227 lines
10 KiB
C++
227 lines
10 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef OPENCV_SHAPE_SHAPE_DISTANCE_HPP
|
|
#define OPENCV_SHAPE_SHAPE_DISTANCE_HPP
|
|
#include "opencv2/core.hpp"
|
|
#include "opencv2/shape/hist_cost.hpp"
|
|
#include "opencv2/shape/shape_transformer.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
//! @addtogroup shape
|
|
//! @{
|
|
|
|
/** @example shape_example.cpp
|
|
An example using shape distance algorithm
|
|
*/
|
|
/** @brief Abstract base class for shape distance algorithms.
|
|
*/
|
|
class CV_EXPORTS_W ShapeDistanceExtractor : public Algorithm
|
|
{
|
|
public:
|
|
/** @brief Compute the shape distance between two shapes defined by its contours.
|
|
|
|
@param contour1 Contour defining first shape.
|
|
@param contour2 Contour defining second shape.
|
|
*/
|
|
CV_WRAP virtual float computeDistance(InputArray contour1, InputArray contour2) = 0;
|
|
};
|
|
|
|
/***********************************************************************************/
|
|
/***********************************************************************************/
|
|
/***********************************************************************************/
|
|
/** @brief Implementation of the Shape Context descriptor and matching algorithm
|
|
|
|
proposed by Belongie et al. in "Shape Matching and Object Recognition Using Shape Contexts" (PAMI
|
|
2002). This implementation is packaged in a generic scheme, in order to allow you the
|
|
implementation of the common variations of the original pipeline.
|
|
*/
|
|
class CV_EXPORTS_W ShapeContextDistanceExtractor : public ShapeDistanceExtractor
|
|
{
|
|
public:
|
|
/** @brief Establish the number of angular bins for the Shape Context Descriptor used in the shape matching
|
|
pipeline.
|
|
|
|
@param nAngularBins The number of angular bins in the shape context descriptor.
|
|
*/
|
|
CV_WRAP virtual void setAngularBins(int nAngularBins) = 0;
|
|
CV_WRAP virtual int getAngularBins() const = 0;
|
|
|
|
/** @brief Establish the number of radial bins for the Shape Context Descriptor used in the shape matching
|
|
pipeline.
|
|
|
|
@param nRadialBins The number of radial bins in the shape context descriptor.
|
|
*/
|
|
CV_WRAP virtual void setRadialBins(int nRadialBins) = 0;
|
|
CV_WRAP virtual int getRadialBins() const = 0;
|
|
|
|
/** @brief Set the inner radius of the shape context descriptor.
|
|
|
|
@param innerRadius The value of the inner radius.
|
|
*/
|
|
CV_WRAP virtual void setInnerRadius(float innerRadius) = 0;
|
|
CV_WRAP virtual float getInnerRadius() const = 0;
|
|
|
|
/** @brief Set the outer radius of the shape context descriptor.
|
|
|
|
@param outerRadius The value of the outer radius.
|
|
*/
|
|
CV_WRAP virtual void setOuterRadius(float outerRadius) = 0;
|
|
CV_WRAP virtual float getOuterRadius() const = 0;
|
|
|
|
CV_WRAP virtual void setRotationInvariant(bool rotationInvariant) = 0;
|
|
CV_WRAP virtual bool getRotationInvariant() const = 0;
|
|
|
|
/** @brief Set the weight of the shape context distance in the final value of the shape distance. The shape
|
|
context distance between two shapes is defined as the symmetric sum of shape context matching costs
|
|
over best matching points. The final value of the shape distance is a user-defined linear
|
|
combination of the shape context distance, an image appearance distance, and a bending energy.
|
|
|
|
@param shapeContextWeight The weight of the shape context distance in the final distance value.
|
|
*/
|
|
CV_WRAP virtual void setShapeContextWeight(float shapeContextWeight) = 0;
|
|
CV_WRAP virtual float getShapeContextWeight() const = 0;
|
|
|
|
/** @brief Set the weight of the Image Appearance cost in the final value of the shape distance. The image
|
|
appearance cost is defined as the sum of squared brightness differences in Gaussian windows around
|
|
corresponding image points. The final value of the shape distance is a user-defined linear
|
|
combination of the shape context distance, an image appearance distance, and a bending energy. If
|
|
this value is set to a number different from 0, is mandatory to set the images that correspond to
|
|
each shape.
|
|
|
|
@param imageAppearanceWeight The weight of the appearance cost in the final distance value.
|
|
*/
|
|
CV_WRAP virtual void setImageAppearanceWeight(float imageAppearanceWeight) = 0;
|
|
CV_WRAP virtual float getImageAppearanceWeight() const = 0;
|
|
|
|
/** @brief Set the weight of the Bending Energy in the final value of the shape distance. The bending energy
|
|
definition depends on what transformation is being used to align the shapes. The final value of the
|
|
shape distance is a user-defined linear combination of the shape context distance, an image
|
|
appearance distance, and a bending energy.
|
|
|
|
@param bendingEnergyWeight The weight of the Bending Energy in the final distance value.
|
|
*/
|
|
CV_WRAP virtual void setBendingEnergyWeight(float bendingEnergyWeight) = 0;
|
|
CV_WRAP virtual float getBendingEnergyWeight() const = 0;
|
|
|
|
/** @brief Set the images that correspond to each shape. This images are used in the calculation of the Image
|
|
Appearance cost.
|
|
|
|
@param image1 Image corresponding to the shape defined by contours1.
|
|
@param image2 Image corresponding to the shape defined by contours2.
|
|
*/
|
|
CV_WRAP virtual void setImages(InputArray image1, InputArray image2) = 0;
|
|
CV_WRAP virtual void getImages(OutputArray image1, OutputArray image2) const = 0;
|
|
|
|
CV_WRAP virtual void setIterations(int iterations) = 0;
|
|
CV_WRAP virtual int getIterations() const = 0;
|
|
|
|
/** @brief Set the algorithm used for building the shape context descriptor cost matrix.
|
|
|
|
@param comparer Smart pointer to a HistogramCostExtractor, an algorithm that defines the cost
|
|
matrix between descriptors.
|
|
*/
|
|
CV_WRAP virtual void setCostExtractor(Ptr<HistogramCostExtractor> comparer) = 0;
|
|
CV_WRAP virtual Ptr<HistogramCostExtractor> getCostExtractor() const = 0;
|
|
|
|
/** @brief Set the value of the standard deviation for the Gaussian window for the image appearance cost.
|
|
|
|
@param sigma Standard Deviation.
|
|
*/
|
|
CV_WRAP virtual void setStdDev(float sigma) = 0;
|
|
CV_WRAP virtual float getStdDev() const = 0;
|
|
|
|
/** @brief Set the algorithm used for aligning the shapes.
|
|
|
|
@param transformer Smart pointer to a ShapeTransformer, an algorithm that defines the aligning
|
|
transformation.
|
|
*/
|
|
CV_WRAP virtual void setTransformAlgorithm(Ptr<ShapeTransformer> transformer) = 0;
|
|
CV_WRAP virtual Ptr<ShapeTransformer> getTransformAlgorithm() const = 0;
|
|
};
|
|
|
|
/* Complete constructor */
|
|
CV_EXPORTS_W Ptr<ShapeContextDistanceExtractor>
|
|
createShapeContextDistanceExtractor(int nAngularBins=12, int nRadialBins=4,
|
|
float innerRadius=0.2f, float outerRadius=2, int iterations=3,
|
|
const Ptr<HistogramCostExtractor> &comparer = createChiHistogramCostExtractor(),
|
|
const Ptr<ShapeTransformer> &transformer = createThinPlateSplineShapeTransformer());
|
|
|
|
/***********************************************************************************/
|
|
/***********************************************************************************/
|
|
/***********************************************************************************/
|
|
/** @brief A simple Hausdorff distance measure between shapes defined by contours
|
|
|
|
according to the paper "Comparing Images using the Hausdorff distance." by D.P. Huttenlocher, G.A.
|
|
Klanderman, and W.J. Rucklidge. (PAMI 1993). :
|
|
*/
|
|
class CV_EXPORTS_W HausdorffDistanceExtractor : public ShapeDistanceExtractor
|
|
{
|
|
public:
|
|
/** @brief Set the norm used to compute the Hausdorff value between two shapes. It can be L1 or L2 norm.
|
|
|
|
@param distanceFlag Flag indicating which norm is used to compute the Hausdorff distance
|
|
(NORM_L1, NORM_L2).
|
|
*/
|
|
CV_WRAP virtual void setDistanceFlag(int distanceFlag) = 0;
|
|
CV_WRAP virtual int getDistanceFlag() const = 0;
|
|
|
|
/** @brief This method sets the rank proportion (or fractional value) that establish the Kth ranked value of
|
|
the partial Hausdorff distance. Experimentally had been shown that 0.6 is a good value to compare
|
|
shapes.
|
|
|
|
@param rankProportion fractional value (between 0 and 1).
|
|
*/
|
|
CV_WRAP virtual void setRankProportion(float rankProportion) = 0;
|
|
CV_WRAP virtual float getRankProportion() const = 0;
|
|
};
|
|
|
|
/* Constructor */
|
|
CV_EXPORTS_W Ptr<HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag=cv::NORM_L2, float rankProp=0.6f);
|
|
|
|
//! @}
|
|
|
|
} // cv
|
|
#endif
|