5E+V1NGaY/HlEvLfiuVXrhDwQXnW5UACU1q1cueLhc0rXF3BlRPR7Io9V5EC+mVUSETOAGRNw64lqLA60iLhD0iXU096+UtLLI+KG0mFOr2rWxgTWaxMlHwHcSwr78jnzGJtA/oM0BvKvbbF0iC243FE8wSawo9jPfc1dAtwBTCu23yxpuYiYUzpm/+wcP/eNnduz7RUkLR8RvSxZs3G2fUebYy8mdd6VO/rehdOSjztJuzHyfT8xIk7t421elW2fVDGQBSN/r8ZauazzSbPPqhrvslrvXPcNOdd9I0yauq/IpPAD0sDPmueBfSJitLObbfAcQP+X+6ot79Xu7/F84F/AKsX22yQtFRG1fqP9SEs01lRpr+SfPetWKu3EyOuvb3ZxbtU64aZsu9ssguswcsB7K7fTOFBgXeDaLu9nfeI0o2Y26PIP7I16uUgx4ixfB+iOXq41QPIHnhcC98VD+n6l154EzhqPQpnZwLoz266augsASWvT+MB/Vz/WQGxiMjXUbGw07Sju8Vq9dBSXvavH+1pv+vXctyKQ/87c0cu1BkFR15aXR5pKabaLpJcA/1F6/U7S2qw2BiLiHiBP7/uaHi+Xn/eHNvd9kpFBgndJ6momjo1OMVv0+9nuK4EP9/lW+UCmbgaV5es1j7VyWR/olD62RtJC1Aem24Bz3TfcXPc1NSnqvqI/9HvA7qXd84EDIyLP8GSTXPHzzgf4To8IdfsF/K50jWVpbG+MEBHzgFmlXYsDe5S2y+WaD1QZBHRhtj3ef+fdGPP6KyLuBe4u7dpY0rQu7vPWLo6dTO/9As+BfDMbdHmKna2LIHW3NqUxJfSzwDU9l2ownEXjWkH7ld6b19OYKucnpRGQZjac8vq024fw/Ph2KdDmlzeKxmRVbiwMOXcUD7W8XunXz/3u4vdqMjuFtDZhTbkjbB9ScL/m1DEaaGV1F2fb+zQ9qg1JGwGvyHZf0uG0r5HS4NYsA3y723s3KcsKkrbsfORwk7QE8BMaMwc9COzZxYzRyrfLtqc2PSo/Ka0R/f/6XJaOty39v1I5C28FVutzWWxsue4bQq77Wt+29P9Brvu+zsjA7vsiYlazg23S2x5Yq7T9T1LmuV78MNueUeGck7PtAwAkbUpj3X9hRNxNBxFxK3BLadfGknaoUI6J0Gv9tTodBklkfp7d830V77Mw8O4u7nNutv3eHmMy1gcO5JvZoLuCxgbb8qQ1Z7r19mz7qoh4uudSDYAiMP/j0q5VgJ2K/zutvpnlZpMGMdVsK6mb2e55x0jekVeWr8u8eBf3yRsL7y4aHDZc3FE8nPKfz6aS1u/hOvlzX6ef+8ArOrEuLe3aStIGxf/z575TsLH23Wx7T0ndprb8fLZ9YUTc0vTIQjEL57Bs91skfa3LQXMvkLQ56RnBKc47+w6N79N8YN+IuGsM7nVvtr1txfOOZXTLkvSiXNaXFJ+/bUlaEvjS2BXJxojrvuHkuq+5ga/7JH2OkUG+j0bEqNs3NrDydsEZETG/6ZGd/YTGPqQ3FpnPWoqIm4CrS7u2l7Qmo1sG7AvZ9teKv6VB02v99Q26WwI9/yz+kKTNKpx3OFC5bR0Rl9E4EWJt4Iiq51t/OZBvZgMtIh5n5AjAzxSpqCopRrblD67fGW3ZBkT+4LO/pKWBXUr7/gFcMH5FMrNBFBGP0LjEhoAvVjlX0h7ANqVdzermsjw9+VpNj2oiIq6hcVb+6sBnqp5vCwx3FA+hiPg7I1PCf66ba0jagsbUobBgP/etB2xd2nd58T7aGIqIi4GrSrumAGcVy9B0JOlYRs68qfSZHBH/C5yd7X5/cf+XVrlGUYaliw7+P5A65qwNSe8H9s12HzmGawtfnm0f1GkApqT3AB8do/K0k5f1+HbtdUmLk4ID/r2bZFz3DR/XfW0NdN0n6TDgE9nuoyPCg6gWUMXv2B7Z7tN7vV6xXMR5pV0vAv6zwqnlNouAA2msRx4n/S1UdTJQbt9sDJwjqfLgHUlTJb1T0qFd3LdbeZ1weLEEWrtyfZHuZuMTEX+isW9vKnCupO1a3GOKpE8CR9Yu0cXtPpUd/2lJn+imb0TSGpK+Iqmr5T2tUTcjPczMJsqXSSP3ag/EWwDfkfSeYv2dliStQGrsldPq38MoHmQGzIWktXFWL7bfRloyYNHSMaeOYvSlmS1YvkKa2VyrT3eR9KmIaBkoL1KgnZTtPiki5ra5z43Z9h7ADV2U89OkGbS1cn5c0hPAsVXTRUtaDfgQcGZEXNXpeBssEXGxpKuA2iz2WkfxThFxW6fzR9tRXKTrKw+Kez+wqqQPVk3RXgys+wTwEcBZJar7IjC9tL2rpCMj4uhOJ0paB/gRjQPWr4qIST8jv/AjUtaIxYrt/2RkCkdnYRo/M0gBrVrWmbWB6yR9CTityKLwAkmLkdbE/SQp7WnZyRHxqy7vfT6pXVSzG7CzpO+S2j+X5imPizLsSKof9wGW7uKeQ0vSNqQ2adktwBWSeskW18yl5YxxEXGLpD9QH0i5FHCJpA8BP42I50vl2wT4b2CvYtdfgA37VK4qZpF+r2t175uBX0j6WDEzr1bORYG3kAZo1QJz41LWItDcKni2aLa9uaSm/aUR8du+FmxymoHrvqHguq+jga37JB3AyEHNlwJogckkAAAMJUlEQVSX9vCz+2f5+7GBtgfpb6bm1oi4cpTXPJ3GdvUBjKwXcj8kZZ6opZY/jMbP2rMiIs/i2FJEPCtpN9IArNpM/O2BGySdAPyw2YB9SSuT+hN2IfWXL0cfsu218VvSUga1pfnWJv3NfYA0qSCKci1EWgruWNLnI3RfJ7wf2IH0PQGsAFws6dfAL0mxgkWLa+4D1DKGXEMKzG9BBRFxgaRjqA8CEKku27UYhPCbiHi0fE6Rfn8DYDvSAPvppDj0GV18f5ZxIN8WBC0bWRXcHxHX97U01ncR8eeiQ/7I0u53AltI+ixwXh5QKkZk70F6qC+n/ZkPvGMM1vGaEBExX9KppO8TUsduHpBzh+7k43rNxkREXC3pK6TAYs2xRbD+qIh4IdhejBx+J3A0janxbyWNym3nfOB/StufLtKpXQA8ADxfeu3hYhZ+uZyXSTqcxpm4RwNvLRoL5xWjw19QNBbWo95Y2JH0rHtOh7La4JqBO4qHTkScI2kmjWkhj5K0I6lD8qKIeKp8ThHA349Ut5XXb32SkeklJ62ImCvpp9RntKwOfLh0yNPAmeNesCEVETcVHeWzgEWK3S8mfV4dLel+4D7gKWBZ0s9rkSaXugQ4uMt7PyLptcBppOBAzWLAB4uvZyXdR/rcnQKsTOrkazZbcB5wfzdlGDLvZuSArHWB3/TxHmsBd2T7PkrKUlK79yqkv/HHJf2d1LZdjcZ00k+Q6sNr+1i2tiLir5K+RWMWvDcBb5J0N/AvUsf7NBqfKS8BTmVkFp6xsD+N/QnttBv411N2ngWJ676h4rqvjQGv+5qtIb4tqX3TrZlUWxvdJt6ItPp9uObZpDZV7Xf4FZJeGRHXtTohIuZIOgfYtdiVD5jrup86Im6QtDupLqi1sZcHjgGOkfQAKbX9k6TPpBWK18dNRDwt6RM0LnO2EfA74CFJt5HqtTWA8kz9e0ifh5Wz6UbEfZLeSBo8UHs/RFEHtTjtPmBPGrNrPt/i2LKjSbGV95b2bUX6WcyXdCcwp7j/MqSBDIvlF7HRcSDfFgSVZle1cDZpRJYNvmNIH357lvZtQvrQmFd8aDxEqtdWAJqlVpsPHBIRFzZ5bTKbST2QD40PSFdExN/GuTw2eq7XbCwdTqo/yyPxdwd2l/RP0gjipUhB07zjZg6wV6fR0xFxnaQLSAFNSB1nM2jeAXAxjbNva9f4vNL6a4eUdm9OanTMl3RXUR5IjYVVaOwgsUnOHcVD7WBSHVROD7h98fVs8ff/EOmZZyWar4n6DHBARPxljMs63mbSmJqy/Nx3drGMio2TiDhL0j9IHaVrZC+vSOOA4tx84FvAhyPiuR7uPVfSW0mD7o4j1T9lU0n14ur5uZlfAx+LiDybjtVNSPA2Ii6X9F+kYE/5mWxJoNlyMw8DuxXPYeNRxLJDSH8Db8n2t/odvJA0QM7tlknIdd/QcN3Xmes+GwiS1mDkAI52yyFWEhFPSPol9cwXkAYMtAzkF2ZSD+SX3UnqA+qlLL+RtDXp+8rrghUY+Xkw4hKk5WfHTEScKullpCyTZcsWX7nbaR1473SvqyVtC3yPeibDVq4B9o6I2yUtWdr/aKsTSvcJ4H2SriVlWigPnF+INCCr03Kaj1a5l7VWeY1pM7OJVKSG35s0ij5v7E0hdfZuAWxK8yD+HGCXiDhhLMs5ESLiZtLau814Nr6ZNYiIZ0hp/2Y1eXlVUl26PiOD+H8Hto2IqrMc3sEoZ0RExKGkRmIemFqINLNh8+JrHZoH8R9rcq5NIhFxFmmgx11NXl4R+DfSaPB1GRnEnw98E3hdRDzZw73nAm8F/osUrM/VOoo3Iw2OWYnm7atfA5t0mRFgqBWDhV4LnEj6OZZNJf28twJeQfMg/l3A9OL3Z0HzW9KsjWb83DcBImI28DJSXXENI39nc3NIa32+PCIO7iWQVbp3RMRJwJrAe0gdo22XHivcQsqcs0FEvMmBrMEVETNJg5jaLRHyNKkTd+OIuGg8ypUrMtTsQgpq3dvm0DtI6WBf54FHk5vrPhtLrvvMurY/jYNvbixnXBylfEDAvpI6LR33K5q3oU+tpZjvRTFZbXPSgJiLGRkjyD1PWlbiU8Ba0WZZyX6JiCNI9UK79/8R0ufRJhHx11Hc6wbgVaT34wxSBs0nSYPa7wTOIk2K3KqU0bA8oKBycL343J1GmlgxYimDJuaQJmDuB6yyAA6wH1caxd+N2YSQdAfpYb0fzo6IrkdBSsr/cNaKiDt6uM400sirF0RET8NH+3mtQSdpdVKqrT2orzvTyk3A94FvRcTjXdxjGo3v58yImNHF+RdRX+em7c9C0sk0pj/q+vdJ0kGkzu6yZ4GV8/TTNnhcr439tQaJpOmkkfg1d0bEtIm4lqR/B44gdZK0ytR0KykY+vVulyUpGne7kEZib0IaaLVkdq+LI2J6h+ssDXyANDhgvQ63fZiUuuznwI/bBXC7qattYkmaSuqcOIg0+r7dgOQ5wC+A4/vVWCxS5r+DNBN6W9IgwnZuAX4MfH80mXHy31HgwIg4udfrTUaSNgQ+Tprp1C494nzgj6RZfjO7qa+a1KVHR8RRXZx/B/XP8bb1cD/qHUmfJ601WXYvsFpEVAlk2BgqPrO2JrVTliMNMnqEVDfdBNwwmg7MCvdfglRPrkP6m1mM1KH3MCnrztURMaf1FWxQFc/GryFlIar9Xv0NuLyXAWtjpVgibEvSYKvlSAHWe4E/RsSfJrJsNnZc99lYcd1nZq0Udf+rSMttLE/KVvYY8CCpnvjLRNYTkjYmDUBfkdSH8CDpM/GK0QxoG0V5lqdxgMW5EbFzj9danTQRaEXS4ID5wFxS1oO/ALcVEzOtDxzIN7NJTdK6pFn4y5HWl5lHSrV6H3BlRDiNrZlZB5KWIQUnax1vT5Dq0T8O2vIckl5K6iBZkVTWWmPhHlJj4VY3FhZs7igeTkq5UjcuvpYjLanxDOm575/A7Ihwuj4zMzMzMzOzjKS9gdNLuz4TEfkyADaAHMg3MzMzMzMzMzMzMzMzM1sASbqUlOGkZueIOHeiymPVtUtJaWZmZmZmZmZmZmZmZmZmA6DIWNfN8R+iMYj/D+D8vhbKxowD+WZmZmZmZmZmZmZmZmZmg+8bko6UtFK7gyQtLukY4CvZSydExLyxK571k1Prm5mZmZmZmZmZmZmZmZkNOEmnA3sD84DfA5cDNwEPAwsDKwBbA7sU/y+7AniNA/mTx4smugBmZmZmZmZmZmZmZmZmZlbZFGB68VXFn4DdHcSfXJxa38zMzMzMzMzMzMzMzMxs8N3T5fHPAN8AtouIbs+1CebU+mZmZmZmZmZmZmZmZmZmk4CkNYE3Aq8GNgDWBF4MTAUeBeYANwIXAWc5gD95OZBvZmZmZmZmZmZmZmZmZmY2QJxa38zMzMzMzMzMzMzMzMzMbIA4kG9mZmZmZmZmZmZmZmZmZjZAHMg3MzMzMzMzMzMzMzMzMzMbIA7km5mZmZmZmZmZmZmZmZmZDRAH8s3MzMzMzMzMzMzMzMzMzAaIA/lmZmZmZmZmZmZmZmZmZmYDxIF8MzMzMzMzMzMzMzMzMzOzAeJAvpmZmZmZmZmZmZmZmZmZ2QBxIN/MzMzMzMzMzMzMzMzMzGyAOJBvZmZmZmZmZmZmZmZmZmY2QBzINzMzMzMzMzMzMzMzMzMzGyAO5JuZmZmZmZmZmZmZmZmZmQ0QB/LNzMzMzMzMzMzMzMzMzMwGiAP5ZmZmZmZmZmZmZmZmZmZmA8SBfDMzMzMzMzMzMzMzMzMzswHiQL6ZmZmZmZmZmZmZmZmZmdkAcSDfzMzMzMzMzMzMzMzMzMxsgDiQb2ZmZmZmZmZmZmZmZmZmNkAcyDczMzMzMzMzMzMzMzMzMxsgDuSbmZmZmZmZmZmZmZmZmZkNEAfyzczMzMzMzMzMzMzMzMzMBogD+WZmZmZmZmZmZmZmZmZmZgPEgXwzMzMzMzMzMzMzMzMzM7MB4kC+mZmZmZmZmZmZmZmZmZnZAHEg38zMzMzMzMzMzMzMzMzMbIA4kG9mZmZmZmZmZmZmZmZmZjZAHMg3MzMzMzMzMzMzMzMzMzMbIA7km5mZmZmZmZmZmZmZmZmZDRAH8s3MzMzMzMzMzMzMzMzMzAbI/weGApPGualllQAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 2400x1200 with 6 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"needs_background": "light"
|
||
},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"with sns.color_palette(\"muted\"):\n",
|
||
" fig_fse, ax_fses = plt.subplots(nrows=1, ncols=6, figsize=(8, 4), dpi=300, sharey=True)\n",
|
||
" for idx, ax_fse in enumerate(ax_fses):\n",
|
||
" dataset_name = dataset_names[idx]\n",
|
||
" if dataset_name != 'Average':\n",
|
||
" specific_df = perf_df[(perf_df['dataset'] == dataset_name) & (perf_df['error_type'] == 'fde')]\n",
|
||
" specific_df['dataset'] = pretty_dataset_name(dataset_name)\n",
|
||
" else:\n",
|
||
" specific_df = perf_df[(perf_df['error_type'] == 'fde')].copy()\n",
|
||
" specific_df['dataset'] = 'Average'\n",
|
||
"\n",
|
||
" sns.boxplot(x='dataset', y='error_value', hue='method',\n",
|
||
" data=specific_df, ax=ax_fse, showfliers=False,\n",
|
||
" palette=area_colors, hue_order=['sgan', 'Trajectron', alg_name], width=2.)\n",
|
||
" \n",
|
||
" ax_fse.get_legend().remove()\n",
|
||
" ax_fse.set_xlabel('')\n",
|
||
" ax_fse.set_ylabel('' if idx > 0 else 'Final Displacement Error (m)')\n",
|
||
"\n",
|
||
" ax_fse.scatter([-0.665, 0, 0.665],\n",
|
||
" [np.mean(specific_df[specific_df['method'] == 'sgan']['error_value']),\n",
|
||
" np.mean(specific_df[specific_df['method'] == 'Trajectron']['error_value']),\n",
|
||
" np.mean(specific_df[specific_df['method'] == alg_name]['error_value'])],\n",
|
||
" s=marker_size*marker_size, c=np.asarray(area_rgbs)/255.0, marker=mean_markers,\n",
|
||
" edgecolors='#545454', zorder=10)\n",
|
||
" \n",
|
||
" for baseline_idx, (baseline, fse_val) in enumerate(prior_work_fse_results[pretty_dataset_name(dataset_name)].items()):\n",
|
||
" ax_fse.axhline(y=fse_val, label=baseline, color=line_colors[baseline_idx], linestyle=linestyles[baseline_idx])\n",
|
||
" \n",
|
||
" if idx == 0:\n",
|
||
" handles, labels = ax_fse.get_legend_handles_labels()\n",
|
||
"\n",
|
||
"\n",
|
||
" handles = [handles[0], handles[4], handles[1], handles[5], handles[2], handles[6], handles[3]]\n",
|
||
" labels = [labels[0], 'Social GAN', labels[1], 'Trajectron', labels[2], alg_name, labels[3]]\n",
|
||
"\n",
|
||
" ax_fse.legend(handles, labels, \n",
|
||
" loc='lower center', bbox_to_anchor=(0.5, 0.9),\n",
|
||
" ncol=4, borderaxespad=0, frameon=False,\n",
|
||
" bbox_transform=fig_fse.transFigure)\n",
|
||
"\n",
|
||
"\n",
|
||
"# fig_fse.text(0.51, 0.03, 'Dataset', ha='center')\n",
|
||
"\n",
|
||
"plt.savefig('plots/fde_boxplots.pdf', dpi=300, bbox_inches='tight')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 98,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df\n",
|
||
"del errors_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Average Displacement Error"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 99,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_attention_radius_3_ade_most_likely.csv\n",
|
||
"results/hotel_attention_radius_3_ade_most_likely.csv\n",
|
||
"results/univ_attention_radius_3_ade_most_likely.csv\n",
|
||
"results/zara1_attention_radius_3_ade_most_likely.csv\n",
|
||
"results/zara2_attention_radius_3_ade_most_likely.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Load Ours\n",
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}*attention_radius_3*ade_most_likely.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = alg_name\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']\n",
|
||
"perf_df = perf_df.rename(columns={\"metric\": \"error_type\", \"value\": \"error_value\"})\n",
|
||
"#perf_df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 100,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Load Trajectron and GAN\n",
|
||
"errors_df = pd.concat([pd.read_csv(f) for f in glob.glob('old/curr_*_errors.csv')], ignore_index=True)\n",
|
||
"del errors_df['data_precondition']\n",
|
||
"errors_df = errors_df[~(errors_df['method'] == 'our_full')]\n",
|
||
"errors_df = errors_df[~(errors_df['error_type'] == 'fse')]\n",
|
||
"#errors_df.loc[errors_df['error_type'] =='fse', 'error_type'] = 'fde'\n",
|
||
"errors_df.loc[errors_df['error_type'] =='mse', 'error_type'] = 'ade'\n",
|
||
"errors_df.loc[errors_df['method'] == 'our_most_likely', 'method'] = 'Trajectron'"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 101,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/pandas/core/frame.py:7123: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n",
|
||
"of pandas will change to not sort by default.\n",
|
||
"\n",
|
||
"To accept the future behavior, pass 'sort=False'.\n",
|
||
"\n",
|
||
"To retain the current behavior and silence the warning, pass 'sort=True'.\n",
|
||
"\n",
|
||
" sort=sort,\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = perf_df.append(errors_df)\n",
|
||
"del errors_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 102,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n",
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n",
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n",
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n",
|
||
"/home/timsal/anaconda3/envs/trajectron/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" import sys\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB/IAAASvCAYAAAAaDLIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hkVZn48e/LAIIkiaKgYMKACJINrGBGVFQQEJGgq+KurjkLK+KKcdc1/QyrDggqiIKKGZCoRBFJogIDwwgISA4CM+/vj3PLvnW7qruqunq6uuf7eZ5+Zu6tG05XV91z73nPeU9kJpIkSZIkSZIkSZIkaTQsN9MFkCRJkiRJkiRJkiRJYwzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkS5IkSZIkSZIkSZI0QgzkSxo5EbEgIrL6WTDT5ZEkaVkWEefV6uU7J9n2xbVtMyLeNaxjS5I0qiJi/0b9t79lkiTNZaNYz4ximTQ3NT5np8x0eTS3LT/TBZAkSZIk9Sci1gC2ATYCHgKsDNwF3AosAP6SmQtnrICS5qyIWBnYEngcsCawCnAPcDtwDXAFcGVmLpmxQmrOioi1KfXfIyj134qU+u8W4CpK/ffXmSuhpLnIuk+SNFMM5EsaWDVafqPaqp0y85SZKY0kSUVEfAg4tLbqvMzcZkjH3g04trbqRmCDzLx/GMfX7BQRLwZ+XFt1SWY+eRrOsyKwD/AGYFsgJtn+JuBc4CTgZ5l5aeP184Cthl3Ohrb3IiKeDFzUYbslwMaDdj6IiGOB3Tq89MXMfPMgx5Q0JiICeClwIPBcJm9PuiMizgdOBX4GnGtwY+6pRjp+s7bq1MzccRrO82Bgf+D1wBY9bH89cA6l/vtpZv6l8foC2tsypkPbexEROwK/7rDdvcD6mXnbICepRgE+q8NLh2Tmhwc5pqTCuk+DiIizgO0aq3fMzFNnojySZj9T60uSJGmuOQLI2vLWEfHEIR17v8bytw3ia2mIiK2A3wFfpzQMTRjEr6wD7Ax8GrgkIh4zfSWcsuUonRT6FhFrAS8ZbnEktUTERsCJwPHAC+ltUMhqwI7AfwJn4XdUA4qIf6F0APsiPQTxK+tTgm//C/y5ymIzqlYC9hhkx4jYGPiXYRZGUmHdp0FExBMYH8SH8e0I/Rxz40Ya9/kDHOOU+jEGLctc4RQMmm0M5EuSJGlOycxrGD/iad+pHjci1qU04tQdPtXjSpOJiB2A04BNO7x8F3ApcDZwMXDdRIcafumG6jUD7rcXJbWypCGLiEcDZwLP7vDyfcDllJHPFwILKdk1Oh5qWgqoOa3KeHMi8OgOL99OqffOBi4B/jbRoYZfuqEa9D51X0b/d5NmHes+TUG3gP3uVXYZSeqbqfUljZzM3HimyyBJmvUOp73hZZ+I+OAUUxvuDaxQW/5DZl4whePNCpm59UyXYVkWEesBPwLqDT//AL4EzAcuysxs7LMOJfX+i4FXAA/tcvh/A1bvoRgr0T51AJQ09rf3sO+dk7y+hLEO5k+MiG0y89wejltXbzCrH0/SFETECpTv/ga11QkcBXwFOCszH2jssyplyo6dgd2BUc4EMjSZOZ9yTdaQVFlkvkf7vdddlFH2R2bmZR32WZ8yEvKlwMuAtboc/tXAyj0U46HAkY11z+thP4BbJnm9Xl89IyIelZlX9XjslnoHAOs/aQis+3pn3dcuIpaje8fk1SjPT99aeiXSdMpMO+poqTGQL0mSpLno+5QUrKtWyxtSAvsnTuGYzdFSjsbX0nAo8JDa8g3A8zPzD912yMybgJ8CP42ItwC7Au+gfcoJMvOcXgpQNU42nVadZ6ouAB4LtNIe7wv0HMiv0lduW1t1MmUOU0lTdyDwpNryvcBumfnTbjtk5p2UuYFPBd4XEc8C3g4sns6Cak76JKUjWctVwPMy84puO2Tm9cAPgR9GxIGUlPVv77Ddmb0UoEpd39x3KveSdWdSOh2sSBm1uy9wSK87R8QzaQ8WWv9Jw2Hdp0E9j/YOIGcAz6wt74+BfEkDsKemJEmS5pzMvIsyiqtuKvPSbQpsWVv1AONHaElDFRErUtLG1/3rREH8psxcnJk/yMxnThT8mEH3AsfUll9VjYTqVf17fRelE4+k4WjWm4dMFMjoJDNPzcyXZWYzq4fUVUSsSRlVX7d3P/VYZt6fmUdl5taZeetwSzgUfwd+UlvuN71+/ft5A/CLKZdIElj3aXDNz86HgfNryztFxCOXXnEkzRUG8iVJkjRXNUfMv7zLyOJeNB/Kf56ZE83FKg3DdrSnvl9Ee6P/XFH/rq4N7NLLTlX6yn1qq37A5Kn8JfUgItaipAluWQJ8bYaKo2XPjrRnEf1DZp41Q2WZTvX679HVKPtJRcTKlGwDLd+mdDKVNAXWfRpURKxBmdKlZRHwa9o7/7eyr0hSX0ytL2lOq0Z0PR14MiUt7e3AQuDUzJxszrpez/FIYGvK/HlrArcB1wNnVqn9pnLsFYDHU9J6rU+ZU+kuSu/9PwK/a87NNQwRsQHl4eXhlAb1W4HjMvOvwz6XJE2j0yhpWB9VLa9CmbNwfj8HiYh5lLlU63o+RkSsRqmHHk+Zq3VlynX1JuD8zPxLP+Xp8ZxBySCwJbAucA+lbjojMxcO+3wzofq7bAJsCjyMEvC+h1JH/gk4LzPvm7kSDsWGjeXLMzM7bjmLZeaZEfEXSop9KA1cx/ew63Nof48Op3wWJE3dBo3lmzLz5qVdiIjYgvIstB4lzfrfKM9zZ2TmPUM8z+OBpwDrUOrqe4EbgcuAC6e7PomI9Sj3Co+hPLcuT6nPrgfOnupz5SzUrP/+OCOlmH4/pdwPrlMt70tJxTyZl9He0e9wYKfhFk1aJln3WfcNag/Kc37LdzJzSUR8B/g0MK9avy/w0aVduOlSPZNvTXmOWw94EOUzdBWlXfwfQz7fesAOlDaeFSh16KXAWZk566ayqL6DT6W8d6tQfp+/Ur7rt03D+Tan/L3WA/5B+a79JjMXDPtcGi4D+ZJGTkQsADaqFq/OzI0n2PbDwH/WVu2UmadExIOA9wBvo9yMNi2OiGOB92bm1QOUcUXgTcAbaJ87qy4j4nzg0Mz8UR/HXodyA/hiys3JRKNH74qI7wIf7ycQFBH1IMCpmbljtX4Xyhy6OzI+a8siemtUl6SRkJkZEUfQXk/sS5+BfMp8ow+vLf8dmDBNYkQ8CXgV8AJKMH3eBNsuAr4AfCkzb++lQBHx4kYZ3p2Zn65e2w84GHh0l31PB96ZmT3NQx4R5zE2MuWuzBw0q8GURcRDgN0o6Xafxdi86p3cGxHHAR/LzIuXRvmmwWqN5a6fozngW4zNDbxLRKyVmX+fZJ96poyFlFEve09H4aRl0Ixdf6oOcO8FDqC9/q27NyJ+Dhw06DW+eu56N6W+fsQEm94VEb+ijMr8WacOVRGxP/DN2qoDMnP+BOcOyry5e1Dm1H38JGW9CPgMcNR0dOQeQctE/ZeZ91dBnrdUq14ZEf+RmfdOsmu9/vtDZl4YEQbypamz7htj3def/RvLRwJk5g0RcSKlXQDgcRHxjMw8c7IDNtrH6/arnvm7OSAz53doM68fe6LO4f9sJ56gbBsDB1E6lnVqdwe4OyJ+ABycmVdNdLzacRfQISYQEZsAHwd2pXOW8Zsj4mPA5zPz/gnK3K0c34yIb3Z5DeBRzWB3t7b1yVQxi7cAB1I6sXTyQEScCnw4M3vp4EdE7Eh5Hm45JDM/XL32KspnoeN3LiLOBt7V67m09JlaX9KcU40mPwv4CN1vJuYBewLnRcRT+zz+dpQRAZ+lexAfSsqkrYEfRsSPImKVHo69JnAd8EVgZyYO4kPprfc64OLqBnogUXweOAF4NtYPkuaOw4H6A9aOA8xL10x/952JRidExF7AJcCHgG2YvAFoA+Aw4MKIeEqfZaufd+XqQXk+XYL4lR2AMyNijwm2GVXXA/9HCeRPFMSHMnrlVcDvI+Jt012wadKc03eL6sF/LjqCse/qipS/XVdVY+fLa6uOzMwl01Q2aVnUvP6sHRGP7bjlEEXEs4C/AB+keyADyjX+ZZRr/H8NcJ43Uhpz38PEgQwoz1wvo0xt0qlBfRCfomQOejOTBDIqm1Hq919Xo9Hmuubnb9tqOpW5qJ5e/yGUIEVXEfFwSifTTvtLmhrrvjHWfT2KiMdRssG2XJyZF9aWj2zsMlEQfuRFxIeAy4HX0r3dHeDBlGnQ/hgRr5vC+XYHfk959ut2L7A2pdPHcRGx0qDnmm4RsSklg8Cn6B7EhzIA+znA6RHxjSpj7yDnWzEijqRMwTPRd2474JSpxBY0vebqTbCkZddDgBOBLWrrFgHnARdT0sbUrQP8KCJWpwcR8RJK77ZHNV66j3ITcw4lyN/sKfoS4OQebibmMT5bymLKjfbvgbOr4zd/jwdReg8OOtfSxyg30i33VOc5nxI0kaRZqer5fVptVQCv6XX/DsFCmLzBtNO1/m5KPXEu5dq6gPYOBgAbA6dFRLOO6UUAR9Ne1puBC4ELKFPL1K0AfCsinjzAuWZSM4i9BLgG+AOljryUUofVzQP+JyLeMf3FG7pLGstrUBr45pxqhMPptVWT3dO8ktI41HLEsMskLeOupKTYrftENZpuWlTZwX5OSfdZdy/VtGKUdK1184APRMTX+zjPZ4EvM77TdOu561zgog7nGqZO9wq3UNIZn0159ruuwzbPpDxXrtzhtbmkWf89gvbn1TkjM8+n/fedrP7bh7FOoouBo6ajXNIyyrrPum8QzcB887p8PKU9oGWPEf5duoqIeRExHziU0vG67mbKM/l5lHb4uhWB/4uItw9wzl2A7zI2bcH9lGn0zqG0qTTtAnyy3/MsDRGxNeV5tzno4n7gz5T3rtOUtgdQYhfN97wXh9M+TeQtlL/T7xjfcWke5e+0zQDn0TQzkC9prvkM8ARKIP0LwGMzc8PM3CYzN6P00HsXpZJs2ZAeGsWrXnNH0z7n0emUFPhrZOYTMnO7zHwipUfiG4AbattuC/xPj7/HecAHKKmMV8nMR2fmUzNz++r4q1J64f+isd8XI2KyXrVNT6L0xoVy4/BKYK3MfGJmbp2ZD6P0gv1Dn8eVpFHRDLz30+nplbRf9y/tMSX9A8APgX+l9LRetaontq2urY8C1qQ8lF1Z228NxvfY78WBlE5jVOfdBlg3M7fIzC0p9d+etDfMrAj87wDnmmkXAx8Gtqe8rxtl5uZVHbkpJSXmDsAPGvsdVtXls0ZmXgI0pwA6KCKOrKZvmGvq39Vto8wZ2E29weyczJyr8ydLM6JK7X1SY/UrgJMi4hnDPl/1DHMk7Y38NwOvp9RnT8zMrTJzPcqot2bqz9dGxIE9nOetwFsbq6+kpMRdt3ru2jYzn1Kd65FVGU4e5PeaxB2UlMS7Aw/PzLUy80lVffbUzHw45Vn1fbQ3tm5KSS87l/2W0thc99mI+EpETJR1aLaqd0Z7fkQ8dIJt6/XfLzLzhq5bSuqLdZ91X7+qbDH1gQJJI5CfmXfSPlXpGpRsB5N5NWUKgn0a639Zre/202orPqK2rtmmO9H+7+xSnoNpr4Pup7QnbJqZ61TP5Ntk5obAY4Gv0D544ZMRUc9cMJk1KNOvzQOupWQAWDszH1+1vz8K2ISSNaLu37s8919f+x0/1XjtU0z8nkxpkFs1QOR7lDaglrsp7fHrZ+Ym1Xu3AbA546e2fSEl83A/XgPsVf3/58DTKO/f5pm5FWVw48tp7zwwjxJP0YhpjvqUhmbj9/9k42k8/LULDttl0rlxNn7/TzZk+j7n1y84bJfJ5i1j4/f/ZH069zjs2YLDdlkwlf2XMY+mjFZ/RWb+tPliZt4FfCYirqc9ULJ/RHxognl0lqe9ByCUuWUO7TRPVGbeAXwtIn5KGcH/uOqlAyPiq5l5QZfy3wU8LTPPmuiXrOaGOonyMHEQY5X5qpSRCu+daP+Gdat/TwdeVN1gNs83W+cWlia19eGbbTzTZZjIeftdtKCX7Sb4Pa4/b7+LJq2vtj58synXV9B7eZey7wGfp6QHBNgkIraf7Fpbafau7yV96ZmUOdSunWijzLwNmB8R36PMd9+a2/TpEbFDZp7efe9xWo3a78vMT3Q41wPAMRFxGaWzWKs3904R8djM/Esf55pJz87MX0+0QWYupjRynRERbwK+VL20IvAOypQ0s8lhlNEzda8GXh0RF1PuB86iBLOvbO48y7S+q62R9vvSobNllbVih9oq0wovJQ987avLUxpXNb2uXf71bxiFuWA/ThnZVLcT5fp6NaUh+beUUVGXTXF6iy9Rsqu1LAR2yMxmZyYy87dVGuL5tDeefyYifpSZnUYzUWWhaTbcHgvsk5nNjGetcy2kTOnyfxGxFeODy4P6JvCBzGxmzGmefxFlNOh3ac8M9/qIOCQz/z6k8oyUzLwvIj4DfLS2Oiid5d8QEedT3o+zgHMz85oZKOYwHUmp75ejtGHtTYdBANVovnpHPuu/GXLtBo/YuMtL12+4aOGkz17XbvCI1emckvq+DRct7HgN63CMbm2eN224aOG4dp0O+z+Y8aPAAZZsuGhhT9+pazd4RLdnyFs3XLSwOdqz0/4rbrhoYdcpy2aIdZ91Xz92onR8aDmtev+ajqRc21v2B74z0YEz80z459zudddl5omTFax6NryyOsYtjdcm3b+uCsB/qLbqJmDnzDyvy7mvoLSB/5qS1r1Vv/0/SqC6F63vxu+AF2bmuGwRmfnniNiVMlXsC6vVy1EGVLy9se29lCy+RETzeebSft+TPn2MkoGx5TZgp07xgcz8A/DyiPgo7c/C746IYzLzdz2es9VGdGhmHtzhPIuB4yPiUkoWx9Yz+LYRsXljegjNMAP5mk5XTeOxH0Xn9ClNZzC8eXyadgJO6WG77wLPmuK5pi2F0xz1vk5B/LrMPCoi3kKZAwbKw8tWlIaATnYH6umHv5KZk/aEy8xFEbEbJT1UKwvKOxnfm7K1/T0TlKHbOQ6NiOcx1qC9P/0F8qHclO/RKYgvLQOms74ahl7rgG6/x9Ksr2AE66zMvLOaO77e4LEvk1xvqwfmerBwMaVH+GTn+3Of5bsrIvamPGS3OowdQHua8V4c1SmI3zjXRRHxNeDfq1VBeeCdFb2uJwvid9j+/0XE8xkb8fCqiPi3bo1WI+qrwPMpo4Ganlz9vBUgIv5O6UhyCnBCZv5pKZVxKDLzjog4nrFGrn2qjpbNTpP7MnatuY9y/dLSsSGjX2/OBb0+706rzDwjIg4FDurw8kaU0Xqvr5bvjIhzKNefn3Vr2O2kyr5RD5osAXbvFMiolW1JRLyWMqXaZtXqBwNv6lJeKBnP6nOMngHs2WsQJksK9KHo91iZeXVEvJ6qAZpyv7AXY53V5qJPAM+ufpq2qn4AiIi/Uf6epwA/muizM4oy868RcSKlvofSkbRTNr96B9NbgR9Nd9nU1VSfvV5L57/xhbRPFTmRbm2eB1CCvZN5PnBch/W30R5cnki3Z8hDKBm0JvMkSnvZyLDuG3dO676J7d9Y7pZd71fA3xjrPPPciNig6rQwGxzMWLv2EmDXXj7vmXl01Rnk3dWqp0TEc/sImt9OGazXdcqHzFxcpe1/YW31zjQC+TMlIh5CuebXvW6CQX4AZOaHImJLyu8C5f1/O31MFQn8sFMQv3GeP0XE52mPJexMqY80IkytL2muWQR8scdtj24sbznBtm+r/f9u4P29FigzL6KkOW7ZNSLmddt+QPW0TetFxGP73P+LmTmlNEGSNOLmN5b36mGOsXqwEOBXmdlpzr4pq67B9TSO/aScg9LJ4EOTblX0U//NBfXGlJWBp85UQQZRBbH3Aj5LaTSZyFqUKRY+A1weEadHxM6T7DNq6qMLH8lYpgoAqjlK69NjnDBio3KkOaVq/Hsr4+cMblqVEnD9CHBuRFwcEa+tUs5O5nW017ffycxzeijbA4w1DLe8vtNcxhHxMGCP2qolwGunOJJyqcrMk2ifO7jfe4VZpfr7vhj4Rg+br0fp8PY54KqIODEi/mU6yzcN6vXf5hGxWf3F6r71VbVVx1SjCyUNmXXf6Bjluq9Kl17vbP0PSoaxcaq/W73zcTMl/8iKiCcCL6itOjozf9PHIT5BmXqwZbc+9v1yL53zskyzVp8+4HERsWof55lOezM22h3gzMz8fo/7vqOxvEdErNHHuT/Q43bLWhvRrGMgX9Jc84Nu6fE7aPb67Ti3fESsTZnfvuWEzOw3rdQva/9fleEHEZq9wfs9/oTpnCRpDvg17XONr8nYnPLdNB+s5w+zQB3Ur+WbRMSDu2453jmZuaDHbXuq/+aQqdaRMy4z78/Mt1NG3xxNaSTqxTOBn0bE8RGx+rQVcLhOpHTMbNm38fozGUsTCKYVlqZdZn6OMlXYlygjNXuxKfB14JyImCxLXnM0Zy+B25ZfUeZNbXkoZb7UpudQ5v1s+Vm/GXRGxILa/2ddfdavzLwnM19HyaT3Q8p8vJMJyt/71Ig4IiJWnmyHEXEcZeRhS3N6p12AtWvL1n/SNLLuGykLav8fpbrvlbQHaE+ops/rpjlav3mdH1XNjuGTZimsy8ybgXo2hh26bdtBM8A8kXo7x3LABn3sO50G/q5XHRTqnSZWBLbvcfeLMvPSHre9mPbOFnO9jWjWMZAvaa7pOY0VJaVRXbcebc+kvZdsP+doac4v9sTJdoiIFSLiJRHx+Yg4LSKujYjbI2JJRGT9B/hFY/d1+ijbHcBlfWwvSbNONaq5+cDZDBD+UzUHXD27ya20Z1fpSUSsFRFvjIjDI+KCiLg+Iu5uXsera/lb6rvS3lg7mZ7rpsy8g/bRJf306B4JETEvIp4fEf8TESdHxDURcVtELO7wvjZTOPZTR46UzLwoM/eiNNbtTUm7fymTj9TflTKv52rTXMQpq0YI1TMN7RYRq9SW6w1eNwI/WyoFk5ZxmXltZv475frzUkpK6PMo01tMZCtKQOMxnV6MiAfRnkb6fkra317LtYTSWa+uUwNns9F4wqnYlqaI2Dgi3hMR34uIyyLixoj4R5d7hafVdp219Vm/MvOczHwZ8HBKGuNvAn8CmlOvNL0GOLH6nI20apq9Y2ur9m5k8qvXf3/pczSkpAFY902fOVL37d9YPqrTRi2ZeS6l7mp5QkRs1237EdL8HE21XfwJnTJIdHA//aV377Wdf2lr/o1P7nP/kxrLvQby+2kjup/S5tUyKu+dKsvPdAEkacialfZE7mosd+up3wy6fzIiPtnHeTpZq9sL1c3Ma4GPMTZ3Ur96nc8M4OoOc89K0lw0n/b08ztHxLpd5ltr9o4/up/0pdXo548Cb6T0mh7EQ4CFPW7bT/0HpQ5cqfr/bBmpBkBE7Al8mjJX9yD6qSNHUjXS4zvVD1Wg+6mURpYXAP9CeydEKPNofpX2tLyj6nDgPdX/V6WkrPxWNarylbXtvtNHJiZJQ5CZ/wB+XP200n1vBjwDeC7lGtSs99YDvh8RW2Xm4sZr6ze2/2NmThYgabqQ9iw6j+ywTTOYMkgj9FBVozX/lxIc6qVBu2nW12f9ysybKHXE4fDP+60tKfXeznRu3H465b7hLR1eGzWHMzaP7sMoc5j/LCLWAV5U2+6IpV0waVlm3Tc8c6Xui4hHUwZ+tdwC/KSHXY8CDqkt7wecPcSiTYdmu/jfeovDdzUPWJ3JM138vcN3ZyK9tvMvNVUbf310++19ZFJsaXZm6PRd72SQNqJWR5kZf+/UzhH5kuaaqcwR1+0upJ8Rkb3q2LOtmkfrCOD/GDyID9DPiIPbJ99Ekma/zLyC9pEOK9AhqFmNkNijsbrn9KXVXITnUhqMBw3iQ3/X8umo/0ZORHyOMrfgoEF86O99nRUy867MPCMzD8vMHSmNdt/usOleEbFFh/UjpUoBWM+k0Mqe8XJKo0+LgQxphmXmfZl5fmZ+LjNfShkx/Smg2fC6ObBXh0Os2Vi+aYBiNPdpHhPGd6Tut3FzqCJiW0rD7K4MXg9P5R5jTsjM2zPzlMz8SGY+DXgS8KMOmx4YERsv1cIN5nTapwRq1X97U+5boWQh6CutsaThsu4bzByr+/aj/Xf4Xo+dMZrp9feaBVljllq7eMNU2jhgNNo51qA9BnvzAMfo5bveyTLRRrSscES+ptOjpvHY106+CVB6xk3X5/z6Hrfbi7ERb5qdpqO3Z7eOVAcB+zTW3Q6cQmnQXkhJdXMv7UJtblYAACAASURBVPMDbk4ZZTAIR7JpWTed9dXS1O33sL5qdzjtPef3Az7X2GZX2q/9f8rM3/Zy8KrH9fGMn6NwAeVafhnlPuZOyrW8nhL9DbSPNlZNRPw740fT3QWcRhldcg3lwbhZR24MfG0pFHFkZOZVwKsj4vdAM4vQq2mfP3BUHU5JSwrw7IjYgPZMGZdkZnPaBE2/a5k79eYo6/V5d+RU86C+JyJOo9SH9dTg+zA+7eyqjeXmaKpeNPfpNI1Ic92dA5xnKCJibUp642Yj9h8ogdy/AH8F7qHUafXsaZ8BnrIUijkrZeZlwK4R8XHgvbWXlgf2BD4xIwXrUWZmRHwLOLhatWuVdaBe/502wGg+Dd9Un72+QblGNvUzKrtbm2evQeFf0vn3mGzKprpuz5C3dljXSa/zN480677JzaW6r3rmb07TtyAintvjIa5i7Lu3JiU7wfeGVLzpsDTbxeeapfVd1xxnIF/TZsFhuywYgTLMeAPIgsN26fUmXqPr7sbyZ+ktXdJErmyuiIiH0t7YAHAY8LHMnPBmuzF3nqQ+nLffRQtmugzDMNXf47z9LlpW6qtjKIH7VqqwLSNi08y8pLZN86G859H4lBH+29aWbwVeD3x/smlMImLXPs6zTImIVYFDG6u/CHwoMydsKIyIrSZ6fS7LzE9FxG60z8vXnONwVH2H0mi3AqWh572U1KUt/XwvNSTLv/4ND1A6JkkTyswTIqKeJhzaO9K1NJ9zVhngdM197uiwTXPdqgw2AnIYPkj76LY/A/tk5jmT7RgRzWdTdfZBShaXesfKHRjxQH7lCMYC+StTUjBvWXvd+m8EbLho4YIp7n87U8yOuOGihVNq89xw0cK7mWKdvuGihVN6htxw0cJ+08mPNOu+Cc2luu9ZlM7idR+bwvH2Z7QD+XfTnhVtZ+CBKR5zWWl/Wlrfdc1xBvIlaXLNm9zrMvPEaTjPrrTPQfPVzPxAj/s202VJkjrIzNsj4jhKitKW/ajm4646Vb2g9toS+kvf3UyduG9m/rjHfb2Wd/d82lPI/SAz39zjvsv6+/o92gP5G8xUQfqRmTdFxE8p90fQno1hMeNHNkkaPcfQHsxYNSLWyMz6nKi3NPYZJH3rOo3l5jEB/t5YXo+Z65SyZ+3/9wIvzMxxHb27WNbrtJ5k5uKI+AHwvtrq2VL/XRERZ1Lm3gZ4W+3lu4Fjl36pJPXBuq+zuVT37T/k470gItbPzFENbt9EeyD/d5k5o9M0zCK3UdqUWhkIpuu7rjluWUlhIUlTcVVj+bHTdJ7tG8tf6mPfTYdZEEma4+Y3ll8dEa374r1p7+x6cmb2M9qlfi1f2EcQH7yWT8Q6cnALGssPnolCDKjbqMMTM/OvS7UkkgaxoMO65jXoOtpTST8hIvqd/3bzxvLVHbb5c2N56z7PMRQR8UjKXMotP+81kBERK+PUFv1Y0FieC/XfcZnpSDxptC3osM66b47UfVWmuN2HfNh5jJ9mdZQsrXbxOafKyriwtmr1iNi4z8P08l3XHGcgX5Im9+vG8rOn6TwPbSxf3se+01UmSZqLTqJ9/uGHM5ayu5lWf36vB62mOan3sP5TH/uuCzy51+2XQdaRg2um4pupdJqD+Alwc4f1/WTJkDRzOqUPbftOZ+Z9wAW1VSvSOQ1xR9U8tTs2Vp/VYdPTG8sv6vUcQzaV+mwHynQj6s1srv+OoYxYbbL+k0afdd94c6nu2432v/EpmRn9/jB+urP9JjjnksZyDFDutmNUn6FeLa128aVpGO9pr5rfzX7fv+b2nb7rmuMM5EvSJDJzEXBxbdVjImLnaThV86ahp964EbEF8LThF0eS5qbMXAJ8q7F6v4jYDNiitu524Lg+D1+/lvczquKNlJ746mzQOnIjZq7BalRs01i+ZkZKMYCqkfO7jdWDfC8lzYzm9ef66nvddGpjef8+zvE84BG15esys1NHupNon89154h4XB/nGZaB6rPKvw2zIMuA2Vz/3Qb8sLF6ETAdU/xJGi7rvvHmUt23f2O5+azSqzNpH6n95IjYqsu2dzWWB8kwM5Vj/Lyx/IaIGKXOFYMYxnvaq4G/6xHxeMam2gH4B3D2EMqkWcZAviT15lON5c9GxBpDPkdzLqRJe+NWoz/7SS8sSSrmN5ZfRvsc3ADfy8y7ez1gZi6mfbTXlhEx6QNhRDwaeG+v51lG9V1HVr7ELO4gERGbRcRzprD/Q4FXN1b/YmqlWureBqxW+1k/M++Z2SJJc19ErBMRe9emnul3/xUZX692u/58Hcja8qsnaMyun2Me8MnG6v/rtG1m3kB7Y/tywNcH/f2mYKD6LCJeBOw6/OKMpojYLiIG7qweEY9h/Ps12+q/19Be/z226owqaZpY902bOVH3VZ3En1VbdT9w7CDHqlKuH91Y3W1U/u3A4tryIFMN/L2x3PMxMvN82kflPwL46ABlGCUDvx8D+A7tHQd2iIiX9bjvZxrLx1Sd/bSMMZAvSb05CriktrwJ8LOIeHiX7ceJiBUiYr+I6Bas+U1j+dBqLqhux5sHfANH40tS36oRC/WUZA8GXt/YrNv8pBOpX8tXAQ6ZaOOqHjkBWHWAcy1LmnXkQRN1qIvis8z+0fgbASdGxKkR8aKq7u9JNV3Dj4A1a6vvpaTrnTUy84HMvLP2YxBfWjpWpTwDXRQR+0z0XNIUESsBRwKbNl7qmBa8qpNPqK1aDvh+RGw4wTmCEriozxt6F/DlCYp2GGUkU8sOwHcj4kET7FM/59ZT7cydmddQRla3bBMRe05y3m0p7+ey5InAbyLiZxHx7H5SAEfEIyj1X/0ze2u1btbIzPsb9V+nVPuShsu6b/w5rfvG7Ed7doETM7PTNGC9+k5j+VWdRrpn5v20T9u3RdVhrR+XNJZ373P/g2hPR/+eiDi4z/p5w4j4VEQ0s1bMhOb78dLpyjKQmbdS2u/rvhERT5lov4g4BNiltmoJ8D9DLp5mieVnugCS5pStImKg60pmjnSKuMxcHBG7UdLXtG5gnwZcHBGfB47qlMaqGgm3DfAS4OXAunQPDB0H/Deltz3AlsCvI+KtmfnPtDnVe/wc4L+AVm/dyyiNHZKk3s0Htu/y2hWZ2ZxTsBdH0D5q4F0RsTrwkWqqFgAi4iHAq4CPAOtUq72Wd/cL4AbG5ld8LHBGRLwFOLUa0UA1umQH4FDG5h2cifd1lYh47oD7LszM5ryR/1L9XBcR3wZOBn6bmbc0d67SZe4BvJP2ID7AJ6uGNEnq1ZMo09F8MSKOAX4JnJGZ1zU3rDqnvQx4N7Bx4+UfZObJE5zn3yjX7YdUyxsBF1SdoI/OzH+OZIqI7YFPUK6Lde/KzL92O0FmXhoR7wI+X1v9SkoGnUOBHzWvq1VA5YWU7CY7UkZsTXUk1BHA++vLVXaeL2bm7Y1zHwi8C3gQpTPW9Yx/b0fJmlOo/67MzCsb615Y/Vxd1X+nAGfV3yf4Z3DricDewFsZ30Hy4Mxsjr6TpG6s+6z72lT1zL6N1c1AfF8y83cR8SfKYDEo7QIvpvM0Yr9k7Jl2HnBaRHwV+ANwJ+3ZHS7p8Fn9FeXz03JQlWHgZOBG2qdguKUahV8v65kR8UFKx5CWQygB8E8Dv+jwOZpX/W47ALtR5npfHvhJh99vqcrMv0XEhYx1inkc8NuI+BZwBeVzV3fGFDvUfZASG9i4Wl6T0mHxP4Fv1N+7iHgy5b19ReMYn8rMC6ZQBs1iBvIlDdOnp7Bvzz34ZkpmXh4RLwe+z1jD+JrAwcDBEXET5ebyLmB1yg3Yun0c/+bqJrqeIms74KyIuIEyp99KlBv71Wvb/BF4H+Pn0JMkTexo4LOUa2tTx5ETPTiO0si8Y23dG4DXR8QVwM2UuuNRQL3H91eBOzCQ31Fm3hMR76e9J/uTKSn+bo6Iqyjv50aMNYRBmXfwLSz9OWU3pjSWDOKLwJu7vPYwSoD+nUBGxN8o0zncQckA8UjGOhw2fZfScUSSBrE68K/VDxFxM+X6cyulHn0YsF6Xfc8GDpjo4Jl5bUTsQ3nWao0SXIeSevgL1XX+Hko6107n+UZmTjQisXWeL1SBg7fXVj+G0rlvcURcTamrH1T9Tj0/z/Xh05S06a1RlysCHwM+EhGXU54n16XUJfXn5P+gBFU2noYyDctTGLz+OwT4cJfXNqIEgN4PLKnVf3dSOsI/krEO8U1fAr4wYJkkLdus+4Znttd9z6S8Zy33AscP4bjfpbQrt+xP50D+l4A3MtZ28XC615kH0JhKMDMviIiTKcF0KBkg9qfzfO2n0t6e0TrGxyNiPdo/R1tROjQsiYhrKJ8jKM/kD2N6556fqs/Q3u6zFWMD5poeBSwY9ESZeUdEvJLSIaMVU1iF8r04rPqu3055zzbocIif0/450TLG1PqS1IfM/DVlhP25HV5ehxJU2I4SiOl045uUoEK3438K+EqHl1oj+zejPYh/EfA8SmUvSepDleKsUyeoZMBAfjUyfA/gwsZLQRlFvh2lV3o9iP9N4N8HOd+yJDO/SfsIgJa1ga0pvenrQfwrgOdSRvLPVn8FmqMTW4Jyf7ApJbPEZnQO4t9DSYW4T2Yu7vC6JHVyJ+Prsrq1gcdT6rXN6RxgWEJJ9/u85gjqTjLzJ8ALgL81XlqZMjpyqw7nWQwclpmvm+z4tfO8g1Lv3t14aR7waMpz11OYnkAG1cjwlzK+flqeck3fltJg3ApkLAHekZlfm47yjKgFwLVdXlsOWJ/y7L095T3rFMS/A3gb8OZW5h5JmoR1n3VfN/s3ln+SmXcM4bjfbSzvXE2R1qbKAvsaymd0UK8BfjeF/Vufo/0onVnqlqN0tmgFwx9D5yD+HR32nRGZ+S3KYLqlco+QmedRMmo0n+9XoLQRbU3nIP584KWZed+0FlAjzUC+JPUpM6/IzG0pN6AnA5NVpIuB31J6zj02Mw+a5PgHUtI1dWu4h3KDfxCwTWZ2a+CQJE1ufod1p2bmgkEPmJk3Ak+npK6b6EH798BumfnazHxggu1UycwPUKaquXSCzW6hBPy36DTtzWySmb/LzMdQpts5mHLf0Wx86+bPlNGNT8jMjxrEl9SPzLwpM7egNMS+A/gx5frai+uA/6Vch9/UT0N3Zp5K6fj2MUpnpm5aI+GeWtUNfcnML1F+t88xeYevWymjzZ4zlfuDxvkvoDR0H0l5Xuy4GWV0+/aZuUzNiZqZp1BG2W8PfBQ4nfY5nidyCfABYJPM/F+D+JJ6Zd3XxrqvEhEPpkxHUNcMwA8kMy+jvfPICpQMBJ22PZYS8H0fZeq5hYxPqz/Ruf5KqVdfCXybUl/eSnta/V6OcwQlaH8Q0Mvz9i3AsZS27vUz8/f9nG86ZeZ7gS0oI+PPoLS3TyWF/mTnu5jSQefdTNzu/wBwErBDZh6QmfdPV5k0O4T3s5I0NdUN3faUVFdrU3rN3klJt3U5cFl9Xqs+jhuUm4mtKKP9g3JDcTFwng3ykjT6ImJl4BmUkRsPoTRCLwLOycwrZrJss101d9y2lFEj8yj17iXA2XO5Y0RELE8ZNbMJpcf+6pQ0mHdS5q68BrgwM2+asUJKmpOq55ONKNef1lQeK1M6GN1BCT5cOMyOxhGxBWWk3nqUa92NlIbrMzKz145Nk52j9dzVyqq2GiXF7/WUjmMXT+ezV0SsRRmhtVHt3FcBv8nM5gjNZVZErEAJdG1CST27OiXg0ar/FgC/rzIuSdJQWPdND+u+uSMiNqBkdFiP0i6+hJI5dhFwGXBFZi6ZuRKOroh4AvBUynv3YMrUBIso3/XbZrJsGi0G8iVJkiRJkiRJkiRJGiGm1pckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZIkSZIkSZIkaYQYyJckSZKWERGxfkRk7ee7M10mSZIkSZIkSeMtP9MFkKS5LiL2B75ZW3VAZs6fmdIUo1gmSZIkSbNLRKwEbAk8DlgXWAm4B7gBuBz4fWbeP3MllCRJkqTZy0C+hm6PPfYIYI2ZLsccddsxxxyTM12IiUTEyow15KwJrEJpyLkduAa4ArgyM5fMWCE1MiJieWAzyufl4cCDgSXArdXPX4CLM/PeGSuk5izrq2k3Y3VWRGwMXLUUTnVIZn54KZxHkkaKdei0mg3PfAG8FPhX4HnAgybY/K6I+Anwlcw8eWmUT5IkSZLmCgP5mg5rALfMdCHmqDUpwc2RUmvIORB4LpNfW+6IiPOBU4GfAeca2F92RMQKwCuBvYFnAytPsssDEXEJcDxwdGZeNqRyfBx4b2P1hzPzkCkccz6wX2P1YuBJmfmnKR7r5Zl5/KBlU0fWV9NrJOssLVsiYn3gutqqozNzr5kqjzSHWIdOn5GuPyNiS+CrwFY97rIKsAewR0ScDLwxM/8yXeWTJEmSpLlkuZkugKTZLSI2Ak6kBFlfSG8dhFYDdgT+EzgLeMl0lU+jJSL2Bq4EjgJ2YfIgPpTP1OaUz8ulEXFGROw0xXLMA17T4aV9q44pwzQPGLhzgCRJkjQKIuINlOe3TkH8eyj3+ecCVwP3ddjm2cAFEfHSaSukJEmSJM0hjsiXNLCIeDRwGrBBh5fvo6Q1vo2SanGtartOHYiGHTjViImI1YBvALt32WQJcDNwE3AnsA7wUEqq/aZnACdHxH9m5kcGLNJzKan8mx4N7ED5XA/TnhFxWGb+YcjHldTZ9ZRUv714PvDu2vIfgHf2uO+V/RRqFGTm9VjvSpL6FBFvB/67sTopHXQPB36dmYtr269IqWNfB7ysts+qwA8iYq/MPHZ6Sy1JkiRJs5uBfE27p772ncxbcaIp89TN4vv+wQXf+MxMF6OjKj36j2kP4rcacr4CnJWZDzT2WZUyemNnSkD3MUuntDMrM+cD82e4GDMmItYAfgls23jpPuAI4ARKw9/tHfbdiPJ52QV4Ee0dQdabQrH2n+C1/Rh+ID+AQ4Fdh3xcDdHz9l6ZFVY0vjmo++9LfvXte2a6GABk5r2UbDGTiogNG6tuycye9pUkFe9b/4mstNy8mS7GrHTvksV8/PqhzBw1bSLi2UDzwfQa4DWZ2fG+OTPvo9znnxARL6F06l2nenkecEREXJyZf5ymYkuSJEnSrGcgX9Nu3ooPYvmVesmerVnmQOBJteV7gd0y86fddsjMO4FTq5/3RcSzgLdT5hDX3DWf8UH844C3Z+bVE+1Yvf5l4MsR8XjgYGAvpjA1TNWxoD4q6CpK1ojWCP1XRsRbMvPuQc/RxUsjYrvMPHvIx9WQrLBisMKDDORLktSvlZabx8oG8uekiFiL0vm2fpP0V2CnzOwpM01m/jgiXgCcDKxRrV4Z+HZEbF8F/SVJkiRJDQMHQiQt8/ZrLB8yURC/k8w8NTNflpk/HmK5NEIi4p20B82hpOTcbbIgflNmXp6Zr6akvl84hWLtCaxUWz4K+E5teTXgFVM4ft1vGsv/NaTjSpIkSUvDf9GehW0x8NJeg/gtmfk7YJ/G6qcCb5ta8SRJkiRp7nJEvqS+VaMytqqtWgJ8bYaKoxEVEQ9jfOD62Mzsde7pjjLzNxGxBSWgP4j9G8tHUkYEvbOxzZEDHr/uC8CjgIdVy8+JiJ0y89dDOLakWaS6Jm5Nyf6xDnAb8MPM7Noxqcog8mRgE2AtSvaQW4EbgfMy86rpLvcEZVsZeDrwCGBdyr3AjcBlwPmZuWRI51kX2B54KOV9W0J5D/4M/D4zbxnGeaYiItYEnkb5264H3AX8MjMnzZUdEU+h/I3Xo3QyuxG4FjgjM+8acjkD2AbYgvJe3g1cB5yemX8d5rkkzQ0RsTbjO3B/MTPPH+R4mXlCRBxPe0fft0TEfzenZRs1EbEB5Rn44cDalLrouG7Xz4hYjpLB7imUenI1ytRid1I6Jf8FuHxY9aUkSZKkuclAvqRBbNBYvikzb17ahaiCuU9irPH7b5RGkTMyc2gTNVcp3Z9CafReizKNQCtYceF0p4KMiPUojfyPAR5CuXb/HbgeODszr5/O80/BWylBp5abgDcN48CZ+Xfgh/3uFxGbUIItLedl5uXVa5cAm1brd4qIR0wUYOvRPZTODF+orfsvSvBL0hwSEfcyds07OzO3r9Y/H3gX8GzKnMB1NwHfbRxnc8oUIs+nBFy7ZtCKiKuBzwFf6TXoGxHrU4K3LUdn5l697Fvtvx3wIeC5tGc3qbsxIr4OfDwzb+v12LVzrAAcQKkzNqc9nXPdkog4m5Ly+Vv19yAi/gg8vsM+e0bEnhOc/k2Z+eVGeerHuiEz16/WbwN8AHgRsGLjOO+n3CeMExGrAO8GXgds2KUc/4iIXwIHZ+bvJyhv/bh70Z5h5k2Z+eUqgP+GqqyP7LLvScC7ej2XpGXGGygdXlvuBw6d4jEPpj2QvyGwO436ECAi5tPekeBRmbmgl5NExI5AvfPsIZn54Qm2z9riqZm5Y7V+F+AdwI6Mr5MXAcc3jrM68D5Kx+CHMbHbI+I04MjMPHqSbSVJkiQtgwzkSxrEao3lpTYhZkSsBryX0sD/8C6b3RsRPwcOysyLBzzPOpRG9ldRRht2c1dE/IqSkeBnmZnNDSJif+CbtVUHZOb8Cc4dwDOBPYDn0TkQUd/+IuAzwFGjMpIlIlYFDmys/mpm3jQT5alpjig6svH/w6r/Lwfsy3BS4X+NEsTbuFp+WkS8ODNPGMKxJY2wiPg07dk+Jtv+X+kvw81GlOv/GyNi18z8Y59F7Fk1Av9rwKt72HxdShDjdRHxssxsTjMy0Xm2oQRzHt3D5stROme1Omh9eYJthyoi3kqZKqavqcoi4unAsUwe3HkQ8BJgl4j4H+Ddne4xejjfqsAxwM6TbPoc4LcRsYdTHkmq2a2x/OOp3s9n5kUR8Ttgy8Z5xgXyZ1L1TPY54M197LM58FO6P6c2rQ68mDLFgIF8SZIkSeP01fAkSZVbG8trR8Rjp/ukEfEsSgrCDzJx48hKlFEev4+IvgOxEfFG4CrgPUwcxAdYpTrXTygBlWH4FHAapdFowiB+ZTNgPvDravT+KHgWsEZtOYGvz1BZgH+mt3xNbdVi2hsMv00pZ8u+wzhvlbHhkMbqQ6vGQUlzVET8J+1B/HuBPwLn0T4ivq7TCPc7gcuBc4HzgWs6bLMJcHpE9Bo46EuVWvnXdA7iLwJ+B/yeki2mbl3gpIh4do/neQVwKp2D+NdV5zgfuJr26/VSFRH7AZ9l7Fnqfkqq/3MpafE7li0ingf8ivFB/H9Q/sbnU7IL1S1H+Rx9a4B6Y3ngONqD+DcCFwAXAnc0tl8JOHpp3NNJGn1VR6DNG6u/P6TDN4/zjCEdd5g+RnsQ/x5KPX4+JTNam4h4KHAS459THwCuoNQR5wJ/otwTSJIkSdKkHJEvaRBXUhof6gGHT0TE7oOMFutFldLwWMYHOe4FFlDmeW3N09syD/hARKyfma/r8TyfpaSEb1pMCZ7cVJVh/ca5hqlTIOcWSoPR7ZRReg9lfCDgmcDJEbHNMKcWGFBz/vrLMvPKGSnJmGfT3jHjxMy8obWQmddExOnAv1SrNomIp/czknQC36JkknhCtbwF8ErKKElJc89jgIOq/19JSWn+o/q1OSKeSAkAN90H/Lj6ORW4ulm3VnOy716do3VdW4eS/eUFw/s1/jki8Uhgu9rqmymdzr5Vnxu42nY7Suel51erVwKOiojNM7MZpK6fZ3PgKNrrwDspGQe+lZlXNLZfg1LX7FH9NB1A6Wy3Ju3X2lOYONvKZPPar8rYdCl/o/wNjq5PIRARj6zOWy/v+pS09w+urb6VkoL/qMy8o7bttsDHgZ1q276a0gnks5OUr+7tjHWKOAY4rJ46PyJWBPYE/rdW3pUp7/mufZxH0ty0HePbjM4f0rGbx3lYRDwqM68a0vGn6kmMPc/8mVKPn5CZ/wzAR8STKc+gLQcDa9eWr6R0QP9xc/qbiJhH6bD9Akp93nHaE0mSJEkykC+pb5l5bzWX6i611a+gjLo7KDPPHOb5IuIRlCBCvXH/Zkra3u9m5p21bZ8GfJIS1G55bUSc25zztsN53sr4IP6VwEcoAZhbOpTrBZT0+z2NNuzDHZSOCz8BfpOZ40ZvRsQGwD6U9+Eh1epNKY3/nTojLE3NQP55M1KKdvs3lo/ssM2RjAXyoaTin3IgPzMXR8TBtAeTDomI72fm4qkeX9LIWaf692zgBZ3mic/MTgHjE4GNMnPcSL/GvrcAX4uIo4GfM5Za/vkR8dTMvGDwoo/zH8ALa8u/A17cqV6qOhycFREvpAT6WxkJ1qfMqfzGTieIiBWA79Fez/+Z8t51DOpU7+kJwAkR8V4agfPM/G117PUbu96QmSd2OmaPVqn+/QuwU2Ze26Fs1zA+c8LnaQ/wXAfs0OygUO1/TkQ8B/gq8K+1lw6LiON7nR+asSD+mzPzix3Ocx9lpP/llLquNVXSLhHx8HonDUnLiRauFwAAIABJREFUpCc0lu+ijCYfhk711BMpWdFGQavD9unAi+rPmy0dpnDbvfb/G4GndevAVt3/X1r9/E/VuU+SJEmSxjG1vqRBfbzDup2AMyJiQUR8NSIOiIhNq5TmU/ElxgLVAAuBrTLz/5qNKlXD/bMoI6DrPjNRyuFqRMWnGquPBZ6UmYc3g/jVuRZWZXgOsDVl1PwwfBPYMDNfm5nf7xQsqc6/KDM/QRndXW/0en1ErDWksgxqk8byhTNSikpErAa8vLbqLkq64abvUVIct+wZEZ0yJAziWEpa6JYnMKT0/ZJG0h3A7p2C+N1k5h8nC+I3tr+d0pnsgdrqA3ov4sQi4kGUEeMtNwIv7FYv1cqVwLspGQVa9o2IbplsXgU8rrZ8K/DcXkdmZuZ1mXlpL9sOyWJgz05B/E4iYmNKh8eWrPYfF8T/5wblPTyQ9lGrKwH/3mdZv9IpiN841zm0d26bx1hGBUnLrubzxA1DzL52I7BkkvPNtFuAPToF8Zsi4iFAfYqz70+UhaapS+c+SZIkSTKQL2kwmXkGZXRdJxsBrwe+AVwM3BYRJ0XEQRGxdT/niYjH0z7yfwklMHL1BGVbArwW+P/s3Xu8bed8L/7Pd+8kEkIuO0JoCInWnSDqOC1FHKpuPe6XEvdz0Lq0qFIpRS+054eg6tZD3UvF7bQuJaiqiLiVhDQiURISErlKZD+/P8ZY9lxzr9tca641x97r/X695mvNMdYY4/mutZMx1hyf8TzP10ZWXzXJ/16iqT9KsufI8mfT3WT/2SLbj7d50iRhzQqO9dMJtv9uut/3nH2SPHQatazB/mPLP5pJFTs8OPOHM37/+BCXSdJaOz/dKAhz9kty/2kU0N/4fP7Y6mP7oY2B3c/rVhr0rkV/DfjsyKo7TvHwD0s3lcucF7fWVnQ+7895Lx1ZtXeSey2y+dPHlp/X92ofqn9srX1pgu0fm/mfu97XWvvMcjv1PTZ/f2z1Y/shmVfi8iR/ssJt3zW2fJsV7gfsvsaD9al81kl+cY0Y/7wztCD/1RM8XLfP2PJCU+cAAABMTJAPrFpr7QXphnC/bJlN90039PyLkpxYVV+vqseusKf+45LUyPI7+p5jy9X283S9AUc9oZ+/d56qOiTz59fdnuSx/QMBu4TW2ifSDdM7Z5pBzkT6eYvHp25Z8Y2/qvqlqjp6ha9DVnjYY8aWFxpWf7Hvje+7aq21D2f+UP1zD70Au593bGBboz3XbzmFkXDmjAbvLd0c9pM4IV2YPGd82pVU1UFJjhxZdUGS/zthOxtt0n/bO48tv2mlO7bWTkgy2nP/wCQ3X+HuJ0wQQn15bPnQFe4H7L6uPra800OwazR+vPH2Zm2Sc/25mX+9u3f/mQgAAGBNBPnAmrTWXpluONzXZOVh7c2SvDHJF6rq+stsu+qb30k+lmS0N+S1svOQ70lyt+yYFzZJ/l9r7dsTtDMUZ4y8P3KxjTbAQjfhJrnxd/90/3Yred1juYNV1eFJfm1k1Tn9vov5cOZPk3D0UtMyrMLzxperarwXD7BruyzJV9dygKq6ZlU9uareWlVfqapzquqSqmrjr8wfTn/PdKOJTMNo8P6d1tp5k+zcj2pzzsiqheYAHg/3P73QiCkDs+wDhXP63vOjoxFtz/wpB1biX8aW77DC/b44QRvjQ0ALoIALx5avNuXjjx9vvL1ZujDJioe7b61dkfnn9hsk+WRV3WOKD9cBAACbkA8UwJq11r7XWntKuqD8vkn+T7qbx5cvuWNy23Rh/uELfbOfm/fWI6uuyPzhg5era3uST46tXujm93iI8JGVtrHequqwqnp2Vb2nqr5ZVT+qqp8tEuT8t5FdD5pVzVn4Jty0b/xN4tFjy+/qhyteUGvt8nTz2c/ZmuR3plVMa+1Tmf8gwSFJfndaxwcG4Xv9yDATq6oDq+p1Sb6f5NVJHpnklunm3l3pQz/j05uspo79k1x7ZNUNF7r2LPfK/J7dCw2bPP43wCTh8yz8fMIpEw7K/Kld/nMVDyp8ZWz5eivcb5L5ma9MMjqdkAfMgB+PLU/tAZ9+lLRrLNPeLH23H/5/En+a7mGtOUcm+ack36+qv6uqY/pp4wAAAFZMkA9MTWvtZ621D7bWntlaOypdz+zbpRt+/4NZONg/OMl7F5nv9dpJRucPP6UPWSexkpvfgwsRqur6VfX+JKcn+YskD0xy43SBwErmVF9ziLMGP00yHpTPpGdff5PwUWOrlxpWf7Ftxh8GWKvnjy0/p6rGb2YCu67xeX9XpB+l5qQkT8zOU5RM4ipr2HfOtikcY9xC14LxcH/F4fOMTPpve8DY8rmraHN8n/FjLma5qY+WstNURMCmMx6sH7zQNGWrdM3sfD9qSEH+xNfx1tpnkjw+O3/mvVa6zxJvTnJKVf2gqv6+qu5TVXuuvVQAAGB3JsgH1k1r7fLW2kmttVe21u6b5DpJXpadQ95bJXnoAofYqJvfgwoRqur26R5AuF9WfyN9JWH/uuh7r/xkbPWKA6HW2nGttVrolcmHI/6NdPPQzzm1tXbiCvb7TJLvjizfpP93mYrW2heSHD+y6sAkz5zW8YGZu2LSHapqjyQfSnLY2Lf+M910NM9O8vB014Z7JLn7yOtDa6h1MevxQNhCnz3Gp2O5aB3anaZJ/233HVtezbQBQ59HGtg9nTq2vG+6KdWmYaFpwFY8lP0GmPg6niSttTen+2z7ziw+Ot21kzwiyQeSfKuqHraqCgEAgE1hLT19ACbSz6377Kr6dJL3Z/689I9M8raxXTbq5vdgQoSq2pZuaP/xXotfTRcun5ZuuOVL0/W0Gx3y8a/SDb88BN/K/OH9b73YhuvsmLHlL1fV0Svc9+TMfwjg0ZlgXuQVeH6S+2RHsPWMqnrVpHNQA7uNxya5+cjyuUke21r74HI7VtUj1qGeS8aWT0vyv9d4zJ8tsG58Opbxa/+ubvxvitVMNTPkeaSB3dfn0z2APfqZ7Xbp/s5fq9uOLf+gtfadKRx35lprpyR5WFUdkOR/pHuw+E5JbpKdH9I+LMnbq+r2rbVnbGSdAADArkGQD2y41tqHqur/pgst5vzaAptu1M3vhUKE1fT+n4bnZX7v9W8neWTfg3tJVTUeuszSZ5LccWT5dhtdQFXtm+QBY6sf0r9W46FV9czW2kJB1MRaa1+vqnem62GbdPOE/mGSZ03j+MAuZ3xkmge31j65wn0Xmnt+rcavg1tbax9fh3Z2Grp5HdqYpVWPUDPioLHl8WMCTF1r7aKq+kqS24ysfkCSt0/h8ON/o//rYmWsoY2rrmHfNWut/STJu/pXquqgJHdOct9006aN1vf0qvq31tq7N7xQAABg0AytD8zK+E2KfatqvBf6Rt38HlKIMBoyX5bknisJ8XvrEeSs1mfGlm9aVYdtcA0PzOoe/ljMgel60E/TsUl+PrL8lKo6ZMptALuGO4y8P2WCED9JbjbtYpKcl/kPul23qvZZh3a+Pba84Q9+rbNzM390gyOqatJw6VZjy99dcCuA6Xvv2PJ9+kB61arq5pn/cECSvG+RzS8bW57kOnTNCbZdd621c1tr722tPTrdqF8fGdvk92dQFgAAMHCCfGBWzlhg3fiN7R9k/tyCN66qSed+X8nN70GECFV1vSTXGVn1T62101e47z5JbrAuha3OCUkuGFmuJI/b4BqOGfoxW2unJXnzyKp90g25D2wiVXX1zA8nxuclXmrf6yU5fNo1tda2pzuXz9kryX+fdjtJPpv5PS7vVFXTfAhr+9jy+LDG66q1dmWSE0dWbUk3zPIk7jK2/Pm11AQwgb/N/DB9z6z9b9UXjS3/V5L3LLLtT8eWrzVBO0dNsO2Gaq2dm25UrtFp4G5XVVeZUUkAAMBACfKBWVnoJv28ucFba5enm6d8zl5ZeAj+BVVVZeeb5Qvd/B7vPX6vlbYxZeM3plYc5CT59XQ31gahtXZRkteNrX5SVa1mVIWJ9b3/7zSy6uIkV2ut1SSvdA+XjPZIvUdVTXIDcSX+NPPnjX78DEYvAGZrPFye5KG1J0+zkDH/NLb8u9NuoLV2XpIvjqzaL8mjp9jExWPLsxhq+YSx5WNWumNV3SnJESOrzkvy9SnUBLCsPnB+y9jqp1bV+Bz3K1JV907y22OrX9Va+/lC22fnh7CPXGE7ey7QzqC01i7I/PP5lgxrhDUAAGAABPnArIz3kDi7D+7Hrfrmd5K7Jzl0ZPkHrbVvLbDdJzJ/ePPfrKobTdDOtAw1yFmtV2T+iArXTPLqDWr70Zn/+/xga+2SxTZeTGvt0iTHj6zaI8kj11jbeBtnJXntyKq9kvzJNNsAhq219tMkl46suv1KRqCpqpsmedq6FZb8Xbqh4efcp6r+5zq084qx5ZdU1aELbjmh1trFmf+w1CxGr3lT5o8M8MCquuNyO1XVliQvHz9WP1oCwEb5o3Qjpc3ZmuT4qprofFpVRyb5+7HVX0nyf5bY7Utjyw9eYXO/m/kjnQ3VSqaBAwAANjFBPjCxqjqoqh7e32Bezf57Zedeff+8yOZvzPwhdx+xkh4gVbU1yV+OrX7DQtu21s5J8s6RVVuSvHG1P98anD22vKLRB6rqXknuN/1y1qa19v3sPPTmQ6rqz/vREtZFf+xHja1+xxoO+c6x5Wn2FJ3zZ0kuGll+ZJIbr0M7wHB9buT9tiTPXWrjfuSODybZe70K6kPwl4w2m+QtVfWASY5TVbeuqrctMWTwu5J8c2R5/yQfX+noJFV1SFXdZIlNvjHy/qbLbDt1rbXvZv4805Xk3Sv4+V6T+Q8+XpaNeyAOIMkvRk55dOZ/Jrtukk/2o4Ysq++J/9F0o67MuSzJIxZ5mHvOSUl+OLJ8h6p6+DJt3SvJS1dS17RU1V37zzgrfnigqn4786fG+UZr7bLFtgcAADYnQT6wGvsmeVuSr1XVI/v52VekqvZO1xPjZmPfGh+yMUnS96D/0MiqLUneW1W/tEQblS60v9XI6ouT/M0Spf1Z5vfY+/Uk71zpPIVVdbuq2m/5LRfXWjsz3RyRc46qqocs0+7ts3PPliF5ebqgadRzkrxr0t6WVXVAdu61spBfT3LDkeXzs/Pw0JP4aJIfjyzfoqpus4bj7aS19sPM75G6NcmvTrMNYPDGr4PHVtUrquraoyur6sCqelq6Xopz57pT1rGuVyT5x5HlqyX5h6o6vqqO7q/r81TV3v118TlVdWK6aXIenkXmp++HVH5I5o9K8MtJvlpVxy7U67Oq9quqe1fVW5N8J8mdl/gZPjq6a7rw6YVV9YCqunv/c8y9rrvEcdbi9zJ/CqHrJjmpqp5YVfuOblhVR1XVx5M8aewYz+0fCgDYUK21j6X7G37U9ZN8qqreWlV36x+k/oWq2rOqfquq3pfu88Do3/FXJnlMa+0/lmn3inSjw4x6c1X9flXNm6qtqg6vqlcm+UCSqyT5zxX+eNNwjXS/nzOq6iNV9biq+uWFHl6uqkOr6kXpHmIb9fqNKBQAANi1CPKBtbhpkrcmObuqXl9VD6qqQxbasKquU1VPTtfj7kFj335fa+1flmjnyenC2DnXT3JyVT12gRs4d0jyqew8BP8f9D3EF9Ra+0aSPxhb/aAk/1FVj+5D5Hmq6peq6vFV9ckkJybZaZtVGA9y3lJVz62qayzQ9ouTfLpv97IkZ0yh/alqrbV0PXjGh8V8UJJvV9Vr+xt8++68d1JV+1bVXarqFel+vvEHQBZyzNjy+5bp6bOk/gbie8dWr0ev/Jdn/n/nwObytiRfGFmudOHv96vq1Kr6fFV9K8k5Sf6/7Ljm/HV2noZmavrz+KOSfGzsW/ft111QVd+qqn+vqpOr6jtJLkx3XfzzJLdbYTtfSxf2j4b5V0831cjpVfVfVfWlqvpiVZ2RbvjhD6YbwWS5h+7+Jt0DfXOuleQFSf4hXcj/sZHXfVZS76Raa2cneViS0WleDkzyuiQ/qqpv9D/b2en+O7jb2CHelp2nIADYMK21lyV5SuZPSVbpzsMfT3JhVZ1WVV+oqtPTXQs+lJ3nqr84yYNaa+OjXi3mJZn/sPNe6f5uPq+qvlZVJ1bVWUlOSzfq29Z0D7iNf7bbCHsm+c10D5Wfmu4aeWp/jTyxqv4ryZlJ/rjfds5nk7xqw6sFAAAGb49ZF8Du78rLf7b8RixoF/rdXSPJ4/tXquq8dHPqnp9uyN9Dkhy8yL7/nuQxSx28tfa9qnpkujB17mb9QemG3T+uDw0uTXLoIu28qbW2VG/8uXaOq6obJnnGyOrD0/UCubKqvpuuN91V+p/pmssdcxVenuR3ksyNOLBXuqEhX1RVp6a78XXNJIdlfs/G30vyiH79oLTWflJVd0n3kMLoFABXSfK/+teVVXVuuv9uLkzX4/OAdD0WFxuG/wPpbhr+QlVdNckDx7Zb6U3CpbwjyRNGlh9eVX/Qh/xT0Vo7v6pelvnDWLOBrri8Lb8Ri/L7W5vW2pX9MLsfTzI69Hul652+kFcneVa6IdjXs7aLquo3052fnpn54cNeSW60gsP8V7oemEu18/7+evGudA/tjbpOVjnfcWvtjH4o5rem+5tlJlprH6uqu6d7gGD0wce9M//ffNT2dPNHP6t/qAIG6bLtS/7vzRJ2pd9da+01/Ugrf5vk1mPf3ifdZ6fDd9pxhxOSPKm1duoEbf60qu6bbiq20V79V0ly8wV2+UqS38rKrk3r7er9aykfSDfFwK7zHwIAALBhBPmsu5Pf9FezLoHpuyjdDZJbLfL9bf1rKdvT3QB6dmvtwuUabK19uKrukeTdmR/W75NuZICFXJnkL1trf7Tc8UfaeWZVnZbkZUmuOvKtremGML7hgjtOSWvtx/2Nqv+XrsfgnD2ycG/07elGG3h9VT1iPWtbi9baT5Pcv6oelW4ag/EwZmu6n/da4/su4HNJjm2tfXyB7z0g82+W/TDJUqM9rNQJSX6QHcHLQeluEL5/Csce9YokT8viD76wjj729kuX3wjWUWvt+1X1q0lelOSJmX8dGnVikj9prX0kSRYYuXc9arsyyR9W1WuTPDvJ/0xy7aX3ypnpern/Q5KPtta2r6Cdf6+qX0k3rPz/yuIBd5Jcka4X41uyzENbrbUPVNUvp3tY7q7prqkHpntwbP1/gTvq+Fxfx7OSPDY7Htwb97N0v7sXtNZO3qj6YLX+/OxvzroENkhr7cR+mqn7p3uQ++h0D3Ut5pIkH0nyN621T6yyzS9V1W3TjfTy4HSfHcadn+SVSf6stXZZVW1kkP/hJHdPN6rL3DVmqWvLlek+o7yytfahJbYDAAA2OUE+MLHW2rlJbt33Xr9fkrsk+bWsbGj5H6QL49/YD6M7SbsnVNURSf4w3fDpi/XMuyzdnOgvmLSNvp3X9HM5PjfdnL1Lhcvnpwvd39BaO2PSthZp/+SRG1UPy8I3qlq6XpvPa62dOI12N0Jr7S1V9c50N+Aenu6/nZ3mVx5zRZKvp+uF8+bW2reW2HZ8yPv3TKN3S2tte1W9O13IPueYTDnIb61dXFUvTTdsNrABWmt/l53n313NcZY7l630OBcmeUZVPT/dtfVGSfZPd207K8m/j19vWmtzo5usxrLh+lhb3003tPJTqupm6cKKg9L9DfCzJD9NN2f9N1tr31tNQa21n6ULY15ZVYcmuX26B5wO7Nv4cZJvJflya+2iCY57TrqRb14+YT03nmT7FRzvoiTHJjm2qm6Z5Bbpfr6rpBuZ5qwkn22tXbz4URY87juzhlFopvXfMLD760cI+cck/1hV+yS5bbrr1TXTncsuSzcVzKlJTl7LNFcjbZ6ZblSsJyf5jXSjse2X5IIk/5HkX/vrx9z2n8oED2q11lb9UFc/StfH+1eqar9018fD0/1Orpru+nV+km+nu36ZUgsAAFhWGaGRaXvwgx+8f7p5S5m+A9797ncP8gN/dd0Br59u+N/rpbupsk+6HhgXJvl+kq+s9qb+Im3eOt0Nkrmb3z/Kjpvflyy17wRtVLphI2+S7ibM1dMNb392km8k+fp6DoNYVQcmuVO63+1c299J8rnW2g/Xq92NUlV7pQswbpSut/tV0/VQ+Un/OjPdja7LZlYkuy3Xq3U32GvWZlZVh6W7jsx5Q2vtCQtvDbAw19B15foJAABAEj3yWR8XZGU9s5ncBbMuYDF9r4wz+tdGtfnlJF9e5zZakpP714Zrrf040x++fTD63jkn9S/YaK5X62uw16xN7qCxZf9OwGq4hq4f52UAAACS6JEPAACbRlUdk+TNI6ue1Fr72xmVAwAAAAAsYsusCwAAANZfVW1N8pix1V+YRS0AAAAAwNL0yAcAgN1UVR2VZFuS6yV5VJL/PvLtU1prN5lJYQAAAADAkgT5AACwm6qqzyf51UW+ff/W2vEbWQ8AAAAAsDKG1gcAgM1le5JnCfEBAAAAYLj2mHUBAADAumpJLkxyVpITkry6tfaN2ZYEAAAAACzF0PoAAAAAAAAAMCCG1gcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADMgesy6AXVNV7ZfkziOrzkpy+YzKAYZprySHjiyf0Fq7YFbFTINzH7ACzn3AZuTcB2xGzn3AZuTcB2w2Mz3vCfJZrTsnOX7WRQC7lPsl+cCsi1gj5z5gUs59wGbk3AdsRs59wGbk3AdsNht63jO0PgAAAAAAAAAMiCAfAAAAAAAAAAbE0Pqs1lmjC+9///tzxBFHzKoWYIBOO+203P/+9x9dddZi2+5CnPuAJTn3AZuRcx+wGTn3AZuRcx+w2cz6vCfIZ7UuH1044ogjcrOb3WxWtQC7hsuX32TwnPuASTn3AZuRcx+wGTn3AZuRcx+w2Wzoec/Q+gAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIHvMugCYliuvvDLnnXfemo+zffv2/OQnP1nwewcccEC2bJnO8y/btm3L1q1bp3IsAAAAAAAAYPchyGe3cd555+WpT33qrMtYseOOOy4HH3zwrMsAAAAAAAAABsbQ+gAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAOyx6wLgGnZtm1bjjvuuDUf57zzzsuxxx674Pde+MIXZtu2bWtuI8nUjgMAAAAAAADsXgT57Da2bt2agw8+eF3b2LZt27q3AQAAAAAAAGxuhtYHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5AMAAAAAAADAgAjyAQAAAAAAAGBABPkAAAAAAAAAMCCCfAAAAAAAAAAYEEE+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADIsgHAAAAAAAAgAER5A9YVb2jqtrY64xZ1wUAAAAAAADA+hHkD1RV3SfJQ2ddBwAAAAAAAAAbS5A/QFW1X5LXzrrdZljqAAAgAElEQVQOAAAAAAAAADaeIH+YXpbkuv37i2dZCAAAAAAAAAAbS5A/MFX1G0ke3y9uT/LC2VUDAAAAAAAAwEYT5A9IVe2T5A1Jql/1qiQnzq4iAAAAAAAAADaaIH9Y/jTJ4f37M5M8f4a1AAAAAAAAADADgvyBqKqjkjx9ZNVTWmsXzaoeAAAAAAAAAGZDkD8AVbVnkjcm2dqvek9r7UMzLAkAAAAAAACAGRHkD8Nzk9yif39+kt+bYS0AAAAAAAAAzJAgf8aq6qZJnjey6jmttbNnVQ8AAAAAAAAAsyXIn6Gq2pJuSP29+lWfSfL62VUEAAAAAAAAwKwJ8mfr95LcoX9/eZInttbaDOsBAAAAAAAAYMb2mHUBm1VV3SDJi0dW/Vlr7ZQZ1XJwkmtOuNvh61ELwEZx7gM2I+c+YDNy7gM2I+c+YDNy7gN2N4L82fnbJFfr35+S5KUzrOXJSY6dYfsAs+DcB2xGzn3AZuTcB2xGzn3AZuTcB+xWDK0/A1X1uCRH94st3ZD6l8+wJAAAAAAAAAAGQpC/warqkCQvH1n1htbaZ2ZVDwAAAAAAAADDYmj9jffqJPv3789O8uwZ1jLnNUneM+E+hyc5fh1qAdgozn3AZuTcB2xGzn3AZuTcB2xGzn3AbkWQv4Gq6kFJfntk1dNaa+fPqp45rbUfJvnhJPtU1TpVA7AxnPuAzci5D9iMnPuAzci5D9iMnPuA3Y2h9TfWy0bef7i19u6ZVQIAAAAAAADAIOmRv7H2H3n/W1XVVnGM6y+w35GttS+voS4AAAAAAAAABkKPfAAAAAAAAAAYEEE+AAAAAAAAAAyIofU31v2S7DnhPrdK8vKR5XOSPHJsm9PWUhQAAAAAAAAAwyHI30CttRMm3aeqfj626rLW2senVBIAAAAAAAAAA7NLBPlVtU+SI9P1Tj8syaFJ9ktytX6Ti5NckOTMJGck+WqSk1trl250rQAAAAAAAACwFoMN8qvqdknuneSeSW6TZOuEh7iyqr6U5J+TfLi19oUplwgAAAAAAAAAUzeoIL+qDknyhCSPSHLE6LdG3rflDtN/3SPJUf3r+VV1epK/T/L61tr3p1MxAAAAAAAAAEzXllkXkCRVdWRVvT3dsPjHJrlR5of38zZf5jWnje1zeJIXJPlOVb29qm4zzZ8BAAAAAAAAAKZhpj3yq+rmSV6U5H5zq7JzAH9pkq8n+VqSU5J8P8kPklyU5JJ+m32S7JvkOv3rxklukeTmSfYea3bPJA9J8pCqOj7Jsa21r037ZwMAAAAAAACA1ZhJkF9V25K8JMnj0o0KMNqTvpKclOT4JJ9M8oXW2hWrbGevJLdP8hvpHha47Ugb6dfdp6remOT5rbVzV9MOAAAAAAAAAEzLrHrkn5bkGpkf4J+e5E1J3tpaO2sajbTWLk/y2f714qo6NMnvJHlMuqH2K8nWJE9I8qAk26bR7jS11j6VxacZAAAAAAAAAGA3s2VG7e6XHeH0vyS5Z2vtiNbaS6cV4i+ktXZW38aNktyzbzt9LfuvV7sAAAAAAAAAsFKzCvKT5KNJjmqtHd1a++hGN95a+2hr7egkR/W1AAAAAAAAAMDMzWpo/bu01k6YUdvztNZOSnLPqrrTrGsBAAAAAAAAgJn0yB9KiD+qtfbpWdcAAAAAAAAAALMcWh8AAAAAAAAAGCPIBwAAAAAAAIABEeQDAAAAAAAAwIAI8gEAAAAAAABgQAT5AAAAAAAAADAge8y6gElV1a2SHJnkekmukWSfJDXhYVpr7SnTrg0AAAAAAAAA1mqXCPKr6mpJ/jDJMUmus9bDJWlJBPkAAAAAAAAADM7gg/yqum2S96cL8Ed73rfZVAQAAAAAAAAA62fQQX5V/UqST6QbQj/pwvu5MH/S4fQBAAAAAAAAYPAGHeQneU26EH+u930l+XSS45N8Lcl5SS6ZTWkAAAAAAAAAMH2DDfKr6rAkd8mOXvgXJHloa+2fZ1gWAAAAAAAAAKyrLbMuYAm/3n+tdGH+k4X4AAAAAAAAAOzuhhzkHzLy/vwk75pVIQAAAAAAAACwUYYc5G/vv7Ykp7fWti+1MQAAAAAAAADsDoYc5J858n6vmVUBAAAAAAAAABtoyEH+v6XrjV9JDquqrTOuBwAAAAAAAADW3WCD/NbaWUk+1S/um+Qes6sGAAAAAAAAADbGYIP83nOS/Lx//xdVtc8siwEAAAAAAACA9TboIL+19sUkT083vP5NkxxfVQfOtioAAAAAAAAAWD+DDvKTpLX2miSPS/KzJEcn+Y+q+sOqutFsKwMAAAAAAACA6dtj1gWsRGvtzVX1uSTvS3KTJC9J8pKqujjJuUkum/yQ7WZTLhMAAAAAAAAA1myXCPKr6qgkL09y4yQt3VD7SbJv/5pUm1JpAAAAAAAAADBVgw/yq+pxSV6TrtZKF8KvJYiv5TcBAAAAAAAAgNkYdJBfVf8jyeuSbOlXjfbG357k4iSXzKA0AAAAAAAAAFgXgw7yk7wiXYg/F+Cf36/7QJJvtNYun2FtAAAAAAAAADB1gw3yq+r2SX4lO0L8byS5W2vtnJkWBgAAAAAAAADraMvym8zMbfqvlS7Mf7wQHwAAAAAAAIDd3ZCD/ANG3v+gtfb5mVUCAAAAAAAAABtkyEH+uf3XluR7sywEAAAAAAAAADbKkIP8s0beX2NmVQAAAAAAAADABhpykP/ZJJckqSQ3rKp9Z1wPAAAAAAAAAKy7wQb5rbWLkvxDv7hnkkfOsBwAAAAAAAAA2BCDDfJ7f5zk/P79n1bV4bMsBgAAAAAAAADW26CD/NbaWUnun+SiJNuSfKqq7jTbqgAAAAAAAABg/ewx6wKWUlUHJzklXZj/xiSHJflkVf1LkvckOSnJj5JcNumxW2s/nF6lAAAAAAAAADAdgw7yk5ydpI0stySV5K79a7Vahv+zAwAAAAAAALAJ7SphdmVHoN9G1gEAAAAAAADAbmVXCfITwT0AAAAAAAAAm8DQg/x3Z/7Q+gAAAAAAAACwWxt0kN9ae+isawAAAAAAAACAjbRl1gUAAAAAAAAAADsI8gEAAAAAAABgQAT5AAAAAAAAADAggnwAAAAAAAAAGBBBPgAAAAAAAAAMyEyC/KrafxbtLmWINQEAAAAAAACw+cyqR/7pVfWcqtp7Ru3/QlXtXVXPTXL6rGsBAAAAAAAAgFkF+fsneWmSM6rqeVV1wEYXUFUHVNXzk5yR5MVJ9tvoGgAAAAAAAABg3KyC/DkHJ3lRkjOr6g1VdYf1brCq/ltVvTHJmUlemOSaSWq92wUAAAAAAACAlZhVkH/3JKeMLF8tyWOS/GtVfbuq/qKq7lhVW9faUFVt7Y/1l1X17SSfTXJM32b1r2/0NQEAAAAAAADATO0xi0Zba5+oqlsmeXKSP0pyrf5bleTwJH/Qvy6pqn9L8sUkX09yapLvtdbOGT9mVVV/nF9K8itJbpHktknukOSqI8dPktZ/PSfJS5K8trV25TR/RgAAAAAAAABYjZkE+UnSB+evqqo3JHlqkqcnOWRkk0rXa/5u/WvHN6q2J7m0f1WSvZPsk4VHGBgP75Pk7CR/neQ1rbVL1/zDAAAAAAAAAMCUzGpo/V9orV3aWntZkusn+Z0kn8vCc9bXyGtrkn3TzW9/UP9+69g2C+3/ub6N67fW/kqIDwAAAAAAAMDQzKxH/rjW2s+TvC3J26rqBkkeluTeSY5KF9L/YtNlDlUjX69McmKSDyd5R2vt9KkWDQAAAAAAAABTNpggf1Rr7TtJXprkpVW1f5I7ppvv/pZJbpDk0CT7Jdmr3+XyJOcnOSvJGUm+muSkJJ9rrZ2/ocUDAAAAAAAAwBoMMsgf1QfxH+lf81TVln6b7RtdFwAAAAAAAACsh8EH+UsR4AMAAAAAAACwu9ky6wIAAAAAAAAAgB0E+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAMiyAcAAAAAAACAARHkAwAAAAAAAMCACPIBAAAAAAAAYEAE+QAAAAAAAAAwIIJ8AAAAAAAAABgQQT4AAAAAAAAADIggHwAAAAAAAAAGRJAPAAAAAAAAAAOyx6wLWEpV7TWyeEVrrc2sGAAAAAAAAADYAIPtkV9Vj0lyaf+6JMndZ1sRAAAAAAAAAKy/wQb5Sa6dpPrXha21j864HgAAAAAAAABYd0MO8i/uv7Yk351lIQAAAAAAAACwUYYc5H9/5P32mVUBAAAAAAAAABtoyEH+qf3XSnLoLAsBAAAAAAAAgI0y2CC/tfa1JKf0iwdW1e1mWQ8AAAAAAAAAbITBBvm914+8P3ZmVQAAAAAAAADABhl6kP+qJF9IN7z+varqxTOuBwAAAAAAAADW1aCD/Nbaz5P8VnaE+c+tqo9V1R1mWxkAAAAAAAAArI89Zl3AUqrq2f3bDye5fpJrJblrkrtW1ZlJTkzynSQ/TXLFJMdurf3lFEsFAAAAAAAAgKkYdJCf5M+TtJHllq5nftIF+9dbw7EF+QAAAAAAAAAMzqCH1h9RI+/byGutxwIAAAAAAACAQRl6j/xkR/AugAcAAAAAAABgtzf0IP83Z10AAAAAAAAAAGykQQf5rbV/nnUNAAAAAAAAALCRtsy6AAAAAAAAAABgB0E+AAAAAAAAAAyIIB8AAAAAAAAABkSQDwAAAAAAAAADssesC1iNqto7yVFJ7pDkekkOSHL1JBcm+UmS7yb5fJIvttYum1WdAAAAAAAAADCpXSrIr6qbJnlakkck2WcFu1xSVX+f5JWttW+ua3EAAAAAAAAAMAW7xND6VbWlql6Q5OQkj09y1STVvxbcpX9dLckTk3y5qv64qnaJnxcAAAAAAACAzWvwPfL78P29Se6bHcF9m/t2Fg/zR7fZM8mfJDmyqh7YWtu+PtUCAAAAAAAAwNoMPshP8uok9+vft+wI77+U5BNJvpLk3CQXp+uBf1CSWyW5a5Lbju13vyTHJXnyBtUOAAAAAAAAABMZdJBfVb+a5EmZ37v+k0me0Vr76hK7vr3f/5ZJ/jpdqD8X5j+pqt7cWjtx3QoHAAAAAAAAgFUa+pzxL+y/zg2f/1ettbstE+L/Qmvtq621o5O8rD/G3AMBL1x8LwAAAAAAAACYncEG+VW1b5K7pAvfW5KPtNaetZpjtdae8/+zd+fhlt1lnei/b1UlJBBIKicplCEQAkjCIKOoiAgyCA5Ii0o7gYrgEL049G1EuTGi99poK00XXu1WGhyu1ybKICDaqIAYISJCVAIaTRiSQMghIWQgCVVv/7H38ewcajp19j5rnTqfz/OsZ/3W9K63njws/vie328neWNWl+V/wrQ+AAAAAAAAAIzKaIP8JF+R5Liszsb/6Q3We/HM+LhpfQAAAAAAAAAYlTEH+XefGV/V3e/fSLHp81cepD4AAAAAAAAAjMKYg/zTp/tOcsWcas4G+afNqSYAAAAAAAAAzM2Yg/wbZ8Z3mVPNO8+Mb5pTTQAAAAAAAACYmzEH+VdP95XkzKraUJg/ff7MA9QHAAAAAAAAgNEYc5D//um+kxyX5DkbrPecJMcfoD4AAAAAAAAAjMZog/zu/mCSy6eHleQlVXX20dSqqgckeUkmfxSQJJdP6wMAAAAAAADAqIw2yJ/6b5mE+J3J79u/o6qeup4CVfXkJG9PctJMrV+fc58AAAAAAAAAMBdjD/J/JclHpuNOspTkjVX1p1X1rKrac6CHqur06fW3JPnjJKfPXP5wkpctsmkAAAAAAAAAOFq7hm7gULr7lqr6xiRvy2RGfmcyq/6rp1uq6pNJrklyY5I7ZRL2zwb8NfPcp5N8Y3ffukn/BAAAAAAAAABYl1EH+UnS3e+bLqf/P5PcPau/c1/T/Z7cPri/3eNZDfE/luRbu/viBbYLAAAAAAAAABsy9qX1kyTd/ddJHpzkN5PcmtUQvw+xZXrfrUn+e5IHT+sAAAAAAAAAwGiNfkb+iu6+Lsn3VdVPJvnOJI9L8ugkdz3A7Z9I8q4kb0/y2929vGmNAgAAAAAAAMAGbJkgf0V3X5PkV6Zbqur4JLuTnJTkhiTXdvetw3UIAAAAAAAAAEdvywX5a01D+09MNwAAAAAAAADY0kYb5FfVQ5I8a+bUBd393qH6AQAAAAAAAIDNMNogP8kTkrwwSSfZn+Tlw7YDAAAAAAAAAIu3Y+gGDuGE6b6SfKy7Pz5kMwAAAAAAAACwGcYc5K/85n3PjAEAAAAAAADgmDbmIP/KmfHuwboAAAAAAAAAgE005iD/wiQ3Z7K0/plVdcrA/QAAAAAAAADAwo02yO/uzyR54/RwZ5JvH7AdAAAAAAAAANgUow3yp16S5Lbp+PyqOnPIZgAAAAAAAABg0UYd5Hf3PyT5genhqUneVlWPHbAlAAAAAAAAAFioUQf5SdLdr0zyTUmWk9wzyV9U1Z9U1XOq6pyqOnHYDgEAAAAAAABgfnYN3cChVNVNM4c7p/sdSZ443Vbu25fkc+so3d19p413CAAAAAAAAADzNeogP8kJM+OebitqZrwr6/u39OFvAQAAAAAAAIDNN/YgP5mE7pXbB/cbrQUAAAAAAAAAozT2IP+imD0PAAAAAAAAwDYy6iC/u7906B4AAAAAAAAAYDPtGLoBAAAAAAAAAGCVIB8AAAAAAAAARmS0S+tX1ZlJnjRz6h3d/cGh+gGAMdq3b1+Wl5c3XGf//v259tprD3ht9+7d2bFjPn/7t7S0lJ07d86lFgAAAAAAHKtGG+Qn+bokL5uOO8n9BuwFAEZpeXk555577tBtHLG9e/dmz549Q7cBAAAAAACjNual9U9KUtPtqu6+bOB+AAAAAAAAAGDhxhzkf3K67yRXDtkIAAAAAAAAAGyWMQf5V82M7zJYFwAAAAAAAACwicYc5L87yecyWVr/3lV1x4H7AQAAAAAAAICFG22Q393XJPnT6eHxSf7dgO0AAAAAAAAAwKbYNXQDh/HSJE+djn++qt7c3Z8asiEAGJOlpaXs3bt3w3WWl5dz3nnnHfDa+eefn6WlpQ2/I8nc6gAAAAAAwLFs1EF+d7+jqn4myflJ7pHkz6rqm7v70mE7A4Bx2LlzZ/bs2bPQdywtLS38HQAAAAAAwKrRLq2/ortfkuQFSW5N8pAkF1fVr1XVV1XVnYbtDgAAAAAAAADma9Qz8qvqAzOHNye5Q5ITknzfdOuqWk5yfZLb1lG6u/uBc2sUAAAAAAAAAOZk1EF+kgck6ZnjlXHN7E+fbuvRh78FAAAAAAAAADbf2IP8g9lIEF+HvwUAAAAAAAAAhjH2IP/qmD0PAAAAAAAAwDYy6iC/u79g6B4AAAAAAAAAYDPtGLoBAAAAAAAAAGCVIB8AAAAAAAAARkSQDwAAAAAAAAAjIsgHAAAAAAAAgBER5AMAAAAAAADAiOwa8uVV9eSZw7/p7msX+K4HJvmp6WF397cv6l0AAAAAAAAAcLQGDfKTvCVJT8dPSvLnh7p5g2H8FyR51sz7RhHkV9XxSR6Q5N5J7p7kzkmOS3J9kuUkFye5pLv3DdUjAAAAAAAAAJtn6CA/SSqr4frhzCOMX8/7FqKqnpnkiUkek0mIf7j/Dp+uqt9L8l+6+4OL7g8AAAAAAACA4ewYuoEcXahec+9ic70syfOTPChH9scUJyf5/iQXV9XPVNVW//cDAAAAAAAAcBBjmJHPxGeTfCTJpzP5A4vTkpyR2//RwnFJzktyzyTfu9kNAgAAAAAAALB4gvzhXJnkTUnekeSvk1zW3ftnb6iq3UmemeT/SnKPmUvfU1Xv7O7/sVnNAgAAAAAAALA5BPnDeFqSv+/uQ/6sQHdfm+S/V9UFSd6a5OEzl3++ql69NvwHAAAAAAAAYGvbMXQD21F3X3y4EH/N/dcm+Y4ks898YZLHzLs3AAAAAAAAAIYlyN8iuvuSJH+75vTZQ/QCAAAAAAAAwOII8reWf1lzfNogXQAAAAAAAACwMIL8reWENcfXDdIFAAAAAAAAAAsjyN8iqqqSPGrN6bVL7QMAAAAAAACwxQnyt47vSXK3meMPJrlooF4AAAAAAAAAWBBB/hZQVc9O8qszp/YnObe7e6CWAAAAAAAAAFiQXUM3QFJV909yxsyp45LsTvKgJE9Pcs7MtVuTPK+7/2yO79+T5PR1PnbWvN4PMATfPmA78u0DtiPfPmA78u0DtiPfPuBYM6Yg/+yquuFw98weVNWjktSR1j+qrjbHDyb5Pw5zTyd5S5Kf7O73L+D95825JsDY+fYB25FvH7Ad+fYB25FvH7Ad+fYBx5SxBPmV5OVH8cy71vlM58iD/7F5TZKXLyDEBwAAAAAAAGBEdgzdwNRKwH4kW89sR/rMyraVfUuSd1bVO6rqvkM3AwAAAAAAAMBijGVGfjIJ5jfjmdHp7hckecHKcVWdmGQpyRcneUaSb0ty4vTyY5P8TVU9qbvfM6cWfjWTGf/rcVaS18/p/QBD8O0DtiPfPmA78u0DtiPfPmA78u0DjilDB/lX5xgJ4+epu29O8rHp9qaq+oVM/s/nodNbTknyuqp6UHdfN4f3XZ3Jf4sjVrXVFzgAtjvfPmA78u0DtiPfPmA78u0DtiPfPuBYM2iQ391fMOT7t4ruvrSqnpTkvUnuOT199yT/IclPDdYYAAAAAAAAAHO3Y+gGODLdfU2S89acfs4ArQAAAAAAAACwQIL8reW1uf1PEdytqu41VDMAAAAAAAAAzJ8gfwvp7uuSfGrNaT9PAAAAAAAAAHAMEeRvfbcN3QAAAAAAAAAA8yPI30Kq6s5JTl1z+hND9AIAAAAAAADAYgjyt5avTVIzx59MctVAvQAAAAAAAACwAIL8LaKqTkxy/prTb+zu/UP0AwAAAAAAAMBiCPI3WVW9tKoetc5nTk3yhiT3nzm9L8mvzLM3AAAAAAAAAIYnyN98T05yUVW9u6p+rKoeWlXHrb2pJh5QVS9O8qEkT1xzy690999vRsMAAAAAAAAAbJ5dQzewjX3JdEuSW6vqiiTXJbk1yZ2T3HO6P5BXJ/mPC+8QAAAAAAAAgE0nyB+H45OceQT3XZ/khUl+rbt7sS0BAAAAAAAAMARB/ub790m+PsmTMpmRf5fD3N9J/j7Jbyd5dXd/crHtAQAAAAAAADAkQf4m6+5LklyS5KVVtSPJ/ZLcN8kZmYT6xyX5TJJPJ7k8yXu7+/phugUAAAAAAABgswnyB9Td+5N8aLoBAAAAAAAAQHYM3QAAAAAAAAAAsEqQDwAAAAAAAAAjIsgHAAAAAAAAgBHZNXQDh1JVb545fGF3X7yBWl+c5P+ZHnZ3f+2GmgMAAAAAAACABRh1kJ/ka5L0dPxLG6x12rReZmoCAAAAAAAAwKhshaX1a+gGAAAAAAAAAGCzbIUg3+x5AAAAAAAAALaNrRDkz8vOmfHnBusCAAAAAAAAAA5hOwX5p8+MbxisCwAAAAAAAAA4hO0U5H/VdN9JrhywDwAAAAAAAAA4qF1DN7AOvd4HqqqSnJnkmUmeM1Pj/fNrCwAAAAAAAADmZ/Agv6puOsJb/7iq9q+ndJLj1xwnkzD/9euoAwAAAAAAAACbZvAgP8kJmYTrdZDrK+ePP8j1I7XyjouTvHaDtQAAAAAAAABgIXYM3cAmqiQXJvmG7v7c0M0AAAAAAAAAwIGMYUb+RVn97fq1Hj1z7YNJrl9H3f1JbkzyqST/mORPu/vdR9skAAAAAAAAAGyGwYP87v7Sg12rqv0zhz/c3X++CS0BAAAAAAAAwGC2wtL6NXQDAAAAAAAAALBZBp+Rfxj/aWZ8+VBNAAAAAAAAAMBmGXWQ390/OXQPAAAAAAAAALCZtsLS+gAAAAAAAACwbQjyAQAAAAAAAGBEBPkAAAAAAAAAMCK7hm5gParqfkmemuThSe6Z5OQkJyapdZbq7n7gnNsDAAAAAAAAgA3bEkF+VT04ycuTfOXaS0dZsjfWEQAAAAAAAAAsxuiD/Kp6VpJXJTkuq8F9r9mvq+Qc2gIAAAAAAACAhRh1kF9VX5Lkt7LaZ2cSxNd0fON0AwAAAAAAAIBjwqiD/CT/OZMeVwL8W5L8epLfT/L+7r55wN4AAAAAAAAAYO5GG+RX1T2TPCarIf7Hkzyxuz8waGMAAAAAAAAAsEA7hm7gEL5iul9ZRv9cIT4AAAAAAAAAx7oxB/l3nRl/OsnrhmoEAAAAAAAAADbLmIP8E6f7TvKv3b1/yGYAAAAAAAAAYDOMOci/emY85j4BAAAAAAAAYG7GHJC/d7qvJPccshEAAAAAAAAA2CyjDfK7+++SXDo9PLWqHjFkPwAAAAAAAACwGUYb5E+9ZGb804N1AQAAAAAAAACbZNRBfnf/dpILMlle/xuq6oUDtwQAAAAAAAAACzXqIH/qO5O8NpMw/+er6ner6syBewIAAAAAAACAhdg1dAOHUlX/53R4UZIvTnKfJM9K8i1V9bdJ3pPk6iSfXW/t7n7pvPoEAAAAAAAAgHkZdZCf5BeS9MxxZzIzf2eSL0nyqA3UFuQDAAAAAAAAMDpbYWn9ZBLer+iZbaO1AAAAAAAAAGBUxj4jP1kN3gXwAAAAAAAAABzzxh7kP3XoBgAAAAAAAABgM406yO/uPxm6BwAAAAAAAADYTDuGbgAAAAAAAAAAWCXIBwAAAAAAAIAREeQDAAAAAAAAwIgI8gEAAAAAAABgRHYN3cDRqKoHJ3lskrOTnJrk5Ez+KOGF3X3xkL0BAAAAAAAAwEZsmSC/qnYmeW6SH01yv7WXk3SSXzrIs69I8vjp4Ye7+6mL6hMAAAAAAAAANmJLBPlVde8kv5fkSzIJ7ZNJcJ+Z40N5XZIfmI6/qKoe2d3vmWePAAAAAAAAADAPO4Zu4HCq6l5J/iqrIf5sgD97fFDd/b+SXDpz6llzbhMAAAAAAAAA5mLUQR9YJq8AACAASURBVH5V7UrypiRfOHP6yiT/McnDkpyWI5uRnyQXzIyfMpcGAQAAAAAAAGDORh3kJ/n+JOdkddb9m5Kc3d2/2N3v7+5PTc8fdlZ+kj+e7ivJOVW1e76tAgAAAAAAAMDGjT3I/9GshvQXJ3lmd99wlLXel9sH/udspDEAAAAAAAAAWITRBvlVdf8kZ2Z16fwXdfctR1uvuz+T5IqZU/fdQHsAAAAAAAAAsBCjDfKTPGJmfGOSP51DzWtnxpbWBwAAAAAAAGB0xhzknz7dd5LLunvfHGreNDO+4xzqAQAAAAAAAMBcjTnIP3FmfPOcap48M75+TjUBAAAAAAAAYG7GHORfMzNe2mixqtqR5B4HqQ8AAAAAAAAAozDmIP+q6b6SnFlVd9lgvYcnOWnm+NIN1gMAAAAAAACAuRtzkH9hkn1JOpMw/xkbrPe8mfGnk/ztBusBAAAAAAAAwNyNNsjv7uuSvCuTEL+SvKiqTjiaWlX1yCTflckfBXSSP+nunlevAAAAAAAAADAvow3yp355uu8k903y6qrauZ4CVXVOkj9MclwmfxCQJP9pbh0CAAAAAAAAwByNOsjv7tcm+ausBvDPTPLOqnrM4Z6tqtOq6rxMZvXffVqjk/x+d79vQS0DAAAAAAAAwIbsGrqBI/AtmYTx95gePzrJO6rqI0neMz23EtL/RFX9YCaz9x+U1WX5V5bRvyTJ921S3wAAAAAAAACwbqMP8rv7qqr6miRvSHJWJqF8JblXkjNmbq0kT5kZ/1uJ6fE/JPn67r5x4U0DAAAAAAAAwFEa9dL6K7r7kiQPS/LqrM6un933zHHWHPf0uS/r7g8vvlsAAAAAAAAAOHpbIshPku6+obu/O8n9k7w8yaVZXTr/QNsVSX4jyYO6+7vNxAcAAAAAAABgKxj90vprdfe/JnlBkhdU1Z4kZydZSnJKkpuSXJPksu7+l+G6BAAAAAAAAICjs+WC/FndfXWSq4fuAwAAAAAAAADmZcssrQ8AAAAAAAAA24EgHwAAAAAAAABGRJAPAAAAAAAAACMiyAcAAAAAAACAEdk1dAPrUVX3T/LUJA9LckaSuyQ5MUmts1R39wPn3B4AAAAAAAAAbNiWCPKr6hFJXpbky9deOsqSvbGOAAAAAAAAAGAxRh/kV9Xzkrwik58BWAnue81+XSXn0RcAAAAAAAAALMKog/yqemqSX5se9nSr6bY/yY1JbhqmOwAAAAAAAACYv1EH+UlePt2vBPjXTc+9Psk/dvetQzUGAAAAAAAAAIsw2iC/qh6Z5KyshviXJPnq7v74oI0BAAAAAAAAwALtGLqBQ3jodF+ZhPnfK8QHAAAAAAAA4Fg35iD/9Jnxld39rsE6AQAAAAAAAIBNMuYg/6bpvpNcMWQjAAAAAAAAALBZxhzk//PM+OTBugAAAAAAAACATTTmIP+dSW5JUknuU1V3HrgfAAAAAAAAAFi40Qb53X19kt+bHu5K8h0DtgMAAAAAAAAAm2K0Qf7Ui5J8cjr+2aq6z5DNAAAAAAAAAMCijTrI7+6PJ3lGkhuSLCX5i6p6zLBdAQAAAAAAAMDi7Bq6gcPp7gur6iuSvCbJ/ZO8o6remuSCJO/NZMb+Z4+i7tVzbRQAAAAAAAAA5mD0QX6SdPffV9Xjkvx5krOTPHG6HXXJbJF/OwAAAAAAAADby6iX1l9RVS9I8qEkD8gkhK85bAAAAAAAAAAwOqOflV5Vr0rynVkN3zurYT4AAAAAAAAAHFNGHeRPZ+J/1/Rwdib+dUk+kGQ5yU3DdAcAAAAAAAAA8zfaIL+q7pDkpzMJ8JNJgP+XSV6c5C+7uw/2LAAAAAAAAABsVaMN8pM8LsmpWQ3yX5/km7p7/3AtAQAAAAAAAMBi7Ri6gUM4e7qv6f5HhPgAAAAAAAAAHOvGHOSfMN13kku7+6NDNgMAAAAAAAAAm2HMQf5VM+NrB+sCAAAAAAAAADbRmIP8y2bGpw/WBQAAAAAAAABsojEH+X+Vyaz8SnLvqrr7wP0AAAAAAAAAwMKNNsjv7v1JXjlz6keH6gUAAAAAAAAANstog/yp/zvJP2YyK/9HqurrBu4HAAAAAAAAABZq1EF+d9+c5MlJ/j7JriR/UFUvrqo7DtsZAAAAAAAAACzGrqEbOJSq+pbp8GVJXpzk3kl+JsmPVdUfJ/nbJJ9M8tn11u7u/zmfLgEAAAAAAABgfkYd5Cf5/5P0zHFnssz+yUm+dbodLUE+AAAAAAAAAKMz9iB/RWU10O8159dj5Q8B+nA3AgAAAAAAAMAQtkKQX2v286gFAAAAAAAAAKM09iD/B4ZuAAAAAAAAAAA206iD/O7+9aF7AAAAAAAAAIDNtGPoBgAAAAAAAACAVYJ8AAAAAAAAABgRQT4AAAAAAAAAjIggHwAAAAAAAABGZNfQDRyNqjo5yWOSnJ3k1CQnZ/JHCS/r7n8asjcAAAAAAAAA2IgtFeRX1VOS/HiSJySpA9xyQZLPC/Kr6ueSPHx6+OHu/oGFNQkAAAAAAAAAG7AlgvzpDPzfTPKMlVPTfa8ZH8z7krxo5b6q+i/d/cG5NwoAAAAAAAAAG7Rj6AYOp6p2J/nrTEL8tbPwK4cO8Ff8QZIrZo6/fT7dAQAAAAAAAMB8jT7IT/K6JA+YOb45yf+bSbD/yBx4if3b6e5O8oczp54yzwYBAAAAAAAAYF5GvbR+VX1bksdmddb9e5I8o7uvmLknObJZ+X+U5IczCf4fVlUndfcN8+0YAAAAAAAAADZm7DPyf3K6rySXJ3nybIi/Tu+dGe9Ics4G+gIAAAAAAACAhRhtkF9VZyR5YCaz7TvJT3X3dUdbr7s/leTjM6fuv7EOAQAAAAAAAGD+RhvkJ3n0dF9Jbkny2jnUXJ4ZnzqHegAAAAAAAAAwV2MO8u863XeSf+nuW+ZQ8zMz45PmUA8AAAAAAAAA5mrMQf6dZ8Y3LKDmjXOqCQAAAAAAAABzM+Ygf3YZ/N1zqnn3mfE1c6oJAAAAAAAAAHMz5iD/E9N9JblPVZ24kWJV9cAkp8ycunwj9QAAAAAAAABgEcYc5L8rSU+3nUmeusF6z5kZ35zk3RusBwAAAAAAAABzN9ogv7s/keR9mczIT5IXVdVR9VtVZyV5flb/MOAvuvtzc2kUAAAAAAAAAOZotEH+1Ctmxg9L8svrLVBVX5DktUlOyuofBfzSxlsDAAAAAAAAgPkbe5D/qiQfmI4ryQ9X1QVVdcbhHqyqnVX17CTvSfLArM7G/7PufvuC+gUAAAAAAACADdk1dAOH0t37q+qbk7wzySmZhPnPSPL0qnpnJiF9puc7yXdU1dOS3DfJY2ee6en+iiTfsan/CAAAAAAAAABYh1EH+UnS3ZdU1dMzWR5/aXp6Z5KvnG4rKsmz1xwnqyH+VUm+obuvXmzHAAAAAAAAAHD0xr60fpKku9+Z5GFJ3p7VgP7fLs9sa89nev/bkzyiu/9ukX0CAAAAAAAAwEZtiSA/Sbr7Y939+CRPSPKGJDdnEtIfbLstyVuTPKW7H9/dHx+kcQAAAAAAAABYh9Evrb9Wd78tyduqaleShyc5O5Ml909JclOSa5JcluTC7r55qD4BAAAAAAAA4GhsuSB/RXd/LslF0w0AAAAAAAAAjglbZml9AAAAAAAAANgOBPkAAAAAAAAAMCKCfAAAAAAAAAAYkV1DN3AoVbUnyc/MnHpld7/nKOo8Ksl3z5x6UXdft8H2AAAAAAAAAGDuRh3kJ/m+JN+fpJN8KslPHGWdDyT51iSnTI//KcnLNtwdAAAAAAAAAMzZ2IP8Z82Mf7e7bzqaIt19Y1X9bpJzp6e+LYJ8AAAAAAAARmLfvn1ZXl6eS639+/fn2muvPeC13bt3Z8eOjf/69tLSUnbu3LnhOsCBjTbIr6ovTPLATGbjJ8kFGyz5mqwG+Q+vqlO7+1MbrAkAAAAAAAAbtry8nHPPPffwN47E3r17s2fPnqHbgGPWxv/cZnG+eLqvJJ9L8jcbrHfRtM5KzYdusB4AAAAAAAAAzN2Yg/wzp/tOcnl337KRYtPnL5s5ddZG6gEAAAAAAADAIow5yD95ZnzgH/FYv9k6p8ypJgAAAAAAAADMzZiD/NtmxifOqeZsnTH/2wEAAAAAAADYpnYN3cAhXDPdV5K7zanmbJ1rDnoXm2bfvn1ZXl4euo3bOVQ/Y+t1xdLSUnbu3Dl0GwAAAAAAAMAcjDnIv2JmfGpVPaS7Lz7aYlX1kCRLM6c+ftSdMTfLy8s599xzh27jiJ133nlDt3BAe/fuzZ49e4ZuAwAAAAAAOEpLS0vZu3fvXGotLy8fNNM4//zzs7S0dMBr6zGPGsDBjTnI/+tMltdf6fH5SX5oA/W+f2a8P8lfbaAWAAAAAAAAzM3OnTs3ZdLe0tKSyYGwBYz2d+K7+8YkF2aytH4l+b6q+rKjqVVVX57kuUl6ur27u6+bV68AAAAAAAAAMC9jnpGfJL+c5HGZhO+7kvxRVX1jd7/zSAtU1WOTvDbJzkz+IKCT/MoCeoUtZd++fVleXt5wnf379+faa6894LXdu3dnx475/L3Q0tJSdu7cOZdaAAAAAAAAMGajDvK7+4+q6l1JvjSTAP7UJH9RVb+R5L929wcO9mxVnZPkR5J8byYh/sps/L/p7j9YePMwcsvLyzn33HOHbuOI7d2711I/AAAAAAAAbAujDvKnviXJRUnumkkQvzPJ85I8r6o+muQ9Sa5OckOSk5LsSfLIJPecPr8yC7+SXJnkmZvZPAAAAAAAAACsx+iD/O7+WFV9bZI3JLl7VkP5JDkjq4H9rJXrPXP/R5J8Q3d/bLEdMy/nfPNzc/xJd9n09/b+/bn1xs8c8Nrxd7pzak5Lxa/XrTdcnw+85jcGeTcAAAAAAACweUYf5CdJd/9dVT00yW8kefrK6UM9Mt2vzMa/IMnzu/vAP+Q9oKqqJPdO8uAk90hySpJbklyb5J8z+SmAzw7W4ICOP+kuOeHk3YO8+8TdS4O8FwAAAAAAAGBLBPlJ0t3LSZ5RVQ9J8oIkT8wk+D6YjyZ5S5KXd/c/bkKLR6yqdif5xiRfk+QJSU47xO23VdWbkrysu9++Gf0BAAAAAAAAMJwtE+Sv6O6Lk3xPklTVvZOcleTUJHdO8pkkn0ryz939kYFaPKSqekWS5yY5/ggfOS6T0P8bq+q3kvxwd1+/qP4AAAAAAAAAGNaWC/JndfflSS4fuI31enQOHOLvS3JVkk9kEt7fK8nJa+75riQPqKqv7u4bFtolx7ylpaXs3bt3w3WWl5dz3nnnHfDa+eefn6Wl+fxMwbzqAAAAAAAAwNht6SD/GHBdkv8vyZuS/GV3f2blQlXtTPLYJD873a/4kiSvSvLMzWuTY9HOnTuzZ8+ehb5jaWlp4e8AAAAAAACAY82OoRvYpi7PZHn9u3X3D3X3m2dD/CTp7n3d/bYkj0/y39Y8/01V9fhN6RQAAAAAAACATSXI33znJfmi7v7N7r75cDd3974kP5jkPWsuPXcRzQEAAAAAAAAwLEH+JuvuN3X3ret8Zl+Sl645/ZT5dQUAAAAAAADAWOwauoH1qqo7JHlEkoclOS3JKUnusM4y3d0/NO/eFuwv1xwvVdUdu/umQboBAAAAAAAAYCG2TJBfVQ9K8uNJvjXrD+5vVypJJ9lqQf61Bzh3chJBPgAAAAAAAMAxZEsE+VX1E0l+LslxmQTxySSMr5nbeu1jByi19p6t5O4HOLe86V0AAAAAAAAAsFCjD/Kr6sez+vvws0F8HeB4rbXXD3TPVvHYNccf7u5bB+kEAAAAAAAAgIUZdZBfVQ9O8gtZDeQryQVJfifJ5UneN3Ptu5P8XZJTkzwwyROSfH0m/8ZO8oFMltP/+OZ0P3ffs+b4zYN0AQAAAAAAAMBCjTrIT/KiJDun407yvO7+jZWLVbebYP/R7r54On5bkldU1T2TvCLJ1yU5O8lvJXlid//zgvueq6p6WpKvXHP6VXOsvyfJ6et87Kx5vR9gCL59wHbk2wdsR759wHbk2wdsR759wLFmtEF+VR2f5OlZnXF/wWyIfyS6+6NJvqGqfinJjyW5Z5I3V9VDu/vGuTa8IFV1apJfX3P6dd190Rxf84NJzptjPYCtwLcP2I6OiW/fvn37sry8vOE6+/fvz7XXXnvAa7t3786OHTs2/I4kWVpays6dOw9/I7Aox8S3D2CdfPuA7ci3DzimjDbIT/LIJCdMx53kZUdbqLt/oqoemcms9vtkMtP/pzbc4YJV1Y5MfkbgHjOnP53kR4bpCAAAhre8vJxzzz136DaO2N69e7Nnz56h2wAAAABgC5nPFJPFuN/M+OYk7zrM/ccf5vqLp/tK8v1VtRWmxPxikqeuOff86UoDAAAAAAAAAByDxjwj/9TpvpNc1t19gHv2ZxLMJ8kdDlPvnUmuTbI7ySlJHp3kwjn0uRBV9SOZ/BzArJd29+8v4HW/muQ163zmrCSvX0AvAJvFtw/Yjnz7gO3Itw/Yjnz7gO3Itw84pow5yD9hZvyZg9zzmSQnZxL2Lx2qWHd3VX0kkyA/Sc7JSIP8qvq2fP5PCbwqyQsX8b7uvjrJ1et5pqoOfxPAiPn2AduRbx+wHfn2AduRbx+wHfn2AceaMS+tPxven3iQe66fGZ9xBDVvmxmftu6ONkFVfV2SV2d1pYEk+cMkzz3IqgQAAAAAAAAAHEPGHORfOTM+5SD3XDozftQR1LzPzHjfujtasKp6fCbLvsyulPC/kvz77h5dvwAAAAAAAADM35iX1v/AdF9J7lFVJ3T3Z9fc8/4kj5/e85VVdXJ3f/pAxaYh+akzp9a1vMqiVdWjk7wht/9JgQuTPKO7bx2mKwAAGJ+lpaXs3bt3w3WWl5dz3nnnHfDa+eefn6WlQ/561xGbVx0AAAAAto8xB/n/lOS6TGbj70jykCQXrbnnzUlekKST3DHJzyc5d22hqjo5yX+d3reyZP3aWoOpqock+eMkJ82c/rskT+vuG4fpCgAAxmnnzp3Zs2fPQt+xtLS08HcAAAAAwMGMdmn97t6f5O0zp77mALf9WZKPTMeV5Aeq6g+r6klVdUZV3beqnpPkPUnOWSmd5B+6+5IFtb4uVfVFmSyfv3vm9CVJnnKw1QUAAAAAAAAAOHaNNsifev3M+JvWXuzuTvITmYT4K7Ptn57kLUkuS/KhJL+Z5Kzcfjb+Ty2u5SNXVfdK8tYks1N9LkvypO7+5DBdAQAAAAAAADCksQf5f5jkpiT7k5xTVV+59obuviDJy7Ia5mc6nt1mQ/yXdPcbF9z3YVXVF2ayosA9Zk5fkeSru/uKYboCAAAAAAAAYGi7hm7gULr7+tz+d+MPdt+PVdWHkvxckqUD3FJJrkzywu7+nfl2uX5VdWomy+mfNXP6k5nMxL9smK4AAAAAAAAAGINRB/nr0d2/XlW/leSJSb40yV0zCfA/nuTCJG/t7lsGbDFJUlV3zmTp/wfOnL4uyZO7+5JhugIAAAAAAABgLI6ZID9JuvvmJH803cbqDUketebcLyc5raqeuM5af9vd186nLQAAAAAAAADG4JgK8reIrzrAuZ89ylqPT/K2o+4EAAAAAAAAgNHZMXQDAAAAAAAAAMAqQT4AAAAAAAAAjIil9TdZd9fQPQAAAAAAAAAwXmbkAwAAAAAAAMCIDDIjv6puGuK9M7q77zRwDwAAAAAAAADweYZaWv+EJJ1kqGXme6D3AgAAAAAAAMAhbbel9QX4AAAAAAAAAIzaUDPyL4pQHQAAAAAAAAA+zyBBfnd/6RDvBQAAAAAAAICx225L6wMAAAAAAADAqAny2fb2fe623HrjZ9K9/l97uO3mm7Lv1lsW0BUAAAAAAACwXQ2ytD6MxXUfvjSXvuWC3HbTDTnlzC/K/Z76zdl1hxMO+1zv35fL3vbmfOL9F2XHccfl3o97Wu764EduQscAAAAAAADAsc6MfLat6z78z/ng638nt910w+T4sg/lkte+Op+75bOHfK7378ulf/IH+cT7352ks/+2W/Ovb31dPv6+d21C1wAAAAAAAMCx7pgI8qvquKraXVXHDd0LW8MkxP/d9L7P3e78DVd99JBh/kqIf80HL/68a5f9xRuF+QAAAAAAAMCGbbkgv6pOrKrvqqpXVtU/VNWNST6b5Jokn62qG6fnX1lVz66qOw7cMiNzsBB/xcHC/EOF+CuE+QAAAAAAAMBGbZkgv6ruWFW/mOSqJP8jybOTnJPkxCQ1s504Pf/sJK9McmVV/VJV3WmQxhmVg4b4O27/P4W1Yf5BQ/wdn/8/IWE+AAAAAAAAsBFbIsivqi9L8oEkP5bkLpkE9knSh9gyve8uSX40yT9W1WM2sW1G5mAh/snnPCL3fc5/yK473fl25/8tzP/szQcM8WvXcbnXM5+fPY992ue9S5gPAAAAAAAAHK3RB/lV9YQkf5rkjEyC+dmQvpLckuQTSf51ur915lqm99f0+T+pqq/etOYZjUOF+Pf42u/ICaffLfd+1rkHDPPf+8r/fMAQ/4x/99zc+cwHZM+XP0WYDwAAAAAAAMzNqIP8qrprktckuVNWZ9pXkguTPD/JFyW5U3ffrbvv1913S3LHJA+YXr8wq+F/T6+9ZlqXbeLTH/mXQ4b4NV0e/4TTvuCAYf6+6fL6K2ZD/BWHCvM/cfFF8/qnAAAAAAAAANvAqIP85H+zd+/xcdV1/sff35nJZNLcmk6atvR+g7YC5X4HuSlXhVIU2FVURBSNv11X172psaDrrld2N6yrAu4CKnIvskABFxABReRWaEsLbWnpPdMkzT2Zme/vj8w0M8nckjmTOUlez8cjjzn5nu/lc9J0KHmf74m+J6lGAwF+s6RLrbWnWWt/Zq3dZK21iQNsv42x86dJWiFpf0KX6ti8mACstXr78fuzhvhx6cL8uFQhflzaMP/pR9Tb0ZbHVQAAAAAAAAAAAACYSFwb5BtjKiVdroEQv1XS6dbah4Yzj7V2taQzJLUlzHV5bH6Me1a97UND9MnLjh0S4selC/MzhfhxVYuPlKfEn1xBJKxwd9cIagcAAAAAAAAAAAAwEbk2yJd0pqRA7NhK+gdr7fqRTBQb9w/qD/ElqVTSWfkWCPczxqMZR588pH3bA7epbXP6b6d4mF9SHZQkeQOTNDdLiN+9b5e23NWoaF9vUnv13EUqmzJ1hFcAAAAAAAAAAAAAYKLxFbuADGbHXo2kbkl35Dnf7ZJ+oP4QP3F+jHNzTz9PfZ3tatrw2sE2Gwlr2/239O+wX7A05bhA7XQt/vTfq3vvTvmnTJWvrDztGvEQP9LZntReOWOODr3oShlj0owEAAAAAAAAAAAAgGRu3pE/OfZqJW2x1nbkM1ls/GYN7Mqvymc+jB3G49Gi81aqdsnypPZ4mJ9pZ76nxK9JM+eNOMRfsuJq+UoDaUYCAAAAAAAAAAAAwFBuDvL3Jxx3OjRn4i8qb3FoTowB+YT5mRDiAwAAAAAAAAAAAHCam4P8N2OvRtIch+ZMnOcNh+bEGOF0mE+IDwAAAAAAAAAAAKAQ3BzkvyApFDuuNcacnM9kxphTJU1V/6P690t6Pr/yMBZlCvO3r/65+tpbc5onGglr24O3EeIDAAAAAAAAAAAAcJxrg3xrbVjSvyU0/cAYY9L1z8QY45H0/YSmm6y1kXzqw9hlPB4t/OAK+Surk9qjvT3q2rUtpznCbS3q3b83eV6vV4svvpIQHwAAAAAAAAAAAEBeXBvkx/yrpD+p//H6J0q6xxgzrJQ01v/u2HhJejE2LyYoG43oncfvV29b8u57j79UZTPm5jSHr3Ky/FPqkueNRLTx4V8p3NPtWK0AAAAAAAAAAAAAJh5XB/nW2j5JF0h6Vv1h/gpJ640xnzDGlGcaa4wpN8Z8UtL62DhJekbSBbHd/piAbDSit9fcp6YNrye1G69Psy+9RiUVVTnN4/H6NGfFp+Urr0xqb9+1Xesf+B/CfAAAAAAAAAAAAAAj5it2AZkYY74aO1wjaY6kubGP2yTdbIx5WdIbkkKSOiVNklQr6XBJx0gKqP8GAEnaKulxSdfl+oR+a+13nbgOuEOmEH/Oys+ocv6SYc0XqJ2ueVfWa+tdjQp3tB1sj4f5S1d8gsfsAwAAAAAAAAAAABg2Vwf5kv5Fkk34PH5s1B/anxr7SCWe1sfHzJX0rWGuT5A/Tjgd4scR5gMAAAAAAAAAAABwmqsfrZ9g8BZ6q+SAP5VUfXLbip97P4wB+YT40b5ede7YonBXR9o+8TCfx+wDAAAAAAAAAAAAcMJYCPJNwmu+H7nOg3Hk3d+tGVGI3920W5tu+Y4233mTNv7kRrVtXp+2b6Ywf+PDv5K12e47AQAAAAAAAAAAAIB+bn+0/gXFLgBjm7VR7Xr1hSHtc1ZckzXE3/Kr/1Cks12SFO3p0rb7b9Gcy65V5YKlKcfEw/zNt/9A0b7eg+2t295RV2ivJtVOy/NqAAAAAAAAAAAAAEwErg7yrbVril0Dxjqj0spq9RxoSWptefMlVcxfIuPxDhkxOMSPs5Fw1jD/wFuvJoX4Uv/uf19ZeZ7XAQAAAAAAAAAAAGCiGAuP1gdGzBijhR+8TMabfM9K6/qX9d7Dd8pGI0nt6UL8uHiYn+ox+3ufe0x7f//okPb5Z14kf3lFHlcBAAAAAAAAAAAAYCJx9Y58wAnVsxdoySUf04bVd8pGwgfbW9e/LEmadfHHZDzetCG+t7RMkZ6ug5+n2pmfNsQ/+0OaduTxhbgsAAAAIKtIJKJQKOTIXNFoVM3NzSnP1dTUyONx5j7xYDAor3fok7MAAAAAAAAmEoJ8TAiT5y7KGOZPPfkD2nLXzUNC/MoZc7Tk0o9ry1MPq2nDawfbE8P8rl3vpg3xpy8/sUBXBAAAAGQXCoVUX19f7DKGpbGxUXV1dcUuAwAAAADgcmPt5nVuP19n9AAAIABJREFUXMdwEeRjwsgU5rdueFWy0aT+lTPmaMmKq+UrDWjReSslaUiY/+69Px0yTiLEBwAAAAAAAAAAKKSxdvM6N65juJx59qGLGGOWG2N+bozZZIxpNsZsNsbcY4z5YLFrQ/HFw3zjHXQPS4YQX5KMx6NF561U7ZLlGcdJhPgAAAAAAAAAAAAA8uPqIN8Yc7Yx5vGEj0Oz9P+cpJckXS1poaRqSfMkXSbpUWPMLcYYU+i64W5pw/yYwSF+XNowPwEhPgAAAAAAAAAAAIB8uTrIl/RpSedKOkfSDGvtxnQdjTFnSmqU5JVkJNmED8XaPiXppgLWizEiXZifLsSPyxTmE+IDAAAAAAAAAAAAcILbg/xzE45/laXvD9V/PYnB/QFJYQ0E+0bSF4wxJzhcJ8agyXMXaemlH1dJeaUkqWb+YRlD/Lh4mD/9qJMkGXlK/Fr4gRWE+AAAAAAAAAAAAAAckfrZ4i5gjJkvaWpC06MZ+p4h6SgNhPivSvqYtXadMSYg6UuSvq2BMP/Lkq4oRN0YW6rnLNQx1/yNIr09KplUkfM44/Fo/lkXa9bJZ8vj8crrLy1glQAAAMDIBINBNTY2OjJXKBRSQ0NDynOrVq1SMBh0ZB2n5gEAAGNbJBJRKBRyZK5oNKrm5uaU52pqauTx5L/fLRgMyuv15j0PAABAnGuDfEmHJhyHJa3N0Peq2KuR1CfpMmvtVkmy1nZL+o4xZp6kz8T6XWyMCcTOYYLz+Erk8ZWMaGxJYJLD1QAAAADO8Xq9qqurK/g6wWBwVNYBAAATRygUUn19fbHLyFljYyP/HgKAUTbWbl7nxnUMl5uD/LmxVyvpXWttOEPfD2pgN/7D8RB/kB9qIMgPSFou6Y8O1AkAAAAAAAAAAABgFHHzOsa7/J8ZVDiVCcet6ToZY2ZLmp/Q9ECqftbatyQ1JTQtzas6AAAAAAAAAAAAAAAKwM078gMJx30Z+p0cezXq35X/fxn6bpdUGzuuGXlpAAAAAAAAAAC4QyQSUSgUcmSuaDSq5ubmlOdqamrk8eS/PzAYDMrr9eY9DwAA45mbg/zOhOPqDP3en3C81Vq7M0PfnoRjfrk5AAAAAAAAAGDMC4VCqq+vL3YZOWtsbOQx1QAAZOHmID9++6CRNN8Y47PWhlP0Oy/2aiX9LsuciTcEdOVZHwAAAAAAQMGNtV2WEjstAQAAACBfbg7y30g4LpV0lqQnEjsYY46XtED9Ib4kPZ1lzukJx/vzrA8AAAAAAKDgxtouS4mdlgDyFwwG1djY6MhcoVBIDQ0NKc+tWrVKwWAw7zWcmAMAACCRm4P8tZJaNLCL/kZjzNPW2j5JMsZ4JN0QO2ckRSQ9nm4yY8xsSTUJTZsdrxgAAAAAAAAAkDev1zsqNwQFg0FuPAIAAK7kzPPSCiAW2N+t/pBeko6X9KIx5ovGmM9J+q2kD6p/N76V9KS1dleGKU8e9Pk6h0sGAAAAAAAAAAAAACBvbt6RL0mrJF0lqSL2+XJJNw3qY9Qf5N+gzC5LOH7HWtvkSIUAAAAAAAAAAAAAADjI1UG+tXaXMeYvJN2v/lrtoC7x3frfsta+kG4eY0yVpIsSxj/jdK0AAAAAAAAAABRDMBhUY2OjI3OFQiE1NDSkPLdq1SoFg8G813BiDgAAxjtXB/mSZK39X2PMSZK+L+n9Sv51ANskrbLW/jzLNJ+VVB6fUtJvHC8UAAAAAAAAAIAi8Hq9qqurK/g6wWBwVNYBAABjIMiXJGvtK5LOMcYEJS2SVCZpp7V2Y45T7JH0DwmfP+5wiQAAAAAAAAUx1nZZSuy0BAAAAIB8jYkgP85aG5IUGsG42wtQDgAAAAAAQMGxyxIAAAAAJh5P9i4AAAAAAAAAAAAAAGC0EOQDAAAAAAAAAAAAAOAiBPkAAAAAAAAAAAAAALgIQT4AAAAAAAAAAAAAAC7iK8aixpiPDm6z1t6dSz+npFoPAAAAAAAAAAAAAIBiK0qQL+kuSXZQW6pgPVU/pxDkAwAAAAAAjDORSEShUMiRuaLRqJqbm1Oeq6mpkceT/8Mug8GgvF5v3vMAAAAAGF+KFeQnMsoe1huH1rI5rgcAAAAAAIAxKBQKqb6+vthl5KyxsVF1dXXFLgMAAACAyxQzyM81nHcqxHd6LgAAAAAAAAAAAAAAHFesIP96h/sBAAAAAAAAAAAAADAuFCXIt9b+xMl+AAAAAAAAAAAAAACMF55iFwAAAAAAAAAAAAAAAAYQ5AMAAAAAAAAAAAAA4CJFebQ+AAAAAAAAUAjBYFCNjY2OzBUKhdTQ0JDy3KpVqxQMBvNew4k5AAAAAIw/BPkAAAAAAAAYN7xer+rq6gq+TjAYHJV1AAAAAExMYyrIN8YEJM2QVCHJL6lHUrukndba3mLWBgAAAAAAAAAAAACAE1wd5BtjFku6RNJZko6WNC1D352SXpH0lKQHrbVbRqVIAAAAAAAAAAAAAAAc5Mog3xhziqQb1B/gH2zOMmympEMkXSTpe8aYJyR9w1r7p8JUCQAAAAAAAAAAAACA8zzFLiCRMabUGPMTSc+qP8Q3GgjwbQ4f8f4eSedJ+oMx5t+NMf7RvA4AAAAAAAAAAAAAAEbKNUG+MaZS0hOSrtVAID84oM/2oYQxirV9QdKjxphJo3IhAAAAAAAAAAAAAADkwRWP1jfGGEl3STot1pQYxIcl/UnSHyX9WVKTpBZJ7ZIqJVVLqpN0rKQTJB0vyTtojjMl3SFpZWGvBAAAAAAAAAAAAACA/LgiyFf/rvkLlBy+t0m6WdLN1todOcxxhyQZY2bH5rteUoUGdvRfaoy51lp7i8O1AwAAAAAAAAAAAADgmKI/Wj/2SP0blBzivyrpGGvtP+YY4h9krd1urf179e/Qf10Dj+g3kr7DI/YBAAAAAAAAAAAAAG5W9CBf0nWSJseOjaS1kk611r6Tz6TW2rclnSLpjYTmKZI+nc+8AAAAAAAAAAAAAAAUkhuC/I9rYMd8h6SV1touJyaOzbNSUmfCGp9yYm4AAAAAAAAAAAAAAAqhqEG+MWaepCNjn1pJP4/tpHeMtXaTpP9Wf4gvScuNMXOcXAMAAAAAAAAAAAAAAKcUe0f++2Ov8d9jf1OB1rkpNr+NfX5GgdYBAAAAAAAAAAAAACAvxQ7yj469WkmbrLWbC7GItfYdSRs1sCv/2EKsAwAAAAAAAAAAAABAvood5C9JOP5DgddKnH9J2l4AAAAAAAAAAAAAABSRr8jrz0o4frXAa72WZl0AyCoSiSgUCuU9TzQaVXNzc8pzNTU18nicub8qGAzK6/U6MhcAAAAAAAAAAABGV7GD/LqE49TJlnP2x17NoHUBIKtQKKT6+vpil5GzxsZG1dXxVudWTt0Y4qRM9bitVombVQAAAAAAAAAA41uxg/zyhOOWAq+VOH9FgdcCACCtsXZjSENDQ7FLGIKbVQAAAAAAAAAA45kzz3AeuVJJNnbcXuC1OhKO/QVeCwAAAAAAAAAAAACAESl2kF+s9Yt93QAAAAAAAAAAAAAApESgDQAAAAAAAAAAAACAixDkAwAAAAAAAAAAAADgIr5iFwAAY0EwGFRjY2Pe84RCITU0NKQ8t2rVKgWDwbzXkOTYPAAAAAAAAAAAABh9bgrybzPGdBZw/kkFnBvAOOf1elVXV1fQNYLBYMHXgPst+8i18ldUjfq6NhpVb0dbynP+8koZz+g/xKe3/YDW3XPLqK8LAAAAAAAAAECxuSXIN5LmjMI6NrYWAACu5K+oUqC6pihrl9XwJAcAAAAAAAAAANzALUG+LXYBAAAAAAAAAAAAAAC4gRuCfHbIAwAAAAAAAAAAAAAQU+wg/4Iirw8AAAAAAAAAAAAAgKsUNci31q4p5voAAAAAAAAAAAAAALiNp9gFAAAAAAAAAAAAAACAAQT5AAAAAAAAAAAAAAC4CEE+AAAAAAAAAAAAAAAuQpAPAAAAAAAAAAAAAICLEOQDAAAAAAAAAAAAAOAiBPkAAAAAAAAAAAAAALgIQT4AAAAAAAAAAAAAAC7iK3YBGB92tXapqrlz2ONCrT3q8ZWnPBe1Nqc52rrCsjn2Ha5JpV75vNnvd+noDisSLUwNAb9Xfl/2GvZ39KqjN1yQGqoCJaouK8naL+wpUcTjP/j5ztYe9ZQM//silXK/T1PK/Vn7dfSEtb+z15E1Byv1eVRXGcjar7svon3tPSnPZfqez+Xr5fMYzaguy1pDOBLVrgPdWfuN1OyaSQWbGyikSCSiUCiU9zzRaFTNzc0pz9XU1MjjceZeyWAwKK/X68hcAAAAAAAAAICxgyAfjrj6thfln7pnZIPnXp6yeVlPVLlEhfc+957augoTYF928iGaVZu9isde3q0docKEpuceVadls6uy9vv2I+t138vvFaSGvzpnsb507qFZ++2uXqadU446+Pmlt73uWA0rj5mlH3xkedZ+j7yxS397r3PrJjpx/hT9+rqTs/Z7ZXuLrvrZH9J3SPM9n8vXa+bkMj33d2dn7bfrQLdO/+5TWfuN1NbvXFSwuYFCCoVCqq+vL3YZOWtsbFRdXV2xywAAAAAAAAAAjDIerQ8AAAAAAAAAAAAAgIsQ5AMAAAAAAAAAAAAA4CIE+QAAAAAAAAAAAAAAuAhBPgAAAAAAAAAAAAAALkKQDwAAAAAAAAAAAACAi/iKXQDGh9uvOUGHLV027HGhppAaGr6R8lz56dflNMflp86StXbYa+diUqk3p37nHzNdkWhhagj4c6vhny5cqr8+d3FBaqgKlOTUb3rrOk1te/vg56tW3aBgbdCRGsr9ub1dXXj4DJ20wJk1Byv15Xbv09GzJ+vZr56V8lym7/lcvl4+j8mphhlVgbQ1ABNZMBhUY2Nj3vOEQiE1NDSkPLdq1SoFg868Dzk1DwAAAAAAAABgbCHIhyNmVJdpds2kYY8r7WtXabgj5TmPyS2wrCwr/rdxeaD4NUwp92tKub+oNfiiffJF+w5+fkh1qepG8H2Rj/JSn8pLi/vnESjxpv37kOl73smvl8/rGdHfSWC883q9qqurK+gawWCw4GsAAAAAAAAAAMY3Hq0PAAAAAAAAAAAAAICLFH8bcZ6MMSWSqtV/U8J+a224yCUBAAAAAAAAAAAAADBiYy7IN8acImmlpNMlLZWU+OzoD0j6vxRjjpBUFvu01Vr7VqHrBAAAAAAAAAAAAABgJMZMkG+MOUbSzZJOSGxOOLYZhn9K0l/FjluMMYdYa3scLhEAAAAAAAAAAAAAgLx5il1ALowxn5P0vPpD/Hh4H3/NFODH3SQpEhszWdIKp2sEAAAAAAAAAAAAAMAJrg/yjTEfk/SfkvwJzVbSa5J+o+Rd+SlZa7dJejqh6RIHSwQAAAAAAAAAAAAAwDGuDvKNMbMl/Uz9wX185/1/SJpprT3aWhsP5HPZlX9ffFpJ5zhaKAAAAAAAAAAAAAAADvEVu4AsVkkqjR1bSZ+01t4xwrmeTTgOGmMWWGs351UdAAAAAAAAAAAAAAAOc+2OfGNMiaTLNbAb/9Y8QnxJ2iCpK+HzpXnMBQAAAAAAAAAAAABAQbg2yJd0iqQK9T8KX5K+m89k1tqopJ0JTbPymQ8AAAAAAAAAAAAAgEJwc5C/IOF4p7X2bQfmbEk4rnJgPgAAAAAAAAAAAAAAHOXmIH9q7NUqeSd9PmzCsZuvHQAAAAAAAAAAAAAwQbk5zO5NOPY7NGcw4Xi/Q3MCAAAAAAAAAAAAAOAYNwf5+2KvRtIh+U5mjKmSNFcDu/L35jsnAAAAAAAAAAAAAABOc3OQ/07Cca0x5tA85/ug+q/XxD5/Kc/5AAAAAAAAAAAAAABwnJuD/BcltWhgB/21ec73lYTjt621O/KcDwAAAAAAAAAAAAAAx7k2yLfWRiU9pP4d9EbSF40xh49kLmPM30k6IT61pF84UiQAAAAAAAAAAAAAAA5zbZAfc4OkPvWH76WS1hhjjs51sOnXIOnbGtjZf0DSvzldKAAAY0kk3KdwT/eIxoa7uxQNhx2uCAAAAAAAAAAAxPmKXUAm1trNxph/lfQ19QfxMyT90RjzP5LukPRyrKuJnbfGmApJiySdLel6SQti5xXr82VrbevoXQUAAO7S9Nbr2vzbhxTp6dG05Sdo/pkXyni8WcdF+nr1zuMPKLRxrUrKK7XovJWaPHfRKFQMAAAAAAAAAMDE4vYd+bLWfkPSXRoI632SrpH0lKRWDey0l6QnYm1/lvQ9SQsTxknSj621t41O5QAAuM++da9o0yP3KNLTLclqz2t/1Ntr7pONRjKOi/T16q3Vdyq0ca0kqa+jTRtW36mWdzeNQtUAAAAAAAAAAEwsrt6Rn+DjkrZL+ooGQvnEXfY29rkZNM4mtK2y1q4qcJ0AALjWvnWv6O019yv5HjipacPrkqRF561MuTM/HuK3bt+c1G4jYW1Y/QstueQvNXnu4oLVDQDAaIlEIgqFQo7MFY1G1dzcnPJcTU2NPB5n7qsPBoPyerM/WQcAAAAAAIwtYyLIt9ZGJP2dMeYxSQ2SzkjVLeHYJLy+IOlr1tqnClslAADulS7Ej0sX5qcL8eMI8wEA40koFFJ9fX2xyxiWxsZG1dXVFbsMAAAAAADgMNc/Wj+RtfYpa+2Zko6R9E+SHpO0TVKH+kP7Xkm7JD0n6VuSTrPWnkqIDwCYyNKG+Cb5QTZNG15Pesx+2hB/0Lh4mM9j9gEAAAAAAAAAcMaY2JE/mLX2VUmvSvpOvM0Y47HWRotXFQAA7pMuxK894WyVzztM2+6/RTbcd7A9vjN/wTmX6K2HfjEkxPcGJmnuRz+n0EvPqHXdnw+2szMfAAAAAAAAAADnjKkd+ZkQ4gMAkCxTiD/tzA+rcv4SzbnsWhlfSdL5pg2v6+Vbf5AyxJ93xec1acZczbroY6pedmzSeXbmAwAAAAAAAADgjHET5AMAgAH7NryWMcQ3scfjpwvzw92dSZ/HQ/yy6bMlScbjyRjmt257x+ErAgAAAAAAAABg4iDIBwBgnOnr7tTmJ1crW4gfly7Mjxsc4sdlCvPfXnOfbDSS/8UAAAAAAAAAADAB+YpdAAAAcFa4u0vRvt6kNuMr0eTDTxgS4sfFw/xt998iG+472J4uxD84r8ejmuUnq3Xdn5Pae9sPKBqNyuvx5nk1AACMnmAwqMbGRkfmCoVCamhoSHlu1apVCgaDjqzj1DwAAAAAAMBdCPIBABhnAtVTNHneYrVsHfhd9Tbcpy13NWr+lfUKTJ2Rclzl/CWae9m12rb6vxXt6ZKvokpzV16XNsSXpI7t72jbvT8d0l53+HHyptnhDwCAW3m9XtXV1RV8nWAwOCrrAAAAAACAscvVQb4xpjN7r2EJS2qNfbwr6SVJz0l6wlprMw1EYUQi6R+73NPWOoqVuF+mr0emryOAiccYo8UXXqEND9yutl3bDrZHOtuzhvkV85fo0Ou+pp6m3QpMmyVvaSDtOh3b39G79/zXkN3/NQuXav7ZFztzMQAAAAAAAAAATECuDvIlBdT/C35TPwd4ZCokzZS0VNL5sbb3jDH/JulHBPqjq6WlJe259ffeOoqVjG0tLS2aMSN1KAdgYvKVBrRkxdUjCvN9kyrkm7Mo4/yZQvxDL7pCHq/b/4kBAAAAAAAAAIB7eYpdwDDZPD4GzxFnJM2W9D1JvzfGkIYCAMaFeJhfOWNOUns8zO/et2tE8xLiAwAAAAAAAABQWG4P8l+MffxR0k4N7Mw3Ccc7JL0p6WVJb0tqH3Re6g/uX4rNs07S7kF94rv+T5b0sDGmvDCXAwDA6HI6zCfEBwAAAAAAAACg8Fwd5FtrT7LWnizpbklB9QfuUUl3SDpP0mRr7Rxr7ZHW2uOttYdZa6slLZb0FUkblRzYX2mtPcJaO1PSVElXSXoudj6+S/8oSf88OlcIAEDhZQrzt91/i6LhcE7zhLs6+vsT4gMAAAAAAAAAUFCuDvIlyRjzz5K+L8kvaZOkY6y1n7DWPmGtbUs1xlr7jrX2h5KOkHSD+oP6YyU9b4yZF+sTstb+2lp7uqQvxYfG+n6GR+wDAMYTX2lAh37oL+TxlSS197Y0qbelKac5unZtU6S7M6mtZFKFFl/4UUJ8AAAAAAAAAAAc5Oog3xhzoaS/V3+4vlPS6dbatbmOt9aGrbXflPRPsTlmSPp1in7/JunbGti5Xyrp8ryKBwDARSJ9vXr70bsVDfcltZdU1chfPSWnOcqmzZLHH0hq6+ts1+YnHpCNRhyrFQAAAAAAAACAic7t2+e+HXu1kr5qrd03wnn+VdJfSlom6ThjzApr7QOD+nxH0mcl1cY+P1PSf4xwvQmnqeld7d7tH/a4aKRVlZWp7yeZf9bFKimvyKuuMm9NTv26Is0p20tNhTyekpTnEvVE2xS1uT2aeqT6Otq15amHU56LRlq1e/emtGNrAlPk92b/82nu3q/eSO+Q9gp/ucpLKlOO8XR2qDbQH+xFfRFFfdGD5/aHtioabc267mjJdB2JOvra1N7bMaTd7/WrJpA98OyN9Kq5e3/Kcy3NzZo82Zvy3Gh9vZy4jmnl07OOtx1Dv4Yojkhfr95afadat29OavcGJmnOik/LU5Lb+7evvFKzL/2Utt33M9nIwHte04bXJUmLzlsp40n9/Q0AAAAAAAAAAHLn2iDfGLNE0vLYp52S7h/pXNbaqDHmLvU/Zl+SrpT0wKA+XcaY1ZKujTW9b6TrTUSTn35RtRvfG/a4Wkk/Oens1Ce7Ovs/8rK3yOMdlu5r9cLrWYfmsle2agTjJ0v699NPS33y96/msOroyuXrEIh9jHS8VwN3BA1WK+k/jz8r9clR/Hrlex25jI/s3Jl7QSiYTCH+vCs+r7Lps4c1X+X8JZqz8jOE+QAAAAAAAAAwhkQiEYVCIUfmikajam5OvUm2pqZGHk/+D4UPBoPyeif2z5pdG+RLOj72aiVttdb25Dnf+hRzD/ZHDQT5wTzXAwCgqJwO8eMI8wEAAAAAAABgbAmFQqqvry92GTlrbGxUXV1dscsoqvxvhyicGQnH3Q7MF5/DSEr3TOjER/dXO7AmAABFkU+IH+npVtfu7YqG+9L2iYf5xpt8T2DThtf19pr7ZKO5PLcBAAAAAAAAAACk4uYd+fEEwEga2ZbBZIlzpEsXEhOLob8oHACAMWLTo/eMKMTv2P6Otj14myKd7SqpDmruys8oMHVGyr6Zdub7AuWaf9ZFzlwMAAAAAAAAAAATjJt35O9KOJ5qjDk2z/kuTjN3opqE4wN5rgcAQFF0t+xX8zvrk9qMrySnEP/de/5Lkc52SVJfa0hb7mpU9750/9mMhfmXXTukffdrf8i4ox8AAAAAAAAAAKTn5iD/pdirjb1+Z6QTGWNOk3RBbC6bMPdgyxLWfHek6wEAUEze0oA8vpKkNhvuU9vbb6QdEw/xo33JD6SJdLZnDPOtjerAxteGtJeUlct43PzPDAAAAAAAAAAA3Mu1j9a31m40xrwu6Qj1P17/HGPMTyRdb62N5jqPMeYoSffFP1V/SP/rNN1PSTjeMPyqh88YM1PSCZJOjL0eJ6kyocu71tp5o1FLPlrOPEFNhy0e/rjmZv3wRz9KeW7xhVfIX1GZ8lyuJvlqc+rXGW5K2R7wVMnj8Wcd3x1pVdQWdudpb3ubNj2S+lv3b770JU2uqUl5TpJqAlPk92a/jubu/eqNDP2tEhX+cpWXpP6zCIWa9I1vNEiSor6Ior6Bv57Z6hptma4jUUdfm9p7O4a0+71+1QSmZB3fG+lVc/f+lOcyfc+P1tfLieuYVj4963jv+vXSN1cNuz7kr6RskuadeZE2P/lgUvve5x6TJNWddkFSe7oQPy4e5s+/sj7pMfvWRrVzzd1qfu2FpP7G49HCD1wq4/E6cTkAAAAAAAAAAEw4rg3yY74m6SH1h+9G0rWSTjDGfF3So9badL/rXsaYOZI+L+mvJJVqYDf+n6y1q1P0r5N0ugaeAPC8g9cxeK1TJX1Z/eH9IYVaZzTV1s7V9OnDD/I9nr1qaUn9x9hXOl3eSfmFmm25dvTPStk8NMpNJ5Bzz5Hq62tO+7WaEpynurq6vNeYUjn8GyeiXV1q6u5OPZ9DdY22ClWqIo/xpZKmK5jyXKbvebd9vTJdRy5MeblzxWDYph1xnGw0oi3/95uk9sFhfroQ3+svVaS35+Dng8P8TCH+oRddqZoFSwpxWQAAAAAAAICrRCIRhUKhYpcxRKaa3FhvMBiU18vGoEIKBoNqbGx0ZK5QKKSGhoaU51atWqVgcOTZQpwTc4x1rg7yrbUPG2NulfRpDYT5yyWtltRijPmTpPWSWiX1SqpQfzB+tKT3xfqbhLEtkq5Js9znJMXfIaykxwpwSXHHS1pRwPkBAND05SdKUtowv3zuoSlD/JqFS7XwAyv01uo71bZr28H2gTD/Cwr9+XdpQ/wpi5YJAAAAAAAAmAhCoZDq6+uLXcawpAtgi6mxsdFVG93GI6/XOypf42AwyJ+lQ1wd5MdcJ8kj6VMa2C1vJNVI+kDsYzCTcBwP8UOSzrfWrkuzzjQNPHJ/h7V2e551j1S7lNdmYAAADsoU5psXnpCNJj8hombhUh160RXyeH1asuJqbXjg9iFh/jv//f0h4wjxAQAAAAAAAABwjuuDfGutlfRpY8xvJf1I0tT4qUzDYq/xHfn3Sqq31u7NsM4XHCh3uNok/VnSnyS9GHudL+mpItQCABin0oX5mUJ8SfKVBlKG+YT4AAAAAAAAAAAUlqfYBeTKWvtLSfMkfUbS7yT1aCCoT/XxnqSbJR1lrf1ophC/CH6j/kf/T7bWnmWt/aq19l5r7bvFLgwAMD5NX36i5p/9obTnB4f4cfEwv3LGnJTjCPEBAAAAAAAAAHCe63fkJ7LWdkm6VdKtxhifpMMlzZQ0WVKppFZJ+yWts9buKVqhWVgURWsUAAAgAElEQVRr3yl2DQCAiSfdzvx0IX5cup35hPgAAAAAAAAAABTGmAryE1lrw5JejX0AAIAcTF9+oozXq61PP6JoX6+mLjtaC869JG2IHxcP8zc9erdatmyULzBJCz+4QlMWLh2lygEAAAAAAAAAmDjGbJAPYEAoFHLl2sWsK5NgMCiv11vsMoCimXb4cQouep+i4bD8FZU5j/OVBrTkko+rt71VvtIyef2lBawSAAAAAAAAGNuWfeRa+SuqirK2jUbV29GW8py/vFLGM/q/fbu3/YDW3XPLqK8LjFUE+cA40NDQUOwSUnJrXY2Njaqrqyt2GUBR+QJlIxpnjFFp5WSHqwEAAAAAAADGH39FlQLVNUVbv6wmWLS1AeSPIB8AAABAwUUiEdc9rWesPVmIpwoBAAAAAABMHAT5AAAAAAouFAqpvr6+2GXkzI1PFuKpQgAAAAAAABPHmAvyjTGlko6VdLSkWkmTJQ33l/Raa+0XnK5trDLG1EmaOsxhCwtRCwCMFt77AExEvPcBmIh47wMwEfHeB2Ai4r0PwHgzZoJ8Y8zhkr4s6QoNP7hPmkqSlUSQP+Dzkty35QgACov3PgATEe99ACYi3vsATES89wGYiHjvAzCujIkg3xjzFUnfklSi/iBe6g/jTUI3O3hYiqkG9wEAAAAAAAAAAADGLGuton298vhKZDyeYY2NRsKy0ai8Jf4CVQdgpFwf5Btjvizpu7FPE4N4k+LzwQafT9UHGBdO+3BAZRWj/y0ejVr1dKa+R6Z0kpHHU5y/dl3tVr9/qLsoawMAAAAAAAAAMBr6Oju08ZFf68D2zSoLTtOhF12hScG6nMaGNr2pzb9drXB3l6YvP0nz3n/BsG8EAFA4rg7yjTFHSPoXDQTyRtK9ku6UtFXSqwnnPiXpFUlTJL1P0tmSPqT+a7SS1qn/cfq7R6f6MeU/Jd0zzDELJa0uQC0YobIKo0mVxfkPbEV1UZbNIlrsAuB+vPcBmIh47wMwEfHeB2Ai4r0PwEQ04d77+jo79Oa9t6krtEeS1BXao3X33qZll1+TNcxvemutNj16j2T7f5a++9UXFO7u1KLzVhLmAy7h6iBf0j9K8saOraTrrLW3xE8ak7TTd7u19vXY8dOSbjbGzJZ0s6SLJS2VdLukc621mwpc95hird0rae9wxgz62gPAmMN7H4CJyK3vfcs+cq38FVUFX2cwG42qt6Mt5Tl/eWVRfnDR235A6+65JXtHADlz63sfABQS730AJqKJ9t43OMQfaG/PGuYPDvEPtm94TZII8wGXcG2Qb4zxS7pEAzvu700M8XNhrd0u6cPGmO9L+htJsyU9Yow5ylrb4WjBAAAAAEbEX1GlQHVNUdYuqwkWZV0AAAAAAEYqXYg/cD59mJ8uxD94njAfcA03/w08TlJAA7/X/qaRTmSt/Yqk38U+XaD+nf4AAAAAAAAAAADAmJE+xDeD+vWH+Z2hgYcUpA/xk8c2bXhNb6+5TzbKr7AFisnNQf7ihOMuSX/I0t+f5fzXY69G0ueMMd5MnQEAAAAAAAAAAAC3SBfil1RP0aJrvqqyQ+YN6j8Q5qcL8acce4bmfuSzMt7kh3gT5gPF5+Ygf0rs1UraYq21KfokvnuUZpnv95KaY8eTJZ2YX3kAAAAAAAAAAABA4WUK8edf9UUFph6ieR+9PmWY/+bdt6QN8Wecc5kqFyzVnMuuJcwHXMbNQX4g4bgtTZ82DTzvI+Mvt4zdCLAtoWnZyEsDAAAAAAAAAAAACq+vqzNjiO+v7t8b6y0NpAzzw92daUN8Y/pjtqxhfsr9tgAKyc1BfmJ4X5amz4GE4zk5zNmXcFw77IoAAAAAAAAAAACAUbT9hd9mDfHj0oX5iQaH+HGZwvz9b6/L7yIADJubg/ydCceT0/R5O+H4+BzmXJBwHBl2RQAAAAAAAAAAAMAo6mltHtJWdejyISF+XKYwP12IH1c+Z5EC02YNae9u3T+8ogHkzc1BfvzWHiNpljEmkKLPawl9zjDGVKebzBhzlqTEd7S9jlQJAAAAAAAAAAAAFMi0I4fuZQ396SntfX5N2jHxMH/S7EUH24LHn5kxxI+G+7TtgVvVtXNr8lz+UtUuWT6y4gGMmC97l6LZKKlF/bvxPZKOlPTioD6PSPprSVbSJEnfllQ/eKJYwP8fsX7xd6fBcwEAAAAAAAAAAACuMmXhUs0/62JteerhpPa9zz4iSao75byU47ylAc2/6gvq3LFF3tIyBaYeknaNeIjfvnl98hz+Ui297JMqrajK8yoADJdrg3xrbdQY84ykS2JN52to+P5bSdskzVZ/QH+9MeYQST+W9JYkv6TTJP2TpIXqD/KtpDestetVRMaYUyWVpTg1+JamgDHm3DTT7LTW8ktJAAAAAAAAAAAAxrHpR50kScMO843xqHzWwoxzZwvxK2fMHmnZAPLg2iA/ZrUGgvyVkm5IPGmttcaYr0i6WwO77S9JGBNnEs5b9Qf7xfYLSXNz6DdN0hNpzv2PpE86VRAAAAAAAAAAAADcaaRhfiaE+IB7eYpdQBb3S+qUFJW0zBhzxuAO1tp7Jd2kgZBesePEj8RH6t9orX148DwAAAAAAAAAAACAm00/6iTNP+viIe17n31Ee59fM6y5CPEBd3N1kG+tPWCtrbDWlsQ+fpem399Iul7Sfg0E9omMpJ2SrrbWfrNgBQMAAAAAAAAAAAAFlCnMP7Bpbc7z7HnmN4T4gIu5/dH6ObPW/sQYc7ukcyWdpP5H0htJuyU9L+lJa21PEUtMYq2dV+waAAAAAAAAAAAAMPZMP+okte/ZoX3rXklqb9u8TlWLj8hpjrZBIb4kzT/rYkJ8wCXGTZAvSdbaLkm/iX0AAAAAAAAAAAAA407TW2u1b/1rQ9rLZy/MeY7yWQvUu39vUtu7z65R+bSZmhSsy7tGAPlx9aP1AQAAAMAJ7Xt2av2Dd2j9A7erffeOnMdZG9XOPz+nN379U2195lFF+noLWCUAAAAAANk1vbVWmx69R7LRpPYpx56h6qXH5jzP9LNXqOyQeUltfZ3tWnfvbeoM7U09CMCocW2Qb4w53xjzfMLHmcWuCQAAAMDYc+C9LXrznlvUsuUttWzdqDfvuUWt2zdnHWdtVJuffEjv/u5Rte3cpl0vP6f1D9xOmA8AAAAAKJpMIf6Mcy6TMSbnubylAc376PWE+YBLuTbIl3SE+n/X/UmSlkv6Y3HLAQAAADDWHHhvi9Y/eIeiCeF7NNynDQ/ekTHMj4f4e994Kam9bcdWwnwAAAAAQFE4GeLHEeYD7uUrdgEZ2ITXbdbarmIWA0A6sD+iDS/1ylrpsGP9mlzrzWmctVZb14W1c3NYk+s8OuwYv3wlw/8HBeA2ezv3qKZ98rDHhTpD6itLHQB1RJoU7uvLq66Kktx+f1V7X+p/hJd5J8vr8Wcd3xVuVsTmV2smPZHWtF+nPZ27FW7PvHawrFal3tKs6zR1Nak30jOkvdJfqUp/VdbxEV9E0ZLIsGobTbleR1vvAbX1tg1p93tLVVtWm3V8T6RHoa6mEdU4Gpy4jkMqZjpdFgosVYgfFw/zl1z6cVXPXpB0Ll2IHxcP85euuFrekuzvlwAAAAAA5CufEL9n/155SkpVUlmd8nw8zN9694/VtXPrwfZ4mL/s8ms0KZjbzxwBOMfNQf6uhOMDRasCgCSpeU9Ez/1vl8Kxn4Pv3d6lky8sU+0hmcN8a63WPt+rzWv7Q619OyJq3hvVSecHCPMx5tU/8VmVrQuMbPDZqZu3h/5BCo28Jkn6i8X35tTvoa2fT9l+zsxvatqkw7OOf273j7S3a92wahu2NF+nTz3zl1mH/td5t+m46cdn7fePz/ytXt4zNKz7zPLr9dmjUn+NErXO36+WQweC31xqG025Xscv192pn7324yHtx0w7Tj89/+dZx6/d97o+t+aaEdU4Gpy4jpc+sdbpslBAmUL8uFRhfrYQP44wHwAAAAAwWlq3bx5RiB8N9+m9h+/UgbdelTweTTvjYk098ZyUfbOF+cuv/qJKysoduyYA2bn50frvJhxPL1oVAIaE+JIUCUsvPNKlpp2RtOMGh/hxTTsi+sNj3Qr32TQjAQAARi5diF916JGqOuyopLbEx+ynDfE9Hk0/8xJ5B/3AgsfsAwAAAABGw64/PzckxK9ZfkrWEH/bA7f2h/iSFI1qz9MPae/za9KuEw/zA9NmJbX3dbZr37pX87sIAMPm5iD/BUl7JRlJs4wx84paDTBBpQrx4zKF+elC/DjCfAAAUAiZQvxZH/6EZn/o6rRh/lsP/TJliD/n0mtUe+LZmnflFwjzAQAAAACjzjdp6E74zp1bFOnqSNk/HuK3b14/5NzeZx/JGOb3NO1Wb/PQXztYkqIGAIXl2iDfWhuR9KuEpv9XrFqAiSpTiB+XKszPFuLHEeYDAAAnZQvxPV6fjNebNsxv3rwhecJYiF+1+AhJUlndTMJ8AAAAl2ttbdXjjz+utWuH/6ux3nzzTa1Zs0bNzc0FqAwARm7OKeeqtGpyUlvPvl3aclejwp3tSe2ZQvy4dGF+546t2nr3jxXt7U5qnzzvUNUedmQeVwBgJHzFLiCLb0m6SlKdpC8YY5601j5S5JqACSFdiD99vpXXJ+3YNPC4nniYf/KFZQrO8KQM8Y2xet9pVhv/ZNTbPTA2HuafdH5AvpLUjwACAADIpq+rQxse+mXGED8uHuZvlwYeMTjYoBA/Lh7mb73r5qSdD207tmrr0/+rhR9Y4dg1AQAAYHg2b96sG2+8Ue3t/aHWhRdeqE9+8pNZx1lr9Ytf/EKrV6+WJP3yl7/U1772NS1evLiQ5aKIIpGIQqGQI3NFo9G0N3/U1NTI48l/P2UwGJTX6817Hoxd/ooqLbv801p3763qOdBysD0e5s+/sl6+SRVpQ3yPr0TRcPLP7Pc+2x+31Z1ynqTMIf5hH7pKxoHvZQDD4+og31obMsZcLOkxSVMk3WeM+bak71truzOPBjBSmUL80y6LSkZ64SGPdmwcGuZPn+vTjnfCSeOMsTrpYqs5y6wOWWj19F0ewnwAAOCo9l3vKdLTldTmq5ysWR+6OinEj8sY5qcJ8ePK6mZq5vlXaNsDtyW1N2/ZmNc1ZOPUDxoLsX6xa0uFH3YCADCxbN68WTfccIM6OgZutnzkkUdkrdVFF12Udpy1Vnfeeaceeuihg22dnZ268cYb9fWvf50wf5wKhUKqr68vdhk5a2xsVF1dXbHLQJEFqmsyhvnzLv+cdqy5a0iI7/WXaulln1THnh3a8tTDSefiYX7F3MMyhvgeX0mBrgpAJq4O8o0xJ8QOvyjph5KmSVol6cvGmNWSXpS0RdIBSZmf4T2ItfZFB0sFxo1sIX785+AnfziaMszPFOJLUs006cwro4T5GBcaP/ATHbb0sGGPCzWF9I2Gb6Q8t+wj16q0sjrf0nLy4Xn/mbK9zDs5Zftgp07/kiJ2WP/5HZaetlatu+eWlOduWHWDgrXBjOODZbU5rfPP7/+eeiM9Q9or/ZU5ja/eMkWV7w38meVS22jK9Tr+YtnH9KFFlwxp93tLcxp/xNQj9dDKx4ZV22gaL9eB9MrrDpGnxJ+0Iz/c1qKdj9+jmRdcKWOG7hxIGeZnCfElqad5n3Y+ef+Q9qpZ8/K9jIwaGhoKOn8+3FgbP+wEAGDiSBXixz366KPq7OyUtVbGJP/MyVqrBx98UE8++eSQcV1dXYT5AFwnU5i/8ac3ykaSfz4fD/ErZ8xW5YzZkpQyzN/3/ONDxhLiA8Xn6iBf0h8kJf7ybCvJSKqW9PHYx0hYuf/agVHX22P1wqPdWUN8SfJ6U4f5iQaH+HGZwvy1z/fo6PcHHLsmoJDqJk3TIRUzhz3O11miki5/ynPl3loFSmryLS0nFSX5hRtlvsLW6fOm/zpNmzRddRXOhDO1OQb+6XjDXnnDAzs+naxtNFX6q1Tprxrx+FJv6Yj+PrjNeLmOQtrV2qWq5s5hjwu19qjHV57yXNTalO2DtXWFZdP19QQ065yV2v743bLRyMHmlrV/lKTMYf6HP6GWN5aqu2m3Jh9+vMrq0n8P9DTv05ZfNSrc1pLUHqidodqTLtCBzpHf4BTw57Z7vM9TqqinMP874432yhfNfg1hT4kintTv0fnyRMMqiQ69wWqwiPEpnOEmnZ2tPeopGf73qiSV+jyqq8z+b9Luvoj2taeuNdP3fC61+TxGM6rLstYQjkS160DhHlg3u2ZSweYGAMAJmUL8uGeeeUaSksL8+L8rU4X4cYT5ANwoXZifKcSPm37USZKGhvluCPGL/aQ3nkIHNxorYbbRQKBvB7UDcEjznoh6u5N/OB6osDp1RXKIH5cpzE8X4sfVTJNOuDCq39+f/B+a3Vsj0vvzuw4AAFA4V9/2ovxT94xs8NzLUzYv64kql6jw3ufeU1tXOEOPUlVPO1OLdj0lj6IHW7OG+R6Pao48Kev66UL8jtKgXq48U88+tzeHq0jv3KPqtCCH+2m2B49TU9WivNZK55D9r2pW82tZ++2uXqadU44qSA21B97Wgn3PZe23v2KuttSdlvb8pbe9PuIaTpw/Rb++7uSs/V7Z3qKrfvaH9B3SfM/nUtvMyWV67u/Oztpv14Funf7dp7L2G6mt30n/KGIAAIotXYgfqJup7n27JBsdMibtjaGSJKPAtJnq3vPewRbCfABulC7Mj0sV4selC/PjirUT341PeotzY208hW5iGAtBvhn0CqBAqoIeeX39j8iP6243euVJo+POtzIp/hamCvOzhfiS1HFA/5+9Ow+T4rzvRf99q3rv6dl6GBh2xD4gQAKhBdBqWbtkW8g2trwpiuPkyCd2nnuTc++5EUbHT3KTk+RcRySxj2XHiWVLsvCiXQjZSAIkhBCbWMUqGBiYmWb26b3e+0dTzPR0VXX1TG8z8/08Dw9QW/+66Smq3m+974vdv89sSK8dn7mMiIiIyK5O/xQca7gl5zA/G6sQ/8jETyNpc/oGIhpbkslk2fXeYU8jIhotzEJ8/7Q5mPbgH6P72H6ceennhmG+MYFJ93wZVfOW4PRvf5I2xzTDfCIqR2ZhvlWIrzML8zmcPlF5Kfcg/+9KXQDRWOL1K1h2mwc7NkXS7nFO7FMAaJZh/g0PaDixV6CzDZi+QCI40fx1eruAzb9U0NuZfrBAjYIlN7ERnIiIiIYn32E+Q3wiGqpQKITHHnus1GXYxp5GRJQPxXiI6fTp03jyySfR15c+VY0e4itOF6rmXw0ANsP8VIhfs/AaAMDUz/6RYZj/xBNP4LHHHsOMGTPy+n4G40NMRGSXHuYfefEX6Gs7D1dFJebcu8YyxNdNWHIdhKri1FuvQkvEEZx7JWZ9+nMM8YnKSFkH+VLK/6vUNRCNNQ0zHFh+e+5hvqIAs67KPr+tVYi/8n4P3F72yCciIqLhswrzHV4/JtzygK3jJKNhnGKIT0Qj1MDho4XRjVyB9iWisa3QDzGZDY0/MMTX2Qvz00N8AFAcTsMwPxKJ4B/+4R9SexXw3MiHmAovGAxi/fr1eTlWKBQyfRhu3bp1CAaDw36NfByDRi9PVQ0WffnPEOlqh6uiEmoOQfz4K69B7ewF0GIxuCurC1glEQ1FWQf5RFQaQw3zs2GIT0RERMWkh/lzmn+ftrztg7cw/sZ7IWz0cuo8tBvxQSF+2FVd0hC/fqqKtswpEPNi5pVO3DjZa7hO0ySifamG83dbHDjXWpgaJl6h4vbbjWsYaG+rCydPFKYGotFgcNCl/91O8GS0L8N8Iipn/qmzMkJ8nXWYnxni6y6H+b9+Cj2nDheibCohVVWL8rBEMBjkQxlUFEJR4K0e2gMfTo8P8PjyXBER5QODfCIylO8wnyE+jUaytxeyuzvn/ZS+XtR5PIbrKhMxuGOR4ZY2KrgSMdPPSekb2mefL1b/hqWujUpLDpqfk0pMStT0ns5Y7PBXwO6FjMMfyFjminfDF72Ibl/DsEscCkcB7+KcLgFfwPy6rKIq9buvTwEKFOSrTusadO5uhopEZsx6q+rrrEJ5s30Z5hNROYt1XkSirweuqlrD9cZhvnmIr0uGexHrbMt3uURUxpo7w6hs78u+4QChziiiDr/huu5IEq6AhKJkv47qDicsr+OGw+dW4VCz32f1RhJIaoWpweOyN2VIXHFDUwpz46tqMTi0eNbtEooTSSXz4bB8ULQEnFo063ZJ4UDCogPBuc4oos7cvqs6t0NBfcC4bXOgSDyJ1h7jWq2+93ZqcygCDVXZH+JPJDU0dxWuvXxKTXk/xMIgn4hMWYX5Lq+GxTfb+w89HgPeeoYhPo0+yddeRXLvnpz3qwbwz6tWGq88fxg4P7y6RhWzz2nTJiSLW0kay3/DEtdGpZU8d67UJRTcfz6yHHPnN+a8X6gthLVrHzdc51/1TVvHWL1isu1GDSklzr3zEjq6jqavUBRMuvOLEIq964/ArIWonLsEXUf6z/eqTGJ+y+8x7c4vwT8pf/OjelwqtN7OrNvdNnUvPj33UNbthlSDI3uDBgDcMPUorp54qiA1uNSEre0W1DdhgusCtr5gfEO/bt0TCNYNrUeK22Hv+3HVlGps+ctbDNdZfeft1Oaw0dAHAA2VHtMaaGyyc540C+Wz7cswn4jKVbzzIk4+8yRmrPm2ZZivuNw4/4cXICEx4ab7UDlnkfkxuztw8pknEWtnkE80lnz1pzvgGnch9x2nrTZcvHdHB75+WxUqfdmHu9+wrQndYXv3Q7n63PUTMbkue2D5+q7zOBsqTGj6qSX1uKLSepuV93vw5oXl2NeWv3vtgVZNOoAbJx8wXJc+Ct1CbG9dWJAaFtWdxN0zP8i63d7W6Xj5xHLT9Z/56b4h13DtjFo8983rs263+0wH1vx4u/kGJt97O7VNqvZi21/dmnW75q4IVv395qzbDdWpv72nYMfOBwb5RGSpYYYD19zuwY6N6f95H/lAYOFKCdXGWeTMYYGejvTGHn+VYIhPREQ0AjVUeYf0tLI73gN3wnjEAsVmKBTw2rt9kVLDiTdfQMfh3YNeSMHUzzyCwMwFto4DpIagnnLfV3EGSAvzZSKB068/g3mf+Qqqplxh+3jZ2Gku8Tlj8HkL07hjl9cZh9dpL/QvFLcjiWp3HO5E2HD9xCo36gv8ZL3HqZr+PFh95/NZm0NVyr4HARVPLj24BofyuTwoVcwwPxQKFe21cn39UtdmJBgMQrUxdQzRSCaEMDxn2QnzAzMX2LoWzBbi86EmIqLC8FYIqBcLd47lKHQ00ozYIF8I0QhgPoBaAFUAFADPSCnPlLQwolFGSom2c5l9S11uQNjM4N3ezJurSK9Ed7uEO/vIKURERES26SF+y/4P01dcCvErZ1+Z8zGFqhqG+VoijsO/+3new3wiGhsaH3oUroosXZJykIxFcWzjr9HX2py2XPX4kIyGgUGhV+3shRi/+FoIIdBzvglntm2C1NLv/VRfBZJ9PenLXG7MvGM1/OMm5K32WE8XDj7/lOG6tWvX5u118q0ca1u/fj3nYqa8Gcrw0oD1ULuuRB8Esj84FFN9kNnCcinhSIShoH8YSTthfjZmIb6EQNzhtd8gZsGRjEKV5g9m6g8KdYTj6ItpptsNR8CtIuAxjgcGPqg0eHjpg5+cx7nO7ENC2+FzKaj2Zu+l3BdLosOil3JNTTWUIT7ExOGl+/HhUCKi8jOignwhxDwAfwHgs0gF+IPtBJAR5Ashvgtg9qW/Nkkp/6ZgRRKNIlJKfPRuDCc+Su9tJYTE0js02ByRFhNnAZPmSJz9uP8GLJkA3ns1jOvv9qJuInsLEBER0fAVIsTXMcwnonxzVVTCU1WTl2MlohEcfe1XGSG+wx/A9C8+hkhLE5pefjotzL94dD/cFZWonj4bZ959MyPEr2pcikl3fAGnf/dT9Jw8fHl5MhbF8Td+jcbPfR0VEybnpX4iKk9DHl4aMB1q98EFDgSDVVl3/+X77eiJZg+wHckI5p59Hb5Yx+VlwwnzzUL8sLMKRybdgbgjP0HnTXP8mFERy/oQ04lxK9BWOSsvrznYxIt7MLl9b9btzlc14lztkst///pvzsCgCX5I6rqO4YrWbVm3aw3MxMl6k+nthonDS/cr9+GliYjGohExprUQwiGE+EcA+wH8EYAgADHol5VOAN8C8CcAnhBCTClguUSjglWIf+29ElPm2j+WEMD192uYNDv9iWs9zDfq8U9ERESUq5ObXxlSiB/raMPJ5/4Vh/91LS5sfQ1SGjca62F+5dwlacv1ML/73OlhvwciolwlohEc+u1/oKc5PVTRQ3xP3QRUNy7D5HsfTt2cDdC8+10c+u1/QibTezlWNS7F5HsehuJyY+rnHkXFjHlp65PRCA7+5mfoOd9UmDdFRKOWy18BT1VN1l/CZu+RhOrBkUl3os9VnbZcD/Pj3Z22a0v0dhUlxAcAp8+f11FZiIiIaHQq+yBfCOEB8HsA34FxvXYmcfs5gBD6Q/+H81Yg0SiULcSf1mh/3kWdqgLXP8Awn4iIiAqj58JZXNj7fvpCGyF+tL0VJ375JHpPHUGiuwOt217H2deeHVKYf3Lzy8N+H0REudCSyawhvs4szB/crKKH+HqIpjiclmF+X9sQe+sSEeWJVZh/Ycsrto/TsvX1ooT4RERERHaNhKH1fw5gFVJ3lvrd5WsA3kBqDJ8N2Q4gpYwLIX6HVG9+ALgTwN/mv1Sika8QIb5OD/Pfe0HB2aMcZp9GPvWuu6HOn5/zfqFQGx5/3Hg+zcaHHoU7kH2YwbEg2t1pOszgE0+sQzBYV+SK+ln9G5a6Niot9dAh4HvrSl3GmJSMZs4VqXp8cAfHm+4TbW/FyWfWI9Hdkba846PUAwGT7voihMEcqEJV4W2YmjbEPgAkIuGhlE5ENGShI/tshfi66sZlAECo6wMAACAASURBVJAxzL5ucIiv08P80795Kn2Y/WgEp999E/Pu/3I+3g4R0ZAlFDe6vRPShtgHgERPl+1jxHszt+3x1iOuZp+7nIhGj/98ZDnmzm/MaZ9QWwhr1z5uuK7xoUdR4bEXxa1eMRnS4BotH3xue+3ud149AUmtMDV4XCq03uwjpdw1ex9uu+JgYWpwxLNvBOCGqUdx9cRTBanBpSaybwRgQX0TJrguYOsLme0dALBu3RMI1gWHVIPbYa+f91VTqrHlL28xXGf1vbdTm0PJNth6SkOlx7SGsaCsg3whxF0AHkR/gH8KwENSyl0DtgHs9cp/AakgXwC4TgjhkVIaf/uJxrAD24cW4vd1AbveVNDZBsxYKDH/epnZ0QPZw/wV93lRO55hPo0Mwu+HCARy3k8Lh9EWMf4vqMvhgsflGW5po0LEYf45ab6hffb5YvVvWOraqLSE31/qEsasyskzEGiYiu7m/uHtk309OPnMesxY8xjctfVp25uF+DqrML9tx2ZceOvFjH0mX3fzMN8FEVFutGTmyGbC4YLicpnuYxbmm4X4l4+rKFA9mT1SpcbR1YioxKTE5NBOjO88PGiFQPCam20fJrjsJnQfOwAMGJlpXNdRaMKB03XLDUY0IaLRqKHKiyk1uY3C4Y73wJ3oNVwX8KhQbAaWAW/pIzu/zYcOhspOKOd3xeBHrKB1ZON1xuF12gv9C8XtSKLaHYc7YdxpYGKVG/U5fldz5XGqpj8PVt/7fNbmUJWcfyZHk9KfFazpj3IIAK0AbpZSnrHY3soHA/7sADAfwO5h1EY06nSGkji2N/cQv7cL2PyMgt6O1AXJR1sEers0LLsj9zB/75Yoblk9dk/KRERENDRCUTDvM1/Bwd/8DL0Xzl5enujpzAjzs4X4OqMwv23HZpzf/LuMbaeuugP1C5bm6+0QEdlSN38xmne/i3Co5fKyeGfo8nnPVVlruF914zIIxYFzG59DMhpG8OpVmHDrZ01DfKkl0fTy0+g8tCttuVAdmHxtcXrHrLzfA29F8UM0TZOI9hnfD7t9wnbDfD6FeyS2vsi+KUQALof4DR0HBq0QmHTPlxEYNC2IlYqpszHlvq/gzEs/Twvzx3ceAgCG+URERFR0ZRvkCyHqASxHf2/7x4cR4kNKeUEI0QZAH+t2LhjkE6WJRTIbJ1xeoLbBfoivO7FXAWAd5o+fJtOCfLMaiIiIiOxweLxo/NzXLcN8CGEY4vvrJ6Lh6htwfNNvIQf0cB0Y5oc+eNs0xJ+0bFWB3hURkTnV4UTjg4/g4IafInxxQJjfkT3Mr5q3BIFZCyG1JFSX2/Q1rEL8eQ88jEDDlPy8mSy8FQK+gL0hQPOtouxmvtKyb0KUB0MZXhqwHmrXv+qbto5hZ3hpKSUubN+E0HHjEL9m4TW2XmugqvlXA4BhmD9/SgATbrhTHyF2WOwOL/3QNR9B8Q4eaSA/PGocHofxtAEDH2KKJI8jmuxvlnd5kbeHmFxKAj5n9qkLYskWXOx8CTvfjBqu5/DSREQ0WpVtkA9gBVI98QEgDuAXeThmK/qDfE5eSzRIXYOKmvEK2i/036hE+wQ2P6PgljUaAjXp25uF+DqrMP/YHoFdb2ZeKM9eYj4EJBEREVE22cJ8CGEY4s9/8OtwenxwuD048vIzGWF+tO08ws2fZLweQ3wiKjWXvwKNq4cW5isOB6yahrKF+NXTZuXlPRBReRrK8NKA9VC7is0QPNvw0lJKfLJlI0L73hu0Zughvs4szL+4fwdcDgXTb74nL2G+nXE1aqvj8AUKOYWJeYjd/xCTBGAcoBe6Bp0PGlxqmMNLj/HhpYmIxqLSPMpsz4RLv0sAx6WUPXk4ZteAP3PyWqJBhCJw/V1eVNWlnxrC3akwv7u9f1m2EF93Yq+CnRvFwKkXcWyPwIcbM08/c5c6ccVC57DeAxEREZEe5vvHT0pbnujptAzxAaDminmYe+8aCFVN244hPhGVMz3M916aQkSnh/mxros5H5MhPhGVKz3Eb/5w66A12UP8ZKQPLe+9gZZ3NyIRNg5egVSYP+W+rwAivf3q/J7tOPXWK1lHCyAiIiLKh3LukV894M/ZxxmyZ+DjapxMjMiAyyOw4l4vtr0cRmdb/1PHeph/yxoNimoc4gdqFMxa7MSed6IDH1hO65l/fK95iD//GvPhHImIiIhyYdYzf6DBIb5OD/MH98wfiCE+EZWb7D3zvw1XZY3FEfpJTWOIT0Rl6+LRA0MK8ePdHTj5zJOItbcBANr3bU+dG6tMpiAx6Zl/fs92VEyYjHHzlwzvjRBRWZK9vZDd3Tnto/T1os7jMVxXmYjBHWMcpXMlYqafFQBUJN3wxMu5D3JxKUkNdR7jh8eUvty/q/lk9b0vdW35JHvNH/wrhnIO8gf0/UVlno45YcCf2/J0TKJRJ1uYryhAb2dmiL/yfg/cXgUut8COTZGMML87JNHalNmDnyE+ERERFYJVmG8W4uuswnyG+ERUrqzC/OZNGzDtwT+2dZyO/TsY4hNR2epsOpmxrHrhspxCfACId17EyWeezBrm93zyMdr3pg/h39V0kkE+0SiVfO1VJPfuyWmfagD/vGql8crzh4Hzw69rVDH7rADg4qVfdNlDZs0PmzahkJOvZGP5vS9xbfmUPHeupK9fzo+16HecAsAMIcSwxtsWQswEMG7AoqbhHI9otNPDfKNh9q1CfABomOHA8ts9g0cfY4hPRERERaeH+RUTJl9eli3E1/UPs9///DNDfCIqdy5/BSYtvzFjeaTFfgNUpDVz25oZc1E1deawaiMiyofqabMzlnXs/wCh3YN76acYhfiX110K82OdxqlR+77taN+73VYNRERERPlWzkH+hwP+7AZw8zCPt2bAn+MAMq/AiCiNWZg/0OAQX2cW5g/EEJ+IiIiKweHxYsHnH8WsOx7ErDsexMIvfjNriK+ruWIelnz125h+8z1Y+MU/YYhPRGWv49RRHN/0u4zl1QuW2T5G1fylgEh/EPvisQP45O3XOC80EZVc7cx5mHz9rRnLm994PiPMtwrxL29jEua379uOs689CyD9vDdp+U2onb1g6G+AiIiIyKayDfKllJ8AOIz+K6W/HOqxhBD1AP7rpWNJAO9KKcPDLpJoDLAK881CfJ1VmM8Qn4iIiIpJUR0Y13gVxjVeBUXNbYYxT3UQDVddj0DDlAJVR0SUHx2njuLwi7+ATCbSllc1LkX9yrtsH8c3cRom3/uVjDC/efe7DPOJqCxMue7WrGG+WYjvrR0Hb3B82rLBYb5ViD/lhk9BiMxRJ4mIiIjyrWyD/Et+gtTQ+gLArUKI/yPXAwghfAB+BaDu0nEA4Ad5q5BoDDAK87OF+DqjMJ8hPhERERERUX5ZhfiT73kYQsmtCai6cSnDfCIqa1Zhfsu7b5iG+I0PPoIFqx8xDfNbt29iiE9ERERlIbeuKMX3JFI96ScjFcL/nRCiAcDjUsrebDsLIW66dIwF6L/y2i2lfKFA9RKNWi6PwI2f9eLMxwlICUyZ7YDDae/GpWGGA7d+3ofzpxKoHqdg3KRyP/UQERERERGNHPkO8XXVjUsBAE0v/xwYENw3734XADDtprsYaBFRSU25LhXkN733h7TlLVteydhWD/FdFQEAwILVj+DAhp8iHLpweZt450VcePvljH0Z4hMREVEplHWaJqWMCSG+DGATABdSYf53ADwihPgtgA8vbSqQCupvF0I0ApgF4FakAnx9nQDQAWBNUd8E0SiiqgLT5zuHtG+gWkFgiSvPFREREREREY1tQw3xpZToOXUEyb5uVM5ZDMVpfL/GMJ+Iyp1ZmD/Q4BAfAJw+v2GYPxhDfKKx5c8dv0PA6St1GRnun/5vtrZ78dSfGi6/Yfx3UOedm3X/bef/CaHI0ZxqK6a7amagwR3Iut2roeM4H8/sD3yVvx5XBSZk3X9393ns7m0ZUo3FUHmyFj/4xpMIBusst/vlwZ/j2UNPZyxfULcIf3vT/8z6Oh+17sV/f2fIM58XXD7ex4sPbrTcVz10CPjeuiHVlw9lHeQDgJRyqxDiYQBPIxXmA0AVgK9d+qUTAP5y0N+B/hC/B8AXpJTlewYiIiIiIiIiIrIp0nFxaCG+lkTTK79A58FU/whXzeuY/sX/AldlreH2VmG+pyaICYuvzcfboRJJJpMIhUJ5OZamaWhvbzdcV1NTA2WIo0MMFAwGoarqsI9Do4tVmG8U4uuyhfkM8YnGnlbRix6RLHUZGbpdHlvbNYtuw+UdThVuG8doUSJoMTlGOehyRFBl8gDqQK1KD5pFT8byaWoF+pzRrPtfVPtMP8tyEE64ofn8EAHrhxp63MbfiQZHNOu+ABDrdZf155CP95Ftf+H3D6m2fCn7IB8ApJS/FkIcB/AcgNnoHyZfIH2yooHh/cBtjgL4nJTyQBHKJaIyl68Giny/dinrMsMGEiIiGkz29kJ2534Tp/T1os5j3GhQmYjBHYsMt7RRwZWImX5OuoqkG5748IMQM1JK7N8dxtHDEQQqVSxf4UdVjb1bx+6uJHZs7UFnexIzZruxeJkPilK4hm8lqaHOYzxPt9I3tO9qvlh950tdW77J3qwz31GBtJ84nBHieydOzx7iv/w0Og/turws1t6Gk8+sx4w1j1mG+fHOi7jwTvqQ021HPmKQP8KFQiE89thjpS7DtvXr16O+vr7UZVAZMgrzrUJ8nVmYzxCfiGj0ioY19HVLVNUpud2zSsDZ7YJ0SCR88cIVSHTJiAjyAUBKuUcIsRDAlwH8OYDFl1YZ/YTpy44B+J8Afial5E8UEQEA1q5dW+oSDJVjXWwgISKiwZKvvYrk3j0571cN4J9XrTReef4wcH54dY0qZp+T7uKlXwWgSYmnDh7CR2dTLxAJJ/DOS33462XLMCVQYbnv+b4+/I8PduJiNBUqHvoogurWKvyXhQuh5qEHppmHVpms2LQJpexHY/mdL3Ft+ZY8d67UJYxZ/vqGjGXhc6fQvm87apfckLHOKMTXxTtClmF+pLUZbTvfylheMX7i0IonIiqAKdfdCnegGi0f7YSnJohpq+6A02d9DQNcCvMfegSnt76BvlAL6hcsRf3CpQzxiYhGoaZjcex+K4pkAqgKKrjubg+8/uz3rCIpMG73RPjPByAh0TE7hI45bcYpJVGejJggHwAuhfE/A/AzIUQDgFUA5gMIItVO0gegDcBJAJullCdKVCoREZGpZNK86T7a3VnESsqb1Wdh9RkSEdHQ6CH+5rNn05Z3x+P4Hzt3Wob5/SF++hCF751P9WordJhPNFZVTp6Bydfdgqbtm9OWn9v4HACkhflWIb7OLMyPtDbj5LPrkexLH5400DAVU66/LR9vhYgob+oXXI36BVfnvJ/T68fM2z9bgIqIaCRZf/uPMHd+9rnkBwq1hfD42scN1zU+9Cjcgap8lGbL/dP/1XC5V622tf+KCd9FsoD9YqPdnTj4/FOm61c94IHHIlT3q05br3N3cCYSUstYHjoB7NwcvTymd2dIw9YXw1h5vzctzL8qMB6N/v7555MJif1vJnHxfGpHAYGao3VY7K3HFdcoBXvwK9KrYcsLmSMYKnF7o+h+qfFh3DfrgYzlLtVta/8rxy3Ciw++brjO6nv/xLonEKwL2nqN4cjH+yh3IyrIH0hK2QzgV6Wug4iIKFcdHR2m6w5t+EkRKxm5Ojo60NCQ2QONiIiGxizE11mF+WYhvo5hPlFh6UG6VZhvFuIL1QF3oAqRjv5pvgaH+VYh/vzPfQ2qy17jGREREdFIUO8bj4kVk3Lax9HnhDNsPG+7X62Dx1mTj9JsqXAOb3RVr6OwtTpU888KAAKKGz7H8O8bjQL/M0fj2DcgxNf1dsqMMN+jOOBRUhFqMiHx/u8juNiUOa3b6X0a3IqKxmtdBQnznYoGZzjzgQS7Aq5KBFyVQ97frbpNfx6svvfjfRNQX1E+I/1avY9yx1YUIiIiIiKiMSxbiK/Tw/wz3f1hXrYQX/fe+Qv4l/37kdSG3gBBROamXH8bJl93S8bycxufQ2jXFtMQf94DX8aCz/8xvLXpjWx6mN994hBDfCIiIiIa8c4cjePDP2SG+Do9zA/3pt+zJhMS72+MoOWM+eigR/fEcfD9GKQ0OTjRMDDIJyIiIiIiGqPMQnyhSFx7r4a6yekNEQPDfLMQv2a8xA0PJKE60vdlmE9UWGZhfvOmDaYhfvW02XD5K9C4+hHDMP+T5384ZkJ8KSVO7I9j20thHHw/imTCfkNsuEfDrs0RvPtKGC1nEgWskoiIiIhyZRbiO93pCwaH+WYhvsMlMfhgDPOpUMp6aH0hxK8A/AzA61IaTGZBREREREREQ2IV4q/4jIZJs4FJsyTe2aCgral/iEA9zHcqimGIf9MXNLi9gNOjYeuvFSQT/ftymH2iwjIbZn+ggSG+Tg/zD274KcIXW0z3Hc0h/r5tMZzcn5oPtvVsEu0tGq690wOH03qI1N4uDdteCqOvO9Vo23ImiaW3ujFljr35W8tBMBjE+vXr83KsUCiEtWvXGq5bt24dgsHhz5Waj2MQERHR2GAW4s9ZpmHeconNzyrovth/vaeH+Tfc48XeLdGMEN/plrjp8xq6QgI7XgWA/n2P7kldSxZqmH0am8o6yAewGsCDAFqEEL8A8J9Syn0lromIRoFvjZuJKtV8Lp5C0aREdzJuuC6gOqGU4D/4zmQMP2w9XvTXJaLylkwmEQqFsm9og6ZpaG9vN1xXU1MDJU9hXjAYhKqqeTkWmVPvuhvq/Pk57xcKteHxx40b9hsfehTuQNVwSxsVot2dOPj8U5bbrHrAA49/eD83Ukrs2NqL42fTg/iBIT4AON3Ajas1wzB/sIEhPgBMmA6sfNA4zD/rbccNN1dAUYZ37RPp1bDlhYjhuieeWIdgsG5Yxx8Oq+98qWvLN/XQIeB760pdBl1iFeYbhfi6bGH+WAnxda1nk3j/9YhlmD84xNd9+IfUuXWkhPmqqqK+vvBzmAaDwaK8DhERERFgHeIvuVVCCOCWNRo2P5MZ5r/5bB8Gdy/WQ/zgRCA4MXVQhvlUaOUe5OvGA/gugO8KIfYh1Uv/l1LK1pJWRUQjVpXqQq2j+EE+ANQ5R1fDFxGNTqFQCI899lipy8jJ+vXr2ThcBMLvhwgEct5PC4fRFjEOXLscLnhcnuGWNipEHOafk65HFdCcwwvyz3wcx/GPrUN8nVmYP9DgEF9nFuafPhlD9aQeXLFweNdjfapm+nlpvqF9V/PF6jtf6tryTfj9pS6BBjEK861CfJ1ZmD/WQnydVZhvFuLrRlqYT0Rjl5QSWhJQVOQcOmnJ1DlQURlWEVF5OXcikTXEBwBvhXGYbxXi62ZcaR7mKyow/5rRde1MpTFSgnz9R00AWAzgnwD8vRBiI4D/APCilNL4rouIiKjMVFdXm66bv/qP2Cv1kmh3Jw5t+InhOqvPkIiIsmtvyZy5bPIciYmzjLe3CvPNQnzdhOnAtAUSJ/am72dUAxHlz5Trb4PD48PZHW/D4fFhxm33oWryjKz76WH+iTd/h66zp1AzYy6uuO3+MRfi64zC/Gwhvo5hPhGVu95ODR+8GUFHq4a6iSqWfcoNj8/eA6OnDsax/70oNA2Yf40LsxY72fuUiMrG3i3ZQ3ydWZivMwrxdWZh/pFdcUyb54QvwCnlaHjKPci/E8DXATwAQG8Wkkj9NDgB3HPpV7sQ4lmkht7fUYI6iYiIbLMa+tsdqIKnqqaI1YxMHR0dJR1C3WrI+XwNR59PHHKeiAabeIUDJwaFV2cOK6is1bBgZWbDBtAf5m/ZoKD1UphfMyHVoGEW4gPA4R0CJ/ZmNl5Mmlnut6NE/Zo7w6hs78t5v1BnFFGH8YgFmrQOgXXd4QSkzW0H889dhjlzl13+e1df+s+9z63CoWb+fLr8FZj3wMOX/94bSSDZV5j+Ex6XvWuUvrgL0XB+RlWTUuLYjh6cO5z+noSQWLBS4sgOgXi0/0Soh/mLPxVAd4+KvRvbEelJ/zepqpMYN1Xi2K70z/PDP0TRG3Nj/EzrkWdcagJ+Vyxr7dGEio6oB1GHcaPwuc4oos7cv6sA4HYoqA9kHyEnEk+itSdquM7qO2+nNoci0FBl8Z/KJYmkhuYu6xFshmNKja9gxyYqF72dGra+GEa4N3U+azuXxLaXwlhxnzdrmH9sbwz73+s/Zx3YHkMiLjFvGYeSJqLykIhnXj9XjYPhvS5gHuZbhfi6QI2E6hRIm1FXAsnEEIsnGqCsW06klG8AeEMIEQDweQBfBbBSX33pdwGgFsCfAvhTIcTHSA29/7SU8mxxKyYiIqJiWLvWeM7hclCOtXHIeSoHyWTSdF20u7OIlZS3Yn0WdRNVLLnRjT3vpAcxB95VAFiH+Tev0dB0REBKYPJcCavnhA7vENi7ObMheMF1LkyYVta3o0RpvvrTHXCNuzC0naetNlzcGNVgJyrcsK0J3eHCtAJ+7vqJmFyXvYrXd53H2VBhQtNPLanHFZXZt/v96cXY15Z9RIGspMTUtvcxvjN9tkYhJK67T2LqfImGKyTeelbJCPM3v5hEX3cC7kT6iCJVdRI3r0k91KSqGo58kH7eO7S1C68eXYxQYKZpWVc1nMLqBTuzln+gZTJ+ffAaYJrx+s/8dF/WY5i5dkYtnvvm9Vm3232mA2t+vN18A5PvvJ3aJlV7se2vbs26XXNXBKv+fnPW7Ybq1N/eU7BjE5WDwSG+rrtdZg3zB4f4uiMfphIshvlEVA7mLXXhwPvp56oPXkudm65YZPyQrB7mb/utgtA5AX+VxPUPaAg2mL9OWxPw9vMKkvH0896kmQ4Eatgbn4ZvRLScSCm7AfwEwE+EENMBfA3AwwD0O6CBof5cAH8D4PtCiM1Ihfq/lVKGi1gyEREREdGo1NJ3ATU9uU9vcbz5uOk6s2k0KF3cHQMUoFtTEE8YNwj4VSccIntjQW8yjpo5GuZqKo5sTX/IIluYryjA1PnZewebhfgzlyuoXyjRmTDuzZmLiKYh7s1sSFbi9nr4dse60B3rzljuUt2o89Zl3T+ajCIUbjNcF+oLGdYGABf6ziPRU/jZ4fLxPiZWTMp3WUSlcznEP5y2eGCIDwC1E4Cbv6hlhPnJ9m4MnmBAD/E9l56HWHyLBJAe5gsAMy5sAQDLMJ+IqBjMQnydVZhvFuLrGOYTUbmYtcSJWEzi6O6B910CH7yW+pNVmH/bwxrC3YDbB6gWKaoe4idi6ee78VNVXH3r6JqWikpnRAT5A0kpTwFYB2CdEGIFUqH+QwD0CYX1ofdVALdd+tUjhHgeqaH33yl60UREREREo8Rjm/4E3oPZh90dzNHnxFSYTMBOtjTfcBoJXxy/7AaQmT0DAFbXzcEUT/aura+GjqMp1gNUA4Erq1D3UXoXg2xhfjZmIX5ofgtO1l8Ezud+TFMGHTerP84eXgPALw8+jR/v/beM5VePX4b/fee/Z93/o9Z9+NbGR3KqDQC+8faXbdU3XPl4Hzu/9lG+yyIqmXFdH2cN8XVmYf5Ag0P81PGswvytCLuq0ecO5ustERHlJFuIrzMK87OF+DqG+TQWcQQ6+4r1eQgh0Lg8NS1TrmG+EIAvy221VYi//A4PVJXnP8qPERfkDySl3AZgmxDi2wA+g9TQ+59GKsQf2Es/AOAbAL4hhPgEqUD/e8WvmHIR6+kqyetKTUOs17hl1OUPQCilGQ6lVJ8HERGNTcFgEOvXr8/LsUKhkOmUA+vWrUMwmJ/G7Hwdh2is6Z6WakjJV5hvFeJ3zbw4nFKJiIaluvdMxrLG6zNDfJ1VmG8U4uv0ML+jReLCJ/37CUhU9TYxyCeikjAL8avHSyy/OzWUdG9H/zlrYJjfdDRhGOIvulmDyw3s3Jh+7ccwn8aajo4O03Ucga50hhPmW2GIT8U0ooN8nZQyCuA5AM8JIcYjNez+VwAs0jdBKtAHgOkA/hrA94pbJeXq4PNPlboEIiKiMUtVVdTX1xf8dYLBYFFeh4isWYX5/moNM66017jR9DEY4hNR2erxjEN1X1PasiM7BcbPkBg32XgfozDfKsTXHdst0kL8/hp43UNExWcV4t/8BQ1uL3DrGg1/eCYzzN+8IYxoX+a14KKbNcy/Vl+uMcwnorKULcwXArbvdwGg7SxDfCqu0nQtLiAp5QUp5T9KKZcAuBrA/wegRV9dusqIiIiIiIjKV/e0TvivjGQsP7XffkPEqf2Zt5idMy4yxCeisnC+ZiHa/VPSliViAu88r6C1yWQnpML8O76hYe41Ghau1HDbw9Yh/tFdArs2ZZ4Pm2qvQrevwWAPIqLC6e3KHuIDqWGkb12jwV+dvl32EB+YuURi2R1axnZHPozj8M7sw/ETERWSHubPvso5eA12vi7Q3W7vOMkE8O4LDPGpuEZFj3wzUso9QogQgE4AfwXAXeKSiIiIKI9W3u+Bt6L4F8maJg0bMwDA7RNQlOLXFO6R2PpiZgBHRGSXo9eJ8DFXxvLKOvvPQ1fWSZw9mn4OrDhbie4pHYhXshGXRq7/fGQ55s5vzHm/UFsIa9c+brjOv+qbto6xesVkSFmYfgk+t2pruzuvnoCkVpgaPC4VWm/2uVJvm7oXn557aNivpyUlDr7tQuhM/zlJD/NvfEgz7ZnvrwKW3Jr9MzAL8acv8eOmxWcBnDXcz6UmbNW/oL4JE1wXsPUF4+u+deueQLBuaEP3ux32+vtcNaUaW/7yFsN1Vt95O7U5bF5HN1R6TGsgonT7tkazhvg6Pcwf3DN/oMEhvm7mEgmznvkN0x2oHmfv/xwiokIQQmDeUhfOHkugr7v/HKZpAp0tQKAm+zEivUC4O/3cKBRg0Uo3Q3wqmFEZ5Ash/ABWA/gagBvRP6w+ERERjSLeCgFfoDQDDFVUleRlLWT2fiAqJwlPaSwxWAAAIABJREFUHKdvOVaw498//V9tbffiqT8zXH7DhO+gzjMn6/7bzv8TQpHCvQ8rCU88+0ZD5Oh1ouG9qdAi6efUmvESV66yH941XifRekairan/FkyNOdCwfSqarzvNMJ9GrIYqL6bUWHTBNuGO98Cd6DVcp9gcZjjgLX3Tjd9T2BrsPIroc8bg89oLu7NZcacTOzYlcf5U8vIyO2F+NmYh/rxrXJi3VADoG2LF/dyOJKrdcbgTYcP1E6vcqB/CdzUXHqdq+vNg9Z3PZ20OVRnSzyTRWNTblXmvOHOxzAjxdVZhvlmIr5syT+LQ+zJjv94uiepxuddORJQvyYTE+xsjaSE+ALi9EvXT7B3DVwnUNkhcbO4/x0kNePeVMFbe74XXP+oGQacyUPq7wTwSQnwKqfD+MwD0q3n9J0oO+HNrkUsjIiIiIhoV1t/+I8ydPzfn/UJtITxu0kOv8aFH4Q4M7+kYj9PG4/MA7m78geFyr1oNVcnsjT7YDf6/QFIWLlCPdnfi4PNPWW6z6gEPPCYNBH518FCBxu4OzkRCphp1+zol9vwhgeigJK1mvMRNX9Dg8tg6JADA4QJuXK3hnQ1KRpg/Y8cVWHK3AxW1+XvOOtKrYYtBr1Qlbq/H15caH8Z9sx7IWO5S7Q3mduW4RXjxwdcN11l9558YRo/ZXOTjfRCNRooqsPx2D3ZsiuQtzLcO8bP//0JEVCjT5zux/730hyl3bRJwuoFpjcahvB7mv/Wcgu6LAkJILLpJYp5FiB+LAG89lxn+eysExk9lb3wiKh09xG85k0xb7nRLrHrI/j2vEMDKz2nY/Ezq3Kjr7ZTY+iLDfCqMER/kCyHmIxXefxnARH3xpd8l+gP8OIBXAPwHgFeLXCYRERER0ahQ7xuPiRWTct7P0eeEM2wcZPjVOttB/HBVOOuHtb/XUdg6Har556QLKG74bA5/bEYP/Hs6Nex9NYzooE6ieohv1lPLitNtHObHI8DeVxNYeb8XlbX5acx1Khqc4aGPSBJwVSLgqhzy/m7VbfrzYPWdH++bgPqK4X0X88nqfRCNVpZh/q8U3P41DZU2n7c5cxgM8YmobM1c5ES4V+L4vv6HUaUUeP/l1J+twvw7HtHQejo1vUig1vw19BC//Xx6iO/xCay41wuHkwPm0uhWXV1tum7+6j8a9oPro0m0uxOHNvykaK9nFeLf9AUNwYbcjuetAG5ZwzCfimdEBvlCiCCALwH4KoCr9cWXfh8Y3gsAO5EK75+RUl4scqmURTAYxPr160tdRppQKIS1a9carlu3bh2CwcL3nDHT0tKCJ554wnBduIdDKg/Ez4OIiIjIWk+nhq0vhhEZNGeqnRA/mQQgAdXkjtIszI9FcLlxI19hPhHRUOlh/vuvR3BhQONuIi5w9EOBpZ+2N7XIwe2ZjbVzlzoZ4tOIJ3t7Ibu7c95P6etFnce4e2NlIgZ3zM6EGqOfKxEz/Zx0FUk3PPHhB0LLl7nhSPbhyIH+z95OmK+qwIQZ1sc2C/G9PoHb7q5CpV9NdbEbJiWpoc5jXKfSN7Tvar5YfedLXVu+yV7j6VPGOlU1v7dxB6rgqSrOg+uULt8hvo5hPhXTiAnyhRBOAPchFd7fCcAJ8/C+GcDTAH4mpTxU/GrJLlVVUV9fPj1RsgkGgyWtNxQKma7b+mK0iJUQERER0UgW6Rt6iH9st8DetwSkBixcaT7EarYw/+YHffAF2LhBRKUV7pXo7sh8ENyVw4gkboPs5uJ5DYm4ZC9UGtGSr72K5N49Oe9XDeCfV600Xnn+MHB+eHWNKmafk+7ipV95cN9Eiad7Psarn5y+vMxOmG/FLMSvcbvx11ctRUOXH+gaVtlpHlplsmLTJiRNVhWD5Xe+xLXlW/LcuVKXQGTLcEL8aB/QchqorjcfjYRhPhVL2X+LhBDXCiH+Balw/nmkwnwXUoG9fnUhAEQBPAvgLgBTpJR/xRCfiIiIhuvCmQS2vNCH7a+HDRt5zSQTEvvfi+Lt3/Th8M4YtGTujSJERIVyYn98SCH+4R0CH76hIBETSCYE9r6lYP9W85BKD/PrJqe/ViwCHNubh65ZRETD0NulYdtLYfR1p5+jquok5i63f+225DYNTnf69q1nk3j/9QgScV4DElF5EELg4TlzcPe0qWnLU2G+wCcHc3vwyDLEX7YUDX7/sGsmIhqqvVuiQwrx25qAV3+s4N0XVLz2EwUnPzI/N+phfqA2/Xqvt1Ni+6sRSI3XgTR8ZR3kCyEOA3gXwLcA1CK9Bz4u/X0bgG8CmCCl/JKUcqOUkmNqExER0bCdORrHe69GEGrWcP5UElt+14fOUPZn6fWnfo/tjaO9RcPhnTHs/H2UYT4RlQ1h0BaRTABWd1KHdwjs3Zx5C3lgm3WYL2Xq2HZqICIqFqsQ/+Y1Glxu+8eqHgfc/EWG+URU/rKF+R0t9o+14zWG+ERUvk4fybwJXfm57CH+288riEVS5zapCex4VeDEvixh/hc1OFzp13udIQ2dFxlV0vCVdZAPYM6APw8M708D+D6A2VLKVVLKp6SUeRykh4hoeDQpsbGzGd87+xF+cP4IzsX6bO/bFo/i31qOYm3TR3ihvQkJPptEVBJnjsbx4R+i/VcgSPU42PZS2DLMNxu669yJBMN8IiobM690wVeZ3hjRFRLY/IyCiMG0l2Yhvs4szDfrqeXxC8xa4hxa8UREw5QtxPf4cj9m7QSG+UQ0MuhhfmNN+pzdUgo0n7D/pGXzscxl/3XRlQzxiagsVNYaP4SeiBlvr4f4idjg86DAB6+Zh/lSAgffExn7OZzg0PqUF45SF2CTANAD4NcA/kNK+VZpyyEiMqdJiQ3tZ7CzNzWJWZ8Wxo9aj+OPx83EZJd1i1BrPIIftR5HVzI11Oy2njZ0JGP4cnA6HIL/8RMVi1GIr9PD/BX3eVEVVNPWmYX4unMnEtgJYNltbigqu6ISUem4PAIr7/di64th9HX1n+z0MP+WNRo8l9pgs4X4ugPbFAAaFq5MHc8qxF95X+HnCwyFQgU9/nBev9S1GQkGg1BVNfuGRCNcIUJ8nR7mv/Wsgni0/9ynh/nX3umBw8lrQCIqvddOn8bB9vaM5YOnQ7JSNzk1h/RATx08hP9n2VJUu3MY1oSIqACW3urG1pfCiEf7l7WcFtjyawWrHtTgcPUvNw/xdQIfvJb60xWL+s+TUgK7Ngkc251+bysEcNUtHri9vO6j4RsJQf5mAP8B4NdSSvtdWomISmBwiK8La0n8OEuYPzjE1x0Id+EXoVMM84mKxCrE1xmF+dlCfB3DfCIqF74KJWuYf+qAcYi/4DoXnC6BPe9E05brYf6cZdIyxK+oLvw1zdq1awv+GkNVjrWtX78e9fX1pS6DqKDCvUMP8U8fEjjwroDLDSy5zXxY1mxh/vX3eKAovAYkotJ59ZNP8PMjH2csX3SzhnGT7R/n2ns0bH5GQU9H/zntbG8vvr/zQ4b5RFRyVXUqVtznxbYsYb5ZiO+rFGn3yYPDfKsQf9mnPJh0xUiIX2kkKPdv0jQp5ZlSF0FULqqrq03XrbzfDW8FQ15duEfD1hej2TfMI7MQ/3JNFmG+WYivY5hPVBxmIf6sqzV0tgq0num/qB8Y5ldUKYYhvtMtsXClxL63BZKJ/n0Z5hNRubAK8zf+u4JIb+Y5asF1Lsxe0t99wSjMP75XItJTuhCfiMjI4Z2xIYX4R3cJ7NrUf+5661kFNz5kHnhZhflnPk5g2jxOLUIjQ8fNy9E2d3bu+7W345/+1/8yXDf77i/AVREYVl0+R52t7foSbYbLPUolFMVluG6gSLITmjRup8mHWE83jr76nOU219zuhttnfO3kUxxQbbQRhbU4EjJ17jtxIIYDRzLbyxbdrGH+tblNAeKrBG5ZYxzm/597tuKGO71we/N33Rft0/DBpszalYSC7z/+fQSD1t+L3ng3emKZc0i5VBdqPLVZXz+WjKE9YtzmZ/Wd/4vvfhfVg6YxKIR8vI/x/glZ91cPHQK+ty7n+ohKoTpLmD//eg3bfpsZ4o+fqmL5HR4c3hnD0d0D/x/oD/Pbz8M8xJ9Z7tErjSRl/W0qVIgvhFCllNbd5YjKkNVQl94KBb4AG0VLJVuIrzMK87OF+DqG+USFZRbiz1mmYcmtEom4xJYNimGYH6hREGrW0vZzuiVu+kKqt1bVuNS+DPOJqByZhfl2QvzpjakwanCYzxCfiMpRLJwZUtU2SLi95vsMDvEBIBETeOd56zA/UANU1KQaedNqiOQWlBGV0p9t+3N4T3mGtvMK48W7OvcDnUOvCQC+NHuDre1++cl3DJffNul7GO9ZmHX/N5v+Bi3hgznVljOTz0m3qw+AyRi1q+vmYIqnMutLPN9yGE2xHlSeqEHw4PiM9UMJ8XVmYX5Pp4aXX7mI5utPQ3PnsRne4POq/rgOms8PEbB+QOQXe36OH+/9t4zlV49fhv99579nfemPzn+Ab218JKfaAODhHX+U9dj5kI/3sfNrH2XdX/j9OddGVEpWYX7L6cy8RQ/xVVWgcXnq3jczzM+8V2aIT4UyplpRhBCLhRD/BKCp1LUQ0ehhFuKrAP7EPR7zlfRWIT3Mb4r1mYb40xU3vu1ugBvpFwV6mJ+Q6YEhEQ1PthBfCMDpAlat1jBuSvpGsQgsQ3wAGD8tta/qSN/33IkEdv4+Ci3JBl0iKi09zPdVmj9YNDjE101vdGLJjeZDpzLEJ6JyMWuxC4OfiT75kYIP3xCQBpdjRiG+Tg/zWw1amOJR4O1fZU4v4vYKTJ3L3vhEVHxDDfGlBLpCQDRsfmw9zK+oTj+Oq8eNhvemQomad0wiIioGPcx3ZpnxY2CIDwBCpML82VdZX78xxKdCGvUtKUKIOiHEd4QQuwHsAvDnADjxHxHlhVWI/6fuBlzjCOAxT4NpmP/DlmOGIf53PROx2OHHn3smMswnKrCuixp2ZQnxdWZh/kCDQ3ydVZj/8e7CDddIRGSXVZhvFuLrzMJ8hvhEVE6CDSqu+ZQnI8w/viczzLcK8XVGYb4e4ofOZYb4K+7zwu3lSExEVFzitHdIIX4sArz1nILXnlLx8g8VnD5ofv6yDPO3TwHYhEVEJZYtzB8c4uuyhfkM8anQRmVrihDCIYT4rBDiBQBnAfwjgMUAxKVfRETDli3EX+JIDTXlFoppmN+tJdKW6SG+X6SeVp6jehnmExVY27lERg+s2gaZEeLrrMJ8sxBfN34acOWqzP1aziQMtiYiKj49zA/U6D0QgIXXW4f4Oj3M1wMyX4AhPhGVn4lXOLKG+WYh/tylTkyYnt6zdGCYny3Er6zl+ZCIik/9OHP4/StX2QvxWz5Jnc8SMYHtLwucOpA9zPcFBoX53R74WiqGWD0RUf6YhflmIb7OLMxniE/FMKq+XUKIpQC+BmANgFp98aXf5aC/ExENy56+9qwhvk4P89dHmnFIMx6PbHCIr9PD/B9EziE6oMvwgXAX3u1pw40BDjJCNBzBCWrq6mBAW8PFZoH9WwQWrrIO87dsUNB6JrVBthAfANqagP3bMg9YN5FDDRJR+fBVKLhltQ9t55LwBZScgvjpjU6Mm6yit1NDsEGF6ij97de3xs1ElZr9QYR806REd9J4xJWA6oRi9B9MgXUmY/hh6/Givy5RudHD/A/ejGDgs9HH9yjobJNoa8r8+Zx3jQvzlrqgJSV2bIrg/Kn+OZ8TMYF3fqWgohbouMAQn4jKi3QlIZAePrWeEUjEJRwGHUz1EH/w9CBSCux4JfXn6QuMHwLoaAEivZnLk65k5kIiohKorlOx8j4vPtwcRXe7hmlzHbhypds0xNfpYb7LLXDkwxgcToHFN7rRMH1UxaxUhkb8N0wIMR7AV5AK8Bv1xZd+l5d+6T3x+wC8DOCZIpdJRKPQ2VhmIL9Y9WOx6jPc3irMNwvxdXNUL65zBPB2oitrDUSUm6o6FUtudGPP29G05QffUwBolmH+TZ/XcGKvQKQXuGKJhD+zo8NlbU3A288rSMTSDzZ+moq5y4ofMBERWVFUgfopQ7td9Fcq8FeWT2BVpbpQ6yjNebYu2ySMRFQyZmG+VYgPpM6Py2/3ZIb5cYGOC+n7McQnonKQXNQJ+Y4TaqK/zen8KYFtv1Gw4nNaWphvFuLrrML8c8eAbb9VoGnp+3ZP6UC0lu1XRFQ+qupU3PqQcRu+FSEEZi+xN2IdUb6MyCBfCOEC8ACArwO4HalOsAOvEAaG9zEAGwE8C+AFKWVfUYslolFrka8aW3ta06bV3pXsxYZ4CKudQQiD5E8P8/8l0oyDl8L8GYob37EI8QHg9Vh7RogPAIt91cN+H0QETJ+farnINcxXHcDspebDEeqsQvzlnzYfuouIiIiICscszB9oYIivMwvzB2KIT6PB+tt/hLnz5+a8X6gthMfXPm64rvGhR+EOVA23NFvun/6vhsu9qr22lBUTvoukNB5dJx+i3Z04+PxTltusesADj9/4POJXjedrHuzumVNxMZDA3teSSMT6lw8O881CfEUFtAGnOqMw3yzEnzBH4OZVdRBinK1arUR6NWx5IZKxXInbG+HuS40P475ZD2Qsd6n2Hry8ctwivPjg64brrL7zT6x7AsG6oK3XGI58vA8iIio/IyrIF0Jci1TP+y8A0K+4zIbO/z1SPe9/I6XsKFqRRDRmTHP78fnaqfjVxdNpYf7GeOqUYxXmf8czEXuTvUgCuEr1Q7UYWvX1WDs2xEMZy++tnohGb3FufonGgqGG+dkwxCeifAv3mKRNYxA/Cyp3yaT5UMLR7s4iVlLeSvlZWIX5RiG+zirMZ4hPo0W9bzwmVkzKeT9HnxPOsPHPjl+tg8dZM9zSbKlwDm8qQq+jsHU6VPPPSRdQ3PA5hncu8atO+BucqLg3iW0vhw3D/OX3aNjy68wQ3+MTWHm/FycPxnF8X/9DDQPDfJdbGob4U+c6cNXNbsO2saFwKhqc4aFf+wVclQi4LIbRy8Ktuk1/Hqy+8+N9E1BfUT7TYlq9DyIaWUKhzMygXF6/1LUZCQaDUNWRN71p2Qf5QoiJAL6KVIA/R1986ffBQ+dfztKklLcXsUwiGqOW+msBIOcwXxECVzkqsh7fKsS/MVA+NwFEo0W+w3yG+ERUCFtfjGbfiIjKQkeHeb+CQxt+UsRKRr5CPrhTPU7BohUu7Nsag7x0YzdzkRNT5zjQ1239uguvcyGZiKG1KRXmuzzA0tvccDiRdd+hsvosrB4eIaKxraZexYp7vYZh/is/UpBMGIf4FdUKFl6fCqmNwnwhRMFDfCIiyrR27dpSl2CqHGtbv3496utHXqZSlkG+EMID4LNIDZ1/KwAF5uF9D4DfAjgBoPy+GUQ06g01zM+GIT5RaViF+W6/hjk2htIHgJ4OhvhERESjhezthezuznk/JczZ/fKlGA8xyQGXeSc+SuDERwmb+/XvGIsA771SugeuuprPYUJF9ofGC0Xp60Wdx2O6big/R+VK9vaWugSinJmF+VYhPpAK683CfDnoFpkhPhERUf6UVZAvhFiBVM/7hwDo49wMDPD18D4B4A0AvwDwOyllWAhxW5HLJSK6LN9hPkN8otKaPt8JLQns25reCHtkh7Ad5J/YKzJC/HGTGOITERGNRMnXXkVy756c96sMhwtQDRXKUEOncgqrKrduRfLDD0v2+tUA/nnVSuOVmzZhNI0XkDx3rtQlEA2JWZivGxzi68zC/IEY4hMREeVXyYN8IcQUpML7rwKYqS++9Pvg3vc7ADwN4FkpZVuRSyUismQV5tcLJ25y2pvPfleihyE+UYklExLnT2X2wPLm0LnJ489c1hlKoqdDQ1Vw5M3HRERERERERKODWZhvFuLrrMJ8hvhElA+FnE5pJOLnQSUN8oUQvwdwE/qDeiAzvD+OVM/7p6WUx0pRJxGRXUv9tehMxvF6Z3Pa8u2JbttB/vZE5lCDKyvGMcQnKpJkQuL91yNoaUrvL+R0Syz9tP2L55lLJJo+lmg909+IEYsA214KY8V9Xob5REREREREVDJ6mL/jjQjCPRIV1QLX3Wke4uv0MF91AB/vjgMSuGKhE1eucDHEJ6JhK8Z0SkQjSal75N8y4M8Dw/s2AM8hFd6/X4rCiIiGojUewbs9mQOGTFbcto8xRXFjVzJ9rr0P+y7ian8NJrt8w66RiMxZhfg3fUFDzXj7x1IdwKrVGrZsUBjmExERERERUdmpqVfxqS/60Nct4a8UUGxOAyeEQONyN2YscEJKwFdhHf4TERHR0JQ6yAf6A3wA2Arg/wWwUUo5mqbNIqIxoDUewY9aj6MrmT602HTFjc+6am0f5w5nNT5OhnFI659PM6wl8ePW4/jjcTMZ5hMVSLYQP9iQ+zGdLob5RJR/K+93w8vGUgCpYQbZY4PKWa3bjR+sXFHqMkaMUCSCJ3aWbn53IsqPZNK8WTfa3VnESspbuXwWqkMgUDO0nvReP69JiYhK6VvjZqJKdZXktTUp0T0oC9EFVCeUEozS0pmM4Yetx4v+uoVUDkE+0B/m3wDgrwBMFEI8L6Usj6sZIqIsrEL873omwifsB3UuoeAxTwPWR5oZ5hMVSSFC/MvHYJhPRHnmrVDgC7DRlGgkUBUF47zeUpcxYvDBh+GrddsfDY6oUDo6OkzXHdrwkyJWQkRENLpVqS7UOkoT5ANAnZPXnoVWDkG+QCrIlwAUACsv/XpSCPEqgKcBvCylNH6sg4ioxLKF+P4cQnydm2E+UdFITeL9jUML8UPNwIdvKIj2AnOvlZh9tYTRw6bZwvxVn/EhkGUeQiIiKl/NsTBOxXoxy12BcU6P7f00KfFRuAMJKbHYVw2H4P8F5Uq9626o8+fnvF8o1IbHH19ruK7xoUfhDlQNt7RRIdrdiYPPP2W5zaoHPPCw5ycAINKrYcsLEcN1TzyxDsFgXZEr6mf1nS91bfmmHjoEfG9dqcsgIiIiolGs1EH+XQC+AeB+AANbOwQAN4DPXPrVKYR4HsAvpJTvFL1KIiITwwnxY1KDRCq0N8Iwn6g4zp1MouVM7iF+WxPw9vMKErFUML/7TYFor4aFq3IP8w++H8W1d7C3HhHRSLSjJ4Rft5+BBKBCYE1wGhb5qrPuF9WS+Pe2kzgR7QEAvNPdgm+OmwW/WurbdDIi/H6IQCDn/bRwGG0R48C1y+GCx2X/wY/RLOIw/5x0PaqA5mSQDwB9qmb6eWm+oX1X88XqO1/q2vJN+P2lLoGIiIiIRrmSthBIKTcC2CiEqASwBsDXAFynr770uwBQDeBRAI8KIc4A+AVSof7BIpdMRHRZdzI+5BD/D/EObIiFoEHiXmct7nHWQBgkf9nC/G/Xz+HwNUTDFI/JjGVuH+CzaGMcHOLrDr6nADAP8x1OoDIo04J8AEjEhlI5ERGV2o6eEDa0n7n89yQkfhk6BWC6ZZgf1ZL4adsJnIz2Xl7WHI/gR63H8CcM84mIiIiIaIxaeb8b3go+vKkL92jY+mK01GVQCZVF64CUsgvAjwD8SAgxG6le+g8DmKxvcul3AWAqgP8G4L8JIfYB+DmAZ4pbMRER8F5PW0aIP81GiP96rB0b4qHLf/9d/CLC0LDaGbQM85+MNOPwoDD/7e4WPFg7JQ/vhmjsmjzLgaN7Yujt7A/0e9oFNj+j4JY1GrwV6dubhfg6szBfSuDDTQLH96TfjAgBzLnama+3Q0RERTI4xNdpgGWYbxTi684zzCciIiIiojHMW6HAF2CQT6Qru5YBKeVRAP+3EOK/A7gNqVD/MwD08WYlUoE+ACwGsAjA3wH4uMilEtEYZzSHaVhqiEkJv3G+lxHi6zbGOwDANMyPQ6IPmkENJi9ERP8/e/ceJ0ld3/v/XVV9nZ57z8zu7OwFWGC5qdxUrqLBA0YQlAgo0WPiDYL6iIImj6OBddVzzi/HS0iymlWQaGIIispFQ8QkIIiIikEUFtFdWJa9zkzvzOxc+t71+2O2d6e7qruqZ3qme2Zez8eDB4/+Vn+rP1PdXVtd76rv17dA0NB5b4rq0fuSmjx4JMwfP+AM871C/KLyMP9wiP+kM8Q/8/UR9Q403SEZAKCKSiF+UaUwv1qIX0SY35wGp/ara8J7yoRyiamEslH3oXcm88PKZbOuy/xqDfb5et5EdtC1PWp1yjJDnv2TuRHl7bnVWk06P1ZxOxWNF0xlc+4ndWNW0PX3WbnJfFY52/m7Kmxaipje37dUIad0Ie/5vPmWKhRct5eZrXxB+UzjmYMaz4w72kNWWD1R7zns0/m0Eslh12XVPvP7p/YpNzF/n6Oievwdq1oH6l0WAAAAULOmPStg27Yt6T8l/adhGG2Srpb0PyWdV3zKof8bkixJJ2hGyG8Yxnm2bT+6oEUDWFbObu3RLycPaCh3ZGibQTurz6Z262ORAXWVnQiqFOIXVQrzJ+y8vpDao52F0iF0OqygXtu+oh5/CrDsRVtNnXdZ9TB/ctQ9xF+xztLKtQE99ePS7+jMML9aiD+wvmkPxwAALiqF+OvMsF6ccbxWHuZXCvFbZSpkmDpg5w63EeY3nw/+x7WKbp3lfPZ/4N78UuJ/SZV/HvhyzXHf9vW8+3Zc79p+4cAntaLlFM/+P9n3NxpMzvPshhW2U9Ed45Kc2bMk6a09x2tNpN3zJe5PbNeuzISj/ay2fp3d4R3cPjm+X4+P7/V83oJw2V6dv/MOryXpjq3f0K1P/YOj/fQVZ+orb/hHz/6/Gfq1rnvg3TXVJkl/+vAf+6pvrurxdzzxrt/Uu6xlpbOz8oVPJ771PQq3dSxgNc0rPT6mZ7/91UaXAQAAmtiiOCNg2/a4pNsk3WYYxjE6MvT+uuJTZj5d02H+w4Zh7JF0p6Rv2rb9xAKWDGAZiJqWru07Vl8e3OYZ5lcK8Q2V7sDKw/xqIf61vceqw2I4bqBeqoX5D95hKjU1boe4AAAgAElEQVQp1xD/VRdFZFmGDFP61cPOMH/vC7ZG9pX2I8QHgMWpUoh/abBLlwe7dUdmWA/lxg63F8P8jL1Gv5g84Bri3xgdUFSmPpvarQRhPgBgCbCsyqNDhNs6FOnoWsBqAAAAFq9FdzbAtu3nJd0k6SbDMF6n6VD/LZJixafoSJg/IOkGSTcYhrFd06H+nbZtz/Nl5ACWi3Yr6Bnm/yw37hriX9q5SjEzoG8d2Oka5v9hsKtqiN8TDM/L3wQsZ5XC/IkR51D6M0N8STrqxOkLa8rDfEJ8AFgavEJ8wzB0TWj6btjyMP9bB5z9iiH+GnP6mO5jkQHCfAAAUCI54ZwOZLmqti3y+cZPewIAS1W2UNAvJg+oIFtnxroVMf1N5yRJ+7JJPTM1ptWhFm2Ieo+gBadFfSbAtu2HJD1kGEZM0lWaHnr/NSq9ybV49vxYSZ+Q9AnDMJ62bfsVC13vUpbbu1e59iNfQqu3V0bEe9jBwvi4CqOjjnYjGJS1cqW/196zV8rnHO1md7fMWMylR1kNyaQKw0fmRLMTCXWlUrINQ6Nhf0FpfnBQdjrtaDfb22V2eA8XZmcyyu/f77rMGhiQYXrP9RecyCicsh3t+YilXJv3nIcq2AonUq6LMl1h2QHvGqzJrAJTzveiEDSV7fS3LcPDqenJpMtk20MqhL3/gTBTOQXHs7InC+pKHfl7CoahMZ/vp5KTktu8h6GIFHRuy2ph/qbkTk24zG1/aecqvabtyHyWbmH+Y9lxjau0jg4z4C/ELxSkpHPISElStFXy8ZlqyWZl79mjXNln24hGZfX4G7Jxqds7llT7yFTN/RJjaaUD7vungsvn3814Mifb53Nr1RK2FLB8zDGayilfmJ8aIiF/B4RT2ZDSSR/7uFpY0ssuiuqpB0aUHHc/UTAzxE9mg0rlpkP8jqOk47NJ/e6xCuO+GtKJr2lXy6qIRpLepYSsnGKh6vPFSlI6Z2k0HVG6wr56z1ha6WDtn1VJCgdM9bV5/5ueyuY1NOH8t1Cq/pn3U1vANNTfEfWsIZcvaO9B93/L6mFNV8u8rRtAc3t6atQzxJdUMcwvVx7iS1KPGawY5t86tF0fWnG8LMN5YRkAAFi6Hr3P/TcWSo2Ojqq/v7/RZQDAkjOZz+nWoe3ak50+kfnYxLCu7V2vjoD3+djfTI3qXxI7DqcjF7T16Y0d/SXTCsPbog7yi2zbnpT0j5L+0TCMoyT9iaR3Sjq6+JRD/y9+OrwngENNhq95h/YFjwzx3XPXtxQ552zPfpN3flNjn9zkaA+edJJW/McDvl576C1XKL9rl6O96wufV+zqqzz7px9+WIn3vK+k7SZJScvSJ856la8aEtd/QJmfPu5ob7vhI+q48QbP/tnf/V6DF7/BddmqrU/L8HExwAnf3abVP9vnaN93Xr+ee//Jnv2tZE5n3fgT12VPfPrVmlzX5rmO1Q/s1FH3vOBoHz2hU099/EzP/pJ05l897noxwNN//nIlzuhz6VGq9xeDOuHW6UE3Xjuj/UA4rM+cebqvGgKP3C9j1HkHff7Uc1TY8HLXPpXCfD8h/hmxbknOML88xO9Mp3XdxJS6B3xckJCcUPD7d7guyl56jRTzvvrtopd2KXvJm1T+qYpcfJF6bmcON0n6n7f/XKFe94twPK17q2vzSemC/ESF3/7JLo0nnd+Verji7FVa3eNdxQ/+e592V7gAaK5ef2qfjvFxkeZ/7XyFfj18tPcTZ+G1p/5KsaeeKrkzX3Leif/YzuP04AsnlTynp+93OnrwsZI2W4a2r7hAv9h9lLTbXw2n9e/QW0/2nh3omcHV+s7WVx6ZdKjMm2//tb8XdPHqo7v1zfd7/5v+5Eujevutzn8LD6vwmfdT20BnVD/5S4+JcyXtPZjS+f/vIc/nzdaO/3vJvK0bQHP7r4POf+//MNhZEuIXeYX5biF+UTHM/+vUbo3MCPP3ZJPamhzTy1oqzzkMAAAAAEC9lIf4kjScS+vLQ9s9w/zyEF+SHh4flCTC/Bp53263yNi2vcO27U/atr1e0zne1yRN6EiIDwDzohjm9xqV7yQuD/GLzoh166rutRV3VJ3ptK5/Zqt65unuZwBOZiSk8y6LKtZx5Ju5sizEr2S4/Xi90HeO7EPf6oJMbV95gUZaj5rPkgEA8yTsMnTg7kJGlS6pK4b5rwuUXpBbLcQvGrazmrSdo0PVMnwhAAAAAACz5RbiFxXD/LGc+yiibiF+0cPjg7p/bO+8jTS7FC2JO/IrsW37EUmPGIbxAUlXanro/dc1tioAS1m7FdR1wQ59eXS3BltKh4G+/IUdOvc1p1bsW+nO/GKI35tKixm/gIUVbTX1ure2aPf2nIJhQ/1HWb6vGB1uP16T4R61pgZ1MNqvdMh7dBUAQHO6tHOVvjy4TWn7yKmIX+en9A/pvfqzcL+CLv82FMP8TsPSQ7kx9RhBvTPcq4EqIf5v81P6u9ReZVR6UuMV0U4dG26t3x+Emm3+H1/WhhM31NwvMZzQzRtvdl120pXvVbhtYY4PLjvqS67tUcvfKA/nrvyI8na2niWVSI+Paetdt1V9zvmXRxSJud+PErOCru3l3hhfr5ztPKXodrGOm9PaVuikWOOnGUtNFvTje50jY5lZf3/HNSe9Q2869nJHe8jyNx3dy3pfrvv+6Aeuy6p95j+16VOK98R9vcZc1OPvAAAAWK6qhfhFle7MrxbiF3Fnfm2WdJBfZNt2UtI/SfonwzDWanrYfQCYF+2Gpeuf2aqvnHSC9sRiMgsFXfbiTl2wd5+8Tn2dEeuWIenbwy8qZxrqSab0/mefVW+KOdGARgkEDa07wd/J4XLJcLeS4e46VwQAWGirQy16b+963Ta0veYw/5JQty4Jef9bUCnEf3m0U2+Lr+MER4P1tazQqtaBmvsFpoIKJt2HnIxZPYoEu+Zami+tQe9pyqqJBua3zoBVeTsVtZlhtQTmNrCk38C/kogZUMRs/Km0oFlQMFnt9Gh1baF2tYV8zGNVQdgKV/w+VPvMr2hZqb7WuX0W66na3wEAALAcVQrxu42AQjK0b8bFveVhfqUQ/wQzqucKyZJfuoT5/jX+18cCs217p6T/3eg6ACxtHdmsbnjqN9rR3qaOdEY9af9B/Omxbh336yd0YHRY68bHFWSYGQAAgIZbF47NKsz3o1qI//b4Olmc2AAAAAAAzKNqIf7HIgMKytDnUrtdw/zz23p178guR4h/QaBdfxzq1eO5cf1jZpAwfxaWXZAPAAvFkrT+4Pis+nbmC+o+eLC+BQEAAGBO5iPMJ8QHAACVnHdZWNHWuY1GslQkJwp69D73G2U6O/1NFQMAcOcV4vea0yNbfTQy4Brm3z2yy7HOYohvGobOCU6PBkWYXzuCfNRFzx3f0MoNR+YLtHp7ffWLve1qRd9wsaPdCPof7q737u9K+Zyj3ez2N5Rx+IILtPLxxw4/TiQSuvnmm2XXsNOIf+mLsl3uuDbb/Q1VFzz+uJIaZjLa2nyt47dXHKtdV613tOcj/ubIy0cDevzz57ouy3T5m19u18Vrte/8VY72QtD/D44nPnOW5HIHera9+jCLRUOv7NPoCV2OOQMLNbyfude8USq4zEYfivjqb8dXKHvpNb5fz03+zAuUP+0c54KAv+2gaGvlGqL+5lf94ZrVuvC2WxWPl85haESj/mpYBv7p3a/ShhNPqrlfYjihjRXmjYyd/35f63jruatlz9NoDS1hf/uNN5y+UvnC/NQQCVkqTI55Pu/CtU/pog3Pzk8NAX/zwJ6z9vc6fdWOeakhZDn/fXNzct8urQzt16Muc6VK0qY5zEca9jmE7WlrOvXjv3id67Jqn3k/tQVMf/vw/vZIxRoAoF68wvwPhvtl+jz2/F0+SYgPAAAqiraaamkjyPdiWf7OYwAAnAq2rX8cft4zxJekTjPgGuaXmxniF1UL81vNgC5ob54pmJoJQT7qItDfr8CaNTX3M9vaZPoMqiu+9qr+OfU3o1GZM2o3wmGNRPwFtkVW39x2MEYoNKvtN1O2NaT0XA7sTUPp3rkFtPlYUPnY3OYcTPfUtu3LFSIBpSMBJSMFjVRZ1VguU3lhMCipwt9Rrd9M4Qov7rd/wJr+bz5qKOQ0c4ybSttiKhhUYcUKBfrn9h1byvo7olrT1VJzv3B2QuHcpOsyvyf+26KN/yc8FpnfGtwj6VItwYxaov7C7vkSDWYVDfoL/edLOJBXZzircC7punxVR1h9s/is1iIStCp+H6p95utZW8AyZ/WdBIBaVQvzf5Yb19lBfxf0/lN6kBAfAAAAANAwL6QntTMzVdLWJssR4hd5hfluIX7ROcF25SV9PTNY0v7w+CBBfgWNTwEAoAG2DG9vdAmLwujoqPoJ8gEA8ywz0ZjpZOxCQZlJ92lwQrE2GebC3/3UqG2B2q0MRtQXjOilshMeo7bLyE4VjLk89+RoByE+AAAAAGBBtFoBGVLJJeYTyuu5fNI1yJcqh/nVQnxJytm2nso7b/Zpt+Z2g+hSRpAPAAAAoKG23nVbo0sAapIu5HX78POOEL9Vps4J+h9x7KJgp+7NHihp++aBF2UZhl7ewlyvAAAAfiQSiaZ9/UbX5iYejzMdAYDDVgQjurB9hf7z4P7DbbaO3DV/XoUR5zrN6aH3v5kZ1q5CRmcH2nRxsLNqiL8lvU+/KgvyQ4apK7pW1+ePWYII8gEAAAAA8KkY4r+QLj350CpTN0YH1GH4/5l9abBLB+28HsqNHW4rSLojsUPSUYT5AICGyu3dq1z7kZP3Vm+vDB/TUdoTE+pKOSdLyxv+RzuKJoZk5J0j12TaOpSLek8NaaVTCo+NOhcYhqZ6V/iqITJyQGbWOR1hNtaqbKzVs7+ZzSoy4h7iTvX4Gz44OJFROGU72vMRS7m2kPcKCrbCCfeJ6zJdYdkB7/fEmswqMOWc0q4QNJXtDHvXICk8nJJs59+RbQ+pEPYOlM1UTtFE2vG5KhiGxsJhbdy40XMd7emMrBlTIhVNBQJKB7yP3wKFgtoy7tNTVpumdWZtrZmsggXn5zptWZoKet+Natq2OtJp12Vj4bAKPkZ1aslm9dcbNyoej5e0G9GorJ4ez/4Alqb/0b5SBVt6cLy2ML/DDOj9kZWe668W4r+n9xitDcdmX/wSR5APAAAAAIAPXiH+GtPfyewiwzB0TWj6hClhPgCg2Qxf8w7tmxEu9tz1LUXOOduzX+He+3TTL590tO+Otei/fL72H9z0YcWG9jvaf379x7TjdRd79l/x1C913med4W6mJaZ7vn6vrxrOuuUz6tv6a0f7M1e+U89c9S7P/u27XtRFf3Gd67K7v3aP3OP1Uid8d5tW/2yfo33fef167v0ne/a3kjmddeNPXJc98elXa3Kd90hCqx/YqaPuecHRPnpCp576+Jme/SXpzL963PVigKf//OVKnOF9UUPvLwZ1wq1b9dqy9gPhsD5z5um+anjfs89qYHLK0X7P0UfpkVXe00quGx/XB57e6rrshnO9vxeSdOX27XrZgRFH+yP9K3XPMUd79u9Ip12/W5L06TNOq3pBQdFFL+1S9pI3qfxTFbn4IvXc/lXP/gCWJsMwdHHHdCBfa5jvxSvEPzrsfXHcckaQDwAAAACAh3qH+EWE+QDqqdFDODO8NAAApTITBxv22nahoMzkuOuyUKxNhul/pJR6aeT2QHXzEeYT4s8dQT4AAAAAAFXMJcTfV8josdy4eoyAzg20y3IZ8pQwH0C9+BleulGasbbNmzerr8/fEOcAAMzG1rtua3QJgG9eYX7AMHRWwHs0F0mybVtfJsSfM4J8AMvSdT3r1RHwMZfYMjCWy2jL8HbXZZ2dnDAGAAC4f3TPrEL8Z/NT+vvUXmU0PSfsr/KT+rNwv4I1hvn/mnhRA6Go4oHZ3fUPAPVml811bfiYl7kefQEAADC/qoX5d6SHdIbV6vqbttyv81N6khB/zgjyASxLHYGQugnyPTHEIACgXuLxuDZv3tzoMkokEomKdwdu2rRJ8Xh8gSs6olptWHjb0xOOtitDPTWF+NL0iYx/SO+tGua/PdSjrfkp7bezh9vzsvViepIgH0BTKA/ii21+Avm59AUAAMDCMAxDA6GoDEkzj97SKqggW5L3sduUCo62VjOgbotcphYE+QAAYNFKTjgPCJeratsin88vYCWAO8uyFtXQtfF4fFHVi/l1fKRdgxNDJW13ZobVb4Z0jBVxPN8txC+qFuYXbFtfywyWhPiSFDQM7lhosNzevcq1H5kP0urtlRFxvvfl7IkJdaVSjva84X8+0mhiSIbLv+WZtg7lolHP/lY6pfDYqHOBYWiqd4WvGiIjB2RmM472bKxV2Zj3Z9PMZhUZcZ8ffarH3742OJFROOX8TuUjlnJtPk4GFmyFE873QpIyXWHZAe/3xJrMKjCVc646aCrb6e9Cm/BwSnIJs7PtIRXC3hdSm6mcoom043NVMAyNhf3V0J7OyLKdx45TgYDSgeqnCm3blmHbsl2C92gmo2So8nvhFuJLkmnbakunZUlKW5amgsHqf8ChPh3ptOuysXBYBR8XBrRks7L37FGubD1GNCqrp8ezP4Dmcl3venVUCYe6A89JmnK0X9i2QmevPNFz/UFrr6StGg2FNBUIqH9q6nCM9bEVJ2g8n3Xt12YFZRqGbNvW1K79GhufUEe29LlnxLq1wUcN5uS4pCddl13Xe6wKsSPDXY/lM9oy5D4CJ6qb7XFfOJdTS855nJA3TB0M+wsuO9JpmS7/Xk4Gg8r4uOEqmM+rNev8LNqGoVGfxwltmYwCBedxQjIQUMrjOEGSrEJB7RnncaMkjYbDrscQ5QLjGVkp5/Evx32HaqjhuE/JSangcl4wFJGClbflb6ZG9S+JHY5ftBcFOxX2+VvmDCum+42g9s74fXsgn9GX9/9e17b3qyPUIoW9v1sqFKSk8+J6SVK0VTK961nMx30E+cASkZywJZcrnOZboWArPeX+YzzcYsg0G3NV/fT2ALDUPXqf+8k7lBodHVV/f3+jywCAhhjLuZ9EqsVZrXHtzk6VDK+fVEF/k9qjj0RWlYT51UL8IrcwvxjiP5YbL3muJUOXd66WLenAHP+WatuCi76qG77mHdo3I1zsuetbipxztme/wr336aZfOk+474616L98vvYf3PRhxYb2O9p/fv3HtON1F3v2X/HUL3XeZ50jfGRaYrrn6/f6quGsWz6jvq2/drQ/c+U79cxV7/Ls377rRV30F9e5Lrv7a/fI/TRrqRO+u02rf7bP0b7vvH499/6TPftbyZzOuvEnrsue+PSrNbnOe67P1Q/s1FH3vOBoHz2hU099/EzP/pJ05l897npS+Ok/f7kSZ3hf1ND7i0GdcOtWvbas/UA4rM+cebqvGt737LMamHSGWfccfZQeWVX5mLEYxFc6AT8VDEoV7q6vFOJL0yejTUnXP71Vz3R36Z5jjq7+B2g66HD7bknSp884TSM+ApeLXtql7CVvUvmnKnLxReq5/aue/ZeDnju+oZUbNhx+bPX2+upnXn6ZPvnQg472vGHqGJ+v/eCnb6l4EZMf+19xhr7/xW84F9Qw+sPjH/6rihcx+XFw9Tr3GiRloy3S+Jjrspl+e8Wx2nXVekd7PuJvBMV8NKDHP3+u67JMl78QaNfFa7Xv/FWO9kLQ/0VpT3zmrIphlh9Dr+zTvjUd+vG9zjCrqMPyGH3zgkuUdQmzIqGIIn5G7ewb0IOvv0T3TyWUl3R8IKp3tK1QxDDVEwyrJ1h5e07lc/pa4gXtGOhTYGCFLm+J69WRI0FxyO/IoW1dyl56jeuiTp9h1g/XrNaFt93qGH3M8HFx4HIx2+O+Vw8O6c0v7HC074616POnvsLXa3/oN8+o2+VCtX89dr1+scL7OGHD6Jje/dvnHO1Jy9InznqVrxre+dzvdezBg472B9as1gNr13j2XzGV1Eefch43StLHX/1KXxcDrP/X32vlo3sd7Rz3TavluC/wyP0yRp0X1OZPPUeFDS937VMM8cvTpgsC7XpL0P/IhSHD1I2RAX0utVv7ZoT5w4WsvrL3OV03Zavt1HO8V5ScUPD7d7guyl56jRRrd10202I+7iPIB5aIR+/zc+oDQD1xZ1bj78xC/eT37ZPtctW22dkps837B46dSik/NOS+0OdVwvnhYdnJpLOG1laZXV3eNeRyyu91/tCTJKu/X4aPH4uFkREVJpxX+S6GK3QBuNsyXJ87kdxCqPIw30+IXzQzzLck1xBfmh5W/zuju+rxJ1TFRV8AqqkWxLs9d2aY76fvSDisL55ykl45WOF4Eg0R6O9XYI13aFPOaG31dTFFNcm4v4sGKsmHI5rqWzmndaS6uufUvxAMzrmGbGtI6Tb/5wocTEPp3rkFtPlYUPmY90gZ1aR75vZ5KEQCSsZNjcxlNdHYnGr40eQB3T915BzG73JJ3T45pHf3HqNqZU3lc7p1aLt2Z6d/6+Zk6ztTw7LDEZ3VWuNvTNP0FVhVMxUMyli1SgFGHwPgolqI/8ehXpk1TofUaQb0UZcwfyga1T8EC7o2l1EHUyBXRZAPAMAscWdW4+/MQv0Mv/Ndym7d6mjv+ORGtb3vvZ790//9pIavvMp1WejJX/qqYeQv/lKpB37oaG99z3vU+alPevbP792rfWe5X8m78vHHfJ2EPPg3f6uJrzqvxF0MV+gCmF/GoSFRyxXD/MtD3fpuJuErxC8qhvmthuUa4hdfFwBqVW2I6VqHl87aBX37wE69mCnt0yJTZwXa9GDOeVfxubG4Xhbt1J5MUv82tke5sn3jqVZMCTurlwpHLgweCYf1s1WrdG3PenV6nNBleGkAC+lHBwd1/9geR/uOzKRuH3p+Osw3naMklIf4M313ZPpCzZrDfDSleDyuP/qjP1L+c593LFs9sFqbN2/2tZ7MGy+VXG5QeMc736F3XXaZZ//CQw8pd8NHfb3Wpk2bHCMzSFL2ve+X/UvneZw/fOMb9abrrvWu4bnnlHub+8gRn/3sZ2W0tSmRSGjjRud5STRWvUP8okph/nDA1JeHtuva3vWE+VUQ5AMAAAAA4EO1MP/OzHDVfpL7Xam/zjvDtPJ+AFCrakNMByrsW1pMyzG8dKZQ0NeGn3cN8T8aGdBaK6wOw9Ld2QMlyx+dGJYt6ReTBxwh/mlWTNeGVyqpgr6Q2l0S5o9Zpu488KKu6ztW3YEqozoFKt8d3BkISpwMBlAnlUL8okphfrUQv4gwf+mwLEutra1ymzAjEAioz+cICHstS24TXrW3tSvmYx3Jjg65j33pFI/HXesaDAXlNiFXLBZTh48aMoNDGqywrLenR2aHvylSsLBmG+LnbFs/yo1pdyGjswJt2mC5jwJTMczPpQnzPRDkAwDQRDITzjmo3NiF8sOqadnkpFJjI579s1POocOL6x3btaOkLRRrk+Eyz1oh55zjSZJyqZSvGtJV/tbUwVFlXOauw+yMjIxocLDSz6hpuQrv58TEhJIefSWpMFr5PU8kKv+MnLks6zIPnCRNJaeU8VGD7fE6ho8h/nPJyoEaAEiVw/xqz59NX0J8AI1WDPG3pUt/O8wM8SXpktD08OPlYf5PJpwXOBVD/IBhqE2WbogMOML80XxWWwa3eYf5ADDPKoX4ERlKzbhIqTzMrxTil/eTCPMBNN5YPqs7D+ycVYj/D+m9eurQxemP5g7qXaE+nRd0nwKkWpj/7ZGX9J7e9XX5e5YagnwAAJrI1rtu8/W8SyuE4Dt//IB+9Tv3ISZnyiUO6HUu7YVsRs9+29/w4efsc5+vd9+vfqpfHfCey3fVxKTeVGHZb/7li0r5mM8c/txyyy2ez7lx9y4NuLR/5zvf0SM/fcyz//qxMX2gwrJqw6XNXPanz/5WL3N5zo8eekj3vLjDs4auVEo3VVh28803+5qn883Pv6DXeD4LwHLnN5B3C+P99CXEB9AM7h55yTPEL6oU5s80M8QvajMqh/m3Dz2vj6w8QRb7RAANUCnEvyoU18lWiz6X3KPxGfdOF8P8t8fX6Z+GX3CE+F1GQB+NrNLjuXF9L1t6ITxhPoBGGsymlLVLY/x2w9KVoR7fIb4k2ZK+npm+EadamH9VqEd/ly6dQuKlDDfWVMIZcgAAsGi9J/eS+n815GgfOrNPz19znGd/cyqnV/7Vz1yX/fqGU5VcHfNcx8APdmr1D19ytB9c365nP+AWSzud8YnHFUg6RyB47k9P0OjLnPOVlev5+X6tv3Obo300FNLml5/iqwYAQG28AvlqYXy1voT4zannjm9o5YYNhx9bvb2++pmXX6ZPPvSgoz1vmDrG52s/+OlbZOSdxwmZNn/Dku5/xRn6/he/4VxQw2ft8Q//lcysc5DVbKzVV/+Dq9e51yApG22Rxt0Goi312yuO1a6rnHfp5CPOOYnd5KMBPf75c12XZbr83fW96+K12nf+Kkd7IegcvaqSJz5zluTy/c+2+xtKdOiVfdq3pkM/vjdVWkMN72fuNW+U3Ea/CpVe9PjklHPEpesjKx0hflG1MN8txC8qhvkfn3pRyRn3gg3m0tqdmdLasMsxebRV2Uvd599V1N/n8odrVuvC2251zA9sRN2HhAWwfFQL8S8KdkmSPhpd5Rrm/7+9zypfdtd9McRfYYZ0eWh6n0OY37xme9wXe9vVir7hYke7Eaw8HUy53ru/K+WdIyaa3d2++ocvuEArHz9yM0YikdDNN98su4bjhPiXvijbZcREs909mC0XPP64khpmMtrafK1j+9uP0463OI+WOe47VEOdj/vWhFrUbgV1MH/kLvmDdl5/l9qjP4+sUtgo/ZvdQvwirzB/Rz6l29L7He2nRDsr/xHL/LiPIB9YROLxuDZv3tzoMkokEomKd1pu2rTJsWNcSNVqA7A0dCinbpcfFxkjp5Y27wNry3Xk044AACAASURBVDRc+0tSa4tk+FhHu5V3XYdZyPqqQZK6MxkF0s4fam1hWxkf62gL2RX/joWUMwx9b91aPRXv1tqJSb31+RfUns16d9T0vNHfX7tW9xy1Thfs2avz9+0XURaAeriuZ37n2svZBf14fEgvZaZ0dDimc1p7fd89uj+b0iPjg8rZts5r69GakPcFZHMxlstoy/B212WdnVVOnECB/n4F1qypuZ/R2lpxRBi/UyqlAgHJbaSiTGr6Px8mZ0wvYxcKykyOTz/wOaVSyjQktylqclnJx5RKkjRVaYqb8TFf2+KggspGKny3xt2nnXLUEKlQQ1KSYzDRaYWCrfRU8QSsIenIyfhwiyHTNGqrIVxhf5SRlPGzDlPJcEQj3gMNVRb1t68ZCLU47o76biahD0fCajHcT6S7hfnVQnxJKti2vptJlIT4khQxTMUrDa1vmlLMX6BQyVQwKGPVKgV8zlsMYHn4yfiQZ4gvSQNm2DXMrxbiF1UL8wOGoTNjjTufitkf95ltbTJ9BtUVX3tV/5z6m9GozBm1G+Gwr9EJZ7Lm+O+iEQrNavvNlGsLKTeXTWkaSvfOLaDNx4LKx/xfhOEm3TOXAzapEAkoGTfn/bgvYlp6d88x+srQNk3NCP1/V0jpb8vC/GohflGlMH9HPqUvpPZoquyY77hwqy7vdBsn9JBlftxHkA8sIpZlqW8R7Wji8fiiqheo1XzcmeXX37/sZJkuV3RO+rzK97nODn36jNMc7bVcofvPG45ToOA82Zj0OST+/paoaw2SlLb8XWHLnVnT6nGF7q0nnijLdr6fUz7fzx1tbfr4q85U9tB795twWM90dfoK8ot3pQ62TP/IuvuYo/Xva9coms/LkP/Pw1g4XPEzNVYpPCizmK/QBeCuIxBS9zwG+ZL0R92zO1HVHQjpxOjcTkjUi+VzX4v68TulEqY9ep+/ixZQP1d3r9WXB7dpvHDkgtPnC2ndktqjD0dWVQ3z+82QnshNaJ0V1oWBzqoh/j9nhvTjXOnFHKakq+PrFLM4dQlg4Uzlc/o3HyF+UaUwv8gtxC+qFObfN7Jbr4h2KehyYR0AzJdVoaje33ts1TDfkuEa4ocMU6dEO/TfM0ZzKg/zq4X4f9JzDPu8KjgaBgBglubjziy//IaSlWQtSyNzPGE/HppbKJI3zTlvh2xrSGmfd7274grdww5WujvMB9u2lTMMqewzVTBNjYbDkm1XHCq60tDSqUBg+g5E+R9mumAYc/5MLeYrdLF8JCdsVbpzdD6V3pVaquSu1AU0vS0AAPOhLxjRtX3HzirMPz3QqtMD1Yc6rRbiv7PnaJ0c9Td9BADUS062cmW/US1Jq83K52AqhfnVQvyitWZYhlRyD3/GLqggjnEBLDyvMD9qmK4h/nt6j9FRoZg6rKAeGh88vKwY5g/ZWT2UHSPEnyWCfAAAAMxatfmhy59XHsjPpS+wnHFXKgBgocwlzK+GEB9AM2q3gnp1LK6fTSYOt+Ul/X1qrz4U6ddJVotrv2KY/6XUPu23sxowQro+srJqiP9kbkJb0vsckf1r2voUNhkpCYA/Y7lMXdcXMS1d3b1OdyZeVNIuDfPLhQxTV3avVYcV0kg+q1fF4koV8vrpjH2oLenfss6puI4KxXRZ1+rp48s63qdQbXvk886RUxYDgnwAABZYPB7X5s2bG11GiUQioY0bN7ou27Rpk2OY8YVUrTbU5rre9eqw6je8dN62dffIS9qWnvB8bqcV1GUdA4eHRx3MpvS9sT3KuAznX+6c1h6d39pb1zB/LJ/RliH3eaIBAABwRL3DfEJ8AM3szV2rlbLzempq9HBbVravMH9TdK3G7Jw6jYCsKr9fiyF+eaT0qlhcb+iY2xzpAJaXLcPzc27Lz803GbugOw68WHM/SdqRmdQX9j83q9pma3R0VP39i28fS5APAMACsyxLfYto2O54PL6o6kVlHVb95onO2QX98/AOR4gflqE/Cffp7swBDdrZw+2j+ax+cHCv3t93rMbyWd0/ttcR4p9oRnVaIKY7MsMl7Y9NDCtiWrq4fSV35gMAADRAtTD/b1N79ZeRAZk+j9O+nUkQ4gNoWpZh6G3d6ySp5jA/YBiKG9Wn3qsW4l/Rtdr3vhRYqho1lZzEdHIzGYbhGcq7naPz069SX7gjyAcAAEBNiiH+s6nSE7BhGfpwZJWOs6Jab0b1udTukjB/MJfWlsFtmsznSobnkqZD/A9F+hUyTAVl6uuZwZLlDx7cL0mE+QAAAA1SDPO3DG7TxIwwf3shpafzU3p5IOa5jgk7r//IjZa0EeIvL5mJg95Pmgd2oaDM5LjrslCsTUYD5udt1LaAt7mE+dUQ4gPemEqueVQL5audm/MK8zmvVxuCfAAAAPjmJ8SXpG4zoI9GBhxh/nAu7VjnzBBfks4PtktSxTCfoQYBAIsFUyrVJp/Pa3S0NOTt6uqS2YCAraiZt1cjpqCayOdcp0YK+jwha0qyZCg3Y1bogqTROs/viua19a7bGl0C4Eu9w3xCfACLkVso7yeIrxTmE+LXjiAfAAAAvj0yPuQZ4hdVCvNnKg/xi6qF+UeHYtoQbZ/rnwIAwLxjSqXaLaZ5K5they2k51MTun34eUeQf4YV0wlmtEKvUi2GpStCcX2rbCqle0d3S5LObeutT7EAUAfVwvyvpPbp/7SsU4thea5nzM7ptvR+QnwAi9Jsw3dC+/ogyAcAAIBvL6YnHW0XBjsdIX5RtTC/UohfdF6gTU/kJ/RMfqqkfWdmiiAfSx538damEXelAsByUinEP82K6X3h2qY+uijYqaxd0N3ZAyXthPkAmpFlGLq8c7V+mzyo9Ix94IQKGi7ktNbyDvL3FjJKq/TO1Jhp6dLOVYT4AICqCPIBAADg2ynRDscd+f+eHVG/GdLZgTbXPt1mQB87FObvPxTmn2xF9YFw5RDftm3dlUk4QnxD0kmE+FgGuIsXANAsqoX414ZXKjCLEOqSULckEeYDaHpT+Zy+OrS9JMSXpJVGUKvMkK91HG1G1G0EdMDOHW6bLOR1+9DzenfvMYqY3hcDAICb63rWqyPgb1+0HIzlMtoyvN11WWdn5wJXUx8E+QAAAPDtzFi39udSemR86HCbLen29PT89ZXC/C4zoJuja/Sz3LiihqkzrNaKdx4UQ/wf5krnyDUkXd29VgMh//MQov5ye/cq137kYgqrt1dGJOLZrzA+rkLZvMeSZASDslau9Pfae/ZK+Zyj3ezulhmLedeQTKowfGQoXzuRUFcqJdswNBoO+6ohPzgoO5121tDeLrOjw7O/nckov3+/6zJrYECGj3mg8wcOyJ50jo5hxGKyuru9aygUlN+9272GFStkhLxPAkRyOUVzR94Le88e5dJpGeGwLJ+Bfm73bqngnGfZ7OmRGfUeorkwOanCgekAqPheSlLBMDTm8/1UclIqlA9yKikUkYI+Tobkc1Jqyn1ZzOdFR6mklHeZfiQQksLe3y0VClJywn1ZtFXy8ZlqyWYPv4czGdGorJ4e7xoALFnzEeIXEeYDaHZT+ZxuHdqu3dlkSXuXEdCHIv2+94Fhw9SfR/r1ueQejc8YYH9HZpIwH8CcdARC6ibI98XyMYJKMyLIBwAAgG+GYeiSjlWSVHOYHzZMvSZYPej0CvFPj3mHlJhfw9e8Q/uCwcOPe+76liLnnO3Zb/LOb2rsk5sc7cGTTtKK/3jA12sPveUK5XftcrR3feHzil19lWf/9MMPK/Ge95W03SQpaVn6xFmv8lVD4voPKPPTxx3tbTd8RB033uDZP/u732vw4je4Llu19WkZPi4GGPvUpzV117cd7S1XvlXdt/yNZ397fFz7zjrHdVnfAz9Q6JSTPddxwZ69uvilI+9F9pI3aZ+k0Nlnqe/bd3n2l6T9r79I9sGDjvb4V29V9A3u22im5Pf/TSM33Hj48U2H/n8gHNZnzjzdVw2BR+6XMZpwtOdPPUeFDS/37G8k9ivw0Pdcl2Wvvs5XDdYTD8vcvcNZw3EvU+H0c71XkJxQ8Pt3uNdw6TW+Lii46KVdh9/DmSIXX6Se27/qXQOAJWlHenJWIX7BtvXD7KieyE/oKDOsK0LxinNIVwvzDRk6p42LiQA0RrUQ/6ORVVrh8278ogEzrI9GVxHmA2rOqeSk5p1OjqnkljeCfAAAANRkLmF+NYT4AAAAzeNbB3bOKsT/58yQfpybvlBrRyGtnYW0PhxZVXOY/73R3To52s5wsYtQMwY0zRrOSAQ0zajeIX4RYT4wbbFNJScxnRwahyAfAAAANat3mE+IDwAAUJt83mVqkEPGcpk5r3/UZR3nBtp9h/hFzxfSuiW1p2qYf2agVT/IjiqpIxcO5GVrdzapyn+lP9W2RbVtiNlbbAFNM4czyQlbknMqovlWKNhKT9muy8Ithkxz9tNqzNb0tph/cwnxDxSyeqGQ1nozok7TPXohzAcA1IIgHwAAALPiFebHjYCOt7znuZakB3NjhPgAAAA1GB0drbhsy/D2Oa/fljM025Leqw+oXy8LxEraK4X4RdXC/P2FjD6X2lMS4hd9bfgFGT7noJ6N0dFR9ff3z9v6gbl69L5Uo0tYVmzb1jcSO2YV4j+Zm9Ct6f3KyFZYhq6P9Otkq8X1udXC/G8e2Kl39Rxdnz8IALDomY0uAAAAAItXMcw/o6WrpN2W9FiFE7luHnV57ps6BwjxAQAAmkhO0hfTe/Wb3OThNq8Qv6gY5k/ZR0KrYog/Yudc+8xniA8A5UbzWW1LT5S0WZJu9BHib0nvU+bQBVBp2dqc2qtn8lMV+wyYYX0kskrle7lnkmNKFtz3iQCA5YcgHwAAAHOyK5vU1qTzxO1Kw/+8gStcnvv4xLAO5rNzqg0AAACzUylEnxnm+w3xi2aG+YT4AJpNzLQUKxsSPy/p+5kRFWz3of2LIX75RB1ZjzA/Z9v6XvaAY+yTLiuoUIVpSAAAyw9D6wMAAGDWXspM6bbB7UrapactTjSjujDY6Xs9bwv1aGcqrUH7SHA/mEvrK4Pb9P6+Y9VuBetWM+am545vaOWGDYcfW729vvrF3na1om+42NFuBP2/t713f1fKO0/2m93+Rm4IX3CBVj7+2OHHiURCN998s+wagoL4l74oO5121tDe7qt/8PjjSmqYyWhr87WOjptvUvuNNzj7x2Iuz3Z/nUo1WCtW+FrHw6v69fO+I+/9pz71KcXjcRnhsK/+krTiP38oFZzDKJs9Pb76Ry+9ROFzzpZ05L2UpEIN72fuNW+UCi7zI4civvrb8RXKXnqN79dzkz/zAuVPO8e5IODzYqhoa+Uaoq2+VvHDNat14W23Kh6Pl7QbUX/TowBYugzDkO0SXhXD/BOtFv2mQkhVqe/zhbS+kNqjMTtPiA+gqYRMS2+Pr9XXhl5QbkbE/nh+XEpL7w73yZyxf6oU4hcVw/wPlg2zn7NtfTm9T0/mJ0ueHzJMvS2+Thb7QADAIQT5AAAAmJVqIf6HIv0K1nDyodMM6KORAX0utZswv8kF+vsVWLOm5n5mW5tMn0F1xddeNbc5bM1oVOaM2o1wWCMRf4FtkdXXN6cajFBoVtuvpIbubsnnxQuuNZjmnGtIBQJKBY78nDRWrVKgxm0TGBiYUw1mLCbz0MULs3kvJUlRfxc/VGQFpJi/izgqikQlzSEwN8051zAVDM7qPQSwPFQL86uF+NX67ig4L4or7wsAjXB8pF3v6jlaXx+uHuZXCvG7rJBG8pnDj8vD/Goh/rt7jtHRYX8XYgIAlgeCfADL0tiMA+qFVLBtjVcYJrrNCpZc1btQGrUtACxuXiF+yKh9BqduwnwAAICmVCmQr/TcevUFgEbYEK0e5p8WiOkrLiH+q2JxvaVrte488KKemho93F4M8/8svFI/zh2sGOIfEyHEBwCUIsgHsCxtGdre6BIA1EFywpbkHJZ5vhUKttJT7icjwy2GTHPhT0BOb4uFMZcQvzivYKULlwjzAQAA/OnsrDyN0XU969Xhd4qOGhRsW/eP7dHTybGSdlPSm7vW6PhI5dF3Erm07ki8qMlC6XD6KwIRvS2+TlFzfuaEHstltGXY/RxAtW0ILJR4PK7Nmzc3uowSiURCGzdudF22adMmx3Q8C6VaXfVWLcx/PD/ueP6rYnFd0bVapmHobd3rJMkR5v9deq+jHyE+AKAagnwAALBoPXpfqtElLDuD2dSsQnzbtvVv2RF9PzuiiAz9cbhXrwy4n+j1CvM/tOJ4hefpRC8AAMBiYVmVj4c6AiF1z0OQL0nviB+luw7s1C+nRiRNh/jv7DlaJ0c7qvbrDoT0Z33H6suD2zR+KMwfCEb1vt71arEac4qy2jYEFoplWepbRNPbxOPxRVXvXFQK88vNDPElyaoQ5pcjxAcAeCHIBwAAgG8PHtw/qxD/rkxCP8xNn8CYkK2vpPcrJ+nsKmH+xyID+qxLmP/zyYTOb1seJ44AAACajWkYurJ7rY6PtGtfNqlTW7rUH4r66tsXjOgjKzfo8YmEwqapV8d6FDJrn5IJwPKUz5cPZn/EWG5+po7sDUZ0RdcafWfkJeVdwvxXRDv1urY+jbpMpXlxe78yhYKeTR10LAsaht7atUadgZAOzEPt1bZHte0IAGguBPkAAACYs0r3JpSH+DOff3t6v6TKYb5dYb2GmDsVAACgkUzD0GmxLkldNfdttYJ6fcfK+hcFYMkbHa18d3ulKTTqxa7wq/ep5Kh+nRpzXSZN/yZ2k7Vt/evIzrrUVqvR0VH19/c35LUBALXhklcAAAD49gftKxzzlz5bSGpzaq/SdqGkvVKIf3i5psP8n+ac8wseKOT02dRuDdmldzX0BcJ6Zax7bn8EAAAAAAA1MAz3C8ortc+1HwAAEnfkAwAALBv1GGowYJi6unut7ky8qNSM4L4Y5n8w0q+wYXqG+EVud+ZXCvHjgZCu6l6nyUJek4W5DQXIMIMAAAAAgFrMNnwntAcAzBZBPoAlKx6Pa/PmzY0uo0QikdDGjRtdl23atEnxeHyBK6qu2eoBMDf1HGrQbXjAmWH+vZkDniH+4XXpSJi/wYy6hviSlMhl9MWh38+pbj8YZhAAAAAAAABAoxHkA1iyLMtSX19fo8vwLR6PL6p6gYXCRTm12bZtm2655ZZ5fx3DMCqG+Tcld+qAnaupXzHM7zAsjdrud8RzFwMAAAAAAACA5YIgHwAANDUuyqlNIpFYsNeqFMpXC/Gr9bMlQnwAdTeWn/u0IrNRsG2N552ji0hSmxWU2YD9WqO2BQAAAAAAqB1BPgAAAGatUijv9rzZ9HPrCwC12DJUv2lFAAAA0DidnZ0Vl13Xs14dgdACVtPcxnKZitPrVduOAIDmQpAPAACAOfEK5SsF8X7CfEJ8AAAAAIA0PWJfJR2BkLoJ8n2pth0BAM3FbHQBAAAAWPyqhfWz6eenLwAAAAAAAAAsVdyRDwAAsIQ0eqjBVCGvlzJT6g2E1Vnja+3PpjSZz2ldOCZrnkN8hhkEAABL2Vg+05DXLdi2xvNZ12VtVlBmAy7UbNS2AAAAAOaKIB8AAGAJaYahBleForPq1yzDIDLMIAAAWOy2DLlfsAgAAABg8SDIBwAAAAAAAAAAAIBFpJEjDzES08IgyAcAAAAALGrxeFybN29udBklEomENm7c6Lps06ZNisfjC1xRdc1WDwAAAACgOkZhWvoI8puMYRjrJb1K0mpJIUkjkn4r6THbtlONrA0AAAAAmpFlWerr62t0Gb7F4/FFVS8AAAAAAFh4BPlNwjCMN0u6SdLpFZ4yYRjG1yRtsm17eMEKAwAAAAAAAAAAAAAsKLPRBSx3hmGEDcP4hqS7VTnEl6RWSR+UtNUwjNcsSHEAAAAAAAAAAAAAgAXHHfkNZBiGKembki4vW5SXtFPSmKSjJXXMWNYr6d8Nw3i9bds/XZBCAQAAAAAA0FTi8bg2b97c6DJKJBIJbdy40XXZpk2bFI/HF7ii6pqtHgAAAGAmgvzG+picIf4WSZ+2bXuPdDjsv1zSLZLWHnpOi6RvGYZxim3bYwtVLAAAWNzG8pmGvG7BtjWez7oua7OCMg1jgStq3LYAAACoF8uy1NfX1+gyfIvH44uqXgAAAKDRCPIbxDCMuKRPlDX/L9u2/7+ZDbZtFyTdbRjGzyU9KumoQ4tWS7pBkvtlzgAAAGW2DG1vdAkAAAAAAAAAfGrGUZgkRmJaKAT5jfMXktpmPH5E0l9XerJt27sNw3ivpP+c0fwRwzD+zrbtxDzVCAAAAAAAAAAAAKABFtsoTBIjMdWT2egClqNDw+X/aVnzJ23btqv1s237vyT9eEZTm6Sr6lweAAAAAAAAAAAAAKCBCPIb4xxJvTMePy/pRz77frXs8ZvrURAAAAAAAAAAAAAAoDkQ5DfGJWWP/8PrbvyZzy17/FrDMGJ1qAkAAAAAAAAAAAAA0AQCjS5gmTq17PFjfjvatr3HMIwdko461BSSdJKkX9SlMgAAAAAAAAAAFpGxfKZhr12wbY3ns67L2qygTMNY4Ioauz0AAPVDkN8YJ5Y93lpj/606EuQX17fsg/x8Pq9EIjHn9VRbRz3WXxSPx2VZVt3WBwCANP3vy+bNmxtdRolEIqGNGze6Ltu0aZPi8fgCV1Rds9UDAAAwn+p1PkVamHMqnE8B4GbL0PZGlwAAQN0R5C8wwzCiktaWNb9U42rKn79h9hUtHYlEQh/84Afn9TUqhRCzsXnzZvX19dVtfbXiwofasL3QrPhs1mY5bC/Lsury70s9T+gulEZ/vrBwlsN3uV4WWzgjsb1qxb5veeCzWZvFtr0a/T1eiPMpUv3OqTT6fAoWDt/l2rC9gKWB73Jt2F61YXstPgT5C69H0syxdLKSBmtcx+6yx/x6Qc248KE2bC80Kz6btWF7+bfYTuhKjf98YeHwXfaP73Jt2F5oVnw2a7PYthffY8Ad3+XasL2ApYHvcm3YXrVhey0+BPkLr7Xs8ZRt23aN65j0WGdNDMPok9RbY7f1c3lNAGg09n0AliP2fQCWI/Z9AJYj9n0AliP2fQCWGoL8hVceuqdmsY6kxzprdb2k+l12DwCLA/s+AMsR+z4AyxH7PgDLEfs+AMsR+z4AS4rZ6AKWoUjZ48ws1pEuexydZS0AAAAAAAAAAAAAgCbDHfkLr/wO/NAs1hH2WCcAAAAAAAAAAEtGPB7X5s2b67KuRCJRtzmcF8KmTZsUj8frsq56rQcAMP8I8hfeRNnj8jv0/Si/A798nbX6kqS7auyzXtK9c3zduqrXgVyhUNDIyIjrsq6uLplmfQay4IAJaLglse8DgBqx7wOwHLHvA6qoZzC2EOdUOJ/iG/s+LDmWZamvr6/RZTREPB5ftn97jdj3AVhSDNu2G13DsmIYxhpJO2c0ZSWF7RreCMMwbpL0qRlNX7Vt+711KtFvDSdLerr4+Omnn9bJJ5+8kCVgjvL5vBKJxJzXs5AXPliWVZd1zQbbq3bPPPOMTjnllJlNp9i2/Uyj6qmHZtz38dmsDdvLv3ptK2l5bK8i9n0Lg++yf3yXa8P2mh32ffOPz2ZtFtv2aobvMWrHvm/+8V2uDdurNmyv2WHfN//4bNaG7VUbtlftGr3f4478hTcsyZZkHHoclNQnaX8N6xgoezxYh7qwzNTzCtaVK1fWZT3NjO2FZsVnszZsL//qfafDUt9eWFh8l/3ju1wbtheaFZ/N2rC9gKWB73Jt2F61YXuhWfHZrA3bqzZsr8WnPpdZwzfbtpMqvSNfktbWuJry5/929hUBAAAAAAAAAAAAAJoJQX5jlAfvJ9XY/0SP9QEAAAAAAAAAAAAAFimC/Mb4Vdnjc/x2NAyjX9JRM5qykrbWoSYAAAAAAAAAAAAAQBMgyG+M75c9fr1hGIbPvheVPX7Itu2JOtQEAAAAAAAAAAAAAGgCBPmN8Zik4RmPj5H0Wp9931P2+N56FAQAAAAAAAAAAAAAaA4E+Q1g23ZB0tfKmjd63ZVvGMaFks6f0TQu6Vv1rQ4AAAAAAAAAAAAA0EgE+Y3z15JmDol/gaS/rPRkwzAGJN1W1vy3tm0Puz0fAAAAAAAAAAAAALA4EeQ3yKEA/v+UNf9fwzC+ZBjGqmKDYRimYRhv1vRw/EfNeO4eSZ+f90IBAAAAAAAAAAAAAAuKIL+x/lrS98va/kzSTsMwthuG8d+SEpLulrR2xnOSkq6ybXt0YcoEAAAAAAAAAAAAACwUgvwGsm27IOlKSXeWLbIkHSPpNEmdZcsSkt5o2/ZP5r9CAAAAAAAAAAAAAMBCI8hvMNu2U7Ztv13SWyX9qspTJyV9SdJJtm3/aCFqAwAAAAAAAAAAAAAsvECjC8A027a/I+k7hmEcK+nVkgYkhSSNSnpW0k9s2041sEQAAAAAAAAAAAAAwAIgyG8ytm1vk7St0XUAAAAAAAAAAAAAABqDofUBAAAAAAAAAAAAAGgiBPkAAAAAAAAAAAAAADQRgnwAAAAAAAAAAAAAAJoIQT4AAAAAAAAAAAAAAE2EIB8AAAAAAAAAAAAAgCZCkA8AAAAAAAAAAAAAQBMhyAcAAAAAAAAAAAAAoIkQ5AMAAAAAAAAAAAAA0EQI8gEAAAAAAAAAAAAAaCIE+QAAAAAAAAAAAAAANBGCfAAAAAAAAAAAAAAAmghBPgAAAAAAAAAAAAAATYQgHwAAAAAAAAAAAACAJkKQDwAAAAAAAAAAAABAEyHIBwAAAAAAAAAAAACgiRDkAwAAAAAAAAAAAADQRAjyAQAAAAAAAAAAAABoIgT5AAAAAAAAAAAAAAA0EYJ8AAAAAAAAAAAAAACaCEE+AAAAAAAAAAAAAABNhCAfAAAAAAAAAAAAAIAmEmh0AVi0QjMfbNu2rVF1AGhSLvuFkNvzFhn2fQCqYt8HYDli3wdgOWLfB2A5Yt8HYLlp9H7PsG17IV8P/RvzsQAAIABJREFUS4RhGJdJurfRdQBYVC63bfu+RhcxF+z7AMwC+z4AyxH7PgDLEfs+AMsR+z4Ay82C7vcYWh8AAAAAAAAAAAAAgCZCkA8AAAAAAAAAAAAAQBNhaH3MimEYHZIumNH0kqRMg8pBc1iv0iGILpe0vUG1oDmEJK2Z8fhh27bHGlVMPbDvgwv2fSjHvg/LAfs+lGPfh+WAfR/Kse/DcsC+D+XY92E5YN+HmRq63yPIB1AXhmGcLOnpGU2n2Lb9TKPqAYCFwL4PwHLEvg/AcsS+D8ByxL4PwHLEvg/NhKH1AQAAAAAAAAAAAABoIgT5AAAAAAAAAAAAAAA0EYJ8AAAAAAAAAAAAAACaCEE+AAAAAAAAAAAAAABNhCAfAAAAAAAAAAAAAIAmQpAPAAAAAAAAAAAAAEATIcgHAAAAAAAAAAAAAKCJEOQDAAAAAAAAAAAA/3979x0mW1EmYPz9QEmiqCRBkYsgCqioIBgQLyoqa0BBBBNcVteEWVfdNYBgWozLmkUl6YpiwBxJAktGEVFREFAUQSQICAj32z/qNHP6TOfpmem58/6eZ557T/UJNT0z1efUV/WVJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE2QO813BSStMK4C3tnYlqQVnW2fpMXItk/SYmTbJ2kxsu2TtBjZ9mliRGbOdx0kSZIkSZIkSZIkSVLF1PqSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE0QA/mSJEmSJEmSJEmSJE2QO813BSRpsYuIw4B9akWbZOYl81MbSVo8IuIE4HGt7cyM+auNpMXAdkezLSJWBx4GbAqsC6wB3AhcC/wZOCsz/zp/NZSk8bPtk3qLiLsDDwY2B+4B3Bm4BrgCOD0z/zyP1ZMk9WAgX5IkSZIGZEextLhFxDLg87WiEzNz6YjnWgocXyu6NDOXjHCe1YAXAM8FHkvpnO+1/8XAN4DDM/O8xmsPBs5unGPnzPzxsPWqnfMw2gcunwLsmJnLRz3nXIqIJcDvZ/ESI/8OaTgRsQawDbAdsH3178aN3XbKzBPmuGoTz7ZveLZ9fdn2zaKIWAlYCjwdeCLwoD77XwB8DDgsM2+a9Qpq3kTEU4DvNYpPyMyd5qM+kvoztb4WnIi4JCJyTF/PrJ33hDGet9vXJY3vZUlznxm8L2M71yTp8HNZNoNzHdY41wHjq6k0Otu1ru/LitquLe31Hs7XuaRJERHLGr/XJ8zgXGP5G4mI1SLixRHxE+A6SkfsEcAHgYOADwGfo3SIXBURF0XEByPiIR3O9eCIuLVRryeO+j1W52ze45wcpfNuQenwebh0Buca2z2kNMmq3+1LgM8Aj6dPIKtyP+D1wM+rv5VtWi9k5i+AdzX2/0xErDli/Z5CeyDrZuBfF0ogSwtfRKwaEZ+OiJ8B1wMnAR8A9mB6EF8LhG2f1F1EPBn4I/AT4LX0CeJXtqQE8n8WEY+Yxepp/i3rUPa4iPAzUZpQC65zR5IkSZOtGUCb7/pIM2FHsaRJFBF3jYivU2bIrt9hl1uBy4FzgfOAq4BO7cLjgDMj4um1svcCP69tLwH+a5Q6Ap9uFL89My8c9lwrOO+VZtfqwL8BWwMrz3NdNEO2fSsU277Zc39ggy6v/Q24ADgTuKzLsSdGxI6zVDfNo4hYC9i100u0P1NKmiCm1pckSZKkhqoT9gjgmV12uZXSOXwlJTCwAbA20wdLtzqKd83Mb1Vl7wV2owQVYKqjeL8R6mhHsbTIVJ2wP6CkBq+7GTgUOBY4KTNvbRy3BrAzJc3uXsBdWi9R2i8AMvOfEbEvcAZT/UYvj4gvZ+aJQ1T1/cBGte3TgQ8PcfykuILyvo3D2yifC3UfHdO5NbxbKJ/h9o8uALZ9c862b8WQwI+BL1HSp19cfzEi7gu8mjJzvzXYaXXgWxGxRWb+aS4rq1m3F7Bal9f2Bg6cw7pIGpA3qloRvJH2EbPDqB/3BuAeAx73o8b2C4C/DHDcPwY8vxaRzFxG57RGWrxs1yRpHtlRrNniWrAak88xvX06FnhVZv6h20HVmrfHAsdGxNuA/YEX06FvKDPPjYj3Am+vigL4bEQ8ZJC1cyNiJ+AltaJbgH0z8/Z+x06azLyZEgSZkYh4DtMDWR/MzK/O9NwayO3AryizUM+o/j0P+C2m2F8obPvmkG3fgncr8CngQ5l5SbedMvMy4I0R8T3gO8Cq1Ut3oww+dpb2imVZ7f8JnAo8ptreNCIem5k/nfNaSerJQL5WBGdn5gkzPUlmnj3ovhHRLDql102RJA3Jdk2S5pcdxZImUkS8kpLRo+6TwH7DLKmRmVdQBhAdCXQLprwLeBZTa+tuCrwbeF2fOq5BGfRUv8E8IDN/NWj9VjQRsQXw2UbxT4G3zEN1FpsbKUHEszPzxuaLHZ6DNIFs+xYm2755cyqweWZeOugBmfmTiHgT8N+14j0jYr/MvGHsNdSci4jNgUfWik6hZIX7Vq1sH8rfqKQJ0kz7KEmSJEmLVo+O4t16BfGbMvOKzHw5JXhwRZfd3gWcX9tudRT3q6MdxdIiFBHrUzJx1H0vM18+TCCrLjNPBbalrJfbfO1WYF/KTOaWV0fEo/uc9t3A/WrbZzG93otGRKxJCRiuWSu+AnhOZt42P7VaPDLzn5l5UqcgvhYG276FybZv/mTmOcME8Ws+AVxX214VWDqWSmkSLGtsHwV8H/hrrWyP6llT0gRxRr4kSZIk0bujeNRzZuapEbEtcO8Or91apdg/jak1KV8dEV+pOpi7saNYWpxeRfu6ptfTnpljJJl5OXB5l9fOioj3MzV7ciXgcxHx0CrtcpuIeBRlrd2WWzFbyOeALWrbt1ECWd0GeXUVEZsAWwH3BdaqzvU34FLgtNmYNVkF4x4DbAjci7LMzImZeU6PY1YDtqR83+tSlpr5O3A18Avg/FEDsFqUbPsWJtu+Bdb2Vct/nQY8uVZ83/mqj8YnIlYCXlgruhX4cmbeFhFHA/tV5XejZCT5whxXcSQRsQTYBliPsrTotZQBQ6dk5iDLhQ5zrTsBj6Isx7MBZVD9LzLzez2OWRnYnNIubAjcldKW/I2ytM9ZmXnLmOr3AMoAtQ0ofQt/Bs6cjcH+1fe1HWUiwrrAKsBVwMXAqc0lCDVzBvIlaUTVB+T2lA/i24ErgTOcDSdpoYmIuzPVSbEOcAOlTTs3My+cz7rVVQ8L2wKbUR7UVqU8LPye8qA2lgcgLWp2FKujiNia0v6sR1nG4ApKJ8Ul81kvLR7V7KjmoKJDM/OPc3D5A4BdmQrIPAA4EHhTfaeIWJUSuKlnfzwoM+uZRxaViHgdsEej+M2Drj9bBYWeSskU83hKMKmb2yPiJ8B7h1mmKyJOoLZ+dWZGVb4l8DbKz745O++/gbZgVkTcB9irqu+jmFpnuZNrIuLzlHWy/zRoXbX42PYtTLZ9XS2Etu+axvZa81ILjdsTgPvUtr+bma2f9VFMBfKhzNzvGciPiPsClzCVIe63mbn5sJWKiCdTsgK0fDUzn93nmFWBV1KWsHtgl90yIs4ADszM7w5Yl/cBb64VPSozT4uIdYC3As+jPAvWnQ60BfIjYi1K27UrpY25e4/L3hwRxwLvyczzBqlnh3o/jZLpb+sur/8ceGtmfqfaPo2pZQRvyczVOh3X5VybUpYG3JXu39cNEXEMsH9mXjboudWbqfUlqYOIWBIRWfs6rPbakyLiTODXwOHAe4GDgcOACyLigoh4+hDXOqxxrSUd9vloY58Xjfh9Hd84z7ajnEfSiiEidqw6Pa4Cvg18GngPcAjwJeA3EfHbiHhdRKzS51wHtNoWah0i1WvZ4+uEAeq5JCI+SxlccBrlQfNDlPb3UOAnwN8i4shqtoY0tAnoKK4PBGx1FLexo3h2RMTSRrt0QO2150bEr4GfUdqb9wAfpHRu/T4iTouIHYa41gn1a3XZ59uN+jxhhO8pIuLi2jlui4heneCafI8D7tkoO3QuLlwNlNsXqM8ifH1EbNfY9QDaO1TPBd43u7WbXFXbcHCj+JjM/NAQpzkZOIbSedzvb3hl4EnA8dXz48iTdyLi+ZSf33OZHsjqtP9DgMso2WGW0juQBWXW3Ospz8+7jFpPLQq2fQuMbV9PC6Hta2YRu3peaqFxW9bYPqr1n8w8Dbio9trjqwEqXVUB2uNrRfevBpwPa5/G9uG9dq7alwuBD9A9iA9lgMH2wHci4piIWH2EulH1m58PvJbpQfxuLqc8s/cKdresBuwJnBMRbxyybitFxGeAb9EliF/ZGvh2NVBhJNWz5YGUPot96P19rUn5fbswIl7YYz8NwUC+JA0hIg4GfkCZkdXNFsA3I+LtY7x080Zm72FPEBEb0x5cuyAzz5pRrSQtSBGxSkQcAZxImeHQq7NjM0rQ/PyI6PWgNCsi4m3Ab4B/ZXonXt0awAuAX4862EmLnh3FukPVTh4FfJEysKKb7YETImLZGC8/4/s+4LFAfWDTD0ZJZauJ8tjG9oVzmQksM0+n3A+0rEzJHrIKQEQ8HKh3QP6Tki1kUa6DXA2c+TLt91it+5lhdJol9SdKp/JplFTN13XYZz/KAM2hRcS/AEdQ0qRC+Wy6CDiTksa6UwaYVZialddya3XcucAZlBSyzd+HtSidyzuNUlctCrZ9C4htH7CA276IuAvw8EbxxGTo02giopUuv+U6ykSOuvoM/JUY7PljRs8sVb2eWSu6ksbs9sb+uwM/ZvpyD7dQJtudQWlvmn9vuwM/7Dc5pYP7UWIA69fK/khZ1u5CSor8Tprt13LKgJ/zKDP4LwD+0dhnZeD9EfEmBvcZSlaCpqsomUMuAG6qlb85Il4/xPmBO5YU+AJlJv6dGy//lfJ9nUVpo+tWBY6IiFcMe01NZyBfkgZUjVz791rR34FfUj6srupwyIERsds4rp2ZZ9I+U++xnWbu97E37Q8YPUc5SloxVTN6v0P7+mgtf2bqoeSfjdfuD5wcEQ+b3RoWEbFylGwoBzHVmdJyNVMPC8105asAh0ZJ5ygNw45i1R0OPL+2fQ2l3TmHsvZi3cqUducRY7r2N2lPa7pb1bE6jKFmt2hBaLZR8zEg9+20d+hvBbwjIu4MfJ72wM17M/Pnc1m5SVF1eB5NWaO05UZgt8z8+winvIySCeQJwFqZee/MfHBmPiozH0KZ4bk18AnaA037RsSzpp+ur1bml+uANwDrZ+ZmmbldZi6hzNb8YpdjTwReBzwIuEt13MMzc/sq5e5dKZ32Z9SOWQk4Ksp61FKTbd8CYdu3QrR9zwHq95zXA6fMU100Ps8B6jPSj+mwLOFRje3ms0QnX6Usy9iyZ9XfNKg9GvX6Yrdn24h4KCWYXD//8cAulPZhi+rv7YHA2sArKEHmlh2A/xqiblCeze9JGRhwCLBpZm6UmY/IzAdQlqX8zy7H/hJ4J2W5jbtm5saZuXVmPjIzt6K0CTtQMo/UvavK9NFTRDyP6QOkjgO2z8z1MnOb6jrrUCa8tILs7wE26nf+hndTspS03Ep5b7bIzHWr7+sRmXlvygD4zzaO/0iYEXjGDORL0mB2ZGqdnNMpabvumZkPysxHUEbn7UQZAVh3yEzSejXUO2CDzkG4Xur7L2f6TZqkxeE9wBMbZd8Ats7MDWsPJfeirP9YHym8NvCVLp0NRwA7V1/Ntb127vH1hi71fAftD4//pKxJuFVmrlN7WLgPJWvAp4B6muqDI+LRXc4tdWJHsVpeSFnrFMqajY8C1q7anW0oHSLPon3WwcrAR8dx8apj7eha0ZqUdRYHUqWOrK8teS1lcIAWtmZWnHPnugKZeTPTs4e8mbLEWL3T8TzKWp2L1fsoz491L87MC0Y418uB+2XmGzPzuMy8vrlDFudl5isoHdr1zvm3jHDN9YErgEdm5ocys94RTmb+JTPPaBxzGfCgzFyamR/JzF926ozPzJsz81hKu1rPerMhwz/fanGw7Vs4bPsWcNtXLTP2jkbxFzKzOcBfC08zKD+tPzgzf0v7QJPN+6XKz8wbKcH8lnsAAy8126FeHQceVwPbj6Y9iP+WzHx8Zn6/OSghM6/PzE9Qsun+vvbSayJiyyHqtz4laL1bZr4mMy9uXOfGzDyuw3FPrOIFB2TmaZl5U3OHzLw9M0/JzD2Al9ReujPd+8iAO/5WP9Io/mx13bY2KjP/kZlfoGTauJDyHm7Y6/yNa+1E+6TGK4DtMvMNmdmMgZCZF2bmiyk/21b/3J2Bjw16TXU2ruCSNJ+2GTFQemVmNgMN8y4imsGVQa3ffxfNQCs16WGUB5G2lFqZmZS0qjtS1lBtfSjeG3gqcOwY6nAUJQDXGoS1N2Wmal9VMOv+taIfZWYz5Y0mh+1asVjatdVm8B71Wgdrmmq2aHOm+oGZuX9z38z8GyW113GUkb13q17alNJB9drG/hcDF1fXuabx2o+HrOejgbfViv4K7JJdlgPJzIuAl0XE8ZRZEitR7nM/wZDvkRa1iegojoh9gZ8y9Xn/Zsp9iB3Fc+d+1b8HZWazQ5PqPvAbEXEB5fektYbqdhGx9ZgGWBwOvKy2vQ9w5IDHPoupNhvg6CoIoYWtuRbllfNRicw8NSIOYeo+4E6UNYxbbqNkC1mUHf9V2tdmB+whmfmlUc6XmT8dcv8fRcT7mbqP2i4ithwhkLasUwdtj+teyRC/k5m5PCL2owyG37Qq3pdy7ybV2fYtALZ9A+8/yW3fB4Alte0b8XljwYuITSkzv1v+QMkg0clRQH1pt32A/+tzicNpD8jvzfRZ5p3qtUmjXudl5s+67P48YPPa9n9nZt/Z9Zl5aUTsQVkeI6qv19M5HX0378nMbw2xP5l5wpD7fyYinsTUQOw9I+JlmdlMv9/yXGDd2vYvgJdVsYlu1/hL9V6cQxmAPqj9mcruezvw9EGedTPziGoW/quqou0iYofMPHmIa6vGQL5WBB8Y8bhjaV+HZVL8aL4roK7OAl7SDOLXZeZVEXEQ7TfhuzCGQH5mXh4RP6ZkAwDYLCIenZmnDnB4c50i06tONtu1xWV95u49eh3tS2x8u1MQvy4zz46IlwD1TpgXR8T+mdlpXcJxeAdTQczlwK7dgvh1mXl0RGzD1Ijhh0TEE4cdSKBFy45i1R3bKYhfl5kXRsT/MJW1Ccp934wD+Zl5WkRcyFSn1U4RcZ/M/OMAh3vft4KJiLWY3n/TXOJhLr0VeBolI07TwZl5zhzXZyJExAMo2VPqTqV9WZS5cBTtAyIfTVkndVAnZ+YPxlul6TLz1oj4ClMzZx8WEav36LjWImPbtzDY9g1nEtu+iHguJQtC3X84AWiFsKyx/cUeAd8vUVKmt9rdPSPitX0GBJ8AXApsXG0/JSLWzcxOS9DWDbP8a30SyfWULHYDqfqzvk95RgN4VkT8W6+gd+Na7x/0WjN0FFOB/FWBbYBuQe/ms97bO2UCacrM8yLiiwyYBaRaVvNxtaIjBumXq3kPsB9TfXu70/17Uh+m1pekwb1jwE7zLze2Hz7GOjRvbJof3tNU6xPtWSu6npJGW9IiEhF3p9w4tyR9UnbdsWPm0cBptaK70B5YHJuI2AJ4cq3o6AEHLLX8FyXQ2bJ7tx2llgntKP5dl9cWbUfxHOu23mHT0Y3t2brvW4myvmFPEbEB7cunXJiZ/WbSaPLdtUPZjXNei0qVIvRFtC9pA1PrgS46EXEX4Gu0/6yuBJ4zDwOvft/YftiQx//vuCoygHpd70RZX1pqse2bcLZ9I5uYti8itmP6mtbfZUxLRmn+RESnZVm7LrNaBd9/WCu6O7Brr2tUAfF61rA7M1hfUb1etwFf6LRTRGxIe5bFb2Tm3wc4f139e7onZfm6QRzbKS3+LBmo/aqW3KtnTbiW8vc6qGGW2d2lsT1odjgAMvMKSraAluZShhqCgXxJGsx1wEAjc6t01JfVijYaYz2+TgnEt+xZBep7eQbtswy/7CwHaVF6FLBKbfvkzLyw284dfK6x3Vz/cFxm+rBwNXB2rciHBQ3CjmLV/WKIVKzn0z54aJz3fUfSvh5v3wGclGB/PV3iEWOsj+ZPpw7Lu8x5LWoy8yTKjMu6j2TmrfNRnwlwKFBfd/V2YK/MvHxcF4iI7SLiPRHx3Yi4OCL+FhH/jIisf9G+TjTAOkNeqrkG9LD1XCMi9oqIT0XEaRHxp4j4e0Qs71DXT82wrlqx2fZNPtu+qXouuLYvIjYDvgWsXiv+NfDCAWcsa7LtxNRMeSjp68/vc0wzoL5sgOsMNeksInZgamkJgB9k5l+67N7szxlmRnjLZY3tLQY8bqZtwkoRsXNEfDgijouIyyLi2oi4vUOb0Mzo1q1NeBCwWm37zCEHTZ3G9D6Gbprv/dkd9+qt/t4P+r6rA1Pra0Ww07Brj0yyzIz+e00XEUuYPnpL43NOZi7vv9sdrgTuW/1/rXFVIjP/ERFfZmo9n7tTAvVf6XHYPo1t06tOPts1FlW7dmlmLhnlwIhYChw/4O7bN7aPG/JyP2lsP3LI4wc1rge11vf7wIgIOyLUx0R2FEfEqcBjasWLuaN4Lg3c7mTmPyPiWqY6W8Z53/eHiDiOqRn2W0TEIzLzzB6H1TvOmjNktHBdTwmO1AdpjO13bQaaaTz7pvUch2oZnXsMuPvZmXnNLNfnNcBejeK3Zuag92j9zv9YyszIh4x4iubSMf2MdP9dzRJ7PSWrTKcBcoMYtq5asdn21dj2Dc22r4dqpvMPgfVqxX8AnlRNUNLCt6yxPchs7G8ANwBrVts7R8QGmfnnbgdk5u8i4hSmnlsfHhFbZeYvuxwyzDJgzeDvIdUydDNxzwH3G7k/MiKeDXyQqdjAsLq1CfdubP9qmJNm5vURcTlwnwF2b77315UkDyNbIyJWzczmoCsNwEC+pIFExJbAhgPu/steH/AL1LDr5NZn8a3eda/RHM5UIB/KDVDHQH5ErEd7iuqLMtP1aCQWZbu2cWP7vGEOzsyLI+LvTHVObDRLAfLmw8KVM3xYWBm4GyWzitSNHcU1k9ZRPA9Gue9rBfJn476vnip/b6BjID8iHk57atbjM7M5A0ULUGZmRFxD++yc9brtvwh8kPY1O3vZibJ+66yIiEczff3UY4GDx3T+lwKfoH0d2WH1y+DWdH3/XdpFxOrAt4HHD3tsw7B11QrMtm8a277h2PZ1ERH3pATxN6kVXwXsnJl/mMu6aHZExJrAbrWi5cAX+x2XmTdFxNeZSn2/cvX/fn/bh9M+AH0f4E0d6rUa8Jxa0TXAN3ucd+1+dR7BoM/5Q7cJABHxIeB1oxxb061NaAb4R+nnupbBAvmz9d4P+6wtDORLGtybmD6zu5t9gcNmryrz4ub5rkBLZp4cERcxlYboKRGxXmZ2+iB8Pu1tvelVpSmLrV1rBuX+OsI5rmYqkL9y9f+RHm56mK2HBQP56sqO4mkmpqN4nszkvm9GI486+Brwcaba3udGxOu7pFA0C9PcaA6omUnn+2qN7V6pMX8N7FDbHnbtX41ZRKxPGVB951rx74B9xjHQMSJ2Ynog6zbgZOB04FJKZ+jNTE8p/aNRrzviutYfZ3og6yrK58PPKbM8rwf+QRk41/Ik4N9HuJ7mnm2fANu+hgXX9kXEXYHv075O+HXAkzPzN/NRJ82KPWjPMHchJbvXIOnNL25s70P/QP6XgUOYat+fHxFv6ZDddlfaA+lH95mhPRvZKgZdbnzoNqEahNQM4t8EnEQZjH0ZpV/tFqCeaW8jpi9n2Unzs3eUbH19Z8RHxMpMZWUYJ5d6H5GBfEmTbr4eFifdEUytkXsn4HnARzrs10yvaiBfWryaN+GjrP/dPGY2Avnz+aCmyWBH8eLlfV9DNSvmGMqAMiiDnZ5KSXt5hyqt63NrRTcAX52TSi4+1za2Z9LJ1UzB2zx33U9pb6O2ncF1NUNVB+eXaM/u9A9g98wc1+DBD9IeyPoO8LLM/GOfus31zM6H0j6Q6J+UAbMf77ccTERs2ut1TRTbPtn2tV9vwbV9tQwCj6gV3wQ8NTPPnY86adY0B/g+kNEHumzZb3mvzLwuIr7B1HIbG1Kyiv2wT736DTy+qbF9MDMYsFP57QyP7ygi1gDe3Sj+JPCf/TLYRcTWA16m2c6O8ll8t347ZObtEXELU8/jSRmANFMu2zEiA/mSJt18PSxOuiOAA5h6uNmbRiA/Ih4MPLRWdFJmXjIXlZM0kW5obI+y/nfzmE7ris/UTbQ/WOzCzNOJXzHD4zW37ChevLzv6+xwpgL5UO77vtHYZxdg3dr2VzNzlAFb6q/5u7T+DM7VzPzRr436j9r2AyLiAYtx9lxmLp3vOgDvBZY2yl6amUMtXdRNRGxO+4Cy84Hd+gWHKoOu/Touz6E96LZ/ZnYaZN7JXNdVo7Ptm2e2fX3Z9vUQEatQBnnuWCu+BXhmZp4y1/XR7ImITWj/OY/DPnRZ3qvmcKYC+a1j7gjkR8S9aA8GX5iZp/U5ZzOT5OWZ+eM+x8yXJ9KeYfKbmfnyAY8dtE1oBsIHXS4UgCjrVt5rwN2vrp0/gDMyc9wTeTQgA/mSBpKZy4Bl83Dp+XpYnGiZeUlEnMRU2tuHRcSDMvP82m6mV5V6mMd2bb40RwCPksK+fsztzE4g/6+0B/LP6bJ0iFZcdhTPs3nsKPa+r7OTgEuAJdX2UyNi7cy8urbP3o1jvO+bPb9vbK8bEetk5ihL1my6E0YeAAATCklEQVTV2L6kx74nUjrv6h19L8a05HMuInZj+vv+icw8coyXeWRj+9ABA1kw/fdqttXrupwy+2xQc11Xjc62b5Gz7ZtmwbR9VSaFL1IGfrbcBuyVmTOd3azJsw/jX+6rtbxXr7/HHwF/Bjaotp8ZEXfNzFa/0fMpSzS2DPK80vzs2Wyg2s6PZvv18SGOHbRNuKCxPWwWwU2ZPuC9m9/TPlBgM+CcIa+nMTHNqKRJ1/zA3nKUk1QjzprrAF0yyrkmSPOG547AfXWT/vzaazcBx8xFpSRNrEsb24Om7gIgIu5H+w3/ZeNYA7GDhfSgptnRsaN4xHON0lFc9+IRr6vRjOu+bz2g+TtzySjnmgRVW1tfHmkVarNdIuIewNNrr19KWZtVsyAzLwea6X0fM+Lpmsf9X4/r3sT0IMGLI2KomTiamWq26OcbxWcArx3zpZoDmYYZVNZcr3m21et6Vb/0sS0RsRJTA9M14Wz7Fjfbvo4WRNtX9Yd+Dti9Vrwc2DczmxmetMBVP+/mAN+lmRnDfgE/qZ3jnrQ/b0yTmbcDR9WK1gCeXduu12s5MMggoOMb23P9dz6MWW+/MvMK4A+1oq0iYskQ13nGEPsupPd+hWcgX9Kka6bY2b4KUg/robSnhL4VOHvkWk2GY2hfK+j5tffmSbSnyvlabQSkpMWp2Z4OexPe3L9XCrTl9Y3qYXJQPiwscnYUL2rNdmVcP/c/VL9XC9kRlLUJW+odYXtRgvstR87SQCtNObGxvVfHvXqIiC2BhzSKT+pz2P9Q0uC23B341LDX7lCXdSPiEf33XNwi4i7A12jPHPRXYI8hZowOfLnG9iod92oeVNaI/tcx16XvZWv/H6ielWcA9xlzXTS7bPsWIdu+7pet/X+S276PMj2w+4rMPKrTzlrwdgQ2qW3/iZJ5bhT/29heNsAxhzW29wGIiIfS3vYfn5l/oI/MvAj4Xa1oq4jYaYB6zIdR26+N6DNIouGbjWu+YsDr3Bl4yRDX+X5j++UjxmQ0BgbyJU2602l/YFuHsubMsJ7b2D4zM28euVYToArMf7VWtAGwc/V/0+pLajqNMoipZYeIGGa2e7NjpNmRV9dcl3mNIa7TfFh4SfXAocXFjuLFqfnzeWhEPGCE8zTv+/r93Cde1Yl1cq1ou4h4YPX/5n3fEWi2faaxvUdEDJva8n2N7eMz83cd96xUs3De3Ch+WkT8z5CD5u4QEdtQ7hFMcd7fp2l/n5YDz8vMy2bhWlc0tncY8LiDmNmyJKOo1/Ue1edvTxGxJvDB2auSZolt3+Jk29fZxLd9EfFepgf53piZM36+0cRqPhccnZnLO+7Z39do70N6SpX5rKvMvAA4q1a0Y0RszMyWAXt/Y/t/qr+lSTNq+/UxhlsCvflZ/JqIePgAx70VGPjZOjNPoX0ixP2Adwx6vMbLQL6kiZaZNzB9BOC7qlRUA6lGtjVvXD8907pNiOaNz94RsRawa63sj8Bxc1clSZMoM6+lfYmNAD4wyLER8WzgUbWiTm1zXTM9+SYd9+ogM8+mfVb+RsC7Bj1eKww7ihehzPwt01PCv3eYc0TEtrSnDoUV+75vc2D7Wtmp1fuoWZSZJwJn1opWBo6plqHpKyIOYvrMm4E+kzPzv4FjG8WvrK5/70HOUdVhraqD//8oHXPqISJeCTyvUbz/LK4tfGpj+2X9BmBGxEuBN85SfXpp1vXgXs/rEbEGJTjg790CY9u3+Nj29TTRbV9EvBl4S6P4nZnpIKoVVPU79uxG8ZdGPV+1XMQPakV3Al4wwKH1Z5YA9qW9HbmB8rcwqMOA+vPNVsB3ImLgwTsRsUpEvCgiXj/EdYfVbBPeWi2B1qteH2C42fhk5s9p79tbBfh+RDy2yzVWjoj/APZvnWKIy72tsf/bI+Itw/SNRMR9I+LDETHU8p5qN8xID0maLx+ijNxr3RBvC3w6Il5arb/TVUSsS3nYq6fVv5wZ3MhMmOMpa+NsVG0/k7JkwGq1fY6cwehLSSuWD1NmNrfa010j4m2Z2TVQXqVAO7RRfGhmXt/jOr9sbD8bOH+Ier6dMoO2Vc83RcSNwEGDpouOiPsArwG+nJln9ttfkyUzT4yIM4HWLPZWR/HOmXlxv+Nn2lFcpeurD4p7JbBhRLx60BTt1cC6twBvAMwqMbgPAEtr28+KiP0z8539DoyITYGv0D5g/czMXPAz8itfoWSNWL3afgHTUziahWnuLKMEtFpZZ+4HnBsRHwS+UGVRuENErE5ZE/c/KGlP6w7LzO8Oee0fUZ6LWnYDdomIz1Cef05upjyu6vB4Svu4F7DWENdctCLiUZRn0rrfAadHxCjZ4jo5uZ4xLjN/FxH/x9RAyrsCJ0XEa4CvZ+ZttfptDfwn8Jyq6FfAFmOq1yCOovxet9repwLfioh/r2bmteq5GvA0ygCtVmBuTupaBZq7Bc9Wa2xvExEd+0sz88djrdjCtAzbvkXBtq+viW37ImIfpg9qPhk4eYSf3Z/q348m2rMpfzMtF2XmGTM855dof67eh+ntQtP/UjJPtFLLv5n2z9pjMrOZxbGrzLw1InajDMBqzcTfETg/Ig4B/rfTgP2IuBelP2FXSn/52owh214PP6YsZdBamu9+lL+5V1EmFWRVr5UoS8EdRPl8hOHbhFcCO1G+J4B1gRMj4nvAtymxgtWqc+4FtDKGnE0JzG/LADLzuIg4kKlBAEFpy55VDUL4YWZeVz+mSr//QOCxlAH2Sylx6KOH+P7UYCBfK4KuD1kDuDIzzxtrbTR2mfmLqkN+/1rxi4BtI+LdwA+aAaVqRPazKTf19bQ/y4EXzsI6XvMiM5dHxJGU7xNKx24zIGeH7sJju6ZZkZlnRcSHKYHFloOqYP0BmXlHsL0aOfwi4J20p8a/iDIqt5cfAf9V2357lU7tOOAq4Lbaa9dUs/Dr9TwlIt5K+0zcdwLPqB4WflCNDr9D9bCwOVMPC4+n3Ot+p09dNbmWYUfxopOZ34mIw2lPC3lARDye0iF5Qmb+o35MFcB/PqVtq6/fehPT00suWJl5fUR8nakZLRsBr63tcjPw5Tmv2CKVmRdUHeVHAatWxXejfF69MyKuBP4C/AO4J+XntWqHU50E7Dfkta+NiCcAX6AEB1pWB15dfd0aEX+hfO6uDNyL0snXabbg7cCVw9RhkXkJ0wdkbQb8cIzX2AS4pFH2RkqWkta1N6D8jd8QEb+lPNveh/Z00jdS2sNzxli3njLz1xHxSdqz4P0L8C8R8Qfgz5SO9yW031OeBBzJ9Cw8s2Fv2vsTeuk18G+k7DwrEtu+RcW2r4cJb/s6rSG+A+X5ZliHM9ja6Jp/09Lqj+Gcx1KeqVq/ww+JiIdl5rndDsjMqyPiO8CzqqLmgLmh+6kz8/yI2J3SFrSesdcBDgQOjIirKKntb6J8Jq1bvT5nMvPmiHgL7cucbQn8BPhbRFxMadfuC9Rn6l9O+TwcOJtuZv4lIp5CGTzQej+Cqg3qcthfgD1oz655W5d9695Jia28vFa2HeVnsTwiLgWurq5/d8pAhtWbJ9HMGMjXimCg2VVdHEsZkaXJdyDlw2+PWtnWlA+N26sPjb9R2rV1gU6p1ZYDr8vM4zu8tpAdzlQgH9pvkE7PzN/McX00c7Zrmk1vpbSf9ZH4uwO7R8SfKCOI70oJmjY7bq4GntNv9HRmnhsRx1ECmlA6zpbRuQPgRNpn37bO8b4o66+9rla8DeWhY3lEXFbVB8rDwga0d5BogbOjeFHbj9IG1dMD7lh93Vr9/f+Ncs+zPp3XRL0F2CczfzXLdZ1rh9OemrJ+33dstYyK5khmHhMRf6R0lN638fJ6tA8obloOfBJ4bWb+c4RrXx8Rz6AMunsPpf2pW4XSLm7UPLbhe8C/Z2Yzm46mzEvwNjNPjYh/owR76vdkawKdlpu5Btitug+biyrWvY7yN/C0Rnm338HjKQPkfG5ZgGz7Fg3bvv5s+zQRIuK+TB/A0Ws5xIFk5o0R8W2mMl9AGTDQNZBfOZypQH7dpZQ+oFHq8sOI2J7yfTXbgnWZ/nkw7RSU5WdnTWYeGRH3p2SZrLtn9dX0e7oH3vtd66yI2AH4HFOZDLs5G9gzM38fEWvWyq/rdkDtOgm8IiLOoWRaqA+cX4kyIKvfcprXDXItdTfwGtOSNJ+q1PB7UkbRNx/2VqZ09m4LPJTOQfyrgV0z85DZrOd8yMwLKWvvduJsfEltMvMWStq/ozq8vCGlLX0A04P4vwV2yMxBZzm8kBnOiMjM11MeEpuBqZUoMxu2qb42pXMQ/+8djtUCkpnHUAZ6XNbh5fWAB1NGg2/G9CD+cuDjwBMz86YRrn098Azg3yjB+qZWR/HDKYNj1qfz89X3gK2HzAiwqFWDhZ4AfILyc6xbhfLz3g54CJ2D+JcBS6vfnxXNjymzNjrxvm8eZOZpwP0pbcXZTP+dbbqastbngzJzv1ECWbVrZ2YeCmwMvJTSMdpz6bHK7yiZcx6Ymf9iIGtyZebhlEFMvZYIuZnSibtVZp4wF/VqqjLU7EoJal3RY9dLKOlgn+jAo4XNtk+zybZPGtretA+++WU94+IMNQcEPC8i+i0d9106P0Mf2UoxP4pqsto2lAExJzI9RtB0G2VZibcBm2SPZSXHJTPfQWkXer3/11I+j7bOzF/P4FrnA4+kvB9HUzJo3kQZ1H4pcAxlUuR2tYyG9QEFAwfXq8/dJZSJFdOWMujgasoEzOcDG6yAA+znVMzg70aaFxFxCeVmfRyOzcyhR0FGRPMPZ5PMvGSE8yyhjLy6Q2aONHx0nOeadBGxESXV1rOZWnemmwuAzwOfzMwbhrjGEtrfz8Mzc9kQx5/A1Do3PX8WEXEY7emPhv59ioiXUTq7624F7tVMP63JY7s2++eaJBGxlDISv+XSzFwyH+eKiMcB76B0knTL1HQRJRj60WGXJake7naljMTemjLQas3GtU7MzKV9zrMW8CrK4IDN+1z2Gkrqsm8CX+0VwB2mrdb8iohVKJ0TL6OMvu81IPlq4FvAweN6WKxS5r+QMhN6B8ogwl5+B3wV+PxMMuM0f0eBfTPzsFHPtxBFxBbAmygznXqlR1wO/Iwyy+/wYdqrDm3pOzPzgCGOv4Spz/Ge7fA42p2IeB9lrcm6K4D7ZOYggQzNouoza3vKc8ralEFG11LapguA82fSgTnA9e9CaSc3pfzNrE7p0LuGknXnrMy8uvsZNKmqe+PHULIQtX6vfgOcOsqAtdlSLRH2CMpgq7UpAdYrgJ9l5s/ns26aPbZ9mi22fZK6qdr+R1KW21iHkq3s78BfKe3Er+aznYiIrSgD0Nej9CH8lfKZePpMBrTNoD7r0D7A4vuZucuI59qIMhFoPcrggOXA9ZSsB78CLq4mZmoMDORLWtAiYjPKLPy1KevL3E5JtfoX4IzMNI2tJPUREXenBCdbHW83UtrRn03a8hwRcW9KB8l6lLq2HhYupzwsXOTDworNjuLFKUqu1K2qr7UpS2rcQrnv+xNwWmaark+SJEmSpIaI2BP4Uq3oXZnZXAZAE8hAviRJkiRJkiRJkiStgCLiZEqGk5ZdMvP781UfDa5XSkpJkiRJkiRJkiRJ0gSoMtYNs/9raA/i/xH40VgrpVljIF+SJEmSJEmSJEmSJt/HImL/iFi/104RsUZEHAh8uPHSIZl5++xVT+Nkan1JkiRJkiRJkiRJmnAR8SVgT+B24KfAqcAFwDXAnYF1ge2BXav/150OPMZA/sJxp/mugCRJkiRJkiRJkiRpYCsDS6uvQfwc2N0g/sJian1JkiRJkiRJkiRJmnyXD7n/LcDHgMdm5rDHap6ZWl+SJEmSJEmSJEmSFoCI2Bh4CvBo4IHAxsDdgFWA64CrgV8CJwDHGMBfuAzkS5IkSZIkSZIkSZI0QUytL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBDGQL0mSJEmSJEmSJEnSBPl/MCbeRJQ8SnMAAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<Figure size 2400x1200 with 6 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"needs_background": "light"
|
||
},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"with sns.color_palette(\"muted\"):\n",
|
||
" fig_fse, ax_fses = plt.subplots(nrows=1, ncols=6, figsize=(8, 4), dpi=300, sharey=True)\n",
|
||
" for idx, ax_fse in enumerate(ax_fses):\n",
|
||
" dataset_name = dataset_names[idx]\n",
|
||
" if dataset_name != 'Average':\n",
|
||
" specific_df = perf_df[(perf_df['dataset'] == dataset_name) & (perf_df['error_type'] == 'ade')]\n",
|
||
" specific_df['dataset'] = pretty_dataset_name(dataset_name)\n",
|
||
" else:\n",
|
||
" specific_df = perf_df[(perf_df['error_type'] == 'ade')].copy()\n",
|
||
" specific_df['dataset'] = 'Average'\n",
|
||
"\n",
|
||
" sns.boxplot(x='dataset', y='error_value', hue='method',\n",
|
||
" data=specific_df, ax=ax_fse, showfliers=False,\n",
|
||
" palette=area_colors, hue_order=['sgan', 'Trajectron', alg_name], width=2.)\n",
|
||
"\n",
|
||
" ax_fse.get_legend().remove()\n",
|
||
" ax_fse.set_xlabel('')\n",
|
||
" ax_fse.set_ylabel('' if idx > 0 else 'Average Displacement Error (m)')\n",
|
||
"\n",
|
||
" ax_fse.scatter([-0.665, 0, 0.665],\n",
|
||
" [np.mean(specific_df[specific_df['method'] == 'sgan']['error_value']),\n",
|
||
" np.mean(specific_df[specific_df['method'] == 'Trajectron']['error_value']),\n",
|
||
" np.mean(specific_df[specific_df['method'] == alg_name]['error_value'])],\n",
|
||
" s=marker_size*marker_size, c=np.asarray(area_rgbs)/255.0, marker=mean_markers,\n",
|
||
" edgecolors='#545454', zorder=10)\n",
|
||
" \n",
|
||
" for baseline_idx, (baseline, fse_val) in enumerate(prior_work_ade_results[pretty_dataset_name(dataset_name)].items()):\n",
|
||
" ax_fse.axhline(y=fse_val, label=baseline, color=line_colors[baseline_idx], linestyle=linestyles[baseline_idx])\n",
|
||
" \n",
|
||
" if idx == 0:\n",
|
||
" handles, labels = ax_fse.get_legend_handles_labels()\n",
|
||
"\n",
|
||
"\n",
|
||
" handles = [handles[0], handles[4], handles[1], handles[5], handles[2], handles[6], handles[3]]\n",
|
||
" labels = [labels[0], 'Social GAN', labels[1], 'Trajectron', labels[2], alg_name, labels[3]]\n",
|
||
"\n",
|
||
" ax_fse.legend(handles, labels, \n",
|
||
" loc='lower center', bbox_to_anchor=(0.5, 0.9),\n",
|
||
" ncol=4, borderaxespad=0, frameon=False,\n",
|
||
" bbox_transform=fig_fse.transFigure)\n",
|
||
"\n",
|
||
"# fig_fse.text(0.51, 0.03, 'Dataset', ha='center')\n",
|
||
"\n",
|
||
"plt.savefig('plots/ade_boxplots.pdf', dpi=300, bbox_inches='tight')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# KDE Negative Log Likelihood Attention Radius 3m"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_12_kde_full.csv\n",
|
||
"results/hotel_12_kde_full.csv\n",
|
||
"results/univ_12_kde_full.csv\n",
|
||
"results/zara1_12_kde_full.csv\n",
|
||
"results/zara2_12_kde_full.csv\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/borisi/anaconda3/envs/gentraj/lib/python3.6/site-packages/pandas/core/frame.py:7123: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n",
|
||
"of pandas will change to not sort by default.\n",
|
||
"\n",
|
||
"To accept the future behavior, pass 'sort=False'.\n",
|
||
"\n",
|
||
"To retain the current behavior and silence the warning, pass 'sort=True'.\n",
|
||
"\n",
|
||
" sort=sort,\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Load Ours\n",
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_12*kde_full.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = alg_name\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True)\n",
|
||
" del perf_df['Unnamed: 0']\n",
|
||
"#perf_df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# # Load Trajectron and SGAN\n",
|
||
"# lls_df = pd.concat([pd.read_csv(f) for f in glob.glob('csv/old/curr_*_lls.csv')], ignore_index=True)\n",
|
||
"# lls_df.loc[lls_df['method'] == 'our_full', 'method'] = 'Trajectron'\n",
|
||
"# lls_df['error_type'] = 'KDE'\n",
|
||
"# #lls_df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"KDE NLL for ETH - Univ\n",
|
||
"Ours: 1.3068431681049446\n",
|
||
"KDE NLL for ETH - Hotel\n",
|
||
"Ours: -1.939345347471224\n",
|
||
"KDE NLL for UCY - Univ\n",
|
||
"Ours: -1.1288059163920086\n",
|
||
"KDE NLL for UCY - Zara 1\n",
|
||
"Ours: -1.4119791272274707\n",
|
||
"KDE NLL for UCY - Zara 2\n",
|
||
"Ours: -2.525154634369542\n",
|
||
"KDE NLL for Average\n",
|
||
"Ours: -1.392358401395975\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" if dataset != 'Average':\n",
|
||
" print('KDE NLL for ' + pretty_dataset_name(dataset))\n",
|
||
" #print(f\"SGAN: {-lls_df[(lls_df['method'] == 'sgan') & (lls_df['dataset'] == dataset)]['log-likelihood'].mean()}\")\n",
|
||
" #print(f\"Trajectron: {-lls_df[(lls_df['method'] == 'Trajectron') & (lls_df['dataset'] == dataset)]['log-likelihood'].mean()}\")\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == alg_name) & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print('KDE NLL for ' + pretty_dataset_name(dataset))\n",
|
||
" #print(f\"SGAN: {-lls_df[(lls_df['method'] == 'sgan')]['log-likelihood'].mean()}\")\n",
|
||
" #print(f\"Trajectron: {-lls_df[(lls_df['method'] == 'Trajectron')]['log-likelihood'].mean()}\")\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == alg_name)]['value'].mean()}\")\n",
|
||
" "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Most Likely FDE Attention Radius 3m"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_12_fde_most_likely.csv\n",
|
||
"results/hotel_12_fde_most_likely.csv\n",
|
||
"results/univ_12_fde_most_likely.csv\n",
|
||
"results/zara1_12_fde_most_likely.csv\n",
|
||
"results/zara2_12_fde_most_likely.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_12*fde_most_likely.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = 'Trajectron++'\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"FDE Most Likely for ETH - Univ\n",
|
||
"Ours: 1.6763703267322265\n",
|
||
"FDE Most Likely for ETH - Hotel\n",
|
||
"Ours: 0.4614785391399073\n",
|
||
"FDE Most Likely for UCY - Univ\n",
|
||
"Ours: 1.0747924515297491\n",
|
||
"FDE Most Likely for UCY - Zara 1\n",
|
||
"Ours: 0.7704666189102252\n",
|
||
"FDE Most Likely for UCY - Zara 2\n",
|
||
"Ours: 0.5865659029486421\n",
|
||
"FDE Most Likely for Average\n",
|
||
"Ours: 0.9542581296327649\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" print('FDE Most Likely for ' + pretty_dataset_name(dataset))\n",
|
||
" if dataset != 'Average':\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == 'Trajectron++') & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == 'Trajectron++')]['value'].mean()}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Most Likely ADE Attention Radius 3m"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_12_ade_most_likely.csv\n",
|
||
"results/hotel_12_ade_most_likely.csv\n",
|
||
"results/univ_12_ade_most_likely.csv\n",
|
||
"results/zara1_12_ade_most_likely.csv\n",
|
||
"results/zara2_12_ade_most_likely.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_12*ade_most_likely.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = 'Trajectron++'\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"ADE Most Likely for ETH - Univ\n",
|
||
"Ours: 0.7052341524825474\n",
|
||
"ADE Most Likely for ETH - Hotel\n",
|
||
"Ours: 0.21620184785291033\n",
|
||
"ADE Most Likely for UCY - Univ\n",
|
||
"Ours: 0.40926643885853664\n",
|
||
"ADE Most Likely for UCY - Zara 1\n",
|
||
"Ours: 0.2972134362490682\n",
|
||
"ADE Most Likely for UCY - Zara 2\n",
|
||
"Ours: 0.22585898118058487\n",
|
||
"ADE Most Likely for Average\n",
|
||
"Ours: 0.3661968268243691\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" print('ADE Most Likely for ' + pretty_dataset_name(dataset))\n",
|
||
" if dataset != 'Average':\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == 'Trajectron++') & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == 'Trajectron++')]['value'].mean()}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Best of 20 Evaluation FDE Attention Radius 3m"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_12_fde_best_of.csv\n",
|
||
"results/hotel_12_fde_best_of.csv\n",
|
||
"results/univ_12_fde_best_of.csv\n",
|
||
"results/zara1_12_fde_best_of.csv\n",
|
||
"results/zara2_12_fde_best_of.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_12*fde_best_of.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = alg_name\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"FDE Best of 20 for ETH - Univ\n",
|
||
"Trajectron++: 0.8574431969131285\n",
|
||
"FDE Best of 20 for ETH - Hotel\n",
|
||
"Trajectron++: 0.19084707198210932\n",
|
||
"FDE Best of 20 for UCY - Univ\n",
|
||
"Trajectron++: 0.4287221576716801\n",
|
||
"FDE Best of 20 for UCY - Zara 1\n",
|
||
"Trajectron++: 0.3159092794417088\n",
|
||
"FDE Best of 20 for UCY - Zara 2\n",
|
||
"Trajectron++: 0.25292433731989494\n",
|
||
"FDE Best of 20 for Average\n",
|
||
"Trajectron++: 0.38676102425417497\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" print('FDE Best of 20 for ' + pretty_dataset_name(dataset))\n",
|
||
" if dataset != 'Average':\n",
|
||
" print(f\"Trajectron++: {perf_df[(perf_df['method'] == alg_name) & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print(f\"Trajectron++: {perf_df[(perf_df['method'] == alg_name)]['value'].mean()}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Best of 20 Evaluation ADE Attention Radius 3m"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_12_ade_best_of.csv\n",
|
||
"results/hotel_12_ade_best_of.csv\n",
|
||
"results/univ_12_ade_best_of.csv\n",
|
||
"results/zara1_12_ade_best_of.csv\n",
|
||
"results/zara2_12_ade_best_of.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_12*ade_best_of.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = alg_name\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"ADE Best of 20 for ETH - Univ\n",
|
||
"Trajectron++: 0.4334745882075259\n",
|
||
"ADE Best of 20 for ETH - Hotel\n",
|
||
"Trajectron++: 0.12103208674836993\n",
|
||
"ADE Best of 20 for UCY - Univ\n",
|
||
"Trajectron++: 0.2200696369591878\n",
|
||
"ADE Best of 20 for UCY - Zara 1\n",
|
||
"Trajectron++: 0.16745747931164434\n",
|
||
"ADE Best of 20 for UCY - Zara 2\n",
|
||
"Trajectron++: 0.12485689651978099\n",
|
||
"ADE Best of 20 for Average\n",
|
||
"Trajectron++: 0.1987725413014945\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" print('ADE Best of 20 for ' + pretty_dataset_name(dataset))\n",
|
||
" if dataset != 'Average':\n",
|
||
" print(f\"Trajectron++: {perf_df[(perf_df['method'] == alg_name) & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print(f\"Trajectron++: {perf_df[(perf_df['method'] == alg_name)]['value'].mean()}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# KDE Negative Log Likelihood Attention Radius 3m Velocity"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_vel_12_kde_full.csv\n",
|
||
"results/hotel_vel_12_kde_full.csv\n",
|
||
"results/univ_vel_12_kde_full.csv\n",
|
||
"results/zara1_vel_12_kde_full.csv\n",
|
||
"results/zara2_vel_12_kde_full.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Load Ours\n",
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_vel_12*kde_full.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = alg_name\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True)\n",
|
||
" del perf_df['Unnamed: 0']\n",
|
||
"#perf_df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# # Load Trajectron and SGAN\n",
|
||
"# lls_df = pd.concat([pd.read_csv(f) for f in glob.glob('csv/old/curr_*_lls.csv')], ignore_index=True)\n",
|
||
"# lls_df.loc[lls_df['method'] == 'our_full', 'method'] = 'Trajectron'\n",
|
||
"# lls_df['error_type'] = 'KDE'\n",
|
||
"# #lls_df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"KDE NLL for ETH - Univ\n",
|
||
"Ours: 1.7987703559884305\n",
|
||
"KDE NLL for ETH - Hotel\n",
|
||
"Ours: -1.2864991518790894\n",
|
||
"KDE NLL for UCY - Univ\n",
|
||
"Ours: -0.8897570611371921\n",
|
||
"KDE NLL for UCY - Zara 1\n",
|
||
"Ours: -1.1275849983603234\n",
|
||
"KDE NLL for UCY - Zara 2\n",
|
||
"Ours: -2.1946898640072234\n",
|
||
"KDE NLL for Average\n",
|
||
"Ours: -1.1171728799903844\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" if dataset != 'Average':\n",
|
||
" print('KDE NLL for ' + pretty_dataset_name(dataset))\n",
|
||
" #print(f\"SGAN: {-lls_df[(lls_df['method'] == 'sgan') & (lls_df['dataset'] == dataset)]['log-likelihood'].mean()}\")\n",
|
||
" #print(f\"Trajectron: {-lls_df[(lls_df['method'] == 'Trajectron') & (lls_df['dataset'] == dataset)]['log-likelihood'].mean()}\")\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == alg_name) & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print('KDE NLL for ' + pretty_dataset_name(dataset))\n",
|
||
" #print(f\"SGAN: {-lls_df[(lls_df['method'] == 'sgan')]['log-likelihood'].mean()}\")\n",
|
||
" #print(f\"Trajectron: {-lls_df[(lls_df['method'] == 'Trajectron')]['log-likelihood'].mean()}\")\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == alg_name)]['value'].mean()}\")\n",
|
||
" "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Most Likely FDE Attention Radius 3m Velocity"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_vel_12_fde_most_likely.csv\n",
|
||
"results/hotel_vel_12_fde_most_likely.csv\n",
|
||
"results/univ_vel_12_fde_most_likely.csv\n",
|
||
"results/zara1_vel_12_fde_most_likely.csv\n",
|
||
"results/zara2_vel_12_fde_most_likely.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_vel_12*fde_most_likely.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = 'Trajectron++'\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 25,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"FDE Most Likely for ETH - Univ\n",
|
||
"Ours: 1.6595803163079856\n",
|
||
"FDE Most Likely for ETH - Hotel\n",
|
||
"Ours: 0.4577661486145857\n",
|
||
"FDE Most Likely for UCY - Univ\n",
|
||
"Ours: 1.1657061102834114\n",
|
||
"FDE Most Likely for UCY - Zara 1\n",
|
||
"Ours: 0.792450220754066\n",
|
||
"FDE Most Likely for UCY - Zara 2\n",
|
||
"Ours: 0.5878910318410495\n",
|
||
"FDE Most Likely for Average\n",
|
||
"Ours: 1.0204553297895693\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" print('FDE Most Likely for ' + pretty_dataset_name(dataset))\n",
|
||
" if dataset != 'Average':\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == 'Trajectron++') & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == 'Trajectron++')]['value'].mean()}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Most Likely Evaluation ADE Attention Radius 3m Velocity"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 27,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_vel_12_ade_most_likely.csv\n",
|
||
"results/hotel_vel_12_ade_most_likely.csv\n",
|
||
"results/univ_vel_12_ade_most_likely.csv\n",
|
||
"results/zara1_vel_12_ade_most_likely.csv\n",
|
||
"results/zara2_vel_12_ade_most_likely.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_vel_12*ade_most_likely.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = 'Trajectron++'\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 28,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"ADE Most Likely for ETH - Univ\n",
|
||
"Ours: 0.7081645037230024\n",
|
||
"ADE Most Likely for ETH - Hotel\n",
|
||
"Ours: 0.21800273126936145\n",
|
||
"ADE Most Likely for UCY - Univ\n",
|
||
"Ours: 0.4429943056454118\n",
|
||
"ADE Most Likely for UCY - Zara 1\n",
|
||
"Ours: 0.30200377722385563\n",
|
||
"ADE Most Likely for UCY - Zara 2\n",
|
||
"Ours: 0.22635933788153614\n",
|
||
"ADE Most Likely for Average\n",
|
||
"Ours: 0.3907335607353219\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" print('ADE Most Likely for ' + pretty_dataset_name(dataset))\n",
|
||
" if dataset != 'Average':\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == 'Trajectron++') & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print(f\"{alg_name}: {perf_df[(perf_df['method'] == 'Trajectron++')]['value'].mean()}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 29,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Best of 20 Evaluation FDE Attention Radius 3m Velocity"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 30,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_vel_12_fde_best_of.csv\n",
|
||
"results/hotel_vel_12_fde_best_of.csv\n",
|
||
"results/univ_vel_12_fde_best_of.csv\n",
|
||
"results/zara1_vel_12_fde_best_of.csv\n",
|
||
"results/zara2_vel_12_fde_best_of.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_vel_12*fde_best_of.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = alg_name\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 31,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"FDE Best of 20 for ETH - Univ\n",
|
||
"Trajectron++: 0.8281783496158873\n",
|
||
"FDE Best of 20 for ETH - Hotel\n",
|
||
"Trajectron++: 0.20567153121359805\n",
|
||
"FDE Best of 20 for UCY - Univ\n",
|
||
"Trajectron++: 0.44246075609459684\n",
|
||
"FDE Best of 20 for UCY - Zara 1\n",
|
||
"Trajectron++: 0.3307553133179889\n",
|
||
"FDE Best of 20 for UCY - Zara 2\n",
|
||
"Trajectron++: 0.24909920986736078\n",
|
||
"FDE Best of 20 for Average\n",
|
||
"Trajectron++: 0.39711722810872235\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" print('FDE Best of 20 for ' + pretty_dataset_name(dataset))\n",
|
||
" if dataset != 'Average':\n",
|
||
" print(f\"Trajectron++: {perf_df[(perf_df['method'] == alg_name) & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print(f\"Trajectron++: {perf_df[(perf_df['method'] == alg_name)]['value'].mean()}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 32,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Best of 20 Evaluation ADE Attention Radius 3m Velocity"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 33,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"results/eth_vel_12_ade_best_of.csv\n",
|
||
"results/hotel_vel_12_ade_best_of.csv\n",
|
||
"results/univ_vel_12_ade_best_of.csv\n",
|
||
"results/zara1_vel_12_ade_best_of.csv\n",
|
||
"results/zara2_vel_12_ade_best_of.csv\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"perf_df = pd.DataFrame()\n",
|
||
"for dataset in dataset_names:\n",
|
||
" for f in glob.glob(f\"results/{dataset}_vel_12*ade_best_of.csv\"):\n",
|
||
" print(f)\n",
|
||
" dataset_df = pd.read_csv(f)\n",
|
||
" dataset_df['dataset'] = dataset\n",
|
||
" dataset_df['method'] = alg_name\n",
|
||
" perf_df = perf_df.append(dataset_df, ignore_index=True, sort=False)\n",
|
||
" del perf_df['Unnamed: 0']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"ADE Best of 20 for ETH - Univ\n",
|
||
"Trajectron++: 0.39238413417612106\n",
|
||
"ADE Best of 20 for ETH - Hotel\n",
|
||
"Trajectron++: 0.11769507047457346\n",
|
||
"ADE Best of 20 for UCY - Univ\n",
|
||
"Trajectron++: 0.1990357831124613\n",
|
||
"ADE Best of 20 for UCY - Zara 1\n",
|
||
"Trajectron++: 0.15218487860383714\n",
|
||
"ADE Best of 20 for UCY - Zara 2\n",
|
||
"Trajectron++: 0.11350252815738102\n",
|
||
"ADE Best of 20 for Average\n",
|
||
"Trajectron++: 0.1802170043575296\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for dataset in dataset_names:\n",
|
||
" print('ADE Best of 20 for ' + pretty_dataset_name(dataset))\n",
|
||
" if dataset != 'Average':\n",
|
||
" print(f\"Trajectron++: {perf_df[(perf_df['method'] == alg_name) & (perf_df['dataset'] == dataset)]['value'].mean()}\")\n",
|
||
" else:\n",
|
||
" print(f\"Trajectron++: {perf_df[(perf_df['method'] == alg_name)]['value'].mean()}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 35,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"del perf_df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3.6 (GenTrajectron)",
|
||
"language": "python",
|
||
"name": "gentraj"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.9"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|