Rudimentary visualisation

This commit is contained in:
Ruben 2018-04-26 13:12:51 +02:00
parent 9be539e3a4
commit 1b049b9e5a
3 changed files with 203 additions and 64 deletions

View file

@ -5,9 +5,14 @@ import dlib
import numpy as np
import os
import pickle
from PIL import Image, ImageDraw
import logging
from scipy.ndimage.filters import gaussian_filter
import Tkinter
from PIL import Image, ImageDraw,ImageTk
logging.basicConfig( format='%(asctime)-15s %(name)s %(levelname)s: %(message)s' )
logger = logging.getLogger(__name__)
# Read Image
c = cv2.VideoCapture(0)
# im = cv2.imread("headPose.jpg");
@ -20,6 +25,10 @@ predictor = dlib.shape_predictor(predictor_path)
screenDrawCorners = np.array([[10,60], [90, 60], [10, 110], [90, 110]])
# metrics matrix
metricsSize = [1920,1080]
metrics = np.zeros(metricsSize)
screenDrawCorners = np.array([[0,0], [1919,0], [0, 1079], [1919,1079]])
def create_perspective_transform_matrix(src, dst):
""" Creates a perspective transformation matrix which transforms points
@ -42,24 +51,10 @@ def create_perspective_transform_matrix(src, dst):
B = np.array(dst).reshape(8)
af = np.dot(np.linalg.inv(A.T * A) * A.T, B)
m = np.append(np.array(af).reshape(8), 1).reshape((3, 3))
print("Created transformmatrix:", src, dst, m)
logger.info("Created transformmatrix: src %s dst %s m %s", src, dst, m)
return m
def transMatrix2(fromMatrix, toMatrix):
matrix = []
for p1, p2 in zip(toMatrix, fromMatrix):
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0]*p1[0], -p2[0]*p1[1]])
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1]*p1[0], -p2[1]*p1[1]])
A = np.matrix(matrix, dtype=np.float)
B = np.array(fromMatrix).reshape(8)
res = np.dot(np.linalg.inv(A.T * A) * A.T, B)
m = np.append(np.array(res).reshape(8), 1).reshape((3,3))
return m
# got this amazing thing from here: https://stackoverflow.com/a/24088499
def create_perspective_transform(src, dst, round=False, splat_args=False):
""" Returns a function which will transform points in quadrilateral
``src`` to the corresponding points on quadrilateral ``dst``::
@ -139,24 +134,23 @@ def coordinatesToSrc(coordinates):
# coordinates of the screen boundaries
if os.path.exists("coordinates.p"):
coordinates = pickle.load(open("coordinates.p", "rb"))
transformationMatrix = create_perspective_transform_matrix(coordinatesToSrc(coordinates), screenDrawCorners)
transformationMatrix2 = transMatrix2(coordinatesToSrc(coordinates), screenDrawCorners)
transform = create_perspective_transform(coordinatesToSrc(coordinates), screenDrawCorners)
a = [np.array([ 1312.15541183]), np.array([ 244.56278002]), 0]
# a = [np.array([ 100.15541183]), np.array([ 244.56278002]), 0]
print("Coords", coordinatesToSrc(coordinates))
print("Corners:", screenDrawCorners)
print("src", a)
print("C", transformationMatrix)
print("C2", transformationMatrix2)
print("new point", np.dot(a, transformationMatrix))
print("new point 2", np.dot(a, transformationMatrix2))
print("new point 2", np.dot(transformationMatrix2, a))
print("new point 3", transform(a[0:2]))
logger.info("Loaded coordinates: %s", coordinatesToSrc(coordinates))
logger.debug("Corners: %s", screenDrawCorners)
logger.debug("Test point %s", a)
logger.debug("Transformed point %s", transform(a[0:2]))
# exit()
else:
coordinates = {'tl': None, 'tr': None, 'bl': None, 'br': None}
transformationMatrix = None
transform = None
windowRoot = Tkinter.Tk()
windowSize = (1000,1000)
windowRoot.geometry('%dx%d+%d+%d' % (windowSize[0],windowSize[1],0,0))
canvas = Tkinter.Canvas(windowRoot,width=1000,height=1000)
canvas.pack()
while True:
_, im = c.read()
@ -167,7 +161,7 @@ while True:
# will make everything bigger and allow us to detect more faces.
dets = detector(im, 1)
print("Number of faces detected: {}".format(len(dets)))
logger.debug("Number of faces detected: {}".format(len(dets)))
# We use this later for calibrating
currentPoint = None
@ -178,7 +172,6 @@ while True:
for d in dets:
shape = predictor(im, d)
print(shape.part(30).x, shape.part(54))
#2D image points. If you change the image, you need to change vector
image_points = np.array([
(shape.part(30).x,shape.part(30).y), # Nose tip
@ -218,7 +211,7 @@ while True:
print("Error determening PnP", success)
continue
print ("Rotation Vector:\n {0}".format(rotation_vector))
logger.debug ("Rotation Vector:\n %s", rotation_vector)
print ("Translation Vector:\n {0}".format(translation_vector))
# Project a 3D point (0, 0, 1000.0) onto the image plane.
@ -286,6 +279,7 @@ while True:
currentPoint = point
currentPoints.append(point)
# TODO only draw nose line now, so we can change color depending whether on screen or not
# processed all faces, now draw on screen:
@ -299,12 +293,13 @@ while True:
# screen is 16:10
cv2.rectangle(im, (9, 59), (91, 111), (255,255,255), 1)
if transformationMatrix is None:
if transform is None:
cv2.putText(im, "1", (10,70), cv2.FONT_HERSHEY_PLAIN, .7, (255,255,255) if coordinates['tl'] is not None else (0,0,255))
cv2.putText(im, "2", (85,70), cv2.FONT_HERSHEY_PLAIN, .7, (255,255,255) if coordinates['tr'] is not None else (0,0,255))
cv2.putText(im, "3", (10,110), cv2.FONT_HERSHEY_PLAIN, .7, (255,255,255) if coordinates['bl'] is not None else (0,0,255))
cv2.putText(im, "4", (85,110), cv2.FONT_HERSHEY_PLAIN, .7, (255,255,255) if coordinates['br'] is not None else (0,0,255))
else:
newMetrics = np.zeros(metricsSize)
for point in currentPoints:
# check if within coordinates:
# dot1 = np.dot(coordinates['tl'] - point, coordinates['tl'] - coordinates['br'])
@ -315,53 +310,76 @@ while True:
targetPoint = transform(point)
print("Looking at", point, targetPoint)
# cv2.circle(im, (int(targetPoint[0]), int(targetPoint[1])), 2, (0,255,0), -1)
cv2.circle(im, (int(targetPoint[0]), int(targetPoint[1])), 2, (0,255,0), -1)
# from 1920x1080 to 80x50
miniTargetPoint = (int(targetPoint[0] / 1920 * 80 + 10), int(targetPoint[1] / 1080 * 50 + 60))
cv2.circle(im, miniTargetPoint, 2, (0,255,0), -1)
targetInt = (int(targetPoint[0]), int(targetPoint[1]))
# check if point fits on screen:
# if so, measure it
if targetInt[0] >= 0 and targetInt[1] >= 0 and targetInt[0] < metrics.shape[0] and targetInt[1] < metrics.shape[1]:
newMetrics[targetInt[0],targetInt[1]] += 1
# after we collected all new metrics, blur them foor smoothness
# and add to all metrics collected
metrics = metrics + gaussian_filter(newMetrics, sigma = 8)
# Display image
# Display webcam image with overlays
cv2.imshow("Output", im)
logger.debug("showed webcam image")
# blur smooth the heatmap
logger.debug("Max blurred metrics: %f", np.max(metrics))
# update the heatmap output
normalisedMetrics = metrics / (np.max(metrics)/255)
logger.debug("Max normalised metrics: %f", np.max(normalisedMetrics))
print(normalisedMetrics)
image = Image.fromarray(normalisedMetrics)
wpercent = (windowSize[0] / float(image.size[0]))
hsize = int((float(image.size[1]) * float(wpercent)))
image = image.resize((windowSize[0], hsize))
tkpi = ImageTk.PhotoImage(image)
canvas.delete("IMG")
imagesprite = canvas.create_image(500,500,image=tkpi, tags="IMG")
windowRoot.update()
logger.debug("updated window")
# (optionally) very slowly fade out previous metrics:
# metrics = metrics * .999
keyPress = cv2.waitKey(5)
if keyPress==27:
break
elif keyPress == ord('d'):
logger.setLevel(logging.DEBUG)
elif keyPress > -1 and currentPoint is not None:
recalculate = False
if keyPress == ord('1'):
coordinates['tl'] = currentPoint
recalculate = True
elif keyPress == ord('2'):
coordinates['tr'] = currentPoint
recalculate = True
elif keyPress == ord('3'):
coordinates['bl'] = currentPoint
recalculate = True
elif keyPress == ord('4'):
coordinates['br'] = currentPoint
print(coordinates.values())
pickle.dump( coordinates, open( "coordinates.p", "wb" ) )
print("Saved coordinates")
if not any (x is None for x in coordinates.values()):
# measured corners for corner pin
# fromMatrix = np.array(coordinates.values())
# # Drawing area:
# toMatrix = screenDrawCorners
recalculate = True
elif keyPress == ord('t') and transform is not None:
print("Coordinates", coordinates)
print("Drawing area", screenDrawCorners)
print("Test point %s", currentPoint )
print("Transformed point %s", transform(currentPoint))
# matrix = []
# for p1, p2 in zip(toMatrix, fromMatrix):
# matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0]*p1[0], -p2[0]*p1[1]])
# matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1]*p1[0], -p2[1]*p1[1]])
# A = np.matrix(matrix, dtype=np.float)
# B = np.array(fromMatrix).reshape(8)
if recalculate is True and not any (x is None for x in coordinates.values()):
logger.debug(coordinates.values())
pickle.dump( coordinates, open( "coordinates.p", "wb" ) )
logger.info("Saved coordinates")
# res = np.dot(np.linalg.inv(A.T * A) * A.T, B)
# transformationMatrix = np.array(res).reshape(8)
transformationMatrix = create_perspective_transform_matrix(coordinatesToSrc(coordinates), screenDrawCorners)
# measured corners for corner pin
# fromMatrix = np.array(coordinates.values())
# # Drawing area:
# toMatrix = np.array([[10,60], [90, 60], [10, 110], [90, 110]])
# print(fromMatrix, toMatrix)
# print(np.linalg.inv(toMatrix))
# # matrix to transform from measured to drawed space
# transformationMatrix = np.dot(fromMatrix, np.linalg.inv(toMatrix))
transform = create_perspective_transform(coordinatesToSrc(coordinates), screenDrawCorners)

101
helpers.py Normal file
View file

@ -0,0 +1,101 @@
import numpy as np
def coordinatesToSrc(coordinates):
return np.array([coordinates['tl'], coordinates['tr'],coordinates['bl'], coordinates['br']])
def create_perspective_transform_matrix(src, dst):
""" Creates a perspective transformation matrix which transforms points
in quadrilateral ``src`` to the corresponding points on quadrilateral
``dst``.
Will raise a ``np.linalg.LinAlgError`` on invalid input.
"""
# See:
# * http://xenia.media.mit.edu/~cwren/interpolator/
# * http://stackoverflow.com/a/14178717/71522
in_matrix = []
for (x, y), (X, Y) in zip(src, dst):
in_matrix.extend([
[x, y, 1, 0, 0, 0, -X * x, -X * y],
[0, 0, 0, x, y, 1, -Y * x, -Y * y],
])
A = np.matrix(in_matrix, dtype=np.float)
B = np.array(dst).reshape(8)
af = np.dot(np.linalg.inv(A.T * A) * A.T, B)
m = np.append(np.array(af).reshape(8), 1).reshape((3, 3))
return m
# got this amazing thing from here: https://stackoverflow.com/a/24088499
def create_perspective_transform(src, dst, round=False, splat_args=False):
""" Returns a function which will transform points in quadrilateral
``src`` to the corresponding points on quadrilateral ``dst``::
>>> transform = create_perspective_transform(
... [(0, 0), (10, 0), (10, 10), (0, 10)],
... [(50, 50), (100, 50), (100, 100), (50, 100)],
... )
>>> transform((5, 5))
(74.99999999999639, 74.999999999999957)
If ``round`` is ``True`` then points will be rounded to the nearest
integer and integer values will be returned.
>>> transform = create_perspective_transform(
... [(0, 0), (10, 0), (10, 10), (0, 10)],
... [(50, 50), (100, 50), (100, 100), (50, 100)],
... round=True,
... )
>>> transform((5, 5))
(75, 75)
If ``splat_args`` is ``True`` the function will accept two arguments
instead of a tuple.
>>> transform = create_perspective_transform(
... [(0, 0), (10, 0), (10, 10), (0, 10)],
... [(50, 50), (100, 50), (100, 100), (50, 100)],
... splat_args=True,
... )
>>> transform(5, 5)
(74.99999999999639, 74.999999999999957)
If the input values yield an invalid transformation matrix an identity
function will be returned and the ``error`` attribute will be set to a
description of the error::
>>> tranform = create_perspective_transform(
... np.zeros((4, 2)),
... np.zeros((4, 2)),
... )
>>> transform((5, 5))
(5.0, 5.0)
>>> transform.error
'invalid input quads (...): Singular matrix
"""
try:
transform_matrix = create_perspective_transform_matrix(src, dst)
error = None
except np.linalg.LinAlgError as e:
transform_matrix = np.identity(3, dtype=np.float)
error = "invalid input quads (%s and %s): %s" %(src, dst, e)
error = error.replace("\n", "")
to_eval = "def perspective_transform(%s):\n" %(
splat_args and "*pt" or "pt",
)
to_eval += " res = np.dot(transform_matrix, ((pt[0], ), (pt[1], ), (1, )))\n"
to_eval += " res = res / res[2]\n"
if round:
to_eval += " return (int(round(res[0][0])), int(round(res[1][0])))\n"
else:
to_eval += " return (res[0][0], res[1][0])\n"
locals = {
"transform_matrix": transform_matrix,
}
locals.update(globals())
exec to_eval in locals, locals
res = locals["perspective_transform"]
res.matrix = transform_matrix
res.error = error
return res

20
test.py Normal file
View file

@ -0,0 +1,20 @@
import helpers
import numpy as np
import pickle
screenDrawCorners = np.array([[10,60], [90, 60], [10, 110], [90, 110]])
coordinates = pickle.load(open("coordinates.p", "rb"))
print("Loaded coordinates: %s", helpers.coordinatesToSrc(coordinates))
print("Corners: %s", screenDrawCorners)
transform = helpers.create_perspective_transform(helpers.coordinatesToSrc(coordinates), screenDrawCorners)
a = [np.array([ 1312.15541183]), np.array([ 244.56278002])]
midpointTop = (coordinates['tr'] - coordinates['tl'])/2 + coordinates['tl']
midpointCenter = (coordinates['tr'] - coordinates['bl'])/2 + coordinates['bl']
print("Test point %s", a)
print("Transformed point %s", transform(a))
print("Test point %s", midpointTop )
print("Transformed point %s", transform(midpointTop))
print("Test point %s", midpointCenter )
print("Transformed point %s", transform(midpointCenter))