Trajectron-plus-plus/code/utils/trajectory_utils.py

73 lines
2.9 KiB
Python
Raw Normal View History

2020-01-13 18:55:45 +00:00
import numpy as np
from scipy.integrate import cumtrapz
def integrate(f, dx, F0=0.):
N = f.shape[0]
return F0 + np.hstack((np.zeros((N, 1)), cumtrapz(f, axis=1, dx=dx)))
def integrate_trajectory(v, x0, dt):
xd_ = integrate(v[..., 0], dx=dt, F0=x0[0])
yd_ = integrate(v[..., 1], dx=dt, F0=x0[1])
integrated = np.stack([xd_, yd_], axis=2)
return integrated
def prediction_output_to_trajectories(prediction_output_dict,
dt,
max_h,
ph,
map=None,
gmm_agg='mean',
prune_ph_to_future=False):
prediction_timesteps = prediction_output_dict.keys()
output_dict = dict()
histories_dict = dict()
futures_dict = dict()
for t in prediction_timesteps:
histories_dict[t] = dict()
output_dict[t] = dict()
futures_dict[t] = dict()
prediction_nodes = prediction_output_dict[t].keys()
for node in prediction_nodes:
predictions_output = prediction_output_dict[t][node]
position_state = {'position': ['x', 'y']}
velocity_state = {'velocity': ['x', 'y']}
acceleration_state = {'acceleration': ['m']}
history = node.get(np.array([t - max_h, t]), position_state) # History includes current pos
history = history[~np.isnan(history.sum(axis=1))]
future = node.get(np.array([t + 1, t + ph]), position_state)
future = future[~np.isnan(future.sum(axis=1))]
current_pos = node.get(t, position_state)[0] # List with single item
current_vel = node.get(t, velocity_state)[0] # List with single item
predictions_output = getattr(predictions_output, gmm_agg)(axis=1)
if prune_ph_to_future:
predictions_output = predictions_output[:, :future.shape[0]]
if predictions_output.shape[1] == 0:
continue
vel_broad = np.expand_dims(np.broadcast_to(current_vel,
(predictions_output.shape[0],
current_vel.shape[-1])), axis=-2)
vel = np.concatenate((vel_broad, predictions_output), axis=1)
trajectory = integrate_trajectory(vel, current_pos, dt=dt)[:, 1:]
if map is None:
histories_dict[t][node] = history
output_dict[t][node] = trajectory
futures_dict[t][node] = future
else:
histories_dict[t][node] = map.to_map_points(history)
output_dict[t][node] = map.to_map_points(trajectory)
futures_dict[t][node] = map.to_map_points(future)
return output_dict, histories_dict, futures_dict