non_max_suppression(): Remove unsupported options (#74)
Fixes #33 Delete all the code that is related to __soft_nms__ as recommended at https://github.com/Zhongdao/Towards-Realtime-MOT/issues/33#issuecomment-572886297
This commit is contained in:
parent
43aad41ffe
commit
e6c39ef673
1 changed files with 1 additions and 14 deletions
|
@ -414,13 +414,6 @@ def pooling_nms(heatmap, kernel=1):
|
||||||
keep = (hmax == heatmap).float()
|
keep = (hmax == heatmap).float()
|
||||||
return keep * heatmap
|
return keep * heatmap
|
||||||
|
|
||||||
def soft_nms(dets, sigma=0.5, Nt=0.3, threshold=0.05, method=1):
|
|
||||||
keep = cpu_soft_nms(np.ascontiguousarray(dets, dtype=np.float32),
|
|
||||||
np.float32(sigma), np.float32(Nt),
|
|
||||||
np.float32(threshold),
|
|
||||||
np.uint8(method))
|
|
||||||
return keep
|
|
||||||
|
|
||||||
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, method='standard'):
|
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, method='standard'):
|
||||||
"""
|
"""
|
||||||
Removes detections with lower object confidence score than 'conf_thres'
|
Removes detections with lower object confidence score than 'conf_thres'
|
||||||
|
@ -431,7 +424,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, method='stand
|
||||||
prediction,
|
prediction,
|
||||||
conf_thres,
|
conf_thres,
|
||||||
nms_thres,
|
nms_thres,
|
||||||
method = 'standard', 'fast', 'soft_linear' or 'soft_gaussian'
|
method = 'standard' or 'fast'
|
||||||
"""
|
"""
|
||||||
|
|
||||||
output = [None for _ in range(len(prediction))]
|
output = [None for _ in range(len(prediction))]
|
||||||
|
@ -457,12 +450,6 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, method='stand
|
||||||
# Non-maximum suppression
|
# Non-maximum suppression
|
||||||
if method == 'standard':
|
if method == 'standard':
|
||||||
nms_indices = nms(pred[:, :4], pred[:, 4], nms_thres)
|
nms_indices = nms(pred[:, :4], pred[:, 4], nms_thres)
|
||||||
elif method == 'soft_linear':
|
|
||||||
dets = pred[:, :5].clone().contiguous().data.cpu().numpy()
|
|
||||||
nms_indices = soft_nms(dets, Nt=nms_thres, method=0)
|
|
||||||
elif method == 'soft_gaussian':
|
|
||||||
dets = pred[:, :5].clone().contiguous().data.cpu().numpy()
|
|
||||||
nms_indices = soft_nms(dets, Nt=nms_thres, method=1)
|
|
||||||
elif method == 'fast':
|
elif method == 'fast':
|
||||||
nms_indices = fast_nms(pred[:, :4], pred[:, 4], iou_thres=nms_thres, conf_thres=conf_thres)
|
nms_indices = fast_nms(pred[:, :4], pred[:, 4], iou_thres=nms_thres, conf_thres=conf_thres)
|
||||||
else:
|
else:
|
||||||
|
|
Loading…
Reference in a new issue