Initial public release.
This commit is contained in:
commit
3588a3ebea
54 changed files with 6099 additions and 0 deletions
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
[submodule "data/nuScenes/nuscenes-devkit"]
|
||||||
|
path = data/nuScenes/nuscenes-devkit
|
||||||
|
url = https://github.com/nutonomy/nuscenes-devkit
|
56
README.md
Normal file
56
README.md
Normal file
|
@ -0,0 +1,56 @@
|
||||||
|
# Trajectron++: Multi-Agent Generative Trajectory Forecasting With Heterogeneous Data for Control #
|
||||||
|
|
||||||
|
This repository contains the code for [Trajectron++: Multi-Agent Generative Trajectory Forecasting With Heterogeneous Data for Control](https://arxiv.org/abs/2001.03093) by Tim Salzmann\*, Boris Ivanovic\*, Punarjay Chakravarty, and Marco Pavone (\* denotes equal contribution).
|
||||||
|
|
||||||
|
Specifically, this branch is for the Trajectron++ applied to the nuScenes autonomous driving dataset.
|
||||||
|
|
||||||
|
## Installation ##
|
||||||
|
|
||||||
|
### Note about Submodules ###
|
||||||
|
When cloning this branch, make sure you clone the submodules as well, with the following command:
|
||||||
|
```
|
||||||
|
git clone --recurse-submodules <repository cloning URL>
|
||||||
|
```
|
||||||
|
Alternatively, you can clone the repository as normal and then load submodules later with:
|
||||||
|
```
|
||||||
|
git submodule init # Initializing our local configuration file
|
||||||
|
git submodule update # Fetching all of the data from the submodules at the specified commits
|
||||||
|
```
|
||||||
|
|
||||||
|
### Environment Setup ###
|
||||||
|
|
||||||
|
First, we'll create a conda environment to hold the dependencies.
|
||||||
|
```
|
||||||
|
conda create --name trajectron++ python=3.6 -y
|
||||||
|
source activate trajectron++
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, since this project uses IPython notebooks, we'll install this conda environment as a kernel.
|
||||||
|
```
|
||||||
|
python -m ipykernel install --user --name trajectron++ --display-name "Python 3.6 (Trajectron++)"
|
||||||
|
```
|
||||||
|
|
||||||
|
Now, you can start a Jupyter session and view/run all the notebooks in `code/notebooks` with
|
||||||
|
```
|
||||||
|
jupyter notebook
|
||||||
|
```
|
||||||
|
|
||||||
|
When you're done, don't forget to deactivate the conda environment with
|
||||||
|
```
|
||||||
|
source deactivate
|
||||||
|
```
|
||||||
|
|
||||||
|
## Scripts ##
|
||||||
|
|
||||||
|
Run any of these with a `-h` or `--help` flag to see all available command arguments.
|
||||||
|
* `code/train.py` - Trains a new Trajectron++ model.
|
||||||
|
* `code/notebooks/run_eval.bash` - Evaluates the performance of the Trajectron++. This script mainly collects evaluation data, which can then be visualized with `code/notebooks/NuScenes Quantitative.ipynb`.
|
||||||
|
* `data/nuScenes/process_nuScenes.py` - Processes the nuScenes dataset into a format that the Trajectron++ can directly work with, following our internal structures for handling data (see `code/data` for more information).
|
||||||
|
* `code/notebooks/NuScenes Qualitative.ipynb` - Visualizes the predictions that the Trajectron++ makes.
|
||||||
|
|
||||||
|
## Datasets ##
|
||||||
|
|
||||||
|
A sample of fully-processed scenes from the nuScenes dataset are available in this repository, in `data/processed`.
|
||||||
|
|
||||||
|
If you want the *original* nuScenes dataset, you can find it here: [nuScenes Dataset](https://www.nuscenes.org/).
|
108
code/config.json
Normal file
108
code/config.json
Normal file
|
@ -0,0 +1,108 @@
|
||||||
|
{
|
||||||
|
|
||||||
|
"batch_size": 256,
|
||||||
|
"grad_clip": 1.0,
|
||||||
|
|
||||||
|
"learning_rate_style": "exp",
|
||||||
|
"learning_rate": 0.002,
|
||||||
|
"min_learning_rate": 0.0005,
|
||||||
|
"learning_decay_rate": 0.9995,
|
||||||
|
|
||||||
|
"prediction_horizon": 6,
|
||||||
|
"minimum_history_length": 1,
|
||||||
|
"maximum_history_length": 8,
|
||||||
|
|
||||||
|
"map_context": 120,
|
||||||
|
"map_enc_num_layers": 4,
|
||||||
|
"map_enc_hidden_size": 512,
|
||||||
|
"map_enc_output_size": 512,
|
||||||
|
"map_enc_dropout": 0.5,
|
||||||
|
|
||||||
|
"alpha": 1,
|
||||||
|
"k": 30,
|
||||||
|
"k_eval": 200,
|
||||||
|
"use_iwae": false,
|
||||||
|
"kl_exact": true,
|
||||||
|
|
||||||
|
"kl_min": 0.07,
|
||||||
|
"kl_weight": 5.0,
|
||||||
|
"kl_weight_start": 0,
|
||||||
|
"kl_decay_rate": 0.99995,
|
||||||
|
"kl_crossover": 500,
|
||||||
|
"kl_sigmoid_divisor": 4,
|
||||||
|
|
||||||
|
"inf_warmup": 1.0,
|
||||||
|
"inf_warmup_start": 1.0,
|
||||||
|
"inf_warmup_crossover": 1500,
|
||||||
|
"inf_warmup_sigmoid_divisor": 4,
|
||||||
|
|
||||||
|
"rnn_kwargs": {
|
||||||
|
"dropout_keep_prob": 0.5
|
||||||
|
},
|
||||||
|
"MLP_dropout_keep_prob": 0.9,
|
||||||
|
"rnn_io_dropout_keep_prob": 1.0,
|
||||||
|
"enc_rnn_dim_multiple_inputs": 8,
|
||||||
|
"enc_rnn_dim_edge": 8,
|
||||||
|
"enc_rnn_dim_edge_influence": 8,
|
||||||
|
"enc_rnn_dim_history": 32,
|
||||||
|
"enc_rnn_dim_future": 32,
|
||||||
|
"dec_rnn_dim": 512,
|
||||||
|
"dec_GMM_proj_MLP_dims": null,
|
||||||
|
"sample_model_during_dec": true,
|
||||||
|
"dec_sample_model_prob_start": 1.00,
|
||||||
|
"dec_sample_model_prob_final": 1.00,
|
||||||
|
"dec_sample_model_prob_crossover": 200,
|
||||||
|
"dec_sample_model_prob_divisor": 4,
|
||||||
|
"q_z_xy_MLP_dims": null,
|
||||||
|
"p_z_x_MLP_dims": 32,
|
||||||
|
"fuzz_factor": 0.05,
|
||||||
|
"GMM_components": 12,
|
||||||
|
"log_sigma_min": -10,
|
||||||
|
"log_sigma_max": 10,
|
||||||
|
"log_p_yt_xz_max": 50,
|
||||||
|
"N": 2,
|
||||||
|
"K": 5,
|
||||||
|
"tau_init": 2.0,
|
||||||
|
"tau_final": 0.05,
|
||||||
|
"tau_decay_rate": 0.997,
|
||||||
|
"use_z_logit_clipping": true,
|
||||||
|
"z_logit_clip_start": 0.05,
|
||||||
|
"z_logit_clip_final": 5.0,
|
||||||
|
"z_logit_clip_crossover": 500,
|
||||||
|
"z_logit_clip_divisor": 5,
|
||||||
|
|
||||||
|
"state": {
|
||||||
|
"PEDESTRIAN": {
|
||||||
|
"position": ["x", "y"],
|
||||||
|
"velocity": ["x", "y"],
|
||||||
|
"acceleration": ["x", "y"],
|
||||||
|
"heading": ["value"]
|
||||||
|
},
|
||||||
|
"BICYCLE": {
|
||||||
|
"position": ["x", "y"],
|
||||||
|
"velocity": ["x", "y", "m"],
|
||||||
|
"acceleration": ["x", "y", "m"],
|
||||||
|
"heading": ["value"]
|
||||||
|
},
|
||||||
|
"VEHICLE": {
|
||||||
|
"position": ["x", "y"],
|
||||||
|
"velocity": ["x", "y", "m"],
|
||||||
|
"acceleration": ["x", "y", "m"],
|
||||||
|
"heading": ["value"]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"pred_state": {
|
||||||
|
"PEDESTRIAN": {
|
||||||
|
"velocity": ["x", "y"]
|
||||||
|
},
|
||||||
|
"BICYCLE": {
|
||||||
|
"velocity": ["x", "y"]
|
||||||
|
},
|
||||||
|
"VEHICLE": {
|
||||||
|
"velocity": ["x", "y"]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"log_histograms": false
|
||||||
|
}
|
5
code/data/__init__.py
Normal file
5
code/data/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
from .data_structures import Position, Velocity, Acceleration, Orientation, Map, ActuatorAngle, Scalar
|
||||||
|
from .scene import Scene
|
||||||
|
from .node import Node, BicycleNode
|
||||||
|
from .scene_graph import TemporalSceneGraph
|
||||||
|
from .environment import Environment
|
163
code/data/data_structures.py
Normal file
163
code/data/data_structures.py
Normal file
|
@ -0,0 +1,163 @@
|
||||||
|
import numpy as np
|
||||||
|
from scipy.ndimage.interpolation import rotate
|
||||||
|
|
||||||
|
|
||||||
|
class MotionEntity(object):
|
||||||
|
def __init__(self, x, y, z=None):
|
||||||
|
self.x = x
|
||||||
|
self.y = y
|
||||||
|
self.z = z
|
||||||
|
self.m = None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def l(self):
|
||||||
|
if self.z is not None:
|
||||||
|
return np.linalg.norm(np.vstack((self.x, self.y, self.z)), axis=0)
|
||||||
|
else:
|
||||||
|
return np.linalg.norm(np.vstack((self.x, self.y)), axis=0)
|
||||||
|
|
||||||
|
|
||||||
|
class Position(MotionEntity):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class Velocity(MotionEntity):
|
||||||
|
@staticmethod
|
||||||
|
def from_position(position, dt=1):
|
||||||
|
dx = np.zeros_like(position.x) * np.nan
|
||||||
|
dx[~np.isnan(position.x)] = np.gradient(position.x[~np.isnan(position.x)], dt)
|
||||||
|
|
||||||
|
dy = np.zeros_like(position.y) * np.nan
|
||||||
|
dy[~np.isnan(position.y)] = np.gradient(position.y[~np.isnan(position.y)], dt)
|
||||||
|
|
||||||
|
if position.z is not None:
|
||||||
|
dz = np.zeros_like(position.z) * np.nan
|
||||||
|
dz[~np.isnan(position.z)] = np.gradient(position.z[~np.isnan(position.z)], dt)
|
||||||
|
else:
|
||||||
|
dz = None
|
||||||
|
|
||||||
|
return Velocity(dx, dy, dz)
|
||||||
|
|
||||||
|
|
||||||
|
class Acceleration(MotionEntity):
|
||||||
|
@staticmethod
|
||||||
|
def from_velocity(velocity, dt=1):
|
||||||
|
ddx = np.zeros_like(velocity.x) * np.nan
|
||||||
|
ddx[~np.isnan(velocity.x)] = np.gradient(velocity.x[~np.isnan(velocity.x)], dt)
|
||||||
|
|
||||||
|
ddy = np.zeros_like(velocity.y) * np.nan
|
||||||
|
ddy[~np.isnan(velocity.y)] = np.gradient(velocity.y[~np.isnan(velocity.y)], dt)
|
||||||
|
|
||||||
|
if velocity.z is not None:
|
||||||
|
ddz = np.zeros_like(velocity.z) * np.nan
|
||||||
|
ddz[~np.isnan(velocity.z)] = np.gradient(velocity.z[~np.isnan(velocity.z)], dt)
|
||||||
|
else:
|
||||||
|
ddz = None
|
||||||
|
|
||||||
|
return Acceleration(ddx, ddy, ddz)
|
||||||
|
|
||||||
|
|
||||||
|
class ActuatorAngle(object):
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class Scalar(object):
|
||||||
|
def __init__(self, value):
|
||||||
|
self.value = value
|
||||||
|
self.derivative = None
|
||||||
|
|
||||||
|
# TODO Finish
|
||||||
|
class Orientation(object):
|
||||||
|
def __init__(self, x, y, z, w):
|
||||||
|
self.x = x
|
||||||
|
self.y = y
|
||||||
|
self.z = z
|
||||||
|
self.w = w
|
||||||
|
|
||||||
|
|
||||||
|
class Map(object):
|
||||||
|
def __init__(self, data=None, homography=None, description=None, data_file=""):
|
||||||
|
self.data = data
|
||||||
|
self.homography = homography
|
||||||
|
self.description = description
|
||||||
|
self.uint = False
|
||||||
|
self.data_file = data_file
|
||||||
|
self.rotated_maps_origin = None
|
||||||
|
self.rotated_maps = None
|
||||||
|
if self.data.dtype == np.uint8:
|
||||||
|
self.uint = True
|
||||||
|
|
||||||
|
@property
|
||||||
|
def fdata(self):
|
||||||
|
if self.uint:
|
||||||
|
return self.data / 255.
|
||||||
|
else:
|
||||||
|
return self.data
|
||||||
|
|
||||||
|
def to_map_points(self, world_pts):
|
||||||
|
org_shape = None
|
||||||
|
if len(world_pts.shape) > 2:
|
||||||
|
org_shape = world_pts.shape
|
||||||
|
world_pts = world_pts.reshape((-1, 2))
|
||||||
|
N, dims = world_pts.shape
|
||||||
|
points_with_one = np.ones((dims + 1, N))
|
||||||
|
points_with_one[:dims] = world_pts.T
|
||||||
|
map_points = (self.homography @ points_with_one).T[..., :dims] # TODO There was np.fliplr here for pedestrian dataset. WHY?
|
||||||
|
if org_shape is not None:
|
||||||
|
map_points = map_points.reshape(org_shape)
|
||||||
|
return map_points
|
||||||
|
|
||||||
|
def to_rotated_map_points(self, world_pts, rotation_angle):
|
||||||
|
rotation_rad = -rotation_angle * np.pi / 180
|
||||||
|
rot_mat = np.array([[np.cos(rotation_rad), np.sin(rotation_rad), 0.],
|
||||||
|
[-np.sin(rotation_rad), np.cos(rotation_rad), 0.],
|
||||||
|
[0., 0., 1.]])
|
||||||
|
org_map_points = self.to_map_points(world_pts) + 1
|
||||||
|
|
||||||
|
org_shape = None
|
||||||
|
if len(org_map_points.shape) > 2:
|
||||||
|
org_shape = org_map_points.shape
|
||||||
|
org_map_points = org_map_points.reshape((-1, 2))
|
||||||
|
N, dims = org_map_points.shape
|
||||||
|
points_with_one = np.ones((dims + 1, N))
|
||||||
|
points_with_one[:dims] = org_map_points.T
|
||||||
|
org_map_pts_rot = (rot_mat @ points_with_one).T[..., :dims]
|
||||||
|
if org_shape is not None:
|
||||||
|
org_map_pts_rot = org_map_pts_rot.reshape(org_shape)
|
||||||
|
|
||||||
|
map_pts_rot = self.rotated_maps_origin + org_map_pts_rot
|
||||||
|
return map_pts_rot
|
||||||
|
|
||||||
|
def calculate_rotations(self):
|
||||||
|
org_shape = self.data.shape
|
||||||
|
l = (np.ceil(np.sqrt(org_shape[0]**2 + org_shape[1]**2)) * 2).astype(int) + 1
|
||||||
|
rotated_maps = np.zeros((360, l, l, org_shape[2]), dtype=np.uint8)
|
||||||
|
o = np.array([l // 2, l // 2])
|
||||||
|
rotated_maps[0, o[0]+1:o[0]+org_shape[0]+1, o[1]+1:o[1]+org_shape[1]+1] = self.data
|
||||||
|
for i in range(1, 360):
|
||||||
|
rotated_maps[i] = rotate(rotated_maps[0], reshape=False, angle=i, prefilter=False)
|
||||||
|
rotated_maps[0] = rotate(rotated_maps[0], reshape=False, angle=0, prefilter=False)
|
||||||
|
self.rotated_maps_origin = o
|
||||||
|
self.rotated_maps = rotated_maps
|
||||||
|
|
||||||
|
# def __getstate__(self):
|
||||||
|
# with open(self.data_file, 'w') as f:
|
||||||
|
# np.save(f, self.rotated_maps)
|
||||||
|
# self.rotated_maps = None
|
||||||
|
# state = self.__dict__.copy()
|
||||||
|
# return state
|
||||||
|
#
|
||||||
|
# def __setstate__(self, state):
|
||||||
|
# self.__dict__.update(state)
|
||||||
|
# with open(self.data_file, 'r') as f:
|
||||||
|
# self.rotated_maps = np.load(f)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
img = np.zeros((103, 107, 3))
|
||||||
|
img[57, 84] = 255.
|
||||||
|
homography = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
|
||||||
|
m = Map(data=img, homography=homography)
|
||||||
|
m.calculate_rotations()
|
||||||
|
t = m.to_rotated_map_points(np.array([[57, 84]]), 0).astype(int)
|
||||||
|
print(m.rotated_maps[0, t[0, 0], t[0, 1]])
|
74
code/data/environment.py
Normal file
74
code/data/environment.py
Normal file
|
@ -0,0 +1,74 @@
|
||||||
|
import numpy as np
|
||||||
|
from enum import Enum
|
||||||
|
from itertools import product
|
||||||
|
|
||||||
|
|
||||||
|
class Environment(object):
|
||||||
|
def __init__(self, node_type_list, standardization, scenes=None, attention_radius=None):
|
||||||
|
self.scenes = scenes
|
||||||
|
self.node_type_list = node_type_list
|
||||||
|
self.attention_radius = attention_radius
|
||||||
|
self.NodeType = Enum('NodeType', node_type_list)
|
||||||
|
|
||||||
|
self.standardization = standardization
|
||||||
|
|
||||||
|
def get_edge_types(self):
|
||||||
|
return [e for e in product([node_type for node_type in self.NodeType], repeat=2)]
|
||||||
|
|
||||||
|
def edge_type_str(self, edge_type):
|
||||||
|
return edge_type[0].name + '-' + edge_type[1].name
|
||||||
|
|
||||||
|
def get_standardize_params(self, state, node_type):
|
||||||
|
standardize_mean_list = list()
|
||||||
|
standardize_std_list = list()
|
||||||
|
for entity, dims in state.items():
|
||||||
|
for dim in dims:
|
||||||
|
standardize_mean_list.append(self.standardization[node_type.name][entity][dim]['mean'])
|
||||||
|
standardize_std_list.append(self.standardization[node_type.name][entity][dim]['std'])
|
||||||
|
standardize_mean = np.stack(standardize_mean_list)
|
||||||
|
standardize_std = np.stack(standardize_std_list)
|
||||||
|
|
||||||
|
return standardize_mean, standardize_std
|
||||||
|
|
||||||
|
def standardize(self, array, state, node_type, mean=None, std=None):
|
||||||
|
if mean is None and std is None:
|
||||||
|
mean, std = self.get_standardize_params(state, node_type)
|
||||||
|
elif mean is None and std is not None:
|
||||||
|
mean, _ = self.get_standardize_params(state, node_type)
|
||||||
|
elif mean is not None and std is None:
|
||||||
|
_, std = self.get_standardize_params(state, node_type)
|
||||||
|
return np.where(np.isnan(array), np.array(np.nan), (array - mean) / std)
|
||||||
|
|
||||||
|
def unstandardize(self, array, state, node_type, mean=None, std=None):
|
||||||
|
if mean is None and std is None:
|
||||||
|
mean, std = self.get_standardize_params(state, node_type)
|
||||||
|
elif mean is None and std is not None:
|
||||||
|
mean, _ = self.get_standardize_params(state, node_type)
|
||||||
|
elif mean is not None and std is None:
|
||||||
|
_, std = self.get_standardize_params(state, node_type)
|
||||||
|
return array * std + mean
|
||||||
|
|
||||||
|
# These two functions have to be implemented as pickle can not handle dynamic enums
|
||||||
|
def __getstate__(self):
|
||||||
|
for scene in self.scenes:
|
||||||
|
for node in scene.nodes:
|
||||||
|
node.type = node.type.name
|
||||||
|
attention_radius_no_enum = dict()
|
||||||
|
for key, value in self.attention_radius.items():
|
||||||
|
attention_radius_no_enum[(key[0].name, key[1].name)] = value
|
||||||
|
self.attention_radius = attention_radius_no_enum
|
||||||
|
self.NodeType = None
|
||||||
|
state = self.__dict__.copy()
|
||||||
|
return state
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
self.__dict__.update(state)
|
||||||
|
self.NodeType = Enum('NodeType', self.node_type_list)
|
||||||
|
for scene in self.scenes:
|
||||||
|
for node in scene.nodes:
|
||||||
|
node.type = getattr(self.NodeType, node.type)
|
||||||
|
attention_radius_enum = dict()
|
||||||
|
for key, value in self.attention_radius.items():
|
||||||
|
attention_radius_enum[(getattr(self.NodeType, key[0]), getattr(self.NodeType, key[1]))] = value
|
||||||
|
self.attention_radius = attention_radius_enum
|
||||||
|
|
264
code/data/node.py
Normal file
264
code/data/node.py
Normal file
|
@ -0,0 +1,264 @@
|
||||||
|
import numpy as np
|
||||||
|
from pyquaternion import Quaternion
|
||||||
|
from . import ActuatorAngle
|
||||||
|
from scipy.interpolate import splrep, splev, CubicSpline
|
||||||
|
from scipy.integrate import cumtrapz
|
||||||
|
|
||||||
|
|
||||||
|
class Node(object):
|
||||||
|
def __init__(self, type, position=None, velocity=None, acceleration=None, heading=None, orientation=None,
|
||||||
|
length=None, width=None, height=None, first_timestep=0, is_robot=False):
|
||||||
|
self.type = type
|
||||||
|
self.position = position
|
||||||
|
self.heading = heading
|
||||||
|
self.length = length
|
||||||
|
self.wdith = width
|
||||||
|
self.height = height
|
||||||
|
self.orientation = orientation
|
||||||
|
self.velocity = velocity
|
||||||
|
self.acceleration = acceleration
|
||||||
|
self.first_timestep = first_timestep
|
||||||
|
self.dimensions = ['x', 'y', 'z']
|
||||||
|
self.is_robot = is_robot
|
||||||
|
self._last_timestep = None
|
||||||
|
self.description = ""
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return self.type.name
|
||||||
|
|
||||||
|
def scene_ts_to_node_ts(self, scene_ts):
|
||||||
|
"""
|
||||||
|
Transforms timestamp from scene into timeframe of node data.
|
||||||
|
:param scene_ts: Scene timesteps
|
||||||
|
:return: ts: Transformed timesteps, paddingl: Number of timesteps in scene range which are not available in
|
||||||
|
node data before data is available. paddingu: Number of timesteps in scene range which are not
|
||||||
|
available in node data after data is available.
|
||||||
|
"""
|
||||||
|
paddingl = (self.first_timestep - scene_ts[0]).clip(0)
|
||||||
|
paddingu = (scene_ts[1] - self.last_timestep).clip(0)
|
||||||
|
ts = np.array(scene_ts).clip(min=self.first_timestep, max=self.last_timestep) - self.first_timestep
|
||||||
|
return ts, paddingl, paddingu
|
||||||
|
|
||||||
|
def history_points_at(self, ts):
|
||||||
|
"""
|
||||||
|
Number of history points in trajectory. Timestep is exclusive.
|
||||||
|
:param ts: Scene timestep where the number of history points are queried.
|
||||||
|
:return: Number of history timesteps.
|
||||||
|
"""
|
||||||
|
return ts - self.first_timestep
|
||||||
|
|
||||||
|
def get_entity(self, ts_scene, entity, dims, padding=np.nan):
|
||||||
|
if ts_scene.size == 1:
|
||||||
|
ts_scene = np.array([ts_scene, ts_scene])
|
||||||
|
length = ts_scene[1] - ts_scene[0] + 1 # ts is inclusive
|
||||||
|
entity_array = np.zeros((length, len(dims))) * padding
|
||||||
|
ts, paddingl, paddingu = self.scene_ts_to_node_ts(ts_scene)
|
||||||
|
entity_array[paddingl:length - paddingu] = np.array([getattr(getattr(self, entity), d)[ts[0]:ts[1]+1] for d in dims]).T
|
||||||
|
return entity_array
|
||||||
|
|
||||||
|
def get(self, ts_scene, state, padding=np.nan):
|
||||||
|
return np.hstack([self.get_entity(ts_scene, entity, dims, padding) for entity, dims in state.items()])
|
||||||
|
|
||||||
|
|
||||||
|
@property
|
||||||
|
def timesteps(self):
|
||||||
|
return self.position.x.size
|
||||||
|
|
||||||
|
@property
|
||||||
|
def last_timestep(self):
|
||||||
|
if self._last_timestep is None:
|
||||||
|
self._last_timestep = self.first_timestep + self.timesteps - 1
|
||||||
|
return self._last_timestep
|
||||||
|
|
||||||
|
|
||||||
|
class BicycleNode(Node):
|
||||||
|
def __init__(self, type, position=None, velocity=None, acceleration=None, heading=None, orientation=None,
|
||||||
|
length=None, width=None, height=None, first_timestep=0, actuator_angle=None):
|
||||||
|
super().__init__(type, position=position, velocity=velocity, acceleration=acceleration, heading=heading,
|
||||||
|
orientation=orientation, length=length, width=width, height=height,
|
||||||
|
first_timestep=first_timestep)
|
||||||
|
self.actuator_angle = actuator_angle
|
||||||
|
|
||||||
|
# TODO Probably wrong. Differential of magnitude is not euqal to the the magnitude of the differentials
|
||||||
|
def calculate_steering_angle_old(self, vel_tresh=0.0):
|
||||||
|
vel = np.linalg.norm(np.hstack((np.expand_dims(self.velocity.x, 1), np.expand_dims(self.velocity.y, 1))), axis=1)
|
||||||
|
|
||||||
|
beta = np.arctan2(self.velocity.y, self.velocity.x) - self.heading.value
|
||||||
|
beta[vel < vel_tresh] = 0.
|
||||||
|
steering_angle = np.arctan2(2 * np.sin(beta), np.cos(beta))
|
||||||
|
steering_angle[np.abs(steering_angle) > np.pi / 2] = 0 # Velocity Outlier
|
||||||
|
|
||||||
|
aa = ActuatorAngle()
|
||||||
|
aa.steering_angle = np.zeros_like(np.arctan2(2 * np.sin(beta), np.cos(beta)))
|
||||||
|
self.actuator_angle = aa
|
||||||
|
|
||||||
|
def calculate_steering_angle(self, dt, steering_tresh=0.0, vel_tresh=0.0):
|
||||||
|
t = np.arange(0, self.timesteps * dt, dt)
|
||||||
|
s = 0.01 * len(t)
|
||||||
|
#c_pos_x_g_x_tck = CubicSpline(t, np.array(pos_x_filtert))
|
||||||
|
#c_pos_y_g_x_tck = CubicSpline(t, np.array(pos_y_filtert))
|
||||||
|
#c_pos_x_g_x_tck = splrep(t, self.position.x, s=s)
|
||||||
|
#c_pos_y_g_x_tck = splrep(t, self.position.y, s=s)
|
||||||
|
|
||||||
|
#vel_x_g = c_pos_x_g_x_tck(t, 1)
|
||||||
|
#vel_y_g = c_pos_y_g_x_tck(t, 1)
|
||||||
|
#vel_x_g = splev(t, c_pos_x_g_x_tck, der=1)
|
||||||
|
#vel_y_g = splev(t, c_pos_y_g_x_tck, der=1)
|
||||||
|
|
||||||
|
vel_x_g = self.velocity.x
|
||||||
|
vel_y_g = self.velocity.y
|
||||||
|
|
||||||
|
v_x_ego = []
|
||||||
|
h = []
|
||||||
|
for t in range(self.timesteps):
|
||||||
|
dh_max = 1.2 / self.length * (np.linalg.norm(np.array([vel_x_g[t], vel_y_g[t]])))
|
||||||
|
heading = np.arctan2(vel_y_g[t], vel_x_g[t])
|
||||||
|
#if len(h) > 0 and np.abs(heading - h[-1]) > dh_max:
|
||||||
|
# heading = h[-1]
|
||||||
|
h.append(heading)
|
||||||
|
q = Quaternion(axis=(0.0, 0.0, 1.0), radians=heading)
|
||||||
|
v_x_ego_t = q.inverse.rotate(np.array([vel_x_g[t], vel_y_g[t], 1]))[0]
|
||||||
|
if v_x_ego_t < 0.0:
|
||||||
|
v_x_ego_t = 0.
|
||||||
|
v_x_ego.append(v_x_ego_t)
|
||||||
|
|
||||||
|
v_x_ego = np.stack(v_x_ego, axis=0)
|
||||||
|
h = np.stack(h, axis=0)
|
||||||
|
|
||||||
|
dh = np.gradient(h, dt)
|
||||||
|
|
||||||
|
sa = np.arctan2(dh * self.length, v_x_ego)
|
||||||
|
sa[(dh == 0.) | (v_x_ego == 0.)] = 0.
|
||||||
|
sa = sa.clip(min=-steering_tresh, max=steering_tresh)
|
||||||
|
|
||||||
|
a = np.gradient(v_x_ego, dt)
|
||||||
|
# int = self.integrate_bicycle_model(np.array([a]),
|
||||||
|
# sa,
|
||||||
|
# np.array([h[0]]),
|
||||||
|
# np.array([self.position.x[0],
|
||||||
|
# self.position.y[0]]),
|
||||||
|
# v_x_ego[0],
|
||||||
|
# self.length, 0.5)
|
||||||
|
# p = np.stack((self.position.x, self.position.y), axis=1)
|
||||||
|
#
|
||||||
|
# #assert ((int[0] - p) < 1.0).all()
|
||||||
|
|
||||||
|
aa = ActuatorAngle()
|
||||||
|
aa.steering_angle = sa
|
||||||
|
self.acceleration.m = a
|
||||||
|
self.actuator_angle = aa
|
||||||
|
|
||||||
|
def inverse_np_gradient(self, f, dx, F0=0.):
|
||||||
|
N = f.shape[0]
|
||||||
|
l = f.shape[-1]
|
||||||
|
l2 = np.ceil(l / 2).astype(int)
|
||||||
|
return (F0 +
|
||||||
|
((2 * dx) *
|
||||||
|
np.c_['-1',
|
||||||
|
np.r_['-1', np.zeros((N, 1)), f[..., 1:-1:2].cumsum(axis=-1)],
|
||||||
|
f[..., ::2].cumsum(axis=-1) - f[..., [0]] / 2]
|
||||||
|
).reshape((N, 2, l2)).reshape(N, 2 * l2, order='F')[:, :l]
|
||||||
|
)
|
||||||
|
|
||||||
|
def integrate_trajectory(self, v, x0, dt):
|
||||||
|
xd_ = self.inverse_np_gradient(v[..., 0], dx=dt, F0=x0[0])
|
||||||
|
yd_ = self.inverse_np_gradient(v[..., 1], dx=dt, F0=x0[1])
|
||||||
|
integrated = np.stack([xd_, yd_], axis=2)
|
||||||
|
return integrated
|
||||||
|
|
||||||
|
def integrate_bicycle_model(self, a, sa, h0, x0, v0, l, dt):
|
||||||
|
v_m = self.inverse_np_gradient(a, dx=0.5, F0=v0)
|
||||||
|
|
||||||
|
dh = (np.tan(sa) / l) * v_m[0]
|
||||||
|
h = self.inverse_np_gradient(np.array([dh]), dx=dt, F0=h0)
|
||||||
|
|
||||||
|
vx = np.cos(h) * v_m
|
||||||
|
vy = np.sin(h) * v_m
|
||||||
|
|
||||||
|
v = np.stack((vx, vy), axis=2)
|
||||||
|
return self.integrate_trajectory(v, x0, dt)
|
||||||
|
|
||||||
|
def calculate_steering_angle_keep(self, dt, steering_tresh=0.0, vel_tresh=0.0):
|
||||||
|
|
||||||
|
vel_approx = np.linalg.norm(np.stack((self.velocity.x, self.velocity.y), axis=0), axis=0)
|
||||||
|
mask = np.ones_like(vel_approx)
|
||||||
|
mask[vel_approx < vel_tresh] = 0
|
||||||
|
|
||||||
|
t = np.arange(0, self.timesteps * dt, dt)
|
||||||
|
pos_x_filtert = []
|
||||||
|
pos_y_filtert = []
|
||||||
|
s = None
|
||||||
|
for i in range(mask.size):
|
||||||
|
if mask[i] == 0 and s is None:
|
||||||
|
s = i
|
||||||
|
elif mask[i] != 0 and s is not None:
|
||||||
|
t_start = t[s-1]
|
||||||
|
pos_x_start = self.position.x[s-1]
|
||||||
|
pos_y_start = self.position.y[s-1]
|
||||||
|
t_mean = t[s:i].mean()
|
||||||
|
pos_x_mean = self.position.x[s:i].mean()
|
||||||
|
pos_y_mean = self.position.y[s:i].mean()
|
||||||
|
t_end = t[i]
|
||||||
|
pos_x_end = self.position.x[i]
|
||||||
|
pos_y_end = self.position.y[i]
|
||||||
|
for step in range(s, i+1):
|
||||||
|
if t[step] <= t_mean:
|
||||||
|
pos_x_filtert.append(pos_x_start + ((t[step] - t_start) / (t_mean - t_start)) * (pos_x_mean - pos_x_start))
|
||||||
|
pos_y_filtert.append(pos_y_start + ((t[step] - t_start) / (t_mean - t_start)) * (pos_y_mean - pos_y_start))
|
||||||
|
else:
|
||||||
|
pos_x_filtert.append(pos_x_mean + ((t[step] - t_end) / (t_end - t_mean)) * (pos_x_end - pos_x_mean))
|
||||||
|
pos_y_filtert.append(pos_y_mean + ((t[step] - t_end) / (t_end - t_mean)) * (pos_y_end - pos_y_mean))
|
||||||
|
s = None
|
||||||
|
elif mask[i] != 0 and s is None:
|
||||||
|
pos_x_filtert.append(self.position.x[i].mean())
|
||||||
|
pos_y_filtert.append(self.position.y[i].mean())
|
||||||
|
if s is not None:
|
||||||
|
t_start = t[s - 1]
|
||||||
|
pos_x_start = self.position.x[s - 1]
|
||||||
|
pos_y_start = self.position.y[s - 1]
|
||||||
|
t_mean = t[s:i].max()
|
||||||
|
pos_x_mean = self.position.x[s:i].mean()
|
||||||
|
pos_y_mean = self.position.y[s:i].mean()
|
||||||
|
for step in range(s, i+1):
|
||||||
|
pos_x_filtert.append(
|
||||||
|
pos_x_start + ((t[step] - t_start) / (t_mean - t_start)) * (pos_x_mean - pos_x_start))
|
||||||
|
pos_y_filtert.append(
|
||||||
|
pos_y_start + ((t[step] - t_start) / (t_mean - t_start)) * (pos_y_mean - pos_y_start))
|
||||||
|
|
||||||
|
s = 0.001 * len(t)
|
||||||
|
#c_pos_x_g_x_tck = CubicSpline(t, np.array(pos_x_filtert))
|
||||||
|
#c_pos_y_g_x_tck = CubicSpline(t, np.array(pos_y_filtert))
|
||||||
|
c_pos_x_g_x_tck = splrep(t, np.array(pos_x_filtert), s=s)
|
||||||
|
c_pos_y_g_x_tck = splrep(t, np.array(pos_y_filtert), s=s)
|
||||||
|
|
||||||
|
#vel_x_g = c_pos_x_g_x_tck(t, 1)
|
||||||
|
#vel_y_g = c_pos_y_g_x_tck(t, 1)
|
||||||
|
vel_x_g = splev(t, c_pos_x_g_x_tck, der=1)
|
||||||
|
vel_y_g = splev(t, c_pos_y_g_x_tck, der=1)
|
||||||
|
|
||||||
|
v_x_ego = []
|
||||||
|
h = []
|
||||||
|
for t in range(self.timesteps):
|
||||||
|
dh_max = 1.19 / self.length * (np.linalg.norm(np.array([vel_x_g[t], vel_y_g[t]])))
|
||||||
|
heading = np.arctan2(vel_y_g[t], vel_x_g[t])
|
||||||
|
if len(h) > 0 and np.abs(heading - h[-1]) > dh_max:
|
||||||
|
heading = h[-1]
|
||||||
|
h.append(heading)
|
||||||
|
q = Quaternion(axis=(0.0, 0.0, 1.0), radians=heading)
|
||||||
|
v_x_ego_t = q.inverse.rotate(np.array([vel_x_g[t], vel_y_g[t], 1]))[0]
|
||||||
|
if v_x_ego_t < 0.0:
|
||||||
|
v_x_ego_t = 0.
|
||||||
|
v_x_ego.append(v_x_ego_t)
|
||||||
|
|
||||||
|
v_x_ego = np.stack(v_x_ego, axis=0)
|
||||||
|
h = np.stack(h, axis=0)
|
||||||
|
|
||||||
|
dh = np.gradient(h, dt)
|
||||||
|
|
||||||
|
sa = np.arctan2(dh * self.length, v_x_ego)
|
||||||
|
sa[dh == 0.] = 0.
|
||||||
|
|
||||||
|
aa = ActuatorAngle()
|
||||||
|
aa.steering_angle = sa
|
||||||
|
self.actuator_angle = aa
|
||||||
|
|
102
code/data/scene.py
Normal file
102
code/data/scene.py
Normal file
|
@ -0,0 +1,102 @@
|
||||||
|
import numpy as np
|
||||||
|
from .scene_graph import TemporalSceneGraph
|
||||||
|
|
||||||
|
|
||||||
|
class Scene(object):
|
||||||
|
def __init__(self, map=None, timesteps=0, dt=1, name=""):
|
||||||
|
self.map = map
|
||||||
|
self.timesteps = timesteps
|
||||||
|
self.dt = dt
|
||||||
|
self.name = name
|
||||||
|
|
||||||
|
self.nodes = []
|
||||||
|
|
||||||
|
self.robot = None
|
||||||
|
|
||||||
|
self.temporal_scene_graph = None
|
||||||
|
|
||||||
|
self.description = ""
|
||||||
|
|
||||||
|
def get_scene_graph(self, timestep, attention_radius=None, edge_addition_filter=None, edge_removal_filter=None):
|
||||||
|
if self.temporal_scene_graph is None:
|
||||||
|
timestep_range = np.array([timestep - len(edge_addition_filter), timestep + len(edge_removal_filter)])
|
||||||
|
node_pos_dict = dict()
|
||||||
|
present_nodes = self.present_nodes(np.array([timestep]))
|
||||||
|
|
||||||
|
for node in present_nodes[timestep]:
|
||||||
|
node_pos_dict[node] = np.squeeze(node.get(timestep_range, {'position': ['x', 'y']}))
|
||||||
|
tsg = TemporalSceneGraph.create_from_temp_scene_dict(node_pos_dict,
|
||||||
|
attention_radius,
|
||||||
|
duration=(len(edge_addition_filter) +
|
||||||
|
len(edge_removal_filter) + 1),
|
||||||
|
edge_addition_filter=edge_addition_filter,
|
||||||
|
edge_removal_filter=edge_removal_filter
|
||||||
|
)
|
||||||
|
|
||||||
|
return tsg.to_scene_graph(t=len(edge_addition_filter),
|
||||||
|
t_hist=len(edge_addition_filter),
|
||||||
|
t_fut=len(edge_removal_filter))
|
||||||
|
else:
|
||||||
|
return self.temporal_scene_graph.to_scene_graph(timestep,
|
||||||
|
len(edge_addition_filter),
|
||||||
|
len(edge_removal_filter))
|
||||||
|
|
||||||
|
def calculate_scene_graph(self, attention_radius, state, edge_addition_filter=None, edge_removal_filter=None):
|
||||||
|
timestep_range = np.array([0, self.timesteps-1])
|
||||||
|
node_pos_dict = dict()
|
||||||
|
|
||||||
|
for node in self.nodes:
|
||||||
|
node_pos_dict[node] = np.squeeze(node.get(timestep_range, {'position': ['x', 'y']}))
|
||||||
|
|
||||||
|
self.temporal_scene_graph = TemporalSceneGraph.create_from_temp_scene_dict(node_pos_dict,
|
||||||
|
attention_radius,
|
||||||
|
duration=self.timesteps,
|
||||||
|
edge_addition_filter=edge_addition_filter,
|
||||||
|
edge_removal_filter=edge_removal_filter)
|
||||||
|
|
||||||
|
def length(self):
|
||||||
|
return self.timesteps * self.dt
|
||||||
|
|
||||||
|
def present_nodes(self, timesteps, type=None, min_history_timesteps=0, min_future_timesteps=0, include_robot=True, max_nodes=None, curve=False): # TODO REMOVE
|
||||||
|
present_nodes = {}
|
||||||
|
|
||||||
|
picked_nodes = 0
|
||||||
|
|
||||||
|
rand_idx = np.random.choice(len(self.nodes), len(self.nodes), replace=False)
|
||||||
|
|
||||||
|
for i in rand_idx:
|
||||||
|
node = self.nodes[i]
|
||||||
|
if node.is_robot and not include_robot:
|
||||||
|
continue
|
||||||
|
if type is None or node.type == type:
|
||||||
|
if curve and node.type.name == 'VEHICLE':
|
||||||
|
if 'curve' not in node.description and np.random.rand() > 0.1:
|
||||||
|
continue
|
||||||
|
lower_bound = timesteps - min_history_timesteps
|
||||||
|
upper_bound = timesteps + min_future_timesteps
|
||||||
|
mask = (node.first_timestep <= lower_bound) & (upper_bound <= node.last_timestep)
|
||||||
|
if mask.any():
|
||||||
|
timestep_indices_present = np.nonzero(mask)[0]
|
||||||
|
for timestep_index_present in timestep_indices_present:
|
||||||
|
if timesteps[timestep_index_present] in present_nodes.keys():
|
||||||
|
present_nodes[timesteps[timestep_index_present]].append(node)
|
||||||
|
else:
|
||||||
|
present_nodes[timesteps[timestep_index_present]] = [node]
|
||||||
|
picked_nodes += 1
|
||||||
|
if max_nodes is not None and picked_nodes >= max_nodes:
|
||||||
|
break
|
||||||
|
|
||||||
|
if max_nodes is not None and picked_nodes >= max_nodes:
|
||||||
|
break
|
||||||
|
|
||||||
|
return present_nodes
|
||||||
|
|
||||||
|
def sample_timesteps(self, batch_size, min_future_timesteps=0):
|
||||||
|
if batch_size > self.timesteps:
|
||||||
|
batch_size = self.timesteps
|
||||||
|
return np.random.choice(np.arange(0, self.timesteps-min_future_timesteps), size=batch_size, replace=False)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return f"Scene: Duration: {self.length()}s," \
|
||||||
|
f" Nodes: {len(self.nodes)}," \
|
||||||
|
f" Map: {'Yes' if self.map is not None else 'No'}."
|
173
code/data/scene_graph.py
Normal file
173
code/data/scene_graph.py
Normal file
|
@ -0,0 +1,173 @@
|
||||||
|
import numpy as np
|
||||||
|
from scipy.spatial.distance import pdist, squareform
|
||||||
|
import scipy.signal as ss
|
||||||
|
from collections import defaultdict
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
|
||||||
|
class TemporalSceneGraph(object):
|
||||||
|
def __init__(self,
|
||||||
|
edge_radius,
|
||||||
|
nodes=None,
|
||||||
|
adj_cube=np.zeros((1, 0, 0)),
|
||||||
|
weight_cube=np.zeros((1, 0, 0)),
|
||||||
|
node_type_mat=np.zeros((0, 0)),
|
||||||
|
edge_scaling=None):
|
||||||
|
self.edge_radius = edge_radius
|
||||||
|
self.nodes = nodes
|
||||||
|
if nodes is None:
|
||||||
|
self.nodes = np.array([])
|
||||||
|
self.adj_cube = adj_cube
|
||||||
|
self.weight_cube = weight_cube
|
||||||
|
self.node_type_mat = node_type_mat
|
||||||
|
self.adj_mat = np.max(self.adj_cube, axis=0).clip(max=1.0)
|
||||||
|
self.edge_scaling = edge_scaling
|
||||||
|
self.node_index_lookup = None
|
||||||
|
self.calculate_node_index_lookup()
|
||||||
|
|
||||||
|
def calculate_node_index_lookup(self):
|
||||||
|
node_index_lookup = dict()
|
||||||
|
for i, node in enumerate(self.nodes):
|
||||||
|
node_index_lookup[node] = i
|
||||||
|
|
||||||
|
self.node_index_lookup = node_index_lookup
|
||||||
|
|
||||||
|
def get_num_edges(self, t=0):
|
||||||
|
return np.sum(self.adj_cube[t]) // 2
|
||||||
|
|
||||||
|
def get_index(self, node):
|
||||||
|
return self.node_index_lookup[node]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_edge_type(n1, n2):
|
||||||
|
return '-'.join(sorted([str(n1), str(n2)]))
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def create_from_temp_scene_dict(cls,
|
||||||
|
scene_temp_dict,
|
||||||
|
attention_radius,
|
||||||
|
duration=1,
|
||||||
|
edge_addition_filter=None,
|
||||||
|
edge_removal_filter=None):
|
||||||
|
"""
|
||||||
|
Construct a spatiotemporal graph from agent positions in a dataset.
|
||||||
|
|
||||||
|
returns: sg: An aggregate SceneGraph of the dataset.
|
||||||
|
"""
|
||||||
|
nodes = scene_temp_dict.keys()
|
||||||
|
N = len(nodes)
|
||||||
|
total_timesteps = duration
|
||||||
|
|
||||||
|
position_cube = np.zeros((total_timesteps, N, 2))
|
||||||
|
|
||||||
|
adj_cube = np.zeros((total_timesteps, N, N), dtype=np.int8)
|
||||||
|
dist_cube = np.zeros((total_timesteps, N, N), dtype=np.float)
|
||||||
|
|
||||||
|
node_type_mat = np.zeros((N, N), dtype=np.int8)
|
||||||
|
node_attention_mat = np.zeros((N, N), dtype=np.float)
|
||||||
|
|
||||||
|
for node_idx, node in enumerate(nodes):
|
||||||
|
position_cube[:, node_idx] = scene_temp_dict[node]
|
||||||
|
node_type_mat[:, node_idx] = node.type.value
|
||||||
|
for node_idx_from, node_from in enumerate(nodes):
|
||||||
|
node_attention_mat[node_idx_from, node_idx] = attention_radius[(node_from.type, node.type)]
|
||||||
|
|
||||||
|
np.fill_diagonal(node_type_mat, 0)
|
||||||
|
agg_adj_matrix = np.zeros((N, N), dtype=np.int8)
|
||||||
|
|
||||||
|
for timestep in range(position_cube.shape[0]):
|
||||||
|
dists = squareform(pdist(position_cube[timestep], metric='euclidean'))
|
||||||
|
|
||||||
|
# Put a 1 for all agent pairs which are closer than the edge_radius.
|
||||||
|
# Can produce a warning as dists can be nan if no data for node is available.
|
||||||
|
# This is accepted as nan <= x evaluates to False
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
adj_matrix = (dists <= node_attention_mat).astype(np.int8) * node_type_mat
|
||||||
|
|
||||||
|
# Remove self-loops.
|
||||||
|
np.fill_diagonal(adj_matrix, 0)
|
||||||
|
|
||||||
|
agg_adj_matrix |= adj_matrix
|
||||||
|
|
||||||
|
adj_cube[timestep] = adj_matrix
|
||||||
|
dist_cube[timestep] = dists
|
||||||
|
|
||||||
|
dist_cube[np.isnan(dist_cube)] = 0.
|
||||||
|
weight_cube = np.divide(1.,
|
||||||
|
dist_cube,
|
||||||
|
out=np.zeros_like(dist_cube),
|
||||||
|
where=(dist_cube > 0.))
|
||||||
|
edge_scaling = None
|
||||||
|
if edge_addition_filter is not None and edge_removal_filter is not None:
|
||||||
|
edge_scaling = cls.calculate_edge_scaling(adj_cube, edge_addition_filter, edge_removal_filter)
|
||||||
|
sg = cls(attention_radius, np.array(list(nodes)), adj_cube, weight_cube, node_type_mat, edge_scaling=edge_scaling)
|
||||||
|
return sg
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def calculate_edge_scaling(adj_cube, edge_addition_filter, edge_removal_filter):
|
||||||
|
new_edges = np.minimum(
|
||||||
|
ss.convolve(adj_cube, np.reshape(edge_addition_filter, (-1, 1, 1)), 'same'), 1.
|
||||||
|
)
|
||||||
|
|
||||||
|
old_edges = np.minimum(
|
||||||
|
ss.convolve(adj_cube, np.reshape(edge_removal_filter, (-1, 1, 1)), 'same'), 1.
|
||||||
|
)
|
||||||
|
|
||||||
|
return np.minimum(new_edges + old_edges, 1.)
|
||||||
|
|
||||||
|
def to_scene_graph(self, t, t_hist=0, t_fut=0):
|
||||||
|
lower_t = np.clip(t-t_hist, a_min=0, a_max=None)
|
||||||
|
higher_t = np.clip(t + t_fut + 1, a_min=None, a_max=self.adj_cube.shape[0] + 1)
|
||||||
|
adj_mat = np.max(self.adj_cube[lower_t:higher_t], axis=0)
|
||||||
|
weight_mat = np.max(self.weight_cube[lower_t:higher_t], axis=0)
|
||||||
|
return SceneGraph(self.edge_radius,
|
||||||
|
self.nodes,
|
||||||
|
adj_mat,
|
||||||
|
weight_mat,
|
||||||
|
self.node_type_mat,
|
||||||
|
self.node_index_lookup,
|
||||||
|
edge_scaling=self.edge_scaling[t])
|
||||||
|
|
||||||
|
|
||||||
|
class SceneGraph(object):
|
||||||
|
def __init__(self,
|
||||||
|
edge_radius,
|
||||||
|
nodes=None,
|
||||||
|
adj_mat=np.zeros((0, 0)),
|
||||||
|
weight_mat=np.zeros((0, 0)),
|
||||||
|
node_type_mat=np.zeros((0, 0)),
|
||||||
|
node_index_lookup=None,
|
||||||
|
edge_scaling=None):
|
||||||
|
self.edge_radius = edge_radius
|
||||||
|
self.nodes = nodes
|
||||||
|
if nodes is None:
|
||||||
|
self.nodes = np.array([])
|
||||||
|
self.node_type_mat = node_type_mat
|
||||||
|
self.adj_mat = adj_mat
|
||||||
|
self.weight_mat = weight_mat
|
||||||
|
self.edge_scaling = edge_scaling
|
||||||
|
self.node_index_lookup = node_index_lookup
|
||||||
|
|
||||||
|
def get_index(self, node):
|
||||||
|
return self.node_index_lookup[node]
|
||||||
|
|
||||||
|
def get_neighbors(self, node, type):
|
||||||
|
node_index = self.get_index(node)
|
||||||
|
connection_mask = self.adj_mat[node_index].astype(bool)
|
||||||
|
mask = ((self.node_type_mat[node_index] == type.value) * connection_mask)
|
||||||
|
return self.nodes[mask]
|
||||||
|
|
||||||
|
def get_edge_scaling(self, node=None):
|
||||||
|
if node is None:
|
||||||
|
return self.edge_scaling
|
||||||
|
else:
|
||||||
|
node_index = self.get_index(node)
|
||||||
|
return self.edge_scaling[node_index, self.adj_mat[node_index] > 0.]
|
||||||
|
|
||||||
|
def get_edge_weight(self, node=None):
|
||||||
|
if node is None:
|
||||||
|
return self.weight_mat
|
||||||
|
else:
|
||||||
|
node_index = self.get_index(node)
|
||||||
|
return self.weight_mat[node_index, self.adj_mat[node_index] > 0.]
|
1
code/evaluation/__init__.py
Normal file
1
code/evaluation/__init__.py
Normal file
|
@ -0,0 +1 @@
|
||||||
|
from .evaluation import compute_batch_statistics, log_batch_errors
|
106
code/evaluation/evaluation.py
Normal file
106
code/evaluation/evaluation.py
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
import numpy as np
|
||||||
|
from scipy.interpolate import RectBivariateSpline
|
||||||
|
from scipy.ndimage import binary_dilation
|
||||||
|
from scipy.stats import gaussian_kde
|
||||||
|
from utils import prediction_output_to_trajectories
|
||||||
|
import visualization
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
def compute_ade(predicted_trajs, gt_traj):
|
||||||
|
error = np.linalg.norm(predicted_trajs - gt_traj, axis=-1)
|
||||||
|
ade = np.mean(error, axis=-1)
|
||||||
|
return ade
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fde(predicted_trajs, gt_traj):
|
||||||
|
final_error = np.linalg.norm(predicted_trajs[:, -1] - gt_traj[-1], axis=-1)
|
||||||
|
return final_error
|
||||||
|
|
||||||
|
|
||||||
|
def compute_kde_nll(predicted_trajs, gt_traj):
|
||||||
|
kde_ll = 0.
|
||||||
|
log_pdf_lower_bound = -20
|
||||||
|
num_timesteps = gt_traj.shape[0]
|
||||||
|
|
||||||
|
for timestep in range(num_timesteps): # TODO First timestep
|
||||||
|
kde = gaussian_kde(predicted_trajs[:, timestep].T)
|
||||||
|
pdf = np.clip(kde.logpdf(gt_traj[timestep].T), a_min=log_pdf_lower_bound, a_max=None)[0]
|
||||||
|
kde_ll += pdf / num_timesteps
|
||||||
|
|
||||||
|
return -kde_ll
|
||||||
|
|
||||||
|
|
||||||
|
def compute_obs_violations(predicted_trajs, map):
|
||||||
|
obs_map = 1 - map.fdata[..., 0]
|
||||||
|
|
||||||
|
interp_obs_map = RectBivariateSpline(range(obs_map.shape[0]),
|
||||||
|
range(obs_map.shape[1]),
|
||||||
|
obs_map,
|
||||||
|
kx=1, ky=1)
|
||||||
|
|
||||||
|
old_shape = predicted_trajs.shape
|
||||||
|
pred_trajs_map = map.to_map_points(predicted_trajs.reshape((-1, 2)))
|
||||||
|
|
||||||
|
traj_obs_values = interp_obs_map(pred_trajs_map[:, 0], pred_trajs_map[:, 1], grid=False)
|
||||||
|
traj_obs_values = traj_obs_values.reshape((old_shape[0], old_shape[1]))
|
||||||
|
num_viol_trajs = np.sum(traj_obs_values.max(axis=1) > 0, dtype=float)
|
||||||
|
|
||||||
|
return num_viol_trajs
|
||||||
|
|
||||||
|
|
||||||
|
def compute_batch_statistics(prediction_output_dict, dt, max_hl, ph, node_type_enum, kde=True, obs=False, map=None):
|
||||||
|
|
||||||
|
(prediction_dict,
|
||||||
|
_,
|
||||||
|
futures_dict) = prediction_output_to_trajectories(prediction_output_dict, dt, max_hl, ph)
|
||||||
|
|
||||||
|
batch_error_dict = dict()
|
||||||
|
for node_type in node_type_enum:
|
||||||
|
batch_error_dict[node_type] = {'ade': list(), 'fde': list(), 'kde': list(), 'obs_viols': list()}
|
||||||
|
|
||||||
|
for t in prediction_dict.keys():
|
||||||
|
for node in prediction_dict[t].keys():
|
||||||
|
ade_errors = compute_ade(prediction_dict[t][node], futures_dict[t][node])
|
||||||
|
fde_errors = compute_fde(prediction_dict[t][node], futures_dict[t][node])
|
||||||
|
if kde:
|
||||||
|
kde_ll = compute_kde_nll(prediction_dict[t][node], futures_dict[t][node])
|
||||||
|
else:
|
||||||
|
kde_ll = 0
|
||||||
|
if obs:
|
||||||
|
obs_viols = compute_obs_violations(prediction_dict[t][node], map)
|
||||||
|
else:
|
||||||
|
obs_viols = 0
|
||||||
|
batch_error_dict[node.type]['ade'].extend(list(ade_errors))
|
||||||
|
batch_error_dict[node.type]['fde'].extend(list(fde_errors))
|
||||||
|
batch_error_dict[node.type]['kde'].extend([kde_ll])
|
||||||
|
batch_error_dict[node.type]['obs_viols'].extend([obs_viols])
|
||||||
|
|
||||||
|
return batch_error_dict
|
||||||
|
|
||||||
|
|
||||||
|
def log_batch_errors(batch_errors_list, log_writer, namespace, curr_iter, bar_plot=[], box_plot=[]):
|
||||||
|
for node_type in batch_errors_list[0].keys():
|
||||||
|
for metric in batch_errors_list[0][node_type].keys():
|
||||||
|
metric_batch_error = []
|
||||||
|
for batch_errors in batch_errors_list:
|
||||||
|
metric_batch_error.extend(batch_errors[node_type][metric])
|
||||||
|
|
||||||
|
if len(metric_batch_error) > 0:
|
||||||
|
log_writer.add_histogram(f"{node_type.name}/{namespace}/{metric}", metric_batch_error, curr_iter)
|
||||||
|
log_writer.add_scalar(f"{node_type.name}/{namespace}/{metric}_mean", np.mean(metric_batch_error), curr_iter)
|
||||||
|
log_writer.add_scalar(f"{node_type.name}/{namespace}/{metric}_median", np.median(metric_batch_error), curr_iter)
|
||||||
|
|
||||||
|
if metric in bar_plot:
|
||||||
|
pd = {'dataset': [namespace] * len(metric_batch_error),
|
||||||
|
metric: metric_batch_error}
|
||||||
|
kde_barplot_fig, ax = plt.subplots(figsize=(5, 5))
|
||||||
|
visualization.visualization_utils.plot_barplots(ax, pd, 'dataset', metric)
|
||||||
|
log_writer.add_figure(f"{node_type.name}/{namespace}/{metric}_bar_plot", kde_barplot_fig, curr_iter)
|
||||||
|
|
||||||
|
if metric in box_plot:
|
||||||
|
mse_fde_pd = {'dataset': [namespace] * len(metric_batch_error),
|
||||||
|
metric: metric_batch_error}
|
||||||
|
fig, ax = plt.subplots(figsize=(5, 5))
|
||||||
|
visualization.visualization_utils.plot_boxplots(ax, mse_fde_pd, 'dataset', metric)
|
||||||
|
log_writer.add_figure(f"{node_type.name}/{namespace}/{metric}_box_plot", fig, curr_iter)
|
0
code/model/__init__.py
Normal file
0
code/model/__init__.py
Normal file
4
code/model/components/__init__.py
Normal file
4
code/model/components/__init__.py
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
from .discrete_latent import DiscreteLatent
|
||||||
|
from .gmm2d import GMM2D
|
||||||
|
from .map_encoder import CNNMapEncoder
|
||||||
|
from .additive_attention import AdditiveAttention, TemporallyBatchedAdditiveAttention
|
67
code/model/components/additive_attention.py
Normal file
67
code/model/components/additive_attention.py
Normal file
|
@ -0,0 +1,67 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class AdditiveAttention(nn.Module):
|
||||||
|
# Implementing the attention module of Bahdanau et al. 2015 where
|
||||||
|
# score(h_j, s_(i-1)) = v . tanh(W_1 h_j + W_2 s_(i-1))
|
||||||
|
def __init__(self, encoder_hidden_state_dim, decoder_hidden_state_dim, internal_dim=None):
|
||||||
|
super(AdditiveAttention, self).__init__()
|
||||||
|
|
||||||
|
if internal_dim is None:
|
||||||
|
internal_dim = int((encoder_hidden_state_dim + decoder_hidden_state_dim) / 2)
|
||||||
|
|
||||||
|
self.w1 = nn.Linear(encoder_hidden_state_dim, internal_dim, bias=False)
|
||||||
|
self.w2 = nn.Linear(decoder_hidden_state_dim, internal_dim, bias=False)
|
||||||
|
self.v = nn.Linear(internal_dim, 1, bias=False)
|
||||||
|
|
||||||
|
def score(self, encoder_state, decoder_state):
|
||||||
|
# encoder_state is of shape (batch, enc_dim)
|
||||||
|
# decoder_state is of shape (batch, dec_dim)
|
||||||
|
# return value should be of shape (batch, 1)
|
||||||
|
return self.v(torch.tanh(self.w1(encoder_state) + self.w2(decoder_state)))
|
||||||
|
|
||||||
|
def forward(self, encoder_states, decoder_state):
|
||||||
|
# encoder_states is of shape (batch, num_enc_states, enc_dim)
|
||||||
|
# decoder_state is of shape (batch, dec_dim)
|
||||||
|
score_vec = torch.cat([self.score(encoder_states[:, i], decoder_state) for i in range(encoder_states.shape[1])],
|
||||||
|
dim=1)
|
||||||
|
# score_vec is of shape (batch, num_enc_states)
|
||||||
|
|
||||||
|
attention_probs = torch.unsqueeze(F.softmax(score_vec, dim=1), dim=2)
|
||||||
|
# attention_probs is of shape (batch, num_enc_states, 1)
|
||||||
|
|
||||||
|
final_context_vec = torch.sum(attention_probs * encoder_states, dim=1)
|
||||||
|
# final_context_vec is of shape (batch, enc_dim)
|
||||||
|
|
||||||
|
return final_context_vec, attention_probs
|
||||||
|
|
||||||
|
|
||||||
|
class TemporallyBatchedAdditiveAttention(AdditiveAttention):
|
||||||
|
# Implementing the attention module of Bahdanau et al. 2015 where
|
||||||
|
# score(h_j, s_(i-1)) = v . tanh(W_1 h_j + W_2 s_(i-1))
|
||||||
|
def __init__(self, encoder_hidden_state_dim, decoder_hidden_state_dim, internal_dim=None):
|
||||||
|
super(TemporallyBatchedAdditiveAttention, self).__init__(encoder_hidden_state_dim,
|
||||||
|
decoder_hidden_state_dim,
|
||||||
|
internal_dim)
|
||||||
|
|
||||||
|
def score(self, encoder_state, decoder_state):
|
||||||
|
# encoder_state is of shape (batch, num_enc_states, max_time, enc_dim)
|
||||||
|
# decoder_state is of shape (batch, max_time, dec_dim)
|
||||||
|
# return value should be of shape (batch, num_enc_states, max_time, 1)
|
||||||
|
return self.v(torch.tanh(self.w1(encoder_state) + torch.unsqueeze(self.w2(decoder_state), dim=1)))
|
||||||
|
|
||||||
|
def forward(self, encoder_states, decoder_state):
|
||||||
|
# encoder_states is of shape (batch, num_enc_states, max_time, enc_dim)
|
||||||
|
# decoder_state is of shape (batch, max_time, dec_dim)
|
||||||
|
score_vec = self.score(encoder_states, decoder_state)
|
||||||
|
# score_vec is of shape (batch, num_enc_states, max_time, 1)
|
||||||
|
|
||||||
|
attention_probs = F.softmax(score_vec, dim=1)
|
||||||
|
# attention_probs is of shape (batch, num_enc_states, max_time, 1)
|
||||||
|
|
||||||
|
final_context_vec = torch.sum(attention_probs * encoder_states, dim=1)
|
||||||
|
# final_context_vec is of shape (batch, max_time, enc_dim)
|
||||||
|
|
||||||
|
return final_context_vec, torch.squeeze(torch.transpose(attention_probs, 1, 2), dim=3)
|
107
code/model/components/discrete_latent.py
Normal file
107
code/model/components/discrete_latent.py
Normal file
|
@ -0,0 +1,107 @@
|
||||||
|
import torch
|
||||||
|
import torch.distributions as td
|
||||||
|
import numpy as np
|
||||||
|
from model.model_utils import ModeKeys, tile
|
||||||
|
|
||||||
|
|
||||||
|
class DiscreteLatent(object):
|
||||||
|
def __init__(self, hyperparams, device):
|
||||||
|
self.hyperparams = hyperparams
|
||||||
|
self.z_dim = hyperparams['N'] * hyperparams['K']
|
||||||
|
self.N = hyperparams['N']
|
||||||
|
self.K = hyperparams['K']
|
||||||
|
self.kl_min = hyperparams['kl_min']
|
||||||
|
self.device = device
|
||||||
|
self.temp = None # filled in by MultimodalGenerativeCVAE.set_annealing_params
|
||||||
|
self.z_logit_clip = None # filled in by MultimodalGenerativeCVAE.set_annealing_params
|
||||||
|
self.p_dist = None # filled in by MultimodalGenerativeCVAE.encoder
|
||||||
|
self.q_dist = None # filled in by MultimodalGenerativeCVAE.encoder
|
||||||
|
|
||||||
|
def dist_from_h(self, h, mode):
|
||||||
|
logits_separated = torch.reshape(h, (-1, self.N, self.K))
|
||||||
|
logits_separated_mean_zero = logits_separated - torch.mean(logits_separated, dim=-1, keepdim=True)
|
||||||
|
if self.z_logit_clip is not None and mode == ModeKeys.TRAIN:
|
||||||
|
c = self.z_logit_clip
|
||||||
|
logits = torch.clamp(logits_separated_mean_zero, min=-c, max=c)
|
||||||
|
else:
|
||||||
|
logits = logits_separated_mean_zero
|
||||||
|
|
||||||
|
return td.OneHotCategorical(logits=logits)
|
||||||
|
|
||||||
|
def sample_q(self, k, mode):
|
||||||
|
if mode == ModeKeys.TRAIN:
|
||||||
|
z_dist = td.RelaxedOneHotCategorical(self.temp, logits=self.q_dist.logits)
|
||||||
|
z_NK = z_dist.rsample((k,))
|
||||||
|
elif mode == ModeKeys.EVAL:
|
||||||
|
z_NK = self.q_dist.sample((k,))
|
||||||
|
return torch.reshape(z_NK, (k, -1, self.z_dim))
|
||||||
|
|
||||||
|
def sample_p(self, num_samples_z, mode, num_samples_gmm=1, most_likely=False, all_z=False):
|
||||||
|
if all_z:
|
||||||
|
bs = self.p_dist.probs.size()[0]
|
||||||
|
z_NK = torch.from_numpy(self.all_one_hot_combinations(self.N, self.K)).float().to(self.device).repeat(1, bs)
|
||||||
|
num_samples_z = self.K ** self.N
|
||||||
|
|
||||||
|
elif most_likely:
|
||||||
|
# Sampling the most likely z from p(z|x).
|
||||||
|
eye_mat = torch.eye(self.p_dist.event_shape[-1], device=self.device)
|
||||||
|
argmax_idxs = torch.argmax(self.p_dist.probs, dim=2)
|
||||||
|
z_NK = torch.unsqueeze(eye_mat[argmax_idxs], dim=0).expand(num_samples_z, -1, -1, -1)
|
||||||
|
|
||||||
|
else:
|
||||||
|
z_NK = self.p_dist.sample((num_samples_z,))
|
||||||
|
|
||||||
|
z_NK = tile(z_NK, 0, num_samples_gmm, device=self.device)
|
||||||
|
k = num_samples_z * num_samples_gmm
|
||||||
|
|
||||||
|
if mode == ModeKeys.PREDICT:
|
||||||
|
return torch.reshape(z_NK, (k, -1, self.N * self.K)), num_samples_z
|
||||||
|
else:
|
||||||
|
return torch.reshape(z_NK, (k, -1, self.N * self.K))
|
||||||
|
|
||||||
|
def kl_q_p(self, log_writer=None, prefix=None, curr_iter=None):
|
||||||
|
kl_separated = td.kl_divergence(self.q_dist, self.p_dist)
|
||||||
|
if len(kl_separated.size()) < 2:
|
||||||
|
kl_separated = torch.unsqueeze(kl_separated, dim=0)
|
||||||
|
|
||||||
|
kl_minibatch = torch.mean(kl_separated, dim=0, keepdim=True)
|
||||||
|
|
||||||
|
if log_writer is not None:
|
||||||
|
log_writer.add_scalar(prefix + '/true_kl', torch.sum(kl_minibatch), curr_iter)
|
||||||
|
|
||||||
|
if self.kl_min > 0:
|
||||||
|
kl_lower_bounded = torch.clamp(kl_minibatch, min=self.kl_min)
|
||||||
|
kl = torch.sum(kl_lower_bounded)
|
||||||
|
else:
|
||||||
|
kl = torch.sum(kl_minibatch)
|
||||||
|
|
||||||
|
return kl
|
||||||
|
|
||||||
|
def q_log_prob(self, z):
|
||||||
|
k = z.size()[0]
|
||||||
|
z_NK = torch.reshape(z, [k, -1, self.N, self.K])
|
||||||
|
return torch.sum(self.q_dist.log_prob(z_NK), dim=2)
|
||||||
|
|
||||||
|
def p_log_prob(self, z):
|
||||||
|
k = z.size()[0]
|
||||||
|
z_NK = torch.reshape(z, [k, -1, self.N, self.K])
|
||||||
|
return torch.sum(self.p_dist.log_prob(z_NK), dim=2)
|
||||||
|
|
||||||
|
def get_p_dist_probs(self):
|
||||||
|
return self.p_dist.probs
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def all_one_hot_combinations(N, K):
|
||||||
|
return np.eye(K).take(np.reshape(np.indices([K] * N), [N, -1]).T, axis=0).reshape(-1, N * K) # [K**N, N*K]
|
||||||
|
|
||||||
|
def summarize_for_tensorboard(self, log_writer, prefix, curr_iter):
|
||||||
|
log_writer.add_histogram(prefix + "/latent/p_z_x", self.p_dist.probs, curr_iter)
|
||||||
|
log_writer.add_histogram(prefix + "/latent/q_z_xy", self.q_dist.probs, curr_iter)
|
||||||
|
log_writer.add_histogram(prefix + "/latent/p_z_x_logits", self.p_dist.logits, curr_iter)
|
||||||
|
log_writer.add_histogram(prefix + "/latent/q_z_xy_logits", self.q_dist.logits, curr_iter)
|
||||||
|
if self.z_dim <= 9:
|
||||||
|
for i in range(self.N):
|
||||||
|
for j in range(self.K):
|
||||||
|
log_writer.add_histogram(prefix + "/latent/q_z_xy_logit{0}{1}".format(i, j),
|
||||||
|
self.q_dist.logits[:, i, j],
|
||||||
|
curr_iter)
|
61
code/model/components/gmm2d.py
Normal file
61
code/model/components/gmm2d.py
Normal file
|
@ -0,0 +1,61 @@
|
||||||
|
import torch
|
||||||
|
import torch.distributions as td
|
||||||
|
import numpy as np
|
||||||
|
from model.model_utils import to_one_hot
|
||||||
|
|
||||||
|
|
||||||
|
class GMM2D(object):
|
||||||
|
def __init__(self, log_pis, mus, log_sigmas, corrs, pred_state_length, device,
|
||||||
|
clip_lo=-10, clip_hi=10):
|
||||||
|
self.device = device
|
||||||
|
self.pred_state_length = pred_state_length
|
||||||
|
|
||||||
|
# input shapes
|
||||||
|
# pis: [..., GMM_c]
|
||||||
|
# mus: [..., GMM_c*2]
|
||||||
|
# sigmas: [..., GMM_c*2]
|
||||||
|
# corrs: [..., GMM_c]
|
||||||
|
GMM_c = log_pis.shape[-1]
|
||||||
|
|
||||||
|
# Sigma = [s1^2 p*s1*s2 L = [s1 0
|
||||||
|
# p*s1*s2 s2^2 ] p*s2 sqrt(1-p^2)*s2]
|
||||||
|
log_pis = log_pis - torch.logsumexp(log_pis, dim=-1, keepdim=True)
|
||||||
|
mus = self.reshape_to_components(mus, GMM_c) # [..., GMM_c, 2]
|
||||||
|
log_sigmas = self.reshape_to_components(torch.clamp(log_sigmas, min=clip_lo, max=clip_hi), GMM_c)
|
||||||
|
sigmas = torch.exp(log_sigmas) # [..., GMM_c, 2]
|
||||||
|
one_minus_rho2 = 1 - corrs**2 # [..., GMM_c]
|
||||||
|
|
||||||
|
self.L1 = sigmas*torch.stack([torch.ones_like(corrs, device=self.device), corrs], dim=-1)
|
||||||
|
self.L2 = sigmas*torch.stack([torch.zeros_like(corrs, device=self.device), torch.sqrt(one_minus_rho2)], dim=-1)
|
||||||
|
|
||||||
|
self.batch_shape = log_pis.shape[:-1]
|
||||||
|
self.GMM_c = GMM_c
|
||||||
|
self.log_pis = log_pis # [..., GMM_c]
|
||||||
|
self.mus = mus # [..., GMM_c, 2]
|
||||||
|
self.log_sigmas = log_sigmas # [..., GMM_c, 2]
|
||||||
|
self.sigmas = sigmas # [..., GMM_c, 2]
|
||||||
|
self.corrs = corrs # [..., GMM_c]
|
||||||
|
self.one_minus_rho2 = one_minus_rho2 # [..., GMM_c]
|
||||||
|
self.cat = td.Categorical(logits=log_pis)
|
||||||
|
|
||||||
|
def sample(self):
|
||||||
|
MVN_samples = (self.mus
|
||||||
|
+ self.L1*torch.unsqueeze(torch.randn_like(self.corrs, device=self.device), dim=-1) # [..., GMM_c, 2]
|
||||||
|
+ self.L2*torch.unsqueeze(torch.randn_like(self.corrs, device=self.device), dim=-1)) # (manual 2x2 matmul)
|
||||||
|
cat_samples = self.cat.sample() # [...]
|
||||||
|
selector = torch.unsqueeze(to_one_hot(cat_samples, self.GMM_c, self.device), dim=-1)
|
||||||
|
return torch.sum(MVN_samples*selector, dim=-2)
|
||||||
|
|
||||||
|
def log_prob(self, x):
|
||||||
|
# x: [..., 2]
|
||||||
|
x = torch.unsqueeze(x, dim=-2) # [..., 1, 2]
|
||||||
|
dx = x - self.mus # [..., GMM_c, 2]
|
||||||
|
z = (torch.sum((dx/self.sigmas)**2, dim=-1) -
|
||||||
|
2*self.corrs*torch.prod(dx, dim=-1)/torch.prod(self.sigmas, dim=-1)) # [..., GMM_c]
|
||||||
|
component_log_p = -(torch.log(self.one_minus_rho2) + 2*torch.sum(self.log_sigmas, dim=-1) +
|
||||||
|
z/self.one_minus_rho2 +
|
||||||
|
2*np.log(2*np.pi))/2
|
||||||
|
return torch.logsumexp(self.log_pis + component_log_p, dim=-1)
|
||||||
|
|
||||||
|
def reshape_to_components(self, tensor, GMM_c):
|
||||||
|
return torch.reshape(tensor, list(tensor.shape[:-1]) + [GMM_c, self.pred_state_length])
|
20
code/model/components/map_encoder.py
Normal file
20
code/model/components/map_encoder.py
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class CNNMapEncoder(nn.Module):
|
||||||
|
def __init__(self, input_size, hidden_size, output_size):
|
||||||
|
super(CNNMapEncoder, self).__init__()
|
||||||
|
self.conv1 = nn.Conv2d(3, 128, 5, stride=2)
|
||||||
|
self.conv2 = nn.Conv2d(128, 256, 5, stride=3)
|
||||||
|
self.conv3 = nn.Conv2d(256, 64, 5, stride=2)
|
||||||
|
self.fc = nn.Linear(7 * 7 * 64, 512)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = F.relu(self.conv1(x))
|
||||||
|
x = F.relu(self.conv2(x))
|
||||||
|
x = F.relu(self.conv3(x))
|
||||||
|
x = x.view(-1, 7 * 7 * 64)
|
||||||
|
x = F.relu(self.fc(x))
|
||||||
|
return x
|
454
code/model/dyn_stg.py
Normal file
454
code/model/dyn_stg.py
Normal file
|
@ -0,0 +1,454 @@
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from model.node_model import MultimodalGenerativeCVAE
|
||||||
|
|
||||||
|
|
||||||
|
class SpatioTemporalGraphCVAEModel(object):
|
||||||
|
def __init__(self, model_registrar,
|
||||||
|
hyperparams, log_writer,
|
||||||
|
device):
|
||||||
|
super(SpatioTemporalGraphCVAEModel, self).__init__()
|
||||||
|
self.hyperparams = hyperparams
|
||||||
|
self.log_writer = log_writer
|
||||||
|
self.device = device
|
||||||
|
self.curr_iter = 0
|
||||||
|
|
||||||
|
self.model_registrar = model_registrar
|
||||||
|
self.node_models_dict = dict()
|
||||||
|
self.nodes = set()
|
||||||
|
|
||||||
|
self.env = None
|
||||||
|
|
||||||
|
self.min_hl = self.hyperparams['minimum_history_length']
|
||||||
|
self.max_hl = self.hyperparams['maximum_history_length']
|
||||||
|
self.ph = self.hyperparams['prediction_horizon']
|
||||||
|
self.state = self.hyperparams['state']
|
||||||
|
self.state_length = dict()
|
||||||
|
for type in self.state.keys():
|
||||||
|
self.state_length[type] = int(np.sum([len(entity_dims) for entity_dims in self.state[type].values()]))
|
||||||
|
self.pred_state = self.hyperparams['pred_state']
|
||||||
|
|
||||||
|
def set_scene_graph(self, env):
|
||||||
|
self.env = env
|
||||||
|
|
||||||
|
self.node_models_dict.clear()
|
||||||
|
|
||||||
|
edge_types = env.get_edge_types()
|
||||||
|
|
||||||
|
for node_type in env.NodeType:
|
||||||
|
self.node_models_dict[node_type] = MultimodalGenerativeCVAE(env,
|
||||||
|
node_type,
|
||||||
|
self.model_registrar,
|
||||||
|
self.hyperparams,
|
||||||
|
self.device,
|
||||||
|
edge_types,
|
||||||
|
log_writer=self.log_writer)
|
||||||
|
|
||||||
|
def set_curr_iter(self, curr_iter):
|
||||||
|
self.curr_iter = curr_iter
|
||||||
|
for node_str, model in self.node_models_dict.items():
|
||||||
|
model.set_curr_iter(curr_iter)
|
||||||
|
|
||||||
|
def set_annealing_params(self):
|
||||||
|
for node_str, model in self.node_models_dict.items():
|
||||||
|
model.set_annealing_params()
|
||||||
|
|
||||||
|
def step_annealers(self):
|
||||||
|
for node in self.node_models_dict:
|
||||||
|
self.node_models_dict[node].step_annealers()
|
||||||
|
|
||||||
|
def get_input(self, scene, timesteps, node_type, min_future_timesteps, max_nodes=None, curve=False): # Curve is there to resample during training
|
||||||
|
inputs = list()
|
||||||
|
labels = list()
|
||||||
|
first_history_indices = list()
|
||||||
|
nodes = list()
|
||||||
|
node_scene_graph_batched = list()
|
||||||
|
timesteps_in_scene = list()
|
||||||
|
nodes_per_ts = scene.present_nodes(timesteps,
|
||||||
|
type=node_type,
|
||||||
|
min_history_timesteps=self.min_hl,
|
||||||
|
min_future_timesteps=min_future_timesteps,
|
||||||
|
include_robot=not self.hyperparams['incl_robot_node'],
|
||||||
|
max_nodes=max_nodes,
|
||||||
|
curve=curve)
|
||||||
|
|
||||||
|
# Get Inputs for each node present in Scene
|
||||||
|
for timestep in timesteps:
|
||||||
|
if timestep in nodes_per_ts.keys():
|
||||||
|
present_nodes = nodes_per_ts[timestep]
|
||||||
|
timestep_range = np.array([timestep - self.max_hl, timestep + min_future_timesteps])
|
||||||
|
scene_graph_t = scene.get_scene_graph(timestep,
|
||||||
|
self.env.attention_radius,
|
||||||
|
self.hyperparams['edge_addition_filter'],
|
||||||
|
self.hyperparams['edge_removal_filter'])
|
||||||
|
|
||||||
|
for node in present_nodes:
|
||||||
|
timesteps_in_scene.append(timestep)
|
||||||
|
input = node.get(timestep_range, self.state[node.type.name])
|
||||||
|
label = node.get(timestep_range, self.pred_state[node.type.name])
|
||||||
|
first_history_index = (self.max_hl - node.history_points_at(timestep)).clip(0)
|
||||||
|
inputs.append(input)
|
||||||
|
labels.append(label)
|
||||||
|
first_history_indices.append(first_history_index)
|
||||||
|
nodes.append(node)
|
||||||
|
|
||||||
|
node_scene_graph_batched.append((node, scene_graph_t))
|
||||||
|
|
||||||
|
return inputs, labels, first_history_indices, timesteps_in_scene, node_scene_graph_batched, nodes
|
||||||
|
|
||||||
|
def train_loss(self, scene, timesteps, max_nodes=None):
|
||||||
|
losses = dict()
|
||||||
|
for node_type in self.env.NodeType:
|
||||||
|
losses[node_type] = []
|
||||||
|
|
||||||
|
for node_type in self.env.NodeType:
|
||||||
|
# Get Input data for node type and given timesteps
|
||||||
|
(inputs,
|
||||||
|
labels,
|
||||||
|
first_history_indices,
|
||||||
|
timesteps_in_scene,
|
||||||
|
node_scene_graph_batched, _) = self.get_input(scene,
|
||||||
|
timesteps,
|
||||||
|
node_type,
|
||||||
|
self.ph,
|
||||||
|
max_nodes=max_nodes,
|
||||||
|
curve=True) # Curve is there to resample during training
|
||||||
|
|
||||||
|
# There are no nodes of type present for timestep
|
||||||
|
if len(inputs) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
uniform_t = self.max_hl
|
||||||
|
|
||||||
|
inputs = np.array(inputs)
|
||||||
|
labels = np.array(labels)
|
||||||
|
|
||||||
|
# Vehicles are rotated such that the x axis is lateral
|
||||||
|
if node_type == self.env.NodeType.VEHICLE:
|
||||||
|
# transform x y to ego.
|
||||||
|
pos = inputs[..., 0:2]
|
||||||
|
pos_org = pos.copy()
|
||||||
|
vel = inputs[..., 2:4]
|
||||||
|
acc = inputs[..., 5:7]
|
||||||
|
heading = inputs[:, uniform_t, -1]
|
||||||
|
rot_mat = np.zeros((pos.shape[0], pos.shape[1], 3, 3))
|
||||||
|
rot_mat[:, :, 0, 0] = np.cos(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 0, 1] = np.sin(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 1, 0] = -np.sin(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 1, 1] = np.cos(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 2, 2] = 1.
|
||||||
|
|
||||||
|
pos = pos - pos[:, uniform_t, np.newaxis, :]
|
||||||
|
|
||||||
|
pos_with_one = np.ones((pos.shape[0], pos.shape[1], 3, 1))
|
||||||
|
pos_with_one[:, :, :2] = pos[..., np.newaxis]
|
||||||
|
pos_rot = np.squeeze(rot_mat @ pos_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
vel_with_one = np.ones((vel.shape[0], vel.shape[1], 3, 1))
|
||||||
|
vel_with_one[:, :, :2] = vel[..., np.newaxis]
|
||||||
|
vel_rot = np.squeeze(rot_mat @ vel_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
acc_with_one = np.ones((acc.shape[0], acc.shape[1], 3, 1))
|
||||||
|
acc_with_one[:, :, :2] = acc[..., np.newaxis]
|
||||||
|
acc_rot = np.squeeze(rot_mat @ acc_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
inputs[..., 0:2] = pos_rot
|
||||||
|
inputs[..., 2:4] = vel_rot
|
||||||
|
inputs[..., 5:7] = acc_rot
|
||||||
|
|
||||||
|
l_vel_with_one = np.ones((labels.shape[0], labels.shape[1], 3, 1))
|
||||||
|
l_vel_with_one[:, :, :2] = labels[..., np.newaxis]
|
||||||
|
labels = np.squeeze(rot_mat @ l_vel_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
# Standardize, Position is standardized relative to current pos and attention_radius for node_type-node_type
|
||||||
|
_, std = self.env.get_standardize_params(self.state[node_type.name], node_type=node_type)
|
||||||
|
# std[0:2] = self.env.attention_radius[(node_type, node_type)]
|
||||||
|
rel_state = np.array(inputs)[:, uniform_t]
|
||||||
|
rel_state = np.hstack((rel_state, np.zeros_like(rel_state)))
|
||||||
|
rel_state = np.expand_dims(rel_state, 1)
|
||||||
|
std = np.tile(std, 2)
|
||||||
|
inputs = np.tile(inputs, 2)
|
||||||
|
inputs[..., self.state_length[node_type.name]:self.state_length[node_type.name]+2] = 0.
|
||||||
|
inputs_st = self.env.standardize(inputs,
|
||||||
|
self.state[node_type.name],
|
||||||
|
mean=rel_state,
|
||||||
|
std=std,
|
||||||
|
node_type=node_type)
|
||||||
|
labels_st = self.env.standardize(labels, self.pred_state[node_type.name], node_type=node_type)
|
||||||
|
|
||||||
|
if node_type == self.env.NodeType.VEHICLE:
|
||||||
|
inputs[..., 0:2] = pos_org
|
||||||
|
|
||||||
|
# Convert to torch tensors
|
||||||
|
inputs = torch.tensor(inputs).float().to(self.device)
|
||||||
|
inputs_st = torch.tensor(inputs_st).float().to(self.device)
|
||||||
|
first_history_indices = torch.tensor(first_history_indices).float().to(self.device).long()
|
||||||
|
labels = torch.tensor(labels).float().to(self.device)
|
||||||
|
labels_st = torch.tensor(labels_st).float().to(self.device)
|
||||||
|
|
||||||
|
# Run forward pass
|
||||||
|
model = self.node_models_dict[node_type]
|
||||||
|
loss = model.train_loss(inputs,
|
||||||
|
inputs_st,
|
||||||
|
first_history_indices,
|
||||||
|
labels,
|
||||||
|
labels_st,
|
||||||
|
scene,
|
||||||
|
node_scene_graph_batched,
|
||||||
|
timestep=uniform_t,
|
||||||
|
timesteps_in_scene=timesteps_in_scene,
|
||||||
|
prediction_horizon=self.ph)
|
||||||
|
|
||||||
|
losses[node_type].append(loss)
|
||||||
|
|
||||||
|
for node_type in self.env.NodeType:
|
||||||
|
losses[node_type] = torch.mean(torch.stack(losses[node_type])) if len(losses[node_type]) > 0 else None
|
||||||
|
return losses
|
||||||
|
|
||||||
|
def eval_loss(self, scene, timesteps, max_nodes=None):
|
||||||
|
losses = dict()
|
||||||
|
for node_type in self.env.NodeType:
|
||||||
|
losses[node_type] = {'nll_q_is': list(), 'nll_p': list(), 'nll_exact': list(), 'nll_sampled': list()}
|
||||||
|
for node_type in self.env.NodeType:
|
||||||
|
# Get Input data for node type and given timesteps
|
||||||
|
(inputs,
|
||||||
|
labels,
|
||||||
|
first_history_indices,
|
||||||
|
timesteps_in_scene,
|
||||||
|
node_scene_graph_batched, _) = self.get_input(scene, timesteps, node_type, self.ph, max_nodes=max_nodes)
|
||||||
|
|
||||||
|
# There are no nodes of type present for timestep
|
||||||
|
if len(inputs) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
uniform_t = self.max_hl
|
||||||
|
|
||||||
|
inputs = np.array(inputs)
|
||||||
|
labels = np.array(labels)
|
||||||
|
|
||||||
|
# Vehicles are rotated such that the x axis is lateral
|
||||||
|
if node_type == self.env.NodeType.VEHICLE:
|
||||||
|
# transform x y to ego.
|
||||||
|
pos = inputs[..., 0:2]
|
||||||
|
pos_org = pos.copy()
|
||||||
|
vel = inputs[..., 2:4]
|
||||||
|
acc = inputs[..., 5:7]
|
||||||
|
heading = inputs[:, uniform_t, -1]
|
||||||
|
rot_mat = np.zeros((pos.shape[0], pos.shape[1], 3, 3))
|
||||||
|
rot_mat[:, :, 0, 0] = np.cos(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 0, 1] = np.sin(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 1, 0] = -np.sin(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 1, 1] = np.cos(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 2, 2] = 1.
|
||||||
|
|
||||||
|
pos = pos - pos[:, uniform_t, np.newaxis, :]
|
||||||
|
|
||||||
|
pos_with_one = np.ones((pos.shape[0], pos.shape[1], 3, 1))
|
||||||
|
pos_with_one[:, :, :2] = pos[..., np.newaxis]
|
||||||
|
pos_rot = np.squeeze(rot_mat @ pos_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
vel_with_one = np.ones((vel.shape[0], vel.shape[1], 3, 1))
|
||||||
|
vel_with_one[:, :, :2] = vel[..., np.newaxis]
|
||||||
|
vel_rot = np.squeeze(rot_mat @ vel_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
acc_with_one = np.ones((acc.shape[0], acc.shape[1], 3, 1))
|
||||||
|
acc_with_one[:, :, :2] = acc[..., np.newaxis]
|
||||||
|
acc_rot = np.squeeze(rot_mat @ acc_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
inputs[..., 0:2] = pos_rot
|
||||||
|
inputs[..., 2:4] = vel_rot
|
||||||
|
inputs[..., 5:7] = acc_rot
|
||||||
|
|
||||||
|
l_vel_with_one = np.ones((labels.shape[0], labels.shape[1], 3, 1))
|
||||||
|
l_vel_with_one[:, :, :2] = labels[..., np.newaxis]
|
||||||
|
labels = np.squeeze(rot_mat @ l_vel_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
# Standardize, Position is standardized relative to current pos and attention_radius for node_type-node_type
|
||||||
|
_, std = self.env.get_standardize_params(self.state[node_type.name], node_type=node_type)
|
||||||
|
rel_state = np.array(inputs)[:, uniform_t]
|
||||||
|
rel_state = np.hstack((rel_state, np.zeros_like(rel_state)))
|
||||||
|
rel_state = np.expand_dims(rel_state, 1)
|
||||||
|
std = np.tile(std, 2)
|
||||||
|
inputs = np.tile(inputs, 2)
|
||||||
|
inputs[..., self.state_length[node_type.name]:self.state_length[node_type.name]+2] = 0.
|
||||||
|
inputs_st = self.env.standardize(inputs,
|
||||||
|
self.state[node_type.name],
|
||||||
|
mean=rel_state,
|
||||||
|
std=std,
|
||||||
|
node_type=node_type)
|
||||||
|
labels_st = self.env.standardize(labels, self.pred_state[node_type.name], node_type=node_type)
|
||||||
|
|
||||||
|
if node_type == self.env.NodeType.VEHICLE:
|
||||||
|
inputs[..., 0:2] = pos_org
|
||||||
|
|
||||||
|
# Convert to torch tensors
|
||||||
|
inputs = torch.tensor(inputs).float().to(self.device)
|
||||||
|
inputs_st = torch.tensor(inputs_st).float().to(self.device)
|
||||||
|
first_history_indices = torch.tensor(first_history_indices).float().to(self.device).long()
|
||||||
|
labels = torch.tensor(labels).float().to(self.device)
|
||||||
|
labels_st = torch.tensor(labels_st).float().to(self.device)
|
||||||
|
|
||||||
|
# Run forward pass
|
||||||
|
model = self.node_models_dict[node_type]
|
||||||
|
(nll_q_is, nll_p, nll_exact, nll_sampled) = model.eval_loss(inputs,
|
||||||
|
inputs_st,
|
||||||
|
first_history_indices,
|
||||||
|
labels,
|
||||||
|
labels_st,
|
||||||
|
scene,
|
||||||
|
node_scene_graph_batched,
|
||||||
|
timestep=uniform_t,
|
||||||
|
timesteps_in_scene=timesteps_in_scene,
|
||||||
|
prediction_horizon=self.ph)
|
||||||
|
|
||||||
|
if nll_q_is is not None:
|
||||||
|
losses[node_type]['nll_q_is'].append(nll_q_is.cpu().numpy())
|
||||||
|
losses[node_type]['nll_p'].append(nll_p.cpu().numpy())
|
||||||
|
losses[node_type]['nll_exact'].append(nll_exact.cpu().numpy())
|
||||||
|
losses[node_type]['nll_sampled'].append(nll_sampled.cpu().numpy())
|
||||||
|
|
||||||
|
return losses
|
||||||
|
|
||||||
|
def predict(self,
|
||||||
|
scene,
|
||||||
|
timesteps,
|
||||||
|
ph,
|
||||||
|
num_samples_z=1,
|
||||||
|
num_samples_gmm=1,
|
||||||
|
min_future_timesteps=0,
|
||||||
|
most_likely_z=False,
|
||||||
|
most_likely_gmm=False,
|
||||||
|
all_z=False,
|
||||||
|
max_nodes=None):
|
||||||
|
|
||||||
|
predictions_dict = {}
|
||||||
|
for node_type in self.env.NodeType:
|
||||||
|
# Get Input data for node type and given timesteps
|
||||||
|
(inputs,
|
||||||
|
labels,
|
||||||
|
first_history_indices,
|
||||||
|
timesteps_in_scene,
|
||||||
|
node_scene_graph_batched,
|
||||||
|
nodes) = self.get_input(scene, timesteps, node_type, min_future_timesteps, max_nodes=max_nodes)
|
||||||
|
|
||||||
|
# There are no nodes of type present for timestep
|
||||||
|
if len(inputs) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
uniform_t = self.max_hl
|
||||||
|
|
||||||
|
inputs = np.array(inputs)
|
||||||
|
labels = np.array(labels)
|
||||||
|
|
||||||
|
# Vehicles are rotated such that the x axis is lateral
|
||||||
|
if node_type == self.env.NodeType.VEHICLE:
|
||||||
|
# transform x y to ego.
|
||||||
|
pos = inputs[..., 0:2]
|
||||||
|
pos_org = pos.copy()
|
||||||
|
vel = inputs[..., 2:4]
|
||||||
|
acc = inputs[..., 5:7]
|
||||||
|
heading = inputs[:, uniform_t, -1]
|
||||||
|
rot_mat = np.zeros((pos.shape[0], pos.shape[1], 3, 3))
|
||||||
|
rot_mat[:, :, 0, 0] = np.cos(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 0, 1] = np.sin(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 1, 0] = -np.sin(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 1, 1] = np.cos(heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, 2, 2] = 1.
|
||||||
|
|
||||||
|
pos = pos - pos[:, uniform_t, np.newaxis, :]
|
||||||
|
|
||||||
|
pos_with_one = np.ones((pos.shape[0], pos.shape[1], 3, 1))
|
||||||
|
pos_with_one[:, :, :2] = pos[..., np.newaxis]
|
||||||
|
pos_rot = np.squeeze(rot_mat @ pos_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
vel_with_one = np.ones((vel.shape[0], vel.shape[1], 3, 1))
|
||||||
|
vel_with_one[:, :, :2] = vel[..., np.newaxis]
|
||||||
|
vel_rot = np.squeeze(rot_mat @ vel_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
acc_with_one = np.ones((acc.shape[0], acc.shape[1], 3, 1))
|
||||||
|
acc_with_one[:, :, :2] = acc[..., np.newaxis]
|
||||||
|
acc_rot = np.squeeze(rot_mat @ acc_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
inputs[..., 0:2] = pos_rot
|
||||||
|
inputs[..., 2:4] = vel_rot
|
||||||
|
inputs[..., 5:7] = acc_rot
|
||||||
|
|
||||||
|
l_vel_with_one = np.ones((labels.shape[0], labels.shape[1], 3, 1))
|
||||||
|
l_vel_with_one[:, :, :2] = labels[..., np.newaxis]
|
||||||
|
labels = np.squeeze(rot_mat @ l_vel_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
# Standardize, Position is standardized relative to current pos and attention_radius for node_type-node_type
|
||||||
|
_, std = self.env.get_standardize_params(self.state[node_type.name], node_type=node_type)
|
||||||
|
rel_state = np.array(inputs)[:, uniform_t]
|
||||||
|
rel_state = np.hstack((rel_state, np.zeros_like(rel_state)))
|
||||||
|
rel_state = np.expand_dims(rel_state, 1)
|
||||||
|
std = np.tile(std, 2)
|
||||||
|
inputs = np.tile(inputs, 2)
|
||||||
|
inputs[..., self.state_length[node_type.name]:self.state_length[node_type.name]+2] = 0.
|
||||||
|
inputs_st = self.env.standardize(inputs,
|
||||||
|
self.state[node_type.name],
|
||||||
|
mean=rel_state,
|
||||||
|
std=std,
|
||||||
|
node_type=node_type)
|
||||||
|
labels_st = self.env.standardize(labels, self.pred_state[node_type.name], node_type=node_type)
|
||||||
|
|
||||||
|
if node_type == self.env.NodeType.VEHICLE:
|
||||||
|
inputs[..., 0:2] = pos_org
|
||||||
|
|
||||||
|
# Convert to torch tensors
|
||||||
|
inputs = torch.tensor(inputs).float().to(self.device)
|
||||||
|
inputs_st = torch.tensor(inputs_st).float().to(self.device)
|
||||||
|
first_history_indices = torch.tensor(first_history_indices).float().to(self.device).long()
|
||||||
|
labels = torch.tensor(labels).float().to(self.device)
|
||||||
|
labels_st = torch.tensor(labels_st).float().to(self.device)
|
||||||
|
|
||||||
|
# Run forward pass
|
||||||
|
model = self.node_models_dict[node_type]
|
||||||
|
predictions = model.predict(inputs,
|
||||||
|
inputs_st,
|
||||||
|
labels,
|
||||||
|
labels_st,
|
||||||
|
first_history_indices,
|
||||||
|
scene,
|
||||||
|
node_scene_graph_batched,
|
||||||
|
timestep=uniform_t,
|
||||||
|
timesteps_in_scene=timesteps_in_scene,
|
||||||
|
prediction_horizon=ph,
|
||||||
|
num_samples_z=num_samples_z,
|
||||||
|
num_samples_gmm=num_samples_gmm,
|
||||||
|
most_likely_z=most_likely_z,
|
||||||
|
most_likely_gmm=most_likely_gmm,
|
||||||
|
all_z=all_z)
|
||||||
|
|
||||||
|
predictions_uns = self.env.unstandardize(predictions.cpu().detach().numpy(),
|
||||||
|
self.pred_state[node_type.name],
|
||||||
|
node_type)
|
||||||
|
|
||||||
|
# Vehicles are rotated such that the x axis is lateral. For output rotation has to be reversed
|
||||||
|
if node_type == self.env.NodeType.VEHICLE:
|
||||||
|
heading = inputs.cpu().detach().numpy()[:, uniform_t, -1]
|
||||||
|
rot_mat = np.zeros((predictions_uns.shape[0],
|
||||||
|
predictions_uns.shape[1],
|
||||||
|
predictions_uns.shape[2],
|
||||||
|
predictions_uns.shape[3], 3, 3))
|
||||||
|
rot_mat[:, :, :, :, 0, 0] = np.cos(-heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, :, :, 0, 1] = np.sin(-heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, :, :, 1, 0] = -np.sin(-heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, :, :, 1, 1] = np.cos(-heading)[:, np.newaxis]
|
||||||
|
rot_mat[:, :, :, :, 2, 2] = 1.
|
||||||
|
|
||||||
|
p_vel_with_one = np.ones((predictions_uns.shape[0],
|
||||||
|
predictions_uns.shape[1],
|
||||||
|
predictions_uns.shape[2],
|
||||||
|
predictions_uns.shape[3], 3, 1))
|
||||||
|
p_vel_with_one[:, :, :, :, :2] = predictions_uns[..., np.newaxis]
|
||||||
|
predictions_uns = np.squeeze(rot_mat @ p_vel_with_one, axis=-1)[..., :2]
|
||||||
|
|
||||||
|
# Assign predictions to node
|
||||||
|
for i, ts in enumerate(timesteps_in_scene):
|
||||||
|
if not ts in predictions_dict.keys():
|
||||||
|
predictions_dict[ts] = dict()
|
||||||
|
predictions_dict[ts][nodes[i]] = predictions_uns[:, :, i]
|
||||||
|
|
||||||
|
return predictions_dict
|
||||||
|
|
70
code/model/model_registrar.py
Normal file
70
code/model/model_registrar.py
Normal file
|
@ -0,0 +1,70 @@
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
def get_model_device(model):
|
||||||
|
return next(model.parameters()).device
|
||||||
|
|
||||||
|
|
||||||
|
class ModelRegistrar(nn.Module):
|
||||||
|
def __init__(self, model_dir, device):
|
||||||
|
super(ModelRegistrar, self).__init__()
|
||||||
|
self.model_dict = nn.ModuleDict()
|
||||||
|
self.model_dir = model_dir
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self):
|
||||||
|
raise NotImplementedError('Although ModelRegistrar is a nn.Module, it is only to store parameters.')
|
||||||
|
|
||||||
|
|
||||||
|
def get_model(self, name, model_if_absent=None):
|
||||||
|
# 4 cases: name in self.model_dict and model_if_absent is None (OK)
|
||||||
|
# name in self.model_dict and model_if_absent is not None (OK)
|
||||||
|
# name not in self.model_dict and model_if_absent is not None (OK)
|
||||||
|
# name not in self.model_dict and model_if_absent is None (NOT OK)
|
||||||
|
|
||||||
|
if name in self.model_dict:
|
||||||
|
return self.model_dict[name]
|
||||||
|
|
||||||
|
elif model_if_absent is not None:
|
||||||
|
self.model_dict[name] = model_if_absent.to(self.device)
|
||||||
|
return self.model_dict[name]
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError(f'{name} was never initialized in this Registrar!')
|
||||||
|
|
||||||
|
|
||||||
|
def print_model_names(self):
|
||||||
|
print(self.model_dict.keys())
|
||||||
|
|
||||||
|
|
||||||
|
def save_models(self, curr_iter):
|
||||||
|
# Create the model directiory if it's not present.
|
||||||
|
save_path = os.path.join(self.model_dir,
|
||||||
|
'model_registrar-%d.pt' % curr_iter)
|
||||||
|
print('')
|
||||||
|
print('Saving to ' + save_path)
|
||||||
|
torch.save(self.model_dict, save_path)
|
||||||
|
print('Saved!')
|
||||||
|
print('')
|
||||||
|
|
||||||
|
|
||||||
|
def load_models(self, iter_num):
|
||||||
|
self.model_dict.clear()
|
||||||
|
|
||||||
|
save_path = os.path.join(self.model_dir,
|
||||||
|
'model_registrar-%d.pt' % iter_num)
|
||||||
|
|
||||||
|
print('')
|
||||||
|
print('Loading from ' + save_path)
|
||||||
|
self.model_dict = torch.load(save_path, map_location=self.device)
|
||||||
|
print('Loaded!')
|
||||||
|
print('')
|
||||||
|
|
||||||
|
|
||||||
|
def to(self, device):
|
||||||
|
for name, model in self.model_dict.items():
|
||||||
|
if get_model_device(model) != device:
|
||||||
|
model.to(device)
|
169
code/model/model_utils.py
Normal file
169
code/model/model_utils.py
Normal file
|
@ -0,0 +1,169 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn.utils.rnn as rnn
|
||||||
|
from enum import Enum
|
||||||
|
import functools
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
from scipy.ndimage import interpolation
|
||||||
|
|
||||||
|
|
||||||
|
class ModeKeys(Enum):
|
||||||
|
TRAIN = 1
|
||||||
|
EVAL = 2
|
||||||
|
PREDICT = 3
|
||||||
|
|
||||||
|
def cyclical_lr(stepsize, min_lr=3e-4, max_lr=3e-3, decay=1.):
|
||||||
|
|
||||||
|
# Lambda function to calculate the LR
|
||||||
|
lr_lambda = lambda it: min_lr + (max_lr - min_lr) * relative(it, stepsize) * decay**it
|
||||||
|
|
||||||
|
# Additional function to see where on the cycle we are
|
||||||
|
def relative(it, stepsize):
|
||||||
|
cycle = math.floor(1 + it / (2 * stepsize))
|
||||||
|
x = abs(it / stepsize - 2 * cycle + 1)
|
||||||
|
return max(0, (1 - x))
|
||||||
|
|
||||||
|
return lr_lambda
|
||||||
|
|
||||||
|
|
||||||
|
def tile(a, dim, n_tile, device='cpu'):
|
||||||
|
init_dim = a.size(dim)
|
||||||
|
repeat_idx = [1] * a.dim()
|
||||||
|
repeat_idx[dim] = n_tile
|
||||||
|
a = a.repeat(*(repeat_idx))
|
||||||
|
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])).to(device)
|
||||||
|
return torch.index_select(a, dim, order_index)
|
||||||
|
|
||||||
|
|
||||||
|
def to_one_hot(labels, n_labels, device):
|
||||||
|
return torch.eye(n_labels, device=device)[labels]
|
||||||
|
|
||||||
|
|
||||||
|
def exp_anneal(anneal_kws):
|
||||||
|
device = anneal_kws['device']
|
||||||
|
start = torch.tensor(anneal_kws['start'], device=device)
|
||||||
|
finish = torch.tensor(anneal_kws['finish'], device=device)
|
||||||
|
rate = torch.tensor(anneal_kws['rate'], device=device)
|
||||||
|
return lambda step: finish - (finish - start)*torch.pow(rate, torch.tensor(step, dtype=torch.float, device=device))
|
||||||
|
|
||||||
|
|
||||||
|
def sigmoid_anneal(anneal_kws):
|
||||||
|
device = anneal_kws['device']
|
||||||
|
start = torch.tensor(anneal_kws['start'], device=device)
|
||||||
|
finish = torch.tensor(anneal_kws['finish'], device=device)
|
||||||
|
center_step = torch.tensor(anneal_kws['center_step'], device=device, dtype=torch.float)
|
||||||
|
steps_lo_to_hi = torch.tensor(anneal_kws['steps_lo_to_hi'], device=device, dtype=torch.float)
|
||||||
|
return lambda step: start + (finish - start)*torch.sigmoid((torch.tensor(float(step), device=device) - center_step) * (1./steps_lo_to_hi))
|
||||||
|
|
||||||
|
|
||||||
|
class CustomLR(torch.optim.lr_scheduler.LambdaLR):
|
||||||
|
def __init__(self, optimizer, lr_lambda, last_epoch=-1):
|
||||||
|
super(CustomLR, self).__init__(optimizer, lr_lambda, last_epoch)
|
||||||
|
|
||||||
|
def get_lr(self):
|
||||||
|
return [lmbda(self.last_epoch)
|
||||||
|
for lmbda, base_lr in zip(self.lr_lambdas, self.base_lrs)]
|
||||||
|
|
||||||
|
|
||||||
|
def run_lstm_on_variable_length_seqs(lstm_module, original_seqs, break_indices, lower_indices, total_length):
|
||||||
|
# This is done so that we can just pass in self.prediction_timesteps
|
||||||
|
# (which we want to INCLUDE, so this will exclude the next timestep).
|
||||||
|
inclusive_break_indices = break_indices + 1
|
||||||
|
|
||||||
|
pad_list = list()
|
||||||
|
for i, seq_len in enumerate(inclusive_break_indices):
|
||||||
|
pad_list.append(original_seqs[i, lower_indices[i]:seq_len])
|
||||||
|
|
||||||
|
packed_seqs = rnn.pack_sequence(pad_list, enforce_sorted=False)
|
||||||
|
packed_output, (h_n, c_n) = lstm_module(packed_seqs)
|
||||||
|
output, _ = rnn.pad_packed_sequence(packed_output,
|
||||||
|
batch_first=True,
|
||||||
|
total_length=total_length)
|
||||||
|
|
||||||
|
return output, (h_n, c_n)
|
||||||
|
|
||||||
|
|
||||||
|
def extract_subtensor_per_batch_element(tensor, indices):
|
||||||
|
batch_idxs = torch.arange(start=0, end=len(indices))
|
||||||
|
|
||||||
|
batch_idxs = batch_idxs[~torch.isnan(indices)]
|
||||||
|
indices = indices[~torch.isnan(indices)]
|
||||||
|
if indices.size == 0:
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
indices = indices.long()
|
||||||
|
if tensor.is_cuda:
|
||||||
|
batch_idxs = batch_idxs.to(tensor.get_device())
|
||||||
|
indices = indices.to(tensor.get_device())
|
||||||
|
return tensor[batch_idxs, indices]
|
||||||
|
|
||||||
|
|
||||||
|
def unpack_RNN_state(state_tuple):
|
||||||
|
# PyTorch returned LSTM states have 3 dims:
|
||||||
|
# (num_layers * num_directions, batch, hidden_size)
|
||||||
|
|
||||||
|
state = torch.cat(state_tuple, dim=0).permute(1, 0, 2)
|
||||||
|
# Now state is (batch, 2 * num_layers * num_directions, hidden_size)
|
||||||
|
|
||||||
|
state_size = state.size()
|
||||||
|
return torch.reshape(state, (-1, state_size[1] * state_size[2]))
|
||||||
|
|
||||||
|
|
||||||
|
def rsetattr(obj, attr, val):
|
||||||
|
pre, _, post = attr.rpartition('.')
|
||||||
|
return setattr(rgetattr(obj, pre) if pre else obj, post, val)
|
||||||
|
|
||||||
|
|
||||||
|
# using wonder's beautiful simplification:
|
||||||
|
# https://stackoverflow.com/questions/31174295/getattr-and-setattr-on-nested-objects/31174427?noredirect=1#comment86638618_31174427
|
||||||
|
def rgetattr(obj, attr, *args):
|
||||||
|
def _getattr(obj, attr):
|
||||||
|
return getattr(obj, attr, *args)
|
||||||
|
return functools.reduce(_getattr, [obj] + attr.split('.'))
|
||||||
|
|
||||||
|
|
||||||
|
def get_cropped_maps(world_pts, map, context_size=50):
|
||||||
|
"""world_pts: N x 2 array of positions relative to the world."""
|
||||||
|
expanded_obs_img = np.full((map.data.shape[0] + context_size, map.data.shape[1] + context_size, map.data.shape[2]), False, dtype=np.float32)
|
||||||
|
expanded_obs_img[context_size//2:-context_size//2, context_size//2:-context_size//2] = map.fdata.astype(np.float32)
|
||||||
|
img_pts = context_size//2 + np.round(map.to_map_points(world_pts)).astype(int)
|
||||||
|
return np.stack([expanded_obs_img[img_pts[i, 0] - context_size//2 : img_pts[i, 0] + context_size//2,
|
||||||
|
img_pts[i, 1] - context_size//2 : img_pts[i, 1] + context_size//2]
|
||||||
|
for i in range(world_pts.shape[0])], axis=0)
|
||||||
|
|
||||||
|
def get_cropped_maps_heading(world_pts, map, context_size=50, heading=None):
|
||||||
|
"""world_pts: N x 2 array of positions relative to the world."""
|
||||||
|
rotations = np.round((heading) / (np.pi / 2)).astype(int)
|
||||||
|
|
||||||
|
expanded_obs_img = np.full((map.data.shape[0] + context_size, map.data.shape[1] + context_size, map.data.shape[2]),
|
||||||
|
False, dtype=np.float32)
|
||||||
|
expanded_obs_img[context_size // 2:-context_size // 2, context_size // 2:-context_size // 2] = map.fdata.astype(
|
||||||
|
np.float32)
|
||||||
|
img_pts = context_size // 2 + np.round(map.to_map_points(world_pts)).astype(int)
|
||||||
|
map_h = np.stack([expanded_obs_img[img_pts[i, 0] - context_size // 2: img_pts[i, 0] + context_size // 2,
|
||||||
|
img_pts[i, 1] - context_size // 2: img_pts[i, 1] + context_size // 2]
|
||||||
|
for i in range(world_pts.shape[0])], axis=0)
|
||||||
|
|
||||||
|
map_h[rotations == 1] = np.rot90(map_h[rotations == 1], -1, axes=(1, 2))
|
||||||
|
map_h[rotations == 2] = np.rot90(map_h[rotations == 2], 2, axes=(1, 2))
|
||||||
|
map_h[rotations == -1] = np.rot90(map_h[rotations == -1], 1, axes=(1, 2))
|
||||||
|
map_h[rotations == -2] = np.rot90(map_h[rotations == -2], 2, axes=(1, 2))
|
||||||
|
return map_h
|
||||||
|
|
||||||
|
def get_cropped_maps_heading_exact(world_pts, map, context_size=50, heading=None):
|
||||||
|
"""world_pts: N x 2 array of positions relative to the world."""
|
||||||
|
angles = -heading * 180 / np.pi
|
||||||
|
|
||||||
|
expanded_obs_img = np.full((map.data.shape[0] + context_size, map.data.shape[1] + context_size, map.data.shape[2]),
|
||||||
|
False, dtype=np.float32)
|
||||||
|
expanded_obs_img[context_size // 2:-context_size // 2, context_size // 2:-context_size // 2] = map.fdata.astype(
|
||||||
|
np.float32)
|
||||||
|
img_pts = context_size // 2 + np.round(map.to_map_points(world_pts)).astype(int)
|
||||||
|
map_h = np.stack([expanded_obs_img[img_pts[i, 0] - context_size // 2: img_pts[i, 0] + context_size // 2,
|
||||||
|
img_pts[i, 1] - context_size // 2: img_pts[i, 1] + context_size // 2]
|
||||||
|
for i in range(world_pts.shape[0])], axis=0)
|
||||||
|
|
||||||
|
for i in range(angles.shape[0]):
|
||||||
|
map_h[i] = interpolation.rotate(map_h[i], reshape=False, angle=angles[i], prefilter=False)
|
||||||
|
|
||||||
|
return map_h
|
1200
code/model/node_model.py
Normal file
1200
code/model/node_model.py
Normal file
File diff suppressed because it is too large
Load diff
BIN
code/notebooks/Car TOP_VIEW 375397.png
Normal file
BIN
code/notebooks/Car TOP_VIEW 375397.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 61 KiB |
BIN
code/notebooks/Car TOP_VIEW 80CBE5.png
Normal file
BIN
code/notebooks/Car TOP_VIEW 80CBE5.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 52 KiB |
BIN
code/notebooks/Car TOP_VIEW ABCB51.png
Normal file
BIN
code/notebooks/Car TOP_VIEW ABCB51.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
BIN
code/notebooks/Car TOP_VIEW C8B0B0.png
Normal file
BIN
code/notebooks/Car TOP_VIEW C8B0B0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
BIN
code/notebooks/Car TOP_VIEW F05F78.png
Normal file
BIN
code/notebooks/Car TOP_VIEW F05F78.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
BIN
code/notebooks/Car TOP_VIEW ROBOT.png
Normal file
BIN
code/notebooks/Car TOP_VIEW ROBOT.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 62 KiB |
675
code/notebooks/NuScenes Qualitative.ipynb
Normal file
675
code/notebooks/NuScenes Qualitative.ipynb
Normal file
File diff suppressed because one or more lines are too long
357
code/notebooks/NuScenes Quantitative.ipynb
Normal file
357
code/notebooks/NuScenes Quantitative.ipynb
Normal file
File diff suppressed because one or more lines are too long
288
code/notebooks/helper.py
Normal file
288
code/notebooks/helper.py
Normal file
|
@ -0,0 +1,288 @@
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
|
||||||
|
import matplotlib.patheffects as pe
|
||||||
|
from scipy.ndimage import rotate
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
|
from model.model_registrar import ModelRegistrar
|
||||||
|
from model.dyn_stg import SpatioTemporalGraphCVAEModel
|
||||||
|
from utils import prediction_output_to_trajectories
|
||||||
|
|
||||||
|
from scipy.integrate import cumtrapz
|
||||||
|
|
||||||
|
line_colors = ['#80CBE5', '#375397', '#F05F78', '#ABCB51', '#C8B0B0']
|
||||||
|
|
||||||
|
cars = [plt.imread('Car TOP_VIEW 80CBE5.png'),
|
||||||
|
plt.imread('Car TOP_VIEW 375397.png'),
|
||||||
|
plt.imread('Car TOP_VIEW F05F78.png'),
|
||||||
|
plt.imread('Car TOP_VIEW ABCB51.png'),
|
||||||
|
plt.imread('Car TOP_VIEW C8B0B0.png')]
|
||||||
|
|
||||||
|
robot = plt.imread('Car TOP_VIEW ROBOT.png')
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(model_dir, env, ts=3999):
|
||||||
|
model_registrar = ModelRegistrar(model_dir, 'cpu')
|
||||||
|
model_registrar.load_models(ts)
|
||||||
|
with open(os.path.join(model_dir, 'config.json'), 'r') as config_json:
|
||||||
|
hyperparams = json.load(config_json)
|
||||||
|
|
||||||
|
hyperparams['map_enc_dropout'] = 0.0
|
||||||
|
if 'incl_robot_node' not in hyperparams:
|
||||||
|
hyperparams['incl_robot_node'] = False
|
||||||
|
|
||||||
|
stg = SpatioTemporalGraphCVAEModel(model_registrar,
|
||||||
|
hyperparams,
|
||||||
|
None, 'cpu')
|
||||||
|
|
||||||
|
stg.set_scene_graph(env)
|
||||||
|
|
||||||
|
stg.set_annealing_params()
|
||||||
|
|
||||||
|
return stg, hyperparams
|
||||||
|
|
||||||
|
|
||||||
|
def plot_vehicle_nice(ax, predictions, dt, max_hl=10, ph=6, map=None, x_min=0, y_min=0):
|
||||||
|
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(predictions,
|
||||||
|
dt,
|
||||||
|
max_hl,
|
||||||
|
ph,
|
||||||
|
map=map)
|
||||||
|
assert (len(prediction_dict.keys()) <= 1)
|
||||||
|
if len(prediction_dict.keys()) == 0:
|
||||||
|
return
|
||||||
|
ts_key = list(prediction_dict.keys())[0]
|
||||||
|
|
||||||
|
prediction_dict = prediction_dict[ts_key]
|
||||||
|
histories_dict = histories_dict[ts_key]
|
||||||
|
futures_dict = futures_dict[ts_key]
|
||||||
|
|
||||||
|
if map is not None:
|
||||||
|
ax.imshow(map.fdata, origin='lower', alpha=0.5)
|
||||||
|
|
||||||
|
cmap = ['k', 'b', 'y', 'g', 'r']
|
||||||
|
line_alpha = 0.7
|
||||||
|
line_width = 0.2
|
||||||
|
edge_width = 2
|
||||||
|
circle_edge_width = 0.5
|
||||||
|
node_circle_size = 0.3
|
||||||
|
a = []
|
||||||
|
i = 0
|
||||||
|
node_list = sorted(histories_dict.keys(), key=lambda x: x.length)
|
||||||
|
for node in node_list:
|
||||||
|
history = histories_dict[node] + np.array([x_min, y_min])
|
||||||
|
future = futures_dict[node] + np.array([x_min, y_min])
|
||||||
|
predictions = prediction_dict[node] + np.array([x_min, y_min])
|
||||||
|
if node.type.name == 'VEHICLE':
|
||||||
|
# ax.plot(history[:, 0], history[:, 1], 'ko-', linewidth=1)
|
||||||
|
|
||||||
|
ax.plot(future[:, 0],
|
||||||
|
future[:, 1],
|
||||||
|
'w--o',
|
||||||
|
linewidth=4,
|
||||||
|
markersize=3,
|
||||||
|
zorder=650,
|
||||||
|
path_effects=[pe.Stroke(linewidth=5, foreground='k'), pe.Normal()])
|
||||||
|
|
||||||
|
for t in range(predictions.shape[1]):
|
||||||
|
sns.kdeplot(predictions[:, t, 0], predictions[:, t, 1],
|
||||||
|
ax=ax, shade=True, shade_lowest=False,
|
||||||
|
color=line_colors[i % len(line_colors)], zorder=600, alpha=0.8)
|
||||||
|
|
||||||
|
vel = node.get(ts_key, {'velocity': ['x', 'y']})
|
||||||
|
h = np.arctan2(vel[0, 1], vel[0, 0])
|
||||||
|
r_img = rotate(cars[i % len(cars)], node.get(ts_key, {'heading': ['value']})[0, 0] * 180 / np.pi,
|
||||||
|
reshape=True)
|
||||||
|
oi = OffsetImage(r_img, zoom=0.035, zorder=700)
|
||||||
|
veh_box = AnnotationBbox(oi, (history[-1, 0], history[-1, 1]), frameon=False)
|
||||||
|
veh_box.zorder = 700
|
||||||
|
ax.add_artist(veh_box)
|
||||||
|
i += 1
|
||||||
|
else:
|
||||||
|
# ax.plot(history[:, 0], history[:, 1], 'k--')
|
||||||
|
|
||||||
|
for t in range(predictions.shape[1]):
|
||||||
|
sns.kdeplot(predictions[:, t, 0], predictions[:, t, 1],
|
||||||
|
ax=ax, shade=True, shade_lowest=False,
|
||||||
|
color='b', zorder=600, alpha=0.8)
|
||||||
|
|
||||||
|
ax.plot(future[:, 0],
|
||||||
|
future[:, 1],
|
||||||
|
'w--',
|
||||||
|
zorder=650,
|
||||||
|
path_effects=[pe.Stroke(linewidth=edge_width, foreground='k'), pe.Normal()])
|
||||||
|
# Current Node Position
|
||||||
|
circle = plt.Circle((history[-1, 0],
|
||||||
|
history[-1, 1]),
|
||||||
|
node_circle_size,
|
||||||
|
facecolor='g',
|
||||||
|
edgecolor='k',
|
||||||
|
lw=circle_edge_width,
|
||||||
|
zorder=3)
|
||||||
|
ax.add_artist(circle)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_vehicle_mm(ax, predictions, dt, max_hl=10, ph=6, map=None, x_min=0, y_min=0):
|
||||||
|
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(predictions,
|
||||||
|
dt,
|
||||||
|
max_hl,
|
||||||
|
ph,
|
||||||
|
map=map)
|
||||||
|
assert (len(prediction_dict.keys()) <= 1)
|
||||||
|
if len(prediction_dict.keys()) == 0:
|
||||||
|
return
|
||||||
|
ts_key = list(prediction_dict.keys())[0]
|
||||||
|
|
||||||
|
prediction_dict = prediction_dict[ts_key]
|
||||||
|
histories_dict = histories_dict[ts_key]
|
||||||
|
futures_dict = futures_dict[ts_key]
|
||||||
|
|
||||||
|
if map is not None:
|
||||||
|
ax.imshow(map.fdata, origin='lower', alpha=0.5)
|
||||||
|
|
||||||
|
cmap = ['k', 'b', 'y', 'g', 'r']
|
||||||
|
line_alpha = 0.7
|
||||||
|
line_width = 0.2
|
||||||
|
edge_width = 2
|
||||||
|
circle_edge_width = 0.5
|
||||||
|
node_circle_size = 0.5
|
||||||
|
a = []
|
||||||
|
i = 0
|
||||||
|
node_list = sorted(histories_dict.keys(), key=lambda x: x.length)
|
||||||
|
for node in node_list:
|
||||||
|
history = histories_dict[node] + np.array([x_min, y_min])
|
||||||
|
future = futures_dict[node] + np.array([x_min, y_min])
|
||||||
|
|
||||||
|
predictions = prediction_dict[node] + np.array([x_min, y_min])
|
||||||
|
if node.type.name == 'VEHICLE':
|
||||||
|
for sample_num in range(prediction_dict[node].shape[0]):
|
||||||
|
ax.plot(predictions[sample_num, :, 0], predictions[sample_num, :, 1], 'ko-',
|
||||||
|
zorder=620,
|
||||||
|
markersize=5,
|
||||||
|
linewidth=3, alpha=0.7)
|
||||||
|
else:
|
||||||
|
for sample_num in range(prediction_dict[node].shape[0]):
|
||||||
|
ax.plot(predictions[sample_num, :, 0], predictions[sample_num, :, 1], 'ko-',
|
||||||
|
zorder=620,
|
||||||
|
markersize=2,
|
||||||
|
linewidth=1, alpha=0.7)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_vehicle_nice_mv(ax, predictions, dt, max_hl=10, ph=6, map=None, x_min=0, y_min=0):
|
||||||
|
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(predictions,
|
||||||
|
dt,
|
||||||
|
max_hl,
|
||||||
|
ph,
|
||||||
|
map=map)
|
||||||
|
assert (len(prediction_dict.keys()) <= 1)
|
||||||
|
if len(prediction_dict.keys()) == 0:
|
||||||
|
return
|
||||||
|
ts_key = list(prediction_dict.keys())[0]
|
||||||
|
|
||||||
|
prediction_dict = prediction_dict[ts_key]
|
||||||
|
histories_dict = histories_dict[ts_key]
|
||||||
|
futures_dict = futures_dict[ts_key]
|
||||||
|
|
||||||
|
if map is not None:
|
||||||
|
ax.imshow(map.fdata, origin='lower', alpha=0.5)
|
||||||
|
|
||||||
|
cmap = ['k', 'b', 'y', 'g', 'r']
|
||||||
|
line_alpha = 0.7
|
||||||
|
line_width = 0.2
|
||||||
|
edge_width = 2
|
||||||
|
circle_edge_width = 0.5
|
||||||
|
node_circle_size = 0.3
|
||||||
|
a = []
|
||||||
|
i = 0
|
||||||
|
node_list = sorted(histories_dict.keys(), key=lambda x: x.length)
|
||||||
|
for node in node_list:
|
||||||
|
h = node.get(ts_key, {'heading': ['value']})[0, 0]
|
||||||
|
history_org = histories_dict[node] + np.array([x_min, y_min])
|
||||||
|
history = histories_dict[node] + np.array([x_min, y_min]) + node.length * np.array([np.cos(h), np.sin(h)])
|
||||||
|
future = futures_dict[node] + np.array([x_min, y_min]) + node.length * np.array([np.cos(h), np.sin(h)])
|
||||||
|
predictions = prediction_dict[node] + np.array([x_min, y_min]) + node.length * np.array([np.cos(h), np.sin(h)])
|
||||||
|
if node.type.name == 'VEHICLE':
|
||||||
|
for t in range(predictions.shape[1]):
|
||||||
|
sns.kdeplot(predictions[:, t, 0], predictions[:, t, 1],
|
||||||
|
ax=ax, shade=True, shade_lowest=False,
|
||||||
|
color=line_colors[i % len(line_colors)], zorder=600, alpha=1.0)
|
||||||
|
|
||||||
|
r_img = rotate(cars[i % len(cars)], node.get(ts_key, {'heading': ['value']})[0, 0] * 180 / np.pi,
|
||||||
|
reshape=True)
|
||||||
|
oi = OffsetImage(r_img, zoom=0.08, zorder=700)
|
||||||
|
veh_box = AnnotationBbox(oi, (history_org[-1, 0], history_org[-1, 1]), frameon=False)
|
||||||
|
veh_box.zorder = 700
|
||||||
|
ax.add_artist(veh_box)
|
||||||
|
i += 1
|
||||||
|
else:
|
||||||
|
|
||||||
|
for t in range(predictions.shape[1]):
|
||||||
|
sns.kdeplot(predictions[:, t, 0], predictions[:, t, 1],
|
||||||
|
ax=ax, shade=True, shade_lowest=False,
|
||||||
|
color='b', zorder=600, alpha=0.8)
|
||||||
|
|
||||||
|
# Current Node Position
|
||||||
|
circle = plt.Circle((history[-1, 0],
|
||||||
|
history[-1, 1]),
|
||||||
|
node_circle_size,
|
||||||
|
facecolor='g',
|
||||||
|
edgecolor='k',
|
||||||
|
lw=circle_edge_width,
|
||||||
|
zorder=3)
|
||||||
|
ax.add_artist(circle)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_vehicle_nice_mv_robot(ax, predictions, dt, max_hl=10, ph=6, map=None, x_min=0, y_min=0):
|
||||||
|
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(predictions,
|
||||||
|
dt,
|
||||||
|
max_hl,
|
||||||
|
ph,
|
||||||
|
map=map)
|
||||||
|
assert (len(prediction_dict.keys()) <= 1)
|
||||||
|
if len(prediction_dict.keys()) == 0:
|
||||||
|
return
|
||||||
|
ts_key = list(prediction_dict.keys())[0]
|
||||||
|
|
||||||
|
prediction_dict = prediction_dict[ts_key]
|
||||||
|
histories_dict = histories_dict[ts_key]
|
||||||
|
futures_dict = futures_dict[ts_key]
|
||||||
|
|
||||||
|
if map is not None:
|
||||||
|
ax.imshow(map.fdata, origin='lower', alpha=0.5)
|
||||||
|
|
||||||
|
cmap = ['k', 'b', 'y', 'g', 'r']
|
||||||
|
line_alpha = 0.7
|
||||||
|
line_width = 0.2
|
||||||
|
edge_width = 2
|
||||||
|
circle_edge_width = 0.5
|
||||||
|
node_circle_size = 0.3
|
||||||
|
|
||||||
|
node_list = sorted(histories_dict.keys(), key=lambda x: x.length)
|
||||||
|
for node in node_list:
|
||||||
|
h = node.get(ts_key, {'heading': ['value']})[0, 0]
|
||||||
|
history_org = histories_dict[node] + np.array([x_min, y_min]) + node.length / 2 * np.array(
|
||||||
|
[np.cos(h), np.sin(h)])
|
||||||
|
future = futures_dict[node] + np.array([x_min, y_min]) + node.length * np.array([np.cos(h), np.sin(h)])
|
||||||
|
|
||||||
|
ax.plot(future[:, 0],
|
||||||
|
future[:, 1],
|
||||||
|
'--o',
|
||||||
|
c='#F05F78',
|
||||||
|
linewidth=4,
|
||||||
|
markersize=3,
|
||||||
|
zorder=650,
|
||||||
|
path_effects=[pe.Stroke(linewidth=5, foreground='k'), pe.Normal()])
|
||||||
|
|
||||||
|
r_img = rotate(robot, node.get(ts_key, {'heading': ['value']})[0, 0] * 180 / np.pi, reshape=True)
|
||||||
|
oi = OffsetImage(r_img, zoom=0.08, zorder=700)
|
||||||
|
veh_box = AnnotationBbox(oi, (history_org[-1, 0], history_org[-1, 1]), frameon=False)
|
||||||
|
veh_box.zorder = 700
|
||||||
|
ax.add_artist(veh_box)
|
||||||
|
|
||||||
|
|
||||||
|
def integrate(f, dx, F0=0.):
|
||||||
|
N = f.shape[0]
|
||||||
|
return F0 + np.hstack((np.zeros((N, 1)), cumtrapz(f, axis=1, dx=dx)))
|
182
code/notebooks/model_to_metric_nuScenes.py
Normal file
182
code/notebooks/model_to_metric_nuScenes.py
Normal file
|
@ -0,0 +1,182 @@
|
||||||
|
import sys
|
||||||
|
sys.path.append('../../code')
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import json
|
||||||
|
import argparse
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from tqdm import tqdm
|
||||||
|
from model.model_registrar import ModelRegistrar
|
||||||
|
from model.dyn_stg import SpatioTemporalGraphCVAEModel
|
||||||
|
import evaluation
|
||||||
|
from utils import prediction_output_to_trajectories
|
||||||
|
from scipy.interpolate import RectBivariateSpline
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--model", help="model full path", type=str)
|
||||||
|
parser.add_argument("--checkpoint", help="model checkpoint to evaluate", type=int)
|
||||||
|
parser.add_argument("--data", help="full path to data file", type=str)
|
||||||
|
parser.add_argument("--output", help="full path to output csv file", type=str)
|
||||||
|
parser.add_argument("--node_type", help="Node Type to evaluate", type=str)
|
||||||
|
parser.add_argument("--prediction_horizon", nargs='+', help="prediction horizon", type=int, default=None)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compute_obs_violations(predicted_trajs, map):
|
||||||
|
obs_map = 1 - map.fdata[..., 0]
|
||||||
|
|
||||||
|
interp_obs_map = RectBivariateSpline(range(obs_map.shape[0]),
|
||||||
|
range(obs_map.shape[1]),
|
||||||
|
obs_map,
|
||||||
|
kx=1, ky=1)
|
||||||
|
|
||||||
|
old_shape = predicted_trajs.shape
|
||||||
|
pred_trajs_map = map.to_map_points(predicted_trajs.reshape((-1, 2)))
|
||||||
|
|
||||||
|
traj_obs_values = interp_obs_map(pred_trajs_map[:, 0], pred_trajs_map[:, 1], grid=False)
|
||||||
|
traj_obs_values = traj_obs_values.reshape((old_shape[0], old_shape[1]))
|
||||||
|
num_viol_trajs = np.sum(traj_obs_values.max(axis=1) > 0, dtype=float)
|
||||||
|
|
||||||
|
return num_viol_trajs
|
||||||
|
|
||||||
|
def compute_heading_error(prediction_output_dict, dt, max_hl, ph, node_type_enum, kde=True, obs=False, map=None):
|
||||||
|
|
||||||
|
heading_error = list()
|
||||||
|
|
||||||
|
for t in prediction_output_dict.keys():
|
||||||
|
for node in prediction_output_dict[t].keys():
|
||||||
|
if node.type.name == 'VEHICLE':
|
||||||
|
gt_vel = node.get(t + ph - 1, {'velocity': ['x', 'y']})[0]
|
||||||
|
gt_heading = np.arctan2(gt_vel[1], gt_vel[0])
|
||||||
|
our_heading = np.arctan2(prediction_output_dict[t][node][..., -2, 1], prediction_output_dict[t][node][..., -2, 0])
|
||||||
|
he = np.mean(np.abs(gt_heading - our_heading)) % (2 * np.pi)
|
||||||
|
heading_error.append(he)
|
||||||
|
|
||||||
|
return heading_error
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(model_dir, env, ts=99):
|
||||||
|
model_registrar = ModelRegistrar(model_dir, 'cpu')
|
||||||
|
model_registrar.load_models(ts)
|
||||||
|
with open(os.path.join(model_dir, 'config.json'), 'r') as config_json:
|
||||||
|
hyperparams = json.load(config_json)
|
||||||
|
|
||||||
|
stg = SpatioTemporalGraphCVAEModel(model_registrar,
|
||||||
|
hyperparams,
|
||||||
|
None, 'cuda:0')
|
||||||
|
hyperparams['incl_robot_node'] = False
|
||||||
|
|
||||||
|
stg.set_scene_graph(env)
|
||||||
|
stg.set_annealing_params()
|
||||||
|
return stg, hyperparams
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
with open(args.data, 'rb') as f:
|
||||||
|
env = pickle.load(f, encoding='latin1')
|
||||||
|
scenes = env.scenes
|
||||||
|
|
||||||
|
eval_stg, hyperparams = load_model(args.model, env, ts=args.checkpoint)
|
||||||
|
|
||||||
|
print("-- Preparing Node Graph")
|
||||||
|
for scene in tqdm(scenes):
|
||||||
|
scene.calculate_scene_graph(hyperparams['edge_radius'],
|
||||||
|
hyperparams['state'],
|
||||||
|
hyperparams['edge_addition_filter'],
|
||||||
|
hyperparams['edge_removal_filter'])
|
||||||
|
|
||||||
|
if args.prediction_horizon is None:
|
||||||
|
args.prediction_horizon = [hyperparams['prediction_horizon']]
|
||||||
|
|
||||||
|
for ph in args.prediction_horizon:
|
||||||
|
print(f"Prediction Horizon: {ph}")
|
||||||
|
max_hl = hyperparams['maximum_history_length']
|
||||||
|
node_type = env.NodeType[args.node_type]
|
||||||
|
print(f"Node Type: {node_type.name}")
|
||||||
|
print(f"Edge Radius: {hyperparams['edge_radius']}")
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
eval_ade_batch_errors = np.array([])
|
||||||
|
eval_fde_batch_errors = np.array([])
|
||||||
|
eval_kde_nll = np.array([])
|
||||||
|
eval_obs_viols = np.array([])
|
||||||
|
print("-- Evaluating Full")
|
||||||
|
for i, scene in enumerate(tqdm(scenes)):
|
||||||
|
for timestep in range(scene.timesteps):
|
||||||
|
predictions = eval_stg.predict(scene,
|
||||||
|
np.array([timestep]),
|
||||||
|
ph,
|
||||||
|
num_samples_z=2000,
|
||||||
|
most_likely_z=False,
|
||||||
|
min_future_timesteps=8)
|
||||||
|
|
||||||
|
if not predictions:
|
||||||
|
continue
|
||||||
|
|
||||||
|
eval_error_dict = evaluation.compute_batch_statistics(predictions,
|
||||||
|
scene.dt,
|
||||||
|
node_type_enum=env.NodeType,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph,
|
||||||
|
map=scene.map[node_type.name],
|
||||||
|
obs=True)
|
||||||
|
|
||||||
|
eval_ade_batch_errors = np.hstack((eval_ade_batch_errors, eval_error_dict[node_type]['ade']))
|
||||||
|
eval_fde_batch_errors = np.hstack((eval_fde_batch_errors, eval_error_dict[node_type]['fde']))
|
||||||
|
eval_kde_nll = np.hstack((eval_kde_nll, eval_error_dict[node_type]['kde']))
|
||||||
|
eval_obs_viols = np.hstack((eval_obs_viols, eval_error_dict[node_type]['obs_viols']))
|
||||||
|
|
||||||
|
del predictions
|
||||||
|
del eval_error_dict
|
||||||
|
|
||||||
|
print(f"Final Mean Displacement Error @{ph * scene.dt}s: {np.mean(eval_fde_batch_errors)}")
|
||||||
|
print(f"Road Violations @{ph * scene.dt}s: {100 * np.sum(eval_obs_viols) / (eval_obs_viols.shape[0] * 2000)}%")
|
||||||
|
pd.DataFrame({'error_value': eval_ade_batch_errors, 'error_type': 'ade', 'type': 'full', 'ph': ph}).to_csv(args.output + '_ade_full_' + str(ph)+'ph' + '.csv')
|
||||||
|
pd.DataFrame({'error_value': eval_fde_batch_errors, 'error_type': 'fde', 'type': 'full', 'ph': ph}).to_csv(args.output + '_fde_full' + str(ph)+'ph' + '.csv')
|
||||||
|
pd.DataFrame({'error_value': eval_kde_nll, 'error_type': 'kde', 'type': 'full', 'ph': ph}).to_csv(args.output + '_kde_full' + str(ph)+'ph' + '.csv')
|
||||||
|
pd.DataFrame({'error_value': eval_obs_viols, 'error_type': 'obs', 'type': 'full', 'ph': ph}).to_csv(args.output + '_obs_full' + str(ph)+'ph' + '.csv')
|
||||||
|
|
||||||
|
eval_ade_batch_errors = np.array([])
|
||||||
|
eval_fde_batch_errors = np.array([])
|
||||||
|
eval_heading_err = np.array([])
|
||||||
|
eval_obs_viols = np.array([])
|
||||||
|
print("-- Evaluating most likely Z and GMM")
|
||||||
|
for i, scene in enumerate(scenes):
|
||||||
|
print(f"---- Evaluating Scene {i+1}/{len(scenes)}")
|
||||||
|
for t in np.arange(0, scene.timesteps, 20):
|
||||||
|
timesteps = np.arange(t, t+20)
|
||||||
|
|
||||||
|
predictions = eval_stg.predict(scene,
|
||||||
|
timesteps,
|
||||||
|
ph,
|
||||||
|
num_samples_z=1,
|
||||||
|
most_likely_z=True,
|
||||||
|
most_likely_gmm=True,
|
||||||
|
min_future_timesteps=8)
|
||||||
|
|
||||||
|
eval_error_dict = evaluation.compute_batch_statistics(predictions,
|
||||||
|
scene.dt,
|
||||||
|
node_type_enum=env.NodeType,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph,
|
||||||
|
map=1 - scene.map[node_type.name].fdata[..., 0],
|
||||||
|
kde=False)
|
||||||
|
eval_ade_batch_errors = np.hstack((eval_ade_batch_errors, eval_error_dict[node_type]['ade']))
|
||||||
|
eval_fde_batch_errors = np.hstack((eval_fde_batch_errors, eval_error_dict[node_type]['fde']))
|
||||||
|
eval_obs_viols = np.hstack((eval_obs_viols, eval_error_dict[node_type]['obs_viols']))
|
||||||
|
|
||||||
|
heading_error = compute_heading_error(predictions,
|
||||||
|
scene.dt,
|
||||||
|
node_type_enum=env.NodeType,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph,
|
||||||
|
map=1 - scene.map[node_type.name].fdata[..., 0],
|
||||||
|
kde=False)
|
||||||
|
eval_heading_err = np.hstack((eval_heading_err, heading_error))
|
||||||
|
|
||||||
|
print(f"Final Displacement Error @{ph * scene.dt}s: {np.mean(eval_fde_batch_errors)}")
|
||||||
|
pd.DataFrame({'error_value': eval_ade_batch_errors, 'error_type': 'ade', 'type': 'mm', 'ph': ph}).to_csv(args.output + '_ade_mm' + str(ph)+'ph' + '.csv')
|
||||||
|
pd.DataFrame({'error_value': eval_fde_batch_errors, 'error_type': 'fde', 'type': 'mm', 'ph': ph}).to_csv(args.output + '_fde_mm' + str(ph)+'ph' + '.csv')
|
||||||
|
pd.DataFrame({'error_value': eval_obs_viols, 'error_type': 'obs', 'type': 'mm', 'ph': ph}).to_csv( args.output + '_obs_mm' + str(ph)+'ph' + '.csv')
|
6
code/notebooks/run_eval.bash
Normal file
6
code/notebooks/run_eval.bash
Normal file
|
@ -0,0 +1,6 @@
|
||||||
|
#!/bin/bash
|
||||||
|
python model_to_metric_nuScenes.py --model "../../data/nuScenes/models/full" --checkpoint 1 --data "../../data/processed/nuScenes_test.pkl" --output "./csv/full_veh" --node_type "VEHICLE" --prediction_horizon 2 4 6 8 > full_out.txt
|
||||||
|
python model_to_metric_nuScenes.py --model "../../data/nuScenes/models/me_demo" --checkpoint 1 --data "../../data/processed/nuScenes_test.pkl" --output "./csv/me_veh" --node_type "VEHICLE" --prediction_horizon 2 4 6 8 > me_out.txt
|
||||||
|
python model_to_metric_nuScenes.py --model "../../data/nuScenes/models/edge" --checkpoint 1 --data "../../data/processed/nuScenes_test.pkl" --output "./csv/edge_veh" --node_type "VEHICLE" --prediction_horizon 2 4 6 8 > edge_out.txt
|
||||||
|
python model_to_metric_nuScenes.py --model "../../data/nuScenes/models/baseline" --checkpoint 1 --data "../../data/processed/nuScenes_test.pkl" --output "./csv/baseline_veh" --node_type "VEHICLE" --prediction_horizon 2 4 6 8 > baseline_out.txt
|
||||||
|
python model_to_metric_nuScenes.py --model "../../data/nuScenes/models/full" --checkpoint 1 --data "../../data/processed/nuScenes_test.pkl" --output "./csv/full_ped" --node_type "PEDESTRIAN" --prediction_horizon 2 4 6 8 > full_out_ped.txt
|
476
code/train.py
Normal file
476
code/train.py
Normal file
|
@ -0,0 +1,476 @@
|
||||||
|
import torch
|
||||||
|
from torch import nn, optim
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import psutil
|
||||||
|
import pickle
|
||||||
|
import json
|
||||||
|
import random
|
||||||
|
import argparse
|
||||||
|
import pathlib
|
||||||
|
import visualization
|
||||||
|
import evaluation
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from model.dyn_stg import SpatioTemporalGraphCVAEModel
|
||||||
|
from model.model_registrar import ModelRegistrar
|
||||||
|
from model.model_utils import cyclical_lr
|
||||||
|
from tensorboardX import SummaryWriter
|
||||||
|
#torch.autograd.set_detect_anomaly(True) # TODO Remove for speed
|
||||||
|
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--conf", help="path to json config file for hyperparameters",
|
||||||
|
type=str, default='config.json')
|
||||||
|
parser.add_argument("--offline_scene_graph", help="whether to precompute the scene graphs offline, options are 'no' and 'yes'",
|
||||||
|
type=str, default='yes')
|
||||||
|
parser.add_argument("--dynamic_edges", help="whether to use dynamic edges or not, options are 'no' and 'yes'",
|
||||||
|
type=str, default='yes')
|
||||||
|
parser.add_argument("--edge_radius", help="the radius (in meters) within which two nodes will be connected by an edge",
|
||||||
|
type=float, default=3.0)
|
||||||
|
parser.add_argument("--edge_state_combine_method", help="the method to use for combining edges of the same type",
|
||||||
|
type=str, default='sum')
|
||||||
|
parser.add_argument("--edge_influence_combine_method", help="the method to use for combining edge influences",
|
||||||
|
type=str, default='attention')
|
||||||
|
parser.add_argument('--edge_addition_filter', nargs='+', help="what scaling to use for edges as they're created",
|
||||||
|
type=float, default=[0.25, 0.5, 0.75, 1.0]) # We automatically pad left with 0.0
|
||||||
|
parser.add_argument('--edge_removal_filter', nargs='+', help="what scaling to use for edges as they're removed",
|
||||||
|
type=float, default=[1.0, 0.0]) # We automatically pad right with 0.0
|
||||||
|
parser.add_argument('--incl_robot_node', help="whether to include a robot node in the graph or simply model all agents",
|
||||||
|
action='store_true')
|
||||||
|
parser.add_argument('--use_map_encoding', help="Whether to use map encoding or not",
|
||||||
|
action='store_true')
|
||||||
|
|
||||||
|
parser.add_argument("--data_dir", help="what dir to look in for data",
|
||||||
|
type=str, default='../data/processed')
|
||||||
|
parser.add_argument("--train_data_dict", help="what file to load for training data",
|
||||||
|
type=str, default='nuScenes_train.pkl')
|
||||||
|
parser.add_argument("--eval_data_dict", help="what file to load for evaluation data",
|
||||||
|
type=str, default='nuScenes_val.pkl')
|
||||||
|
parser.add_argument("--log_dir", help="what dir to save training information (i.e., saved models, logs, etc)",
|
||||||
|
type=str, default='../data/nuScenes/logs')
|
||||||
|
parser.add_argument("--log_tag", help="tag for the log folder",
|
||||||
|
type=str, default='')
|
||||||
|
|
||||||
|
parser.add_argument('--device', help='what device to perform training on',
|
||||||
|
type=str, default='cuda:1')
|
||||||
|
parser.add_argument("--eval_device", help="what device to use during evaluation",
|
||||||
|
type=str, default=None)
|
||||||
|
|
||||||
|
parser.add_argument("--num_iters", help="number of iterations to train for",
|
||||||
|
type=int, default=2000)
|
||||||
|
parser.add_argument('--batch_multiplier', help='how many minibatches to run per iteration of training',
|
||||||
|
type=int, default=1)
|
||||||
|
parser.add_argument('--batch_size', help='training batch size',
|
||||||
|
type=int, default=256)
|
||||||
|
parser.add_argument('--eval_batch_size', help='evaluation batch size',
|
||||||
|
type=int, default=256)
|
||||||
|
parser.add_argument('--k_eval', help='how many samples to take during evaluation',
|
||||||
|
type=int, default=50)
|
||||||
|
|
||||||
|
parser.add_argument('--seed', help='manual seed to use, default is 123',
|
||||||
|
type=int, default=123)
|
||||||
|
parser.add_argument('--eval_every', help='how often to evaluate during training, never if None',
|
||||||
|
type=int, default=50)
|
||||||
|
parser.add_argument('--vis_every', help='how often to visualize during training, never if None',
|
||||||
|
type=int, default=50)
|
||||||
|
parser.add_argument('--save_every', help='how often to save during training, never if None',
|
||||||
|
type=int, default=100)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
if not torch.cuda.is_available() or args.device == 'cpu':
|
||||||
|
args.device = torch.device('cpu')
|
||||||
|
else:
|
||||||
|
if torch.cuda.device_count() == 1:
|
||||||
|
# If you have CUDA_VISIBLE_DEVICES set, which you should,
|
||||||
|
# then this will prevent leftover flag arguments from
|
||||||
|
# messing with the device allocation.
|
||||||
|
args.device = 'cuda:0'
|
||||||
|
|
||||||
|
args.device = torch.device(args.device)
|
||||||
|
|
||||||
|
if args.eval_device is None:
|
||||||
|
args.eval_device = 'cpu'
|
||||||
|
|
||||||
|
if args.seed is not None:
|
||||||
|
random.seed(args.seed)
|
||||||
|
np.random.seed(args.seed)
|
||||||
|
torch.manual_seed(args.seed)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.manual_seed_all(args.seed)
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# Load hyperparameters from json
|
||||||
|
if not os.path.exists(args.conf):
|
||||||
|
print('Config json not found!')
|
||||||
|
with open(args.conf, 'r') as conf_json:
|
||||||
|
hyperparams = json.load(conf_json)
|
||||||
|
|
||||||
|
# Add hyperparams from arguments
|
||||||
|
hyperparams['dynamic_edges'] = args.dynamic_edges
|
||||||
|
hyperparams['edge_state_combine_method'] = args.edge_state_combine_method
|
||||||
|
hyperparams['edge_influence_combine_method'] = args.edge_influence_combine_method
|
||||||
|
hyperparams['edge_radius'] = args.edge_radius
|
||||||
|
hyperparams['use_map_encoding'] = args.use_map_encoding
|
||||||
|
hyperparams['edge_addition_filter'] = args.edge_addition_filter
|
||||||
|
hyperparams['edge_removal_filter'] = args.edge_removal_filter
|
||||||
|
hyperparams['batch_size'] = args.batch_size
|
||||||
|
hyperparams['k_eval'] = args.k_eval
|
||||||
|
hyperparams['offline_scene_graph'] = args.offline_scene_graph
|
||||||
|
hyperparams['incl_robot_node'] = args.incl_robot_node
|
||||||
|
|
||||||
|
print('-----------------------')
|
||||||
|
print('| TRAINING PARAMETERS |')
|
||||||
|
print('-----------------------')
|
||||||
|
print('| iterations: %d' % args.num_iters)
|
||||||
|
print('| batch_size: %d' % args.batch_size)
|
||||||
|
print('| batch_multiplier: %d' % args.batch_multiplier)
|
||||||
|
print('| effective batch size: %d (= %d * %d)' % (args.batch_size * args.batch_multiplier, args.batch_size, args.batch_multiplier))
|
||||||
|
print('| device: %s' % args.device)
|
||||||
|
print('| eval_device: %s' % args.eval_device)
|
||||||
|
print('| Offline Scene Graph Calculation: %s' % args.offline_scene_graph)
|
||||||
|
print('| edge_radius: %s' % args.edge_radius)
|
||||||
|
print('| EE state_combine_method: %s' % args.edge_state_combine_method)
|
||||||
|
print('| EIE scheme: %s' % args.edge_influence_combine_method)
|
||||||
|
print('| dynamic_edges: %s' % args.dynamic_edges)
|
||||||
|
print('| robot node: %s' % args.incl_robot_node)
|
||||||
|
print('| map encoding: %s' % args.use_map_encoding)
|
||||||
|
print('| edge_addition_filter: %s' % args.edge_addition_filter)
|
||||||
|
print('| edge_removal_filter: %s' % args.edge_removal_filter)
|
||||||
|
print('| MHL: %s' % hyperparams['minimum_history_length'])
|
||||||
|
print('| PH: %s' % hyperparams['prediction_horizon'])
|
||||||
|
print('-----------------------')
|
||||||
|
|
||||||
|
# Create the log and model directiory if they're not present.
|
||||||
|
model_dir = os.path.join(args.log_dir, 'models_' + time.strftime('%d_%b_%Y_%H_%M_%S', time.localtime()) + args.log_tag)
|
||||||
|
pathlib.Path(model_dir).mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Save config to model directory
|
||||||
|
with open(os.path.join(model_dir, 'config.json'), 'w') as conf_json:
|
||||||
|
json.dump(hyperparams, conf_json)
|
||||||
|
|
||||||
|
log_writer = SummaryWriter(log_dir=model_dir)
|
||||||
|
|
||||||
|
train_scenes = []
|
||||||
|
train_data_path = os.path.join(args.data_dir, args.train_data_dict)
|
||||||
|
with open(train_data_path, 'rb') as f:
|
||||||
|
train_env = pickle.load(f, encoding='latin1')
|
||||||
|
train_scenes = train_env.scenes
|
||||||
|
print('Loaded training data from %s' % (train_data_path,))
|
||||||
|
|
||||||
|
eval_scenes = []
|
||||||
|
if args.eval_every is not None:
|
||||||
|
eval_data_path = os.path.join(args.data_dir, args.eval_data_dict)
|
||||||
|
with open(eval_data_path, 'rb') as f:
|
||||||
|
eval_env = pickle.load(f, encoding='latin1')
|
||||||
|
eval_scenes = eval_env.scenes
|
||||||
|
print('Loaded evaluation data from %s' % (eval_data_path, ))
|
||||||
|
|
||||||
|
# Calculate Scene Graph
|
||||||
|
if hyperparams['offline_scene_graph'] == 'yes':
|
||||||
|
print(f"Offline calculating scene graphs")
|
||||||
|
for i, scene in enumerate(train_scenes):
|
||||||
|
scene.calculate_scene_graph(train_env.attention_radius,
|
||||||
|
hyperparams['state'],
|
||||||
|
hyperparams['edge_addition_filter'],
|
||||||
|
hyperparams['edge_removal_filter'])
|
||||||
|
print(f"Created Scene Graph for Scene {i}")
|
||||||
|
|
||||||
|
for i, scene in enumerate(eval_scenes):
|
||||||
|
scene.calculate_scene_graph(eval_env.attention_radius,
|
||||||
|
hyperparams['state'],
|
||||||
|
hyperparams['edge_addition_filter'],
|
||||||
|
hyperparams['edge_removal_filter'])
|
||||||
|
print(f"Created Scene Graph for Scene {i}")
|
||||||
|
|
||||||
|
model_registrar = ModelRegistrar(model_dir, args.device)
|
||||||
|
|
||||||
|
# We use pre trained weights for the map CNN
|
||||||
|
if args.use_map_encoding:
|
||||||
|
inf_encoder_registrar = os.path.join(args.log_dir, 'weight_trans/model_registrar-1499.pt')
|
||||||
|
model_dict = torch.load(inf_encoder_registrar, map_location=args.device)
|
||||||
|
|
||||||
|
for key in model_dict.keys():
|
||||||
|
if 'map_encoder' in key:
|
||||||
|
model_registrar.model_dict[key] = model_dict[key]
|
||||||
|
assert model_registrar.get_model(key) is model_dict[key]
|
||||||
|
|
||||||
|
stg = SpatioTemporalGraphCVAEModel(model_registrar,
|
||||||
|
hyperparams,
|
||||||
|
log_writer, args.device)
|
||||||
|
stg.set_scene_graph(train_env)
|
||||||
|
stg.set_annealing_params()
|
||||||
|
print('Created training STG model.')
|
||||||
|
|
||||||
|
eval_stg = None
|
||||||
|
if args.eval_every is not None or args.vis_ervery is not None:
|
||||||
|
eval_stg = SpatioTemporalGraphCVAEModel(model_registrar,
|
||||||
|
hyperparams,
|
||||||
|
log_writer, args.device)
|
||||||
|
eval_stg.set_scene_graph(eval_env)
|
||||||
|
eval_stg.set_annealing_params() # TODO Check if necessary
|
||||||
|
if hyperparams['learning_rate_style'] == 'const':
|
||||||
|
optimizer = optim.Adam(model_registrar.parameters(), lr=hyperparams['learning_rate'])
|
||||||
|
lr_scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=1.0)
|
||||||
|
elif hyperparams['learning_rate_style'] == 'exp':
|
||||||
|
optimizer = optim.Adam(model_registrar.parameters(), lr=hyperparams['learning_rate'])
|
||||||
|
lr_scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=hyperparams['learning_decay_rate'])
|
||||||
|
elif hyperparams['learning_rate_style'] == 'triangle':
|
||||||
|
optimizer = optim.Adam(model_registrar.parameters(), lr=1.0)
|
||||||
|
clr = cyclical_lr(100, min_lr=hyperparams['min_learning_rate'], max_lr=hyperparams['learning_rate'], decay=hyperparams['learning_decay_rate'])
|
||||||
|
lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer, [clr])
|
||||||
|
|
||||||
|
print_training_header(newline_start=True)
|
||||||
|
for curr_iter in range(args.num_iters):
|
||||||
|
# Necessary because we flip the weights contained between GPU and CPU sometimes.
|
||||||
|
model_registrar.to(args.device)
|
||||||
|
|
||||||
|
# Setting the current iterator value for internal logging.
|
||||||
|
stg.set_curr_iter(curr_iter)
|
||||||
|
if args.vis_every is not None:
|
||||||
|
eval_stg.set_curr_iter(curr_iter)
|
||||||
|
|
||||||
|
# Stepping forward the learning rate scheduler and annealers.
|
||||||
|
lr_scheduler.step()
|
||||||
|
log_writer.add_scalar('train/learning_rate',
|
||||||
|
lr_scheduler.get_lr()[0],
|
||||||
|
curr_iter)
|
||||||
|
stg.step_annealers()
|
||||||
|
|
||||||
|
# Zeroing gradients for the upcoming iteration.
|
||||||
|
optimizer.zero_grad()
|
||||||
|
train_losses = dict()
|
||||||
|
for node_type in train_env.NodeType:
|
||||||
|
train_losses[node_type] = []
|
||||||
|
for scene in np.random.choice(train_scenes, 10):
|
||||||
|
for mb_num in range(args.batch_multiplier):
|
||||||
|
# Obtaining the batch's training loss.
|
||||||
|
timesteps = scene.sample_timesteps(hyperparams['batch_size'])
|
||||||
|
|
||||||
|
# Compute the training loss.
|
||||||
|
train_loss_by_type = stg.train_loss(scene, timesteps, max_nodes=hyperparams['batch_size'])
|
||||||
|
for node_type, train_loss in train_loss_by_type.items():
|
||||||
|
if train_loss is not None:
|
||||||
|
train_loss = train_loss / (args.batch_multiplier * 10)
|
||||||
|
train_losses[node_type].append(train_loss.item())
|
||||||
|
|
||||||
|
# Calculating gradients.
|
||||||
|
train_loss.backward()
|
||||||
|
|
||||||
|
# Print training information. Also, no newline here. It's added in at a later line.
|
||||||
|
print('{:9} | '.format(curr_iter), end='', flush=True)
|
||||||
|
for node_type in train_env.NodeType:
|
||||||
|
print('{}:{:10} | '.format(node_type.name[0], '%.2f' % sum(train_losses[node_type])), end='', flush=True)
|
||||||
|
|
||||||
|
for node_type in train_env.NodeType:
|
||||||
|
if len(train_losses[node_type]) > 0:
|
||||||
|
log_writer.add_histogram(f"{node_type.name}/train/minibatch_losses", np.asarray(train_losses[node_type]), curr_iter)
|
||||||
|
log_writer.add_scalar(f"{node_type.name}/train/loss", sum(train_losses[node_type]), curr_iter)
|
||||||
|
|
||||||
|
# Clipping gradients.
|
||||||
|
if hyperparams['grad_clip'] is not None:
|
||||||
|
nn.utils.clip_grad_value_(model_registrar.parameters(), hyperparams['grad_clip'])
|
||||||
|
|
||||||
|
# Performing a gradient step.
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
del train_loss # TODO Necessary?
|
||||||
|
|
||||||
|
if args.vis_every is not None and (curr_iter + 1) % args.vis_every == 0:
|
||||||
|
max_hl = hyperparams['maximum_history_length']
|
||||||
|
ph = hyperparams['prediction_horizon']
|
||||||
|
with torch.no_grad():
|
||||||
|
# Predict random timestep to plot for train data set
|
||||||
|
scene = np.random.choice(train_scenes)
|
||||||
|
timestep = scene.sample_timesteps(1, min_future_timesteps=ph)
|
||||||
|
predictions = stg.predict(scene,
|
||||||
|
timestep,
|
||||||
|
ph,
|
||||||
|
num_samples_z=100,
|
||||||
|
most_likely_z=False,
|
||||||
|
all_z=False)
|
||||||
|
|
||||||
|
# Plot predicted timestep for random scene
|
||||||
|
fig, ax = plt.subplots(figsize=(5, 5))
|
||||||
|
visualization.visualize_prediction(ax,
|
||||||
|
predictions,
|
||||||
|
scene.dt,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph)
|
||||||
|
ax.set_title(f"{scene.name}-t: {timestep}")
|
||||||
|
log_writer.add_figure('train/prediction', fig, curr_iter)
|
||||||
|
|
||||||
|
# Predict random timestep to plot for eval data set
|
||||||
|
scene = np.random.choice(eval_scenes)
|
||||||
|
timestep = scene.sample_timesteps(1, min_future_timesteps=ph)
|
||||||
|
predictions = eval_stg.predict(scene,
|
||||||
|
timestep,
|
||||||
|
ph,
|
||||||
|
num_samples_z=100,
|
||||||
|
most_likely_z=False,
|
||||||
|
all_z=False,
|
||||||
|
max_nodes=4 * args.eval_batch_size)
|
||||||
|
|
||||||
|
# Plot predicted timestep for random scene
|
||||||
|
fig, ax = plt.subplots(figsize=(5, 5))
|
||||||
|
visualization.visualize_prediction(ax,
|
||||||
|
predictions,
|
||||||
|
scene.dt,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph)
|
||||||
|
ax.set_title(f"{scene.name}-t: {timestep}")
|
||||||
|
log_writer.add_figure('eval/prediction', fig, curr_iter)
|
||||||
|
|
||||||
|
# Plot predicted timestep for random scene in map
|
||||||
|
fig, ax = plt.subplots(figsize=(15, 15))
|
||||||
|
visualization.visualize_prediction(ax,
|
||||||
|
predictions,
|
||||||
|
scene.dt,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph,
|
||||||
|
map=scene.map['PLOT'])
|
||||||
|
ax.set_title(f"{scene.name}-t: {timestep}")
|
||||||
|
log_writer.add_figure('eval/prediction_map', fig, curr_iter)
|
||||||
|
|
||||||
|
# Predict random timestep to plot for eval data set
|
||||||
|
predictions = eval_stg.predict(scene,
|
||||||
|
timestep,
|
||||||
|
ph,
|
||||||
|
num_samples_gmm=50,
|
||||||
|
most_likely_z=False,
|
||||||
|
all_z=True,
|
||||||
|
max_nodes=4 * args.eval_batch_size)
|
||||||
|
|
||||||
|
# Plot predicted timestep for random scene
|
||||||
|
fig, ax = plt.subplots(figsize=(5, 5))
|
||||||
|
visualization.visualize_prediction(ax,
|
||||||
|
predictions,
|
||||||
|
scene.dt,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph)
|
||||||
|
ax.set_title(f"{scene.name}-t: {timestep}")
|
||||||
|
log_writer.add_figure('eval/prediction_all_z', fig, curr_iter)
|
||||||
|
|
||||||
|
if args.eval_every is not None and (curr_iter + 1) % args.eval_every == 0:
|
||||||
|
max_hl = hyperparams['maximum_history_length']
|
||||||
|
ph = hyperparams['prediction_horizon']
|
||||||
|
with torch.no_grad():
|
||||||
|
# Predict batch timesteps for training dataset evaluation
|
||||||
|
train_batch_errors = []
|
||||||
|
max_scenes = np.min([len(train_scenes), 5])
|
||||||
|
for scene in np.random.choice(train_scenes, max_scenes):
|
||||||
|
timesteps = scene.sample_timesteps(args.eval_batch_size)
|
||||||
|
predictions = stg.predict(scene,
|
||||||
|
timesteps,
|
||||||
|
ph,
|
||||||
|
num_samples_z=100,
|
||||||
|
min_future_timesteps=ph,
|
||||||
|
max_nodes=4*args.eval_batch_size)
|
||||||
|
|
||||||
|
train_batch_errors.append(evaluation.compute_batch_statistics(predictions,
|
||||||
|
scene.dt,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph,
|
||||||
|
node_type_enum=train_env.NodeType,
|
||||||
|
map=scene.map))
|
||||||
|
|
||||||
|
evaluation.log_batch_errors(train_batch_errors,
|
||||||
|
log_writer,
|
||||||
|
'train',
|
||||||
|
curr_iter,
|
||||||
|
bar_plot=['kde'],
|
||||||
|
box_plot=['ade', 'fde'])
|
||||||
|
|
||||||
|
# Predict batch timesteps for evaluation dataset evaluation
|
||||||
|
eval_batch_errors = []
|
||||||
|
for scene in eval_scenes:
|
||||||
|
timesteps = scene.sample_timesteps(args.eval_batch_size)
|
||||||
|
|
||||||
|
predictions = eval_stg.predict(scene,
|
||||||
|
timesteps,
|
||||||
|
ph,
|
||||||
|
num_samples_z=100,
|
||||||
|
min_future_timesteps=ph,
|
||||||
|
max_nodes=4 * args.eval_batch_size)
|
||||||
|
|
||||||
|
eval_batch_errors.append(evaluation.compute_batch_statistics(predictions,
|
||||||
|
scene.dt,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph,
|
||||||
|
node_type_enum=eval_env.NodeType,
|
||||||
|
map=scene.map))
|
||||||
|
|
||||||
|
evaluation.log_batch_errors(eval_batch_errors,
|
||||||
|
log_writer,
|
||||||
|
'eval',
|
||||||
|
curr_iter,
|
||||||
|
bar_plot=['kde'],
|
||||||
|
box_plot=['ade', 'fde'])
|
||||||
|
|
||||||
|
|
||||||
|
# Predict maximum likelihood batch timesteps for evaluation dataset evaluation
|
||||||
|
eval_batch_errors_ml = []
|
||||||
|
for scene in eval_scenes:
|
||||||
|
timesteps = scene.sample_timesteps(scene.timesteps)
|
||||||
|
|
||||||
|
predictions = eval_stg.predict(scene,
|
||||||
|
timesteps,
|
||||||
|
ph,
|
||||||
|
num_samples_z=1,
|
||||||
|
min_future_timesteps=ph,
|
||||||
|
most_likely_z=True,
|
||||||
|
most_likely_gmm=True)
|
||||||
|
|
||||||
|
eval_batch_errors_ml.append(evaluation.compute_batch_statistics(predictions,
|
||||||
|
scene.dt,
|
||||||
|
max_hl=max_hl,
|
||||||
|
ph=ph,
|
||||||
|
map=scene.map,
|
||||||
|
node_type_enum=eval_env.NodeType,
|
||||||
|
kde=False))
|
||||||
|
|
||||||
|
evaluation.log_batch_errors(eval_batch_errors_ml,
|
||||||
|
log_writer,
|
||||||
|
'eval/ml',
|
||||||
|
curr_iter)
|
||||||
|
|
||||||
|
eval_loss = []
|
||||||
|
max_scenes = np.min([len(eval_scenes), 25])
|
||||||
|
for scene in np.random.choice(eval_scenes, max_scenes):
|
||||||
|
eval_loss.append(eval_stg.eval_loss(scene, timesteps))
|
||||||
|
|
||||||
|
evaluation.log_batch_errors(eval_loss,
|
||||||
|
log_writer,
|
||||||
|
'eval/loss',
|
||||||
|
curr_iter)
|
||||||
|
|
||||||
|
|
||||||
|
else:
|
||||||
|
print('{:15} | {:10} | {:14}'.format('', '', ''),
|
||||||
|
end='', flush=True)
|
||||||
|
|
||||||
|
# Here's the newline that ends the current training information printing.
|
||||||
|
print('')
|
||||||
|
|
||||||
|
if args.save_every is not None and (curr_iter + 1) % args.save_every == 0:
|
||||||
|
model_registrar.save_models(curr_iter)
|
||||||
|
print_training_header()
|
||||||
|
|
||||||
|
|
||||||
|
def print_training_header(newline_start=False):
|
||||||
|
if newline_start:
|
||||||
|
print('')
|
||||||
|
|
||||||
|
print('Iteration | Train Loss | Eval NLL Q (IS) | Eval NLL P | Eval NLL Exact')
|
||||||
|
print('----------------------------------------------------------------------')
|
||||||
|
|
||||||
|
|
||||||
|
def memInUse():
|
||||||
|
pid = os.getpid()
|
||||||
|
py = psutil.Process(pid)
|
||||||
|
memoryUse = py.memory_info()[0] / 2. ** 30 # memory use in GB...I think
|
||||||
|
print('memory GB:', memoryUse)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
1
code/utils/__init__.py
Normal file
1
code/utils/__init__.py
Normal file
|
@ -0,0 +1 @@
|
||||||
|
from .trajectory_utils import integrate_trajectory, prediction_output_to_trajectories
|
72
code/utils/trajectory_utils.py
Normal file
72
code/utils/trajectory_utils.py
Normal file
|
@ -0,0 +1,72 @@
|
||||||
|
import numpy as np
|
||||||
|
from scipy.integrate import cumtrapz
|
||||||
|
|
||||||
|
|
||||||
|
def integrate(f, dx, F0=0.):
|
||||||
|
N = f.shape[0]
|
||||||
|
return F0 + np.hstack((np.zeros((N, 1)), cumtrapz(f, axis=1, dx=dx)))
|
||||||
|
|
||||||
|
|
||||||
|
def integrate_trajectory(v, x0, dt):
|
||||||
|
xd_ = integrate(v[..., 0], dx=dt, F0=x0[0])
|
||||||
|
yd_ = integrate(v[..., 1], dx=dt, F0=x0[1])
|
||||||
|
integrated = np.stack([xd_, yd_], axis=2)
|
||||||
|
return integrated
|
||||||
|
|
||||||
|
|
||||||
|
def prediction_output_to_trajectories(prediction_output_dict,
|
||||||
|
dt,
|
||||||
|
max_h,
|
||||||
|
ph,
|
||||||
|
map=None,
|
||||||
|
gmm_agg='mean',
|
||||||
|
prune_ph_to_future=False):
|
||||||
|
|
||||||
|
prediction_timesteps = prediction_output_dict.keys()
|
||||||
|
|
||||||
|
output_dict = dict()
|
||||||
|
histories_dict = dict()
|
||||||
|
futures_dict = dict()
|
||||||
|
|
||||||
|
for t in prediction_timesteps:
|
||||||
|
histories_dict[t] = dict()
|
||||||
|
output_dict[t] = dict()
|
||||||
|
futures_dict[t] = dict()
|
||||||
|
prediction_nodes = prediction_output_dict[t].keys()
|
||||||
|
for node in prediction_nodes:
|
||||||
|
predictions_output = prediction_output_dict[t][node]
|
||||||
|
position_state = {'position': ['x', 'y']}
|
||||||
|
velocity_state = {'velocity': ['x', 'y']}
|
||||||
|
acceleration_state = {'acceleration': ['m']}
|
||||||
|
history = node.get(np.array([t - max_h, t]), position_state) # History includes current pos
|
||||||
|
history = history[~np.isnan(history.sum(axis=1))]
|
||||||
|
|
||||||
|
future = node.get(np.array([t + 1, t + ph]), position_state)
|
||||||
|
future = future[~np.isnan(future.sum(axis=1))]
|
||||||
|
|
||||||
|
current_pos = node.get(t, position_state)[0] # List with single item
|
||||||
|
current_vel = node.get(t, velocity_state)[0] # List with single item
|
||||||
|
|
||||||
|
predictions_output = getattr(predictions_output, gmm_agg)(axis=1)
|
||||||
|
|
||||||
|
if prune_ph_to_future:
|
||||||
|
predictions_output = predictions_output[:, :future.shape[0]]
|
||||||
|
if predictions_output.shape[1] == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
vel_broad = np.expand_dims(np.broadcast_to(current_vel,
|
||||||
|
(predictions_output.shape[0],
|
||||||
|
current_vel.shape[-1])), axis=-2)
|
||||||
|
vel = np.concatenate((vel_broad, predictions_output), axis=1)
|
||||||
|
trajectory = integrate_trajectory(vel, current_pos, dt=dt)[:, 1:]
|
||||||
|
|
||||||
|
if map is None:
|
||||||
|
histories_dict[t][node] = history
|
||||||
|
output_dict[t][node] = trajectory
|
||||||
|
futures_dict[t][node] = future
|
||||||
|
else:
|
||||||
|
histories_dict[t][node] = map.to_map_points(history)
|
||||||
|
output_dict[t][node] = map.to_map_points(trajectory)
|
||||||
|
futures_dict[t][node] = map.to_map_points(future)
|
||||||
|
|
||||||
|
return output_dict, histories_dict, futures_dict
|
2
code/visualization/__init__.py
Normal file
2
code/visualization/__init__.py
Normal file
|
@ -0,0 +1,2 @@
|
||||||
|
from .visualization import visualize_prediction
|
||||||
|
from .visualization_utils import plot_boxplots
|
101
code/visualization/visualization.py
Normal file
101
code/visualization/visualization.py
Normal file
|
@ -0,0 +1,101 @@
|
||||||
|
from utils import prediction_output_to_trajectories
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.patheffects as pe
|
||||||
|
|
||||||
|
|
||||||
|
def plot_trajectories(ax,
|
||||||
|
prediction_dict,
|
||||||
|
histories_dict,
|
||||||
|
futures_dict,
|
||||||
|
line_alpha=0.7,
|
||||||
|
line_width=0.2,
|
||||||
|
edge_width=2,
|
||||||
|
circle_edge_width=0.5,
|
||||||
|
node_circle_size=0.3):
|
||||||
|
|
||||||
|
cmap = ['k', 'b', 'y', 'g', 'r']
|
||||||
|
|
||||||
|
for node in histories_dict:
|
||||||
|
history = histories_dict[node]
|
||||||
|
future = futures_dict[node]
|
||||||
|
predictions = prediction_dict[node]
|
||||||
|
|
||||||
|
ax.plot(history[:, 1], history[:, 0], 'k--')
|
||||||
|
|
||||||
|
for sample_num in range(prediction_dict[node].shape[0]):
|
||||||
|
ax.plot(predictions[sample_num, :, 1], predictions[sample_num, :, 0],
|
||||||
|
color=cmap[node.type.value],
|
||||||
|
linewidth=line_width, alpha=line_alpha)
|
||||||
|
|
||||||
|
ax.plot(future[:, 1],
|
||||||
|
future[:, 0],
|
||||||
|
'w--',
|
||||||
|
path_effects=[pe.Stroke(linewidth=edge_width, foreground='k'), pe.Normal()])
|
||||||
|
|
||||||
|
# Current Node Position
|
||||||
|
circle = plt.Circle((history[-1, 1],
|
||||||
|
history[-1, 0]),
|
||||||
|
node_circle_size,
|
||||||
|
facecolor='g',
|
||||||
|
edgecolor='k',
|
||||||
|
lw=circle_edge_width,
|
||||||
|
zorder=3)
|
||||||
|
ax.add_artist(circle)
|
||||||
|
|
||||||
|
# Robot Node # TODO Robot Node
|
||||||
|
# if robot_node is not None:
|
||||||
|
# prefix_earliest_idx = max(0, t_predict - predict_horizon)
|
||||||
|
# robot_prefix = inputs[robot_node][0, prefix_earliest_idx : t_predict + 1, 0:2].cpu().numpy()
|
||||||
|
# robot_future = inputs[robot_node][0, t_predict + 1 : min(t_predict + predict_horizon + 1, traj_length), 0:2].cpu().numpy()
|
||||||
|
#
|
||||||
|
# prefix_all_zeros = not np.any(robot_prefix)
|
||||||
|
# future_all_zeros = not np.any(robot_future)
|
||||||
|
# if not (prefix_all_zeros and future_all_zeros):
|
||||||
|
# ax.plot(robot_prefix[:, 0], robot_prefix[:, 1], 'k--')
|
||||||
|
# ax.plot(robot_future[:, 0], robot_future[:, 1], 'w--',
|
||||||
|
# path_effects=[pe.Stroke(linewidth=edge_width, foreground='k'), pe.Normal()])
|
||||||
|
#
|
||||||
|
# circle = plt.Circle((robot_prefix[-1, 0],
|
||||||
|
# robot_prefix[-1, 1]),
|
||||||
|
# node_circle_size,
|
||||||
|
# facecolor='g',
|
||||||
|
# edgecolor='k',
|
||||||
|
# lw=circle_edge_width,
|
||||||
|
# zorder=3)
|
||||||
|
# ax.add_artist(circle)
|
||||||
|
#
|
||||||
|
# # Radius of influence
|
||||||
|
# if robot_circle:
|
||||||
|
# circle = plt.Circle((robot_prefix[-1, 0], robot_prefix[-1, 1]), test_stg.hyperparams['edge_radius'],
|
||||||
|
# fill=False, color='r', linestyle='--', zorder=3)
|
||||||
|
# ax.plot([], [], 'r--', label='Edge Radius')
|
||||||
|
# ax.add_artist(circle)
|
||||||
|
|
||||||
|
|
||||||
|
def visualize_prediction(ax,
|
||||||
|
prediction_output_dict,
|
||||||
|
dt,
|
||||||
|
max_hl,
|
||||||
|
ph,
|
||||||
|
robot_node=None,
|
||||||
|
map=None,
|
||||||
|
**kwargs):
|
||||||
|
|
||||||
|
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(prediction_output_dict,
|
||||||
|
dt,
|
||||||
|
max_hl,
|
||||||
|
ph,
|
||||||
|
map=map)
|
||||||
|
|
||||||
|
assert(len(prediction_dict.keys()) <= 1)
|
||||||
|
if len(prediction_dict.keys()) == 0:
|
||||||
|
return
|
||||||
|
ts_key = list(prediction_dict.keys())[0]
|
||||||
|
|
||||||
|
prediction_dict = prediction_dict[ts_key]
|
||||||
|
histories_dict = histories_dict[ts_key]
|
||||||
|
futures_dict = futures_dict[ts_key]
|
||||||
|
|
||||||
|
if map is not None:
|
||||||
|
ax.imshow(map.fdata, origin='lower', alpha=0.5)
|
||||||
|
plot_trajectories(ax, prediction_dict, histories_dict, futures_dict, *kwargs)
|
20
code/visualization/visualization_utils.py
Normal file
20
code/visualization/visualization_utils.py
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
|
|
||||||
|
def plot_boxplots(ax, perf_dict_for_pd, x_label, y_label):
|
||||||
|
perf_df = pd.DataFrame.from_dict(perf_dict_for_pd)
|
||||||
|
our_mean_color = sns.color_palette("muted")[9]
|
||||||
|
marker_size = 7
|
||||||
|
mean_markers = 'X'
|
||||||
|
with sns.color_palette("muted"):
|
||||||
|
sns.boxplot(x=x_label, y=y_label, data=perf_df, ax=ax, showfliers=False)
|
||||||
|
ax.plot([0], [np.mean(perf_df[y_label])], color=our_mean_color, marker=mean_markers,
|
||||||
|
markeredgecolor='#545454', markersize=marker_size, zorder=10)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_barplots(ax, perf_dict_for_pd, x_label, y_label):
|
||||||
|
perf_df = pd.DataFrame.from_dict(perf_dict_for_pd)
|
||||||
|
with sns.color_palette("muted"):
|
||||||
|
sns.barplot(x=x_label, y=y_label, ax=ax, data=perf_df)
|
11
data/nuScenes/download_file.py
Normal file
11
data/nuScenes/download_file.py
Normal file
|
@ -0,0 +1,11 @@
|
||||||
|
#!/usr/bin/python
|
||||||
|
|
||||||
|
import sys
|
||||||
|
import urllib.request
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# print command line arguments
|
||||||
|
urllib.request.urlretrieve(sys.argv[1], sys.argv[2])
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
191
data/nuScenes/kalman_filter.py
Normal file
191
data/nuScenes/kalman_filter.py
Normal file
|
@ -0,0 +1,191 @@
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class LinearPointMass:
|
||||||
|
"""Linear Kalman Filter for an autonomous point mass system, assuming constant velocity"""
|
||||||
|
|
||||||
|
def __init__(self, dt, sPos=None, sVel=None, sMeasurement=None):
|
||||||
|
"""
|
||||||
|
input matrices must be numpy arrays
|
||||||
|
:param A: state transition matrix
|
||||||
|
:param B: state control matrix
|
||||||
|
:param C: measurement matrix
|
||||||
|
:param Q: covariance of the Gaussian error in state transition
|
||||||
|
:param R: covariance of the Gaussain error in measurement
|
||||||
|
"""
|
||||||
|
self.dt = dt
|
||||||
|
|
||||||
|
# matrices of state transition and measurement
|
||||||
|
self.A = np.array([[1, dt, 0, 0], [0, 1, 0, 0], [0, 0, 1, dt], [0, 0, 0, 1]])
|
||||||
|
self.B = np.array([[0, 0], [dt, 0], [0, 0], [0, dt]])
|
||||||
|
self.C = np.array([[1, 0, 0, 0], [0, 0, 1, 0]])
|
||||||
|
|
||||||
|
# default noise covariance
|
||||||
|
if (sPos is None) and (sVel is None) and (sMeasurement is None):
|
||||||
|
# sPos = 0.5 * 5 * dt ** 2 # assume 5m/s2 as maximum acceleration
|
||||||
|
# sVel = 5.0 * dt # assume 8.8m/s2 as maximum acceleration
|
||||||
|
sPos = 1.3*self.dt # assume 5m/s2 as maximum acceleration
|
||||||
|
sVel = 4*self.dt # assume 8.8m/s2 as maximum acceleration
|
||||||
|
sMeasurement = 0.2 # 68% of the measurement is within [-sMeasurement, sMeasurement]
|
||||||
|
|
||||||
|
# state transition noise
|
||||||
|
self.Q = np.diag([sPos ** 2, sVel ** 2, sPos ** 2, sVel ** 2])
|
||||||
|
# measurement noise
|
||||||
|
self.R = np.diag([sMeasurement ** 2, sMeasurement ** 2])
|
||||||
|
|
||||||
|
def predict_and_update(self, x_vec_est, u_vec, P_matrix, z_new):
|
||||||
|
"""
|
||||||
|
for background please refer to wikipedia: https://en.wikipedia.org/wiki/Kalman_filter
|
||||||
|
:param x_vec_est:
|
||||||
|
:param u_vec:
|
||||||
|
:param P_matrix:
|
||||||
|
:param z_new:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
|
||||||
|
## Prediction Step
|
||||||
|
# predicted state estimate
|
||||||
|
x_pred = self.A.dot(x_vec_est) + self.B.dot(u_vec)
|
||||||
|
# predicted error covariance
|
||||||
|
P_pred = self.A.dot(P_matrix.dot(self.A.transpose())) + self.Q
|
||||||
|
|
||||||
|
## Update Step
|
||||||
|
# innovation or measurement pre-fit residual
|
||||||
|
y_telda = z_new - self.C.dot(x_pred)
|
||||||
|
# innovation covariance
|
||||||
|
S = self.C.dot(P_pred.dot(self.C.transpose())) + self.R
|
||||||
|
# optimal Kalman gain
|
||||||
|
K = P_pred.dot(self.C.transpose().dot(np.linalg.inv(S)))
|
||||||
|
# updated (a posteriori) state estimate
|
||||||
|
x_vec_est_new = x_pred + K.dot(y_telda)
|
||||||
|
# updated (a posteriori) estimate covariance
|
||||||
|
P_matrix_new = np.dot((np.identity(4) - K.dot(self.C)), P_pred)
|
||||||
|
|
||||||
|
return x_vec_est_new, P_matrix_new
|
||||||
|
|
||||||
|
|
||||||
|
class NonlinearKinematicBicycle:
|
||||||
|
"""
|
||||||
|
Nonlinear Kalman Filter for a kinematic bicycle model, assuming constant longitudinal speed
|
||||||
|
and constant heading angle
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, lf, lr, dt, sPos=None, sHeading=None, sVel=None, sMeasurement=None):
|
||||||
|
self.dt = dt
|
||||||
|
|
||||||
|
# params for state transition
|
||||||
|
self.lf = lf
|
||||||
|
self.lr = lr
|
||||||
|
# measurement matrix
|
||||||
|
self.C = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
|
||||||
|
|
||||||
|
# default noise covariance
|
||||||
|
if (sPos is None) and (sHeading is None) and (sVel is None) and (sMeasurement is None):
|
||||||
|
# TODO need to further check
|
||||||
|
# sPos = 0.5 * 8.8 * dt ** 2 # assume 8.8m/s2 as maximum acceleration
|
||||||
|
# sHeading = 0.5 * dt # assume 0.5rad/s as maximum turn rate
|
||||||
|
# sVel = 8.8 * dt # assume 8.8m/s2 as maximum acceleration
|
||||||
|
# sMeasurement = 1.0
|
||||||
|
sPos = 16 * self.dt # assume 8.8m/s2 as maximum acceleration
|
||||||
|
sHeading = np.pi/2 * self.dt # assume 0.5rad/s as maximum turn rate
|
||||||
|
sVel = 8 * self.dt # assume 8.8m/s2 as maximum acceleration
|
||||||
|
sMeasurement = 0.8
|
||||||
|
# state transition noise
|
||||||
|
self.Q = np.diag([sPos ** 2, sPos ** 2, sHeading ** 2, sVel ** 2])
|
||||||
|
# measurement noise
|
||||||
|
self.R = np.diag([sMeasurement ** 2, sMeasurement ** 2, sMeasurement ** 2, sMeasurement ** 2])
|
||||||
|
|
||||||
|
def predict_and_update(self, x_vec_est, u_vec, P_matrix, z_new):
|
||||||
|
"""
|
||||||
|
for background please refer to wikipedia: https://en.wikipedia.org/wiki/Extended_Kalman_filter
|
||||||
|
:param x_vec_est:
|
||||||
|
:param u_vec:
|
||||||
|
:param P_matrix:
|
||||||
|
:param z_new:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
|
||||||
|
## Prediction Step
|
||||||
|
# predicted state estimate
|
||||||
|
x_pred = self._kinematic_bicycle_model_rearCG(x_vec_est, u_vec)
|
||||||
|
# Compute Jacobian to obtain the state transition matrix
|
||||||
|
A = self._cal_state_Jacobian(x_vec_est, u_vec)
|
||||||
|
# predicted error covariance
|
||||||
|
P_pred = A.dot(P_matrix.dot(A.transpose())) + self.Q
|
||||||
|
|
||||||
|
## Update Step
|
||||||
|
# innovation or measurement pre-fit residual
|
||||||
|
y_telda = z_new - self.C.dot(x_pred)
|
||||||
|
# innovation covariance
|
||||||
|
S = self.C.dot(P_pred.dot(self.C.transpose())) + self.R
|
||||||
|
# near-optimal Kalman gain
|
||||||
|
K = P_pred.dot(self.C.transpose().dot(np.linalg.inv(S)))
|
||||||
|
# updated (a posteriori) state estimate
|
||||||
|
x_vec_est_new = x_pred + K.dot(y_telda)
|
||||||
|
# updated (a posteriori) estimate covariance
|
||||||
|
P_matrix_new = np.dot((np.identity(4) - K.dot(self.C)), P_pred)
|
||||||
|
|
||||||
|
return x_vec_est_new, P_matrix_new
|
||||||
|
|
||||||
|
def _kinematic_bicycle_model_rearCG(self, x_old, u):
|
||||||
|
"""
|
||||||
|
:param x: vehicle state vector = [x position, y position, heading, velocity]
|
||||||
|
:param u: control vector = [acceleration, steering angle]
|
||||||
|
:param dt:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
|
||||||
|
acc = u[0]
|
||||||
|
delta = u[1]
|
||||||
|
|
||||||
|
x = x_old[0]
|
||||||
|
y = x_old[1]
|
||||||
|
psi = x_old[2]
|
||||||
|
vel = x_old[3]
|
||||||
|
|
||||||
|
x_new = np.array([[0.], [0.], [0.], [0.]])
|
||||||
|
|
||||||
|
beta = np.arctan(self.lr * np.tan(delta) / (self.lf + self.lr))
|
||||||
|
|
||||||
|
x_new[0] = x + self.dt * vel * np.cos(psi + beta)
|
||||||
|
x_new[1] = y + self.dt * vel * np.sin(psi + beta)
|
||||||
|
x_new[2] = psi + self.dt * vel * np.cos(beta) / (self.lf + self.lr) * np.tan(delta)
|
||||||
|
#x_new[2] = _heading_angle_correction(x_new[2])
|
||||||
|
x_new[3] = vel + self.dt * acc
|
||||||
|
|
||||||
|
return x_new
|
||||||
|
|
||||||
|
def _cal_state_Jacobian(self, x_vec, u_vec):
|
||||||
|
acc = u_vec[0]
|
||||||
|
delta = u_vec[1]
|
||||||
|
|
||||||
|
x = x_vec[0]
|
||||||
|
y = x_vec[1]
|
||||||
|
psi = x_vec[2]
|
||||||
|
vel = x_vec[3]
|
||||||
|
|
||||||
|
beta = np.arctan(self.lr * np.tan(delta) / (self.lf + self.lr))
|
||||||
|
|
||||||
|
a13 = -self.dt * vel * np.sin(psi + beta)
|
||||||
|
a14 = self.dt * np.cos(psi + beta)
|
||||||
|
a23 = self.dt * vel * np.cos(psi + beta)
|
||||||
|
a24 = self.dt * np.sin(psi + beta)
|
||||||
|
a34 = self.dt * np.cos(beta) / (self.lf + self.lr) * np.tan(delta)
|
||||||
|
|
||||||
|
JA = np.array([[1.0, 0.0, a13[0], a14[0]],
|
||||||
|
[0.0, 1.0, a23[0], a24[0]],
|
||||||
|
[0.0, 0.0, 1.0, a34[0]],
|
||||||
|
[0.0, 0.0, 0.0, 1.0]])
|
||||||
|
|
||||||
|
return JA
|
||||||
|
|
||||||
|
|
||||||
|
def _heading_angle_correction(theta):
|
||||||
|
"""
|
||||||
|
correct heading angle so that it always remains in [-pi, pi]
|
||||||
|
:param theta:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
theta_corrected = (theta + np.pi) % (2.0 * np.pi) - np.pi
|
||||||
|
return theta_corrected
|
||||||
|
|
1
data/nuScenes/models/baseline/config.json
Normal file
1
data/nuScenes/models/baseline/config.json
Normal file
|
@ -0,0 +1 @@
|
||||||
|
{"batch_size": 256, "grad_clip": 1.0, "learning_rate_style": "exp", "learning_rate": 0.003, "min_learning_rate": 0.0005, "learning_decay_rate": 0.9995, "prediction_horizon": 6, "minimum_history_length": 1, "maximum_history_length": 8, "map_context": 120, "map_enc_num_layers": 4, "map_enc_hidden_size": 512, "map_enc_output_size": 512, "map_enc_dropout": 0.3, "alpha": 1, "k": 30, "k_eval": 50, "use_iwae": false, "kl_exact": true, "kl_min": 0.07, "kl_weight": 5.0, "kl_weight_start": 0, "kl_decay_rate": 0.99995, "kl_crossover": 500, "kl_sigmoid_divisor": 4, "inf_warmup": 1.0, "inf_warmup_start": 1.0, "inf_warmup_crossover": 1500, "inf_warmup_sigmoid_divisor": 4, "rnn_kwargs": {"dropout_keep_prob": 0.7}, "MLP_dropout_keep_prob": 0.9, "rnn_io_dropout_keep_prob": 1.0, "enc_rnn_dim_multiple_inputs": 8, "enc_rnn_dim_edge": 8, "enc_rnn_dim_edge_influence": 8, "enc_rnn_dim_history": 32, "enc_rnn_dim_future": 32, "dec_rnn_dim": 512, "dec_GMM_proj_MLP_dims": null, "sample_model_during_dec": true, "dec_sample_model_prob_start": 1.0, "dec_sample_model_prob_final": 1.0, "dec_sample_model_prob_crossover": 200, "dec_sample_model_prob_divisor": 4, "q_z_xy_MLP_dims": null, "p_z_x_MLP_dims": 32, "fuzz_factor": 0.05, "GMM_components": 12, "log_sigma_min": -10, "log_sigma_max": 10, "log_p_yt_xz_max": 50, "N": 2, "K": 5, "tau_init": 2.0, "tau_final": 0.05, "tau_decay_rate": 0.997, "use_z_logit_clipping": true, "z_logit_clip_start": 0.05, "z_logit_clip_final": 5.0, "z_logit_clip_crossover": 500, "z_logit_clip_divisor": 5, "state": {"PEDESTRIAN": {"position": ["x", "y"], "velocity": ["x", "y"], "acceleration": ["x", "y"], "heading": ["value"]}, "BICYCLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}, "VEHICLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}}, "pred_state": {"PEDESTRIAN": {"velocity": ["x", "y"]}, "BICYCLE": {"velocity": ["x", "y"]}, "VEHICLE": {"velocity": ["x", "y"]}}, "log_histograms": false, "dynamic_edges": "yes", "edge_state_combine_method": "sum", "edge_influence_combine_method": "attention", "edge_radius": 0.0, "use_map_encoding": false, "edge_addition_filter": [0.25, 0.5, 0.75, 1.0], "edge_removal_filter": [1.0, 0.0], "offline_scene_graph": "yes"}
|
BIN
data/nuScenes/models/baseline/model_registrar-1.pt
Normal file
BIN
data/nuScenes/models/baseline/model_registrar-1.pt
Normal file
Binary file not shown.
1
data/nuScenes/models/edge/config.json
Normal file
1
data/nuScenes/models/edge/config.json
Normal file
|
@ -0,0 +1 @@
|
||||||
|
{"batch_size": 256, "grad_clip": 1.0, "learning_rate_style": "exp", "learning_rate": 0.003, "min_learning_rate": 0.0005, "learning_decay_rate": 0.9995, "prediction_horizon": 6, "minimum_history_length": 1, "maximum_history_length": 8, "map_context": 120, "map_enc_num_layers": 4, "map_enc_hidden_size": 512, "map_enc_output_size": 512, "map_enc_dropout": 0.15, "alpha": 1, "k": 30, "k_eval": 50, "use_iwae": false, "kl_exact": true, "kl_min": 0.07, "kl_weight": 5.0, "kl_weight_start": 0, "kl_decay_rate": 0.99995, "kl_crossover": 500, "kl_sigmoid_divisor": 4, "inf_warmup": 1.0, "inf_warmup_start": 1.0, "inf_warmup_crossover": 1500, "inf_warmup_sigmoid_divisor": 4, "rnn_kwargs": {"dropout_keep_prob": 0.7}, "MLP_dropout_keep_prob": 0.9, "rnn_io_dropout_keep_prob": 1.0, "enc_rnn_dim_multiple_inputs": 8, "enc_rnn_dim_edge": 8, "enc_rnn_dim_edge_influence": 8, "enc_rnn_dim_history": 32, "enc_rnn_dim_future": 32, "dec_rnn_dim": 512, "dec_GMM_proj_MLP_dims": null, "sample_model_during_dec": true, "dec_sample_model_prob_start": 1.0, "dec_sample_model_prob_final": 1.0, "dec_sample_model_prob_crossover": 200, "dec_sample_model_prob_divisor": 4, "q_z_xy_MLP_dims": null, "p_z_x_MLP_dims": 32, "fuzz_factor": 0.05, "GMM_components": 12, "log_sigma_min": -10, "log_sigma_max": 10, "log_p_yt_xz_max": 50, "N": 2, "K": 5, "tau_init": 2.0, "tau_final": 0.05, "tau_decay_rate": 0.997, "use_z_logit_clipping": true, "z_logit_clip_start": 0.05, "z_logit_clip_final": 5.0, "z_logit_clip_crossover": 500, "z_logit_clip_divisor": 5, "state": {"PEDESTRIAN": {"position": ["x", "y"], "velocity": ["x", "y"], "acceleration": ["x", "y"], "heading": ["value"]}, "BICYCLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}, "VEHICLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}}, "pred_state": {"PEDESTRIAN": {"velocity": ["x", "y"]}, "BICYCLE": {"velocity": ["x", "y"]}, "VEHICLE": {"velocity": ["x", "y"]}}, "log_histograms": false, "dynamic_edges": "yes", "edge_state_combine_method": "sum", "edge_influence_combine_method": "attention", "edge_radius": 20.0, "use_map_encoding": false, "edge_addition_filter": [0.25, 0.5, 0.75, 1.0], "edge_removal_filter": [1.0, 0.0], "offline_scene_graph": "yes"}
|
BIN
data/nuScenes/models/edge/model_registrar-1.pt
Normal file
BIN
data/nuScenes/models/edge/model_registrar-1.pt
Normal file
Binary file not shown.
1
data/nuScenes/models/full/config.json
Normal file
1
data/nuScenes/models/full/config.json
Normal file
|
@ -0,0 +1 @@
|
||||||
|
{"batch_size": 256, "grad_clip": 1.0, "learning_rate_style": "const", "learning_rate": 0.002, "min_learning_rate": 0.0005, "learning_decay_rate": 0.9995, "prediction_horizon": 6, "minimum_history_length": 1, "maximum_history_length": 8, "map_context": 120, "map_enc_num_layers": 4, "map_enc_hidden_size": 512, "map_enc_output_size": 512, "map_enc_dropout": 0.5, "alpha": 1, "k": 30, "k_eval": 50, "use_iwae": false, "kl_exact": true, "kl_min": 0.07, "kl_weight": 5.0, "kl_weight_start": 0, "kl_decay_rate": 0.99995, "kl_crossover": 500, "kl_sigmoid_divisor": 4, "inf_warmup": 1.0, "inf_warmup_start": 1.0, "inf_warmup_crossover": 1500, "inf_warmup_sigmoid_divisor": 4, "rnn_kwargs": {"dropout_keep_prob": 0.5}, "MLP_dropout_keep_prob": 0.9, "rnn_io_dropout_keep_prob": 1.0, "enc_rnn_dim_multiple_inputs": 8, "enc_rnn_dim_edge": 8, "enc_rnn_dim_edge_influence": 8, "enc_rnn_dim_history": 32, "enc_rnn_dim_future": 32, "dec_rnn_dim": 512, "dec_GMM_proj_MLP_dims": null, "sample_model_during_dec": true, "dec_sample_model_prob_start": 1.0, "dec_sample_model_prob_final": 1.0, "dec_sample_model_prob_crossover": 200, "dec_sample_model_prob_divisor": 4, "q_z_xy_MLP_dims": null, "p_z_x_MLP_dims": 32, "fuzz_factor": 0.05, "GMM_components": 12, "log_sigma_min": -10, "log_sigma_max": 10, "log_p_yt_xz_max": 50, "N": 2, "K": 5, "tau_init": 2.0, "tau_final": 0.05, "tau_decay_rate": 0.997, "use_z_logit_clipping": true, "z_logit_clip_start": 0.05, "z_logit_clip_final": 5.0, "z_logit_clip_crossover": 500, "z_logit_clip_divisor": 5, "state": {"PEDESTRIAN": {"position": ["x", "y"], "velocity": ["x", "y"], "acceleration": ["x", "y"], "heading": ["value"]}, "BICYCLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}, "VEHICLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}}, "pred_state": {"PEDESTRIAN": {"velocity": ["x", "y"]}, "BICYCLE": {"velocity": ["x", "y"]}, "VEHICLE": {"velocity": ["x", "y"]}}, "log_histograms": false, "dynamic_edges": "yes", "edge_state_combine_method": "sum", "edge_influence_combine_method": "attention", "edge_radius": 20.0, "use_map_encoding": true, "edge_addition_filter": [0.25, 0.5, 0.75, 1.0], "edge_removal_filter": [1.0, 0.0], "offline_scene_graph": "yes", "incl_robot_node": false}
|
BIN
data/nuScenes/models/full/model_registrar-1.pt
Normal file
BIN
data/nuScenes/models/full/model_registrar-1.pt
Normal file
Binary file not shown.
1
data/nuScenes/models/me_demo/config.json
Normal file
1
data/nuScenes/models/me_demo/config.json
Normal file
|
@ -0,0 +1 @@
|
||||||
|
{"batch_size": 256, "grad_clip": 1.0, "learning_rate_style": "exp", "learning_rate": 0.002, "min_learning_rate": 0.0005, "learning_decay_rate": 0.9995, "prediction_horizon": 6, "minimum_history_length": 1, "maximum_history_length": 8, "map_context": 120, "map_enc_num_layers": 4, "map_enc_hidden_size": 512, "map_enc_output_size": 512, "map_enc_dropout": 0.5, "alpha": 1, "k": 30, "k_eval": 50, "use_iwae": false, "kl_exact": true, "kl_min": 0.07, "kl_weight": 5.0, "kl_weight_start": 0, "kl_decay_rate": 0.99995, "kl_crossover": 500, "kl_sigmoid_divisor": 4, "inf_warmup": 1.0, "inf_warmup_start": 1.0, "inf_warmup_crossover": 1500, "inf_warmup_sigmoid_divisor": 4, "rnn_kwargs": {"dropout_keep_prob": 0.5}, "MLP_dropout_keep_prob": 0.9, "rnn_io_dropout_keep_prob": 1.0, "enc_rnn_dim_multiple_inputs": 8, "enc_rnn_dim_edge": 8, "enc_rnn_dim_edge_influence": 8, "enc_rnn_dim_history": 32, "enc_rnn_dim_future": 32, "dec_rnn_dim": 512, "dec_GMM_proj_MLP_dims": null, "sample_model_during_dec": true, "dec_sample_model_prob_start": 1.0, "dec_sample_model_prob_final": 1.0, "dec_sample_model_prob_crossover": 200, "dec_sample_model_prob_divisor": 4, "q_z_xy_MLP_dims": null, "p_z_x_MLP_dims": 32, "fuzz_factor": 0.05, "GMM_components": 12, "log_sigma_min": -10, "log_sigma_max": 10, "log_p_yt_xz_max": 50, "N": 2, "K": 5, "tau_init": 2.0, "tau_final": 0.05, "tau_decay_rate": 0.997, "use_z_logit_clipping": true, "z_logit_clip_start": 0.05, "z_logit_clip_final": 5.0, "z_logit_clip_crossover": 500, "z_logit_clip_divisor": 5, "state": {"PEDESTRIAN": {"position": ["x", "y"], "velocity": ["x", "y"], "acceleration": ["x", "y"], "heading": ["value"]}, "BICYCLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}, "VEHICLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}}, "pred_state": {"PEDESTRIAN": {"velocity": ["x", "y"]}, "BICYCLE": {"velocity": ["x", "y"]}, "VEHICLE": {"velocity": ["x", "y"]}}, "log_histograms": false, "dynamic_edges": "yes", "edge_state_combine_method": "sum", "edge_influence_combine_method": "attention", "edge_radius": 0.0, "use_map_encoding": true, "edge_addition_filter": [0.25, 0.5, 0.75, 1.0], "edge_removal_filter": [1.0, 0.0], "offline_scene_graph": "yes"}
|
BIN
data/nuScenes/models/me_demo/model_registrar-1.pt
Normal file
BIN
data/nuScenes/models/me_demo/model_registrar-1.pt
Normal file
Binary file not shown.
1
data/nuScenes/models/robot_demo/config.json
Normal file
1
data/nuScenes/models/robot_demo/config.json
Normal file
|
@ -0,0 +1 @@
|
||||||
|
{"batch_size": 256, "grad_clip": 1.0, "learning_rate_style": "exp", "learning_rate": 0.003, "min_learning_rate": 0.0005, "learning_decay_rate": 0.9995, "prediction_horizon": 6, "minimum_history_length": 1, "maximum_history_length": 8, "map_context": 120, "map_enc_num_layers": 4, "map_enc_hidden_size": 512, "map_enc_output_size": 512, "map_enc_dropout": 0.5, "alpha": 1, "k": 30, "k_eval": 50, "use_iwae": false, "kl_exact": true, "kl_min": 0.07, "kl_weight": 5.0, "kl_weight_start": 0, "kl_decay_rate": 0.99995, "kl_crossover": 500, "kl_sigmoid_divisor": 4, "inf_warmup": 1.0, "inf_warmup_start": 1.0, "inf_warmup_crossover": 1500, "inf_warmup_sigmoid_divisor": 4, "rnn_kwargs": {"dropout_keep_prob": 0.5}, "MLP_dropout_keep_prob": 0.9, "rnn_io_dropout_keep_prob": 1.0, "enc_rnn_dim_multiple_inputs": 8, "enc_rnn_dim_edge": 8, "enc_rnn_dim_edge_influence": 8, "enc_rnn_dim_history": 32, "enc_rnn_dim_future": 32, "dec_rnn_dim": 512, "dec_GMM_proj_MLP_dims": null, "sample_model_during_dec": true, "dec_sample_model_prob_start": 1.0, "dec_sample_model_prob_final": 1.0, "dec_sample_model_prob_crossover": 200, "dec_sample_model_prob_divisor": 4, "q_z_xy_MLP_dims": null, "p_z_x_MLP_dims": 32, "fuzz_factor": 0.05, "GMM_components": 12, "log_sigma_min": -10, "log_sigma_max": 10, "log_p_yt_xz_max": 50, "N": 2, "K": 5, "tau_init": 2.0, "tau_final": 0.05, "tau_decay_rate": 0.997, "use_z_logit_clipping": true, "z_logit_clip_start": 0.05, "z_logit_clip_final": 5.0, "z_logit_clip_crossover": 500, "z_logit_clip_divisor": 5, "state": {"PEDESTRIAN": {"position": ["x", "y"], "velocity": ["x", "y"], "acceleration": ["x", "y"], "heading": ["value"]}, "BICYCLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}, "VEHICLE": {"position": ["x", "y"], "velocity": ["x", "y", "m"], "acceleration": ["x", "y", "m"], "heading": ["value"]}}, "pred_state": {"PEDESTRIAN": {"velocity": ["x", "y"]}, "BICYCLE": {"velocity": ["x", "y"]}, "VEHICLE": {"velocity": ["x", "y"]}}, "log_histograms": false, "dynamic_edges": "yes", "edge_state_combine_method": "sum", "edge_influence_combine_method": "attention", "edge_radius": 20.0, "use_map_encoding": false, "edge_addition_filter": [0.25, 0.5, 0.75, 1.0], "edge_removal_filter": [1.0, 0.0], "offline_scene_graph": "yes", "incl_robot_node": true}
|
BIN
data/nuScenes/models/robot_demo/model_registrar-1.pt
Normal file
BIN
data/nuScenes/models/robot_demo/model_registrar-1.pt
Normal file
Binary file not shown.
1
data/nuScenes/nuscenes-devkit
Submodule
1
data/nuScenes/nuscenes-devkit
Submodule
|
@ -0,0 +1 @@
|
||||||
|
Subproject commit f3594b967cbf42396da5c6cb08bd714437b53111
|
491
data/nuScenes/process_nuScenes.py
Normal file
491
data/nuScenes/process_nuScenes.py
Normal file
|
@ -0,0 +1,491 @@
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import pickle
|
||||||
|
import json
|
||||||
|
from tqdm import tqdm
|
||||||
|
from pyquaternion import Quaternion
|
||||||
|
from kalman_filter import LinearPointMass, NonlinearKinematicBicycle
|
||||||
|
from scipy.integrate import cumtrapz
|
||||||
|
from scipy.ndimage.morphology import binary_dilation, generate_binary_structure
|
||||||
|
|
||||||
|
nu_path = './nuscenes-devkit/python-sdk/'
|
||||||
|
#op_path = './pytorch-openpose/python/'
|
||||||
|
sys.path.append(nu_path)
|
||||||
|
sys.path.append("../../code")
|
||||||
|
#sys.path.append(op_path)
|
||||||
|
from nuscenes.nuscenes import NuScenes
|
||||||
|
from nuscenes.map_expansion.map_api import NuScenesMap
|
||||||
|
from data import Environment, Scene, Node, BicycleNode, Position, Velocity, Acceleration, ActuatorAngle, Map, Scalar
|
||||||
|
|
||||||
|
scene_blacklist = [3, 12, 18, 19, 33, 35, 36, 41, 45, 50, 54, 55, 61, 120, 121, 123, 126, 132, 133, 134, 149,
|
||||||
|
154, 159, 196, 268, 278, 351, 365, 367, 368, 369, 372, 376, 377, 382, 385, 499, 515, 517,
|
||||||
|
945, 947, 952, 955, 962, 963, 968] + [969]
|
||||||
|
|
||||||
|
|
||||||
|
types = ['PEDESTRIAN',
|
||||||
|
'BICYCLE',
|
||||||
|
'VEHICLE']
|
||||||
|
|
||||||
|
standardization = {
|
||||||
|
'PEDESTRIAN': {
|
||||||
|
'position': {
|
||||||
|
'x': {'mean': 0, 'std': 25},
|
||||||
|
'y': {'mean': 0, 'std': 25}
|
||||||
|
},
|
||||||
|
'velocity': {
|
||||||
|
'x': {'mean': 0, 'std': 2},
|
||||||
|
'y': {'mean': 0, 'std': 2}
|
||||||
|
},
|
||||||
|
'acceleration': {
|
||||||
|
'x': {'mean': 0, 'std': 1},
|
||||||
|
'y': {'mean': 0, 'std': 1}
|
||||||
|
},
|
||||||
|
'heading': {
|
||||||
|
'value': {'mean': 0, 'std': np.pi},
|
||||||
|
'derivative': {'mean': 0, 'std': np.pi / 4}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
'BICYCLE': {
|
||||||
|
'position': {
|
||||||
|
'x': {'mean': 0, 'std': 50},
|
||||||
|
'y': {'mean': 0, 'std': 50}
|
||||||
|
},
|
||||||
|
'velocity': {
|
||||||
|
'x': {'mean': 0, 'std': 6},
|
||||||
|
'y': {'mean': 0, 'std': 6},
|
||||||
|
'm': {'mean': 0, 'std': 6}
|
||||||
|
},
|
||||||
|
'acceleration': {
|
||||||
|
'x': {'mean': 0, 'std': 4},
|
||||||
|
'y': {'mean': 0, 'std': 4},
|
||||||
|
'm': {'mean': 0, 'std': 4}
|
||||||
|
},
|
||||||
|
'actuator_angle': {
|
||||||
|
'steering_angle': {'mean': 0, 'std': np.pi/2}
|
||||||
|
},
|
||||||
|
'heading': {
|
||||||
|
'value': {'mean': 0, 'std': np.pi},
|
||||||
|
'derivative': {'mean': 0, 'std': np.pi / 4}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
'VEHICLE': {
|
||||||
|
'position': {
|
||||||
|
'x': {'mean': 0, 'std': 100},
|
||||||
|
'y': {'mean': 0, 'std': 100}
|
||||||
|
},
|
||||||
|
'velocity': {
|
||||||
|
'x': {'mean': 0, 'std': 20},
|
||||||
|
'y': {'mean': 0, 'std': 20},
|
||||||
|
'm': {'mean': 0, 'std': 20}
|
||||||
|
},
|
||||||
|
'acceleration': {
|
||||||
|
'x': {'mean': 0, 'std': 4},
|
||||||
|
'y': {'mean': 0, 'std': 4},
|
||||||
|
'm': {'mean': 0, 'std': 4}
|
||||||
|
},
|
||||||
|
'actuator_angle': {
|
||||||
|
'steering_angle': {'mean': 0, 'std': np.pi/2}
|
||||||
|
},
|
||||||
|
'heading': {
|
||||||
|
'value': {'mean': 0, 'std': np.pi},
|
||||||
|
'derivative': {'mean': 0, 'std': np.pi / 4}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def inverse_np_gradient(f, dx, F0=0.):
|
||||||
|
N = f.shape[0]
|
||||||
|
return F0 + np.hstack((np.zeros((N, 1)), cumtrapz(f, axis=1, dx=dx)))
|
||||||
|
|
||||||
|
def integrate_trajectory(v, x0, dt):
|
||||||
|
xd_ = inverse_np_gradient(v[..., 0], dx=dt, F0=x0[0])
|
||||||
|
yd_ = inverse_np_gradient(v[..., 1], dx=dt, F0=x0[1])
|
||||||
|
integrated = np.stack([xd_, yd_], axis=2)
|
||||||
|
return integrated
|
||||||
|
|
||||||
|
def integrate_heading_model(a, dh, h0, x0, v0, dt):
|
||||||
|
h = inverse_np_gradient(dh, dx=dt, F0=h0)
|
||||||
|
v_m = inverse_np_gradient(a, dx=dt, F0=v0)
|
||||||
|
|
||||||
|
vx = np.cos(h) * v_m
|
||||||
|
vy = np.sin(h) * v_m
|
||||||
|
|
||||||
|
v = np.stack((vx, vy), axis=2)
|
||||||
|
return integrate_trajectory(v, x0, dt)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
num_global_straight = 0
|
||||||
|
num_global_curve = 0
|
||||||
|
|
||||||
|
test = False
|
||||||
|
if sys.argv[1] == 'mini':
|
||||||
|
data_path = './raw_data/mini'
|
||||||
|
nusc = NuScenes(version='v1.0-mini', dataroot=data_path, verbose=True)
|
||||||
|
add = "_mini"
|
||||||
|
train_scenes = nusc.scene[0:7]
|
||||||
|
val_scenes = nusc.scene[7:]
|
||||||
|
test_scenes = []
|
||||||
|
elif sys.argv[1] == 'test':
|
||||||
|
test = True
|
||||||
|
data_path = './raw_data'
|
||||||
|
nusc = NuScenes(version='v1.0-test', dataroot=data_path, verbose=True)
|
||||||
|
train_scenes = []
|
||||||
|
val_scenes = []
|
||||||
|
test_scenes = nusc.scene
|
||||||
|
with open(os.path.join('./raw_data/results_test_megvii.json'), 'r') as test_json:
|
||||||
|
test_annotations = json.load(test_json)
|
||||||
|
else:
|
||||||
|
data_path = '/home/timsal/Documents/code/GenTrajectron_nuScenes_ssh/data/nuScenes/raw_data'
|
||||||
|
nusc = NuScenes(version='v1.0-trainval', dataroot=data_path, verbose=True)
|
||||||
|
add = ""
|
||||||
|
train_scenes = nusc.scene[0:]
|
||||||
|
val_scenes = nusc.scene[700:]
|
||||||
|
test_scenes = []
|
||||||
|
|
||||||
|
for data_class, nuscenes in [('train', train_scenes), ('val', val_scenes), ('test', test_scenes)]:
|
||||||
|
print(f"Processing data class {data_class}")
|
||||||
|
data_dict_path = os.path.join('../processed', '_'.join(['nuScenes', data_class])+ 'samp.pkl')
|
||||||
|
env = Environment(node_type_list=types, standardization=standardization)
|
||||||
|
attention_radius = dict()
|
||||||
|
attention_radius[(env.NodeType.PEDESTRIAN, env.NodeType.PEDESTRIAN)] = 3.0
|
||||||
|
attention_radius[(env.NodeType.PEDESTRIAN, env.NodeType.VEHICLE)] = 20.0
|
||||||
|
attention_radius[(env.NodeType.PEDESTRIAN, env.NodeType.BICYCLE)] = 10.0
|
||||||
|
attention_radius[(env.NodeType.VEHICLE, env.NodeType.PEDESTRIAN)] = 20.0
|
||||||
|
attention_radius[(env.NodeType.VEHICLE, env.NodeType.VEHICLE)] = 20.0
|
||||||
|
attention_radius[(env.NodeType.VEHICLE, env.NodeType.BICYCLE)] = 20.0
|
||||||
|
attention_radius[(env.NodeType.BICYCLE, env.NodeType.PEDESTRIAN)] = 10.0
|
||||||
|
attention_radius[(env.NodeType.BICYCLE, env.NodeType.VEHICLE)] = 20.0
|
||||||
|
attention_radius[(env.NodeType.BICYCLE, env.NodeType.BICYCLE)] = 10.0
|
||||||
|
env.attention_radius = attention_radius
|
||||||
|
scenes = []
|
||||||
|
pbar = tqdm(nuscenes, ncols=100)
|
||||||
|
for nuscene in pbar:
|
||||||
|
scene_id = int(nuscene['name'].replace('scene-', ''))
|
||||||
|
if scene_id in scene_blacklist: # Some scenes have bad localization
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not (scene_id == 1002 or scene_id == 234):
|
||||||
|
continue
|
||||||
|
|
||||||
|
data = pd.DataFrame(columns=['frame_id',
|
||||||
|
'type',
|
||||||
|
'node_id',
|
||||||
|
'robot',
|
||||||
|
'x', 'y', 'z',
|
||||||
|
'length',
|
||||||
|
'width',
|
||||||
|
'height',
|
||||||
|
'heading',
|
||||||
|
'orientation'])
|
||||||
|
|
||||||
|
sample_token = nuscene['first_sample_token']
|
||||||
|
sample = nusc.get('sample', sample_token)
|
||||||
|
frame_id = 0
|
||||||
|
while sample['next']:
|
||||||
|
if not test:
|
||||||
|
annotation_tokens = sample['anns']
|
||||||
|
else:
|
||||||
|
annotation_tokens = test_annotations['results'][sample['token']]
|
||||||
|
for annotation_token in annotation_tokens:
|
||||||
|
if not test:
|
||||||
|
annotation = nusc.get('sample_annotation', annotation_token)
|
||||||
|
category = annotation['category_name']
|
||||||
|
if len(annotation['attribute_tokens']):
|
||||||
|
attribute = nusc.get('attribute', annotation['attribute_tokens'][0])['name']
|
||||||
|
|
||||||
|
if 'pedestrian' in category and not 'stroller' in category and not 'wheelchair' in category:
|
||||||
|
our_category = env.NodeType.PEDESTRIAN
|
||||||
|
elif ('vehicle.bicycle' in category) and 'with_rider' in attribute:
|
||||||
|
continue
|
||||||
|
our_category = env.NodeType.BICYCLE
|
||||||
|
elif 'vehicle' in category and 'bicycle' not in category and 'motorcycle' not in category and 'parked' not in attribute:
|
||||||
|
our_category = env.NodeType.VEHICLE
|
||||||
|
# elif ('vehicle.motorcycle' in category) and 'with_rider' in attribute:
|
||||||
|
# our_category = env.NodeType.VEHICLE
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
annotation = annotation_token
|
||||||
|
category = annotation['tracking_name']
|
||||||
|
attribute = ""#annotation['attribute_name']
|
||||||
|
|
||||||
|
if 'pedestrian' in category :
|
||||||
|
our_category = env.NodeType.PEDESTRIAN
|
||||||
|
elif (('car' in category or 'bus' in category or 'construction_vehicle' in category) and 'parked' not in attribute):
|
||||||
|
our_category = env.NodeType.VEHICLE
|
||||||
|
# elif ('vehicle.motorcycle' in category) and 'with_rider' in attribute:
|
||||||
|
# our_category = env.NodeType.VEHICLE
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
|
||||||
|
|
||||||
|
data_point = pd.Series({'frame_id': frame_id,
|
||||||
|
'type': our_category,
|
||||||
|
'node_id': annotation['instance_token'] if not test else annotation['tracking_id'],
|
||||||
|
'robot': False,
|
||||||
|
'x': annotation['translation'][0],
|
||||||
|
'y': annotation['translation'][1],
|
||||||
|
'z': annotation['translation'][2],
|
||||||
|
'length': annotation['size'][0],
|
||||||
|
'width': annotation['size'][1],
|
||||||
|
'height': annotation['size'][2],
|
||||||
|
'heading': Quaternion(annotation['rotation']).yaw_pitch_roll[0],
|
||||||
|
'orientation': None})
|
||||||
|
data = data.append(data_point, ignore_index=True)
|
||||||
|
|
||||||
|
# Ego Vehicle
|
||||||
|
our_category = env.NodeType.VEHICLE
|
||||||
|
sample_data = nusc.get('sample_data', sample['data']['CAM_FRONT'])
|
||||||
|
annotation = nusc.get('ego_pose', sample_data['ego_pose_token'])
|
||||||
|
data_point = pd.Series({'frame_id': frame_id,
|
||||||
|
'type': our_category,
|
||||||
|
'node_id': 'ego',
|
||||||
|
'robot': True,
|
||||||
|
'x': annotation['translation'][0],
|
||||||
|
'y': annotation['translation'][1],
|
||||||
|
'z': annotation['translation'][2],
|
||||||
|
'length': 4,
|
||||||
|
'width': 1.7,
|
||||||
|
'height': 1.5,
|
||||||
|
'heading': Quaternion(annotation['rotation']).yaw_pitch_roll[0],
|
||||||
|
'orientation': None})
|
||||||
|
data = data.append(data_point, ignore_index=True)
|
||||||
|
|
||||||
|
sample = nusc.get('sample', sample['next'])
|
||||||
|
frame_id += 1
|
||||||
|
|
||||||
|
if len(data.index) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
data.sort_values('frame_id', inplace=True)
|
||||||
|
max_timesteps = data['frame_id'].max()
|
||||||
|
|
||||||
|
x_min = np.round(data['x'].min() - 50)
|
||||||
|
x_max = np.round(data['x'].max() + 50)
|
||||||
|
y_min = np.round(data['y'].min() - 50)
|
||||||
|
y_max = np.round(data['y'].max() + 50)
|
||||||
|
|
||||||
|
data['x'] = data['x'] - x_min
|
||||||
|
data['y'] = data['y'] - y_min
|
||||||
|
|
||||||
|
scene = Scene(timesteps=max_timesteps + 1, dt=0.5, name=str(scene_id))
|
||||||
|
|
||||||
|
# Generate Maps
|
||||||
|
map_name = nusc.get('log', nuscene['log_token'])['location']
|
||||||
|
nusc_map = NuScenesMap(dataroot=data_path, map_name=map_name)
|
||||||
|
|
||||||
|
type_map = dict()
|
||||||
|
x_size = x_max - x_min
|
||||||
|
y_size = y_max - y_min
|
||||||
|
patch_box = (x_min + 0.5 * (x_max - x_min), y_min + 0.5 * (y_max - y_min), y_size, x_size)
|
||||||
|
patch_angle = 0 # Default orientation where North is up
|
||||||
|
canvas_size = (np.round(3 * y_size).astype(int), np.round(3 * x_size).astype(int))
|
||||||
|
homography = np.array([[3., 0., 0.], [0., 3., 0.], [0., 0., 3.]])
|
||||||
|
layer_names = ['lane', 'road_segment', 'drivable_area', 'road_divider', 'lane_divider', 'stop_line',
|
||||||
|
'ped_crossing', 'stop_line', 'ped_crossing', 'walkway']
|
||||||
|
map_mask = (nusc_map.get_map_mask(patch_box, patch_angle, layer_names, canvas_size) * 255.0).astype(
|
||||||
|
np.uint8)
|
||||||
|
map_mask = np.swapaxes(map_mask, 1, 2) # x axis comes first
|
||||||
|
# PEDESTRIANS
|
||||||
|
map_mask_pedestrian = np.stack((map_mask[9], map_mask[8], np.max(map_mask[:3], axis=0)), axis=2)
|
||||||
|
type_map['PEDESTRIAN'] = Map(data=map_mask_pedestrian, homography=homography,
|
||||||
|
description=', '.join(layer_names))
|
||||||
|
# Bicycles
|
||||||
|
map_mask_bicycles = np.stack((map_mask[9], map_mask[8], np.max(map_mask[:3], axis=0)), axis=2)
|
||||||
|
type_map['BICYCLE'] = Map(data=map_mask_bicycles, homography=homography, description=', '.join(layer_names))
|
||||||
|
# VEHICLES
|
||||||
|
map_mask_vehicle = np.stack((np.max(map_mask[:3], axis=0), map_mask[3], map_mask[4]), axis=2)
|
||||||
|
type_map['VEHICLE'] = Map(data=map_mask_vehicle, homography=homography, description=', '.join(layer_names))
|
||||||
|
|
||||||
|
map_mask_plot = np.stack(((np.max(map_mask[:3], axis=0) - (map_mask[3] + 0.5 * map_mask[4]).clip(
|
||||||
|
max=255)).clip(min=0).astype(np.uint8), map_mask[8], map_mask[9]), axis=2)
|
||||||
|
type_map['PLOT'] = Map(data=map_mask_plot, homography=homography, description=', '.join(layer_names))
|
||||||
|
|
||||||
|
scene.map = type_map
|
||||||
|
del map_mask
|
||||||
|
del map_mask_pedestrian
|
||||||
|
del map_mask_vehicle
|
||||||
|
del map_mask_bicycles
|
||||||
|
del map_mask_plot
|
||||||
|
|
||||||
|
for node_id in pd.unique(data['node_id']):
|
||||||
|
node_df = data[data['node_id'] == node_id]
|
||||||
|
|
||||||
|
if node_df['x'].shape[0] < 2:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not np.all(np.diff(node_df['frame_id']) == 1):
|
||||||
|
#print('Occlusion')
|
||||||
|
continue # TODO Make better
|
||||||
|
|
||||||
|
node_values = node_df['x'].values
|
||||||
|
if node_df.iloc[0]['type'] == env.NodeType.PEDESTRIAN:
|
||||||
|
node = Node(type=node_df.iloc[0]['type'])
|
||||||
|
else:
|
||||||
|
node = BicycleNode(type=node_df.iloc[0]['type'])
|
||||||
|
node.first_timestep = node_df['frame_id'].iloc[0]
|
||||||
|
node.position = Position(node_df['x'].values, node_df['y'].values)
|
||||||
|
node.velocity = Velocity.from_position(node.position, scene.dt)
|
||||||
|
node.velocity.m = np.linalg.norm(np.vstack((node.velocity.x, node.velocity.y)), axis=0)
|
||||||
|
node.acceleration = Acceleration.from_velocity(node.velocity, scene.dt)
|
||||||
|
node.heading = Scalar(node_df['heading'].values)
|
||||||
|
heading_t = node_df['heading'].values.copy()
|
||||||
|
shifted_heading = np.zeros_like(node.heading.value)
|
||||||
|
shifted_heading[0] = node.heading.value[0]
|
||||||
|
for i in range(1, len(node.heading.value)):
|
||||||
|
if not (np.sign(node.heading.value[i]) == np.sign(node.heading.value[i - 1])) and np.abs(
|
||||||
|
node.heading.value[i]) > np.pi / 2:
|
||||||
|
shifted_heading[i] = shifted_heading[i - 1] + (
|
||||||
|
node.heading.value[i] - node.heading.value[i - 1]) - np.sign(
|
||||||
|
(node.heading.value[i] - node.heading.value[i - 1])) * 2 * np.pi
|
||||||
|
else:
|
||||||
|
shifted_heading[i] = shifted_heading[i - 1] + (
|
||||||
|
node.heading.value[i] - node.heading.value[i - 1])
|
||||||
|
node.heading.value = shifted_heading
|
||||||
|
node.length = node_df.iloc[0]['length']
|
||||||
|
node.width = node_df.iloc[0]['width']
|
||||||
|
|
||||||
|
if node_df.iloc[0]['robot'] == True:
|
||||||
|
node.is_robot = True
|
||||||
|
|
||||||
|
if node_df.iloc[0]['type'] == env.NodeType.PEDESTRIAN:
|
||||||
|
filter_ped = LinearPointMass(dt=scene.dt)
|
||||||
|
for i in range(len(node.position.x)):
|
||||||
|
if i == 0: # initalize KF
|
||||||
|
P_matrix = np.identity(4)
|
||||||
|
elif i < len(node.position.x):
|
||||||
|
# assign new est values
|
||||||
|
node.position.x[i] = x_vec_est_new[0][0]
|
||||||
|
node.velocity.x[i] = x_vec_est_new[1][0]
|
||||||
|
node.position.y[i] = x_vec_est_new[2][0]
|
||||||
|
node.velocity.y[i] = x_vec_est_new[3][0]
|
||||||
|
|
||||||
|
if i < len(node.position.x) - 1: # no action on last data
|
||||||
|
# filtering
|
||||||
|
x_vec_est = np.array([[node.position.x[i]],
|
||||||
|
[node.velocity.x[i]],
|
||||||
|
[node.position.y[i]],
|
||||||
|
[node.velocity.y[i]]])
|
||||||
|
z_new = np.array([[node.position.x[i+1]],
|
||||||
|
[node.position.y[i+1]]])
|
||||||
|
x_vec_est_new, P_matrix_new = filter_ped.predict_and_update(
|
||||||
|
x_vec_est=x_vec_est,
|
||||||
|
u_vec=np.array([[0.], [0.]]),
|
||||||
|
P_matrix=P_matrix,
|
||||||
|
z_new=z_new
|
||||||
|
)
|
||||||
|
P_matrix = P_matrix_new
|
||||||
|
else:
|
||||||
|
filter_veh = NonlinearKinematicBicycle(lf=node.length*0.6, lr=node.length*0.4, dt=scene.dt)
|
||||||
|
for i in range(len(node.position.x)):
|
||||||
|
if i == 0: # initalize KF
|
||||||
|
# initial P_matrix
|
||||||
|
P_matrix = np.identity(4)
|
||||||
|
elif i < len(node.position.x):
|
||||||
|
# assign new est values
|
||||||
|
node.position.x[i] = x_vec_est_new[0][0]
|
||||||
|
node.position.y[i] = x_vec_est_new[1][0]
|
||||||
|
node.heading.value[i] = x_vec_est_new[2][0]
|
||||||
|
node.velocity.m[i] = x_vec_est_new[3][0]
|
||||||
|
|
||||||
|
if i < len(node.position.x) - 1: # no action on last data
|
||||||
|
# filtering
|
||||||
|
x_vec_est = np.array([[node.position.x[i]],
|
||||||
|
[node.position.y[i]],
|
||||||
|
[node.heading.value[i]],
|
||||||
|
[node.velocity.m[i]]])
|
||||||
|
z_new = np.array([[node.position.x[i+1]],
|
||||||
|
[node.position.y[i+1]],
|
||||||
|
[node.heading.value[i+1]],
|
||||||
|
[node.velocity.m[i+1]]])
|
||||||
|
x_vec_est_new, P_matrix_new = filter_veh.predict_and_update(
|
||||||
|
x_vec_est=x_vec_est,
|
||||||
|
u_vec=np.array([[0.], [0.]]),
|
||||||
|
P_matrix=P_matrix,
|
||||||
|
z_new=z_new
|
||||||
|
)
|
||||||
|
P_matrix = P_matrix_new
|
||||||
|
|
||||||
|
v_tmp = node.velocity.m
|
||||||
|
node.velocity = Velocity.from_position(node.position, scene.dt)
|
||||||
|
node.velocity.m = v_tmp
|
||||||
|
#if (np.abs(np.linalg.norm(np.vstack((node.velocity.x, node.velocity.y)), axis=0) - v_tmp) > 0.4).any():
|
||||||
|
# print(np.abs(np.linalg.norm(np.vstack((node.velocity.x, node.velocity.y)), axis=0) - v_tmp))
|
||||||
|
|
||||||
|
node.acceleration = Acceleration.from_velocity(node.velocity, scene.dt)
|
||||||
|
node.acceleration.m = np.gradient(v_tmp, scene.dt)
|
||||||
|
node.heading.derivative = np.gradient(node.heading.value, scene.dt)
|
||||||
|
node.heading.value = (node.heading.value + np.pi) % (2.0 * np.pi) - np.pi
|
||||||
|
|
||||||
|
if node_df.iloc[0]['type'] == env.NodeType.VEHICLE:
|
||||||
|
node_pos = np.stack((node.position.x, node.position.y), axis=1)
|
||||||
|
node_pos_map = scene.map[env.NodeType.VEHICLE.name].to_map_points(node_pos)
|
||||||
|
node_pos_int = np.round(node_pos_map).astype(int)
|
||||||
|
dilated_map = binary_dilation(scene.map[env.NodeType.VEHICLE.name].data[..., 0], generate_binary_structure(2, 2))
|
||||||
|
if np.sum((dilated_map[node_pos_int[:, 0], node_pos_int[:, 1]] == 0))/node_pos_int.shape[0] > 0.1:
|
||||||
|
del node
|
||||||
|
continue # Out of map
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if not node_df.iloc[0]['type'] == env.NodeType.PEDESTRIAN:
|
||||||
|
# Re Integrate:
|
||||||
|
i_pos = integrate_heading_model(np.array([node.acceleration.m[1:]]),
|
||||||
|
np.array([node.heading.derivative[1:]]),
|
||||||
|
node.heading.value[0],
|
||||||
|
np.vstack((node.position.x[0], node.position.y[0])),
|
||||||
|
node.velocity.m[0], 0.5)
|
||||||
|
|
||||||
|
|
||||||
|
#if (np.abs(node.heading.derivative) > np.pi/8).any():
|
||||||
|
# print(np.abs(node.heading.derivative).max())
|
||||||
|
scene.nodes.append(node)
|
||||||
|
if node.is_robot is True:
|
||||||
|
scene.robot = node
|
||||||
|
|
||||||
|
robot = False
|
||||||
|
num_heading_changed = 0
|
||||||
|
num_moving_vehicles = 0
|
||||||
|
for node in scene.nodes:
|
||||||
|
node.description = "straight"
|
||||||
|
num_global_straight += 1
|
||||||
|
if node.type == env.NodeType.VEHICLE:
|
||||||
|
if np.linalg.norm((node.position.x[0] - node.position.x[-1], node.position.y[0] - node.position.y[-1])) > 10:
|
||||||
|
num_moving_vehicles += 1
|
||||||
|
if np.abs(node.heading.value[0] - node.heading.value[-1]) > np.pi / 6:
|
||||||
|
if not np.sign(node.heading.value[0]) == np.sign(node.heading.value[-1]) and np.abs(node.heading.value[0] > 1/2 * np.pi):
|
||||||
|
if (node.heading.value[0] - node.heading.value[-1]) - np.sign((node.heading.value[0] - node.heading.value[-1])) * 2 * np.pi > np.pi / 6:
|
||||||
|
node.description = "curve"
|
||||||
|
num_global_curve += 1
|
||||||
|
num_global_straight -= 1
|
||||||
|
num_heading_changed += 1
|
||||||
|
else:
|
||||||
|
node.description = "curve"
|
||||||
|
num_global_curve += 1
|
||||||
|
num_global_straight -= 1
|
||||||
|
num_heading_changed += 1
|
||||||
|
|
||||||
|
if node.is_robot:
|
||||||
|
robot = True
|
||||||
|
|
||||||
|
if num_moving_vehicles > 0 and num_heading_changed / num_moving_vehicles > 0.4:
|
||||||
|
scene.description = "curvy"
|
||||||
|
else:
|
||||||
|
scene.description = "straight"
|
||||||
|
|
||||||
|
if robot: # If we dont have a ego vehicle there was bad localization
|
||||||
|
pbar.set_description(str(scene))
|
||||||
|
scenes.append(scene)
|
||||||
|
|
||||||
|
del data
|
||||||
|
|
||||||
|
env.scenes = scenes
|
||||||
|
|
||||||
|
if len(scenes) > 0:
|
||||||
|
with open(data_dict_path, 'wb') as f:
|
||||||
|
pickle.dump(env, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||||
|
|
||||||
|
print(num_global_straight)
|
||||||
|
print(num_global_curve)
|
BIN
data/processed/nuScenes_samples.pkl
Normal file
BIN
data/processed/nuScenes_samples.pkl
Normal file
Binary file not shown.
13
requirements.txt
Normal file
13
requirements.txt
Normal file
|
@ -0,0 +1,13 @@
|
||||||
|
matplotlib
|
||||||
|
numpy==1.16.4
|
||||||
|
pandas==0.25.1
|
||||||
|
psutil==5.6.3
|
||||||
|
scipy==1.3.1
|
||||||
|
seaborn==0.9.0
|
||||||
|
tensorboard==1.14.0
|
||||||
|
tensorboardX==1.8
|
||||||
|
tensorflow==1.14.0
|
||||||
|
tensorflow-estimator==1.14.0
|
||||||
|
torch==1.2.0
|
||||||
|
Pillow==6.1.0
|
||||||
|
pyquaternion==0.9.5
|
Loading…
Reference in a new issue