2020-01-13 19:55:45 +01:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def prediction_output_to_trajectories(prediction_output_dict,
|
|
|
|
dt,
|
|
|
|
max_h,
|
|
|
|
ph,
|
|
|
|
map=None,
|
|
|
|
prune_ph_to_future=False):
|
|
|
|
|
|
|
|
prediction_timesteps = prediction_output_dict.keys()
|
|
|
|
|
|
|
|
output_dict = dict()
|
|
|
|
histories_dict = dict()
|
|
|
|
futures_dict = dict()
|
|
|
|
|
|
|
|
for t in prediction_timesteps:
|
|
|
|
histories_dict[t] = dict()
|
|
|
|
output_dict[t] = dict()
|
|
|
|
futures_dict[t] = dict()
|
|
|
|
prediction_nodes = prediction_output_dict[t].keys()
|
|
|
|
for node in prediction_nodes:
|
|
|
|
predictions_output = prediction_output_dict[t][node]
|
|
|
|
position_state = {'position': ['x', 'y']}
|
2020-04-06 03:43:49 +02:00
|
|
|
|
2020-01-13 19:55:45 +01:00
|
|
|
history = node.get(np.array([t - max_h, t]), position_state) # History includes current pos
|
|
|
|
history = history[~np.isnan(history.sum(axis=1))]
|
|
|
|
|
|
|
|
future = node.get(np.array([t + 1, t + ph]), position_state)
|
|
|
|
future = future[~np.isnan(future.sum(axis=1))]
|
|
|
|
|
|
|
|
if prune_ph_to_future:
|
2020-04-06 03:43:49 +02:00
|
|
|
predictions_output = predictions_output[:, :, :future.shape[0]]
|
|
|
|
if predictions_output.shape[2] == 0:
|
2020-01-13 19:55:45 +01:00
|
|
|
continue
|
|
|
|
|
2020-04-06 03:43:49 +02:00
|
|
|
trajectory = predictions_output
|
2020-01-13 19:55:45 +01:00
|
|
|
|
|
|
|
if map is None:
|
|
|
|
histories_dict[t][node] = history
|
|
|
|
output_dict[t][node] = trajectory
|
|
|
|
futures_dict[t][node] = future
|
|
|
|
else:
|
|
|
|
histories_dict[t][node] = map.to_map_points(history)
|
|
|
|
output_dict[t][node] = map.to_map_points(trajectory)
|
|
|
|
futures_dict[t][node] = map.to_map_points(future)
|
|
|
|
|
|
|
|
return output_dict, histories_dict, futures_dict
|