Starting the move to OpenCV 3.4

This commit is contained in:
Tadas Baltrusaitis 2018-02-01 20:10:10 +00:00
parent a15a8419ad
commit bb7a5f197b
218 changed files with 14632 additions and 3677 deletions

View file

@ -58,34 +58,34 @@
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb_d.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb_d.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">

View file

@ -58,34 +58,34 @@
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb_d.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb_d.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">

View file

@ -57,34 +57,34 @@
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb_d.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb_d.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">

View file

@ -57,34 +57,34 @@
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb_d.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb_d.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\dlib\dlib.props" />
<Import Project="..\..\lib\3rdParty\tbb\tbb.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenBLAS\OpenBLAS.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">

View file

@ -55,23 +55,23 @@
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\boost\boost_d.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="..\..\lib\3rdParty\boost\boost.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.1\openCV3.1.props" />
<Import Project="..\..\lib\3rdParty\OpenCV3.4\openCV3.4.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">

View file

@ -1,69 +0,0 @@
#ifndef _HAL_INTERFACE_HPP_INCLUDED_
#define _HAL_INTERFACE_HPP_INCLUDED_
//! @addtogroup core_hal_interface
//! @{
#define CV_HAL_ERROR_OK 0
#define CV_HAL_ERROR_NOT_IMPLEMENTED 1
#define CV_HAL_ERROR_UNKNOWN -1
#define CV_HAL_CMP_EQ 0
#define CV_HAL_CMP_GT 1
#define CV_HAL_CMP_GE 2
#define CV_HAL_CMP_LT 3
#define CV_HAL_CMP_LE 4
#define CV_HAL_CMP_NE 5
#ifdef __cplusplus
#include <cstddef>
#else
#include <stddef.h>
#endif
/* primitive types */
/*
schar - signed 1 byte integer
uchar - unsigned 1 byte integer
short - signed 2 byte integer
ushort - unsigned 2 byte integer
int - signed 4 byte integer
uint - unsigned 4 byte integer
int64 - signed 8 byte integer
uint64 - unsigned 8 byte integer
*/
#if !defined _MSC_VER && !defined __BORLANDC__
# if defined __cplusplus && __cplusplus >= 201103L && !defined __APPLE__
# include <cstdint>
typedef std::uint32_t uint;
# else
# include <stdint.h>
typedef uint32_t uint;
# endif
#else
typedef unsigned uint;
#endif
typedef signed char schar;
#ifndef __IPL_H__
typedef unsigned char uchar;
typedef unsigned short ushort;
#endif
#if defined _MSC_VER || defined __BORLANDC__
typedef __int64 int64;
typedef unsigned __int64 uint64;
# define CV_BIG_INT(n) n##I64
# define CV_BIG_UINT(n) n##UI64
#else
typedef int64_t int64;
typedef uint64_t uint64;
# define CV_BIG_INT(n) n##LL
# define CV_BIG_UINT(n) n##ULL
#endif
//! @}
#endif

View file

@ -1,172 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_PRIVATE_CUDA_HPP__
#define __OPENCV_CORE_PRIVATE_CUDA_HPP__
#ifndef __OPENCV_BUILD
# error this is a private header which should not be used from outside of the OpenCV library
#endif
#include "cvconfig.h"
#include "opencv2/core/cvdef.h"
#include "opencv2/core/base.hpp"
#include "opencv2/core/cuda.hpp"
#ifdef HAVE_CUDA
# include <cuda.h>
# include <cuda_runtime.h>
# include <npp.h>
# include "opencv2/core/cuda_stream_accessor.hpp"
# include "opencv2/core/cuda/common.hpp"
# define NPP_VERSION (NPP_VERSION_MAJOR * 1000 + NPP_VERSION_MINOR * 100 + NPP_VERSION_BUILD)
# define CUDART_MINIMUM_REQUIRED_VERSION 4020
# if (CUDART_VERSION < CUDART_MINIMUM_REQUIRED_VERSION)
# error "Insufficient Cuda Runtime library version, please update it."
# endif
# if defined(CUDA_ARCH_BIN_OR_PTX_10)
# error "OpenCV CUDA module doesn't support NVIDIA compute capability 1.0"
# endif
#endif
//! @cond IGNORED
namespace cv { namespace cuda {
CV_EXPORTS cv::String getNppErrorMessage(int code);
CV_EXPORTS cv::String getCudaDriverApiErrorMessage(int code);
CV_EXPORTS GpuMat getInputMat(InputArray _src, Stream& stream);
CV_EXPORTS GpuMat getOutputMat(OutputArray _dst, int rows, int cols, int type, Stream& stream);
static inline GpuMat getOutputMat(OutputArray _dst, Size size, int type, Stream& stream)
{
return getOutputMat(_dst, size.height, size.width, type, stream);
}
CV_EXPORTS void syncOutput(const GpuMat& dst, OutputArray _dst, Stream& stream);
}}
#ifndef HAVE_CUDA
static inline void throw_no_cuda() { CV_Error(cv::Error::GpuNotSupported, "The library is compiled without CUDA support"); }
#else // HAVE_CUDA
static inline void throw_no_cuda() { CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); }
namespace cv { namespace cuda
{
class CV_EXPORTS BufferPool
{
public:
explicit BufferPool(Stream& stream);
GpuMat getBuffer(int rows, int cols, int type);
GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); }
GpuMat::Allocator* getAllocator() const { return allocator_; }
private:
GpuMat::Allocator* allocator_;
};
static inline void checkNppError(int code, const char* file, const int line, const char* func)
{
if (code < 0)
cv::error(cv::Error::GpuApiCallError, getNppErrorMessage(code), func, file, line);
}
static inline void checkCudaDriverApiError(int code, const char* file, const int line, const char* func)
{
if (code != CUDA_SUCCESS)
cv::error(cv::Error::GpuApiCallError, getCudaDriverApiErrorMessage(code), func, file, line);
}
template<int n> struct NPPTypeTraits;
template<> struct NPPTypeTraits<CV_8U> { typedef Npp8u npp_type; };
template<> struct NPPTypeTraits<CV_8S> { typedef Npp8s npp_type; };
template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; };
template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; };
template<> struct NPPTypeTraits<CV_32S> { typedef Npp32s npp_type; };
template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; };
template<> struct NPPTypeTraits<CV_64F> { typedef Npp64f npp_type; };
class NppStreamHandler
{
public:
inline explicit NppStreamHandler(Stream& newStream)
{
oldStream = nppGetStream();
nppSetStream(StreamAccessor::getStream(newStream));
}
inline explicit NppStreamHandler(cudaStream_t newStream)
{
oldStream = nppGetStream();
nppSetStream(newStream);
}
inline ~NppStreamHandler()
{
nppSetStream(oldStream);
}
private:
cudaStream_t oldStream;
};
}}
#define nppSafeCall(expr) cv::cuda::checkNppError(expr, __FILE__, __LINE__, CV_Func)
#define cuSafeCall(expr) cv::cuda::checkCudaDriverApiError(expr, __FILE__, __LINE__, CV_Func)
#endif // HAVE_CUDA
//! @endcond
#endif // __OPENCV_CORE_CUDA_PRIVATE_HPP__

View file

@ -1,425 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_PRIVATE_HPP__
#define __OPENCV_CORE_PRIVATE_HPP__
#ifndef __OPENCV_BUILD
# error this is a private header which should not be used from outside of the OpenCV library
#endif
#include "opencv2/core.hpp"
#include "cvconfig.h"
#ifdef HAVE_EIGEN
# if defined __GNUC__ && defined __APPLE__
# pragma GCC diagnostic ignored "-Wshadow"
# endif
# include <Eigen/Core>
# include "opencv2/core/eigen.hpp"
#endif
#ifdef HAVE_TBB
# include "tbb/tbb_stddef.h"
# if TBB_VERSION_MAJOR*100 + TBB_VERSION_MINOR >= 202
# include "tbb/tbb.h"
# include "tbb/task.h"
# undef min
# undef max
# else
# undef HAVE_TBB
# endif
#endif
//! @cond IGNORED
namespace cv
{
#ifdef HAVE_TBB
typedef tbb::blocked_range<int> BlockedRange;
template<typename Body> static inline
void parallel_for( const BlockedRange& range, const Body& body )
{
tbb::parallel_for(range, body);
}
typedef tbb::split Split;
template<typename Body> static inline
void parallel_reduce( const BlockedRange& range, Body& body )
{
tbb::parallel_reduce(range, body);
}
typedef tbb::concurrent_vector<Rect> ConcurrentRectVector;
#else
class BlockedRange
{
public:
BlockedRange() : _begin(0), _end(0), _grainsize(0) {}
BlockedRange(int b, int e, int g=1) : _begin(b), _end(e), _grainsize(g) {}
int begin() const { return _begin; }
int end() const { return _end; }
int grainsize() const { return _grainsize; }
protected:
int _begin, _end, _grainsize;
};
template<typename Body> static inline
void parallel_for( const BlockedRange& range, const Body& body )
{
body(range);
}
typedef std::vector<Rect> ConcurrentRectVector;
class Split {};
template<typename Body> static inline
void parallel_reduce( const BlockedRange& range, Body& body )
{
body(range);
}
#endif
// Returns a static string if there is a parallel framework,
// NULL otherwise.
CV_EXPORTS const char* currentParallelFramework();
} //namespace cv
/****************************************************************************************\
* Common declarations *
\****************************************************************************************/
/* the alignment of all the allocated buffers */
#define CV_MALLOC_ALIGN 16
/* IEEE754 constants and macros */
#define CV_TOGGLE_FLT(x) ((x)^((int)(x) < 0 ? 0x7fffffff : 0))
#define CV_TOGGLE_DBL(x) ((x)^((int64)(x) < 0 ? CV_BIG_INT(0x7fffffffffffffff) : 0))
static inline void* cvAlignPtr( const void* ptr, int align = 32 )
{
CV_DbgAssert ( (align & (align-1)) == 0 );
return (void*)( ((size_t)ptr + align - 1) & ~(size_t)(align-1) );
}
static inline int cvAlign( int size, int align )
{
CV_DbgAssert( (align & (align-1)) == 0 && size < INT_MAX );
return (size + align - 1) & -align;
}
#ifdef IPL_DEPTH_8U
static inline cv::Size cvGetMatSize( const CvMat* mat )
{
return cv::Size(mat->cols, mat->rows);
}
#endif
namespace cv
{
CV_EXPORTS void scalarToRawData(const cv::Scalar& s, void* buf, int type, int unroll_to = 0);
}
// property implementation macros
#define CV_IMPL_PROPERTY_RO(type, name, member) \
inline type get##name() const { return member; }
#define CV_HELP_IMPL_PROPERTY(r_type, w_type, name, member) \
CV_IMPL_PROPERTY_RO(r_type, name, member) \
inline void set##name(w_type val) { member = val; }
#define CV_HELP_WRAP_PROPERTY(r_type, w_type, name, internal_name, internal_obj) \
r_type get##name() const { return internal_obj.get##internal_name(); } \
void set##name(w_type val) { internal_obj.set##internal_name(val); }
#define CV_IMPL_PROPERTY(type, name, member) CV_HELP_IMPL_PROPERTY(type, type, name, member)
#define CV_IMPL_PROPERTY_S(type, name, member) CV_HELP_IMPL_PROPERTY(type, const type &, name, member)
#define CV_WRAP_PROPERTY(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, type, name, internal_name, internal_obj)
#define CV_WRAP_PROPERTY_S(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, const type &, name, internal_name, internal_obj)
#define CV_WRAP_SAME_PROPERTY(type, name, internal_obj) CV_WRAP_PROPERTY(type, name, name, internal_obj)
#define CV_WRAP_SAME_PROPERTY_S(type, name, internal_obj) CV_WRAP_PROPERTY_S(type, name, name, internal_obj)
/****************************************************************************************\
* Structures and macros for integration with IPP *
\****************************************************************************************/
#ifdef HAVE_IPP
#include "ipp.h"
#ifndef IPP_VERSION_UPDATE // prior to 7.1
#define IPP_VERSION_UPDATE 0
#endif
#define IPP_VERSION_X100 (IPP_VERSION_MAJOR * 100 + IPP_VERSION_MINOR*10 + IPP_VERSION_UPDATE)
// General define for ipp function disabling
#define IPP_DISABLE_BLOCK 0
#ifdef CV_MALLOC_ALIGN
#undef CV_MALLOC_ALIGN
#endif
#define CV_MALLOC_ALIGN 32 // required for AVX optimization
#define setIppErrorStatus() cv::ipp::setIppStatus(-1, CV_Func, __FILE__, __LINE__)
static inline IppiSize ippiSize(int width, int height)
{
IppiSize size = { width, height };
return size;
}
static inline IppiSize ippiSize(const cv::Size & _size)
{
IppiSize size = { _size.width, _size.height };
return size;
}
static inline IppiBorderType ippiGetBorderType(int borderTypeNI)
{
return borderTypeNI == cv::BORDER_CONSTANT ? ippBorderConst :
borderTypeNI == cv::BORDER_WRAP ? ippBorderWrap :
borderTypeNI == cv::BORDER_REPLICATE ? ippBorderRepl :
borderTypeNI == cv::BORDER_REFLECT_101 ? ippBorderMirror :
borderTypeNI == cv::BORDER_REFLECT ? ippBorderMirrorR : (IppiBorderType)-1;
}
static inline IppDataType ippiGetDataType(int depth)
{
return depth == CV_8U ? ipp8u :
depth == CV_8S ? ipp8s :
depth == CV_16U ? ipp16u :
depth == CV_16S ? ipp16s :
depth == CV_32S ? ipp32s :
depth == CV_32F ? ipp32f :
depth == CV_64F ? ipp64f : (IppDataType)-1;
}
// IPP temporary buffer hepler
template<typename T>
class IppAutoBuffer
{
public:
IppAutoBuffer() { m_pBuffer = NULL; }
IppAutoBuffer(int size) { Alloc(size); }
~IppAutoBuffer() { Release(); }
T* Alloc(int size) { m_pBuffer = (T*)ippMalloc(size); return m_pBuffer; }
void Release() { if(m_pBuffer) ippFree(m_pBuffer); }
inline operator T* () { return (T*)m_pBuffer;}
inline operator const T* () const { return (const T*)m_pBuffer;}
private:
// Disable copy operations
IppAutoBuffer(IppAutoBuffer &) {};
IppAutoBuffer& operator =(const IppAutoBuffer &) {return *this;};
T* m_pBuffer;
};
#else
#define IPP_VERSION_X100 0
#endif
// There shoud be no API difference in OpenCV between ICV and IPP since 9.0
#if (defined HAVE_IPP_ICV_ONLY) && IPP_VERSION_X100 >= 900
#undef HAVE_IPP_ICV_ONLY
#endif
#ifdef HAVE_IPP_ICV_ONLY
#define HAVE_ICV 1
#else
#define HAVE_ICV 0
#endif
#if defined HAVE_IPP
#if IPP_VERSION_X100 >= 900
#define IPP_INITIALIZER(FEAT) \
{ \
if(FEAT) \
ippSetCpuFeatures(FEAT); \
else \
ippInit(); \
}
#elif IPP_VERSION_X100 >= 800
#define IPP_INITIALIZER(FEAT) \
{ \
ippInit(); \
}
#else
#define IPP_INITIALIZER(FEAT) \
{ \
ippStaticInit(); \
}
#endif
#ifdef CVAPI_EXPORTS
#define IPP_INITIALIZER_AUTO \
struct __IppInitializer__ \
{ \
__IppInitializer__() \
{IPP_INITIALIZER(cv::ipp::getIppFeatures())} \
}; \
static struct __IppInitializer__ __ipp_initializer__;
#else
#define IPP_INITIALIZER_AUTO
#endif
#else
#define IPP_INITIALIZER
#define IPP_INITIALIZER_AUTO
#endif
#define CV_IPP_CHECK_COND (cv::ipp::useIPP())
#define CV_IPP_CHECK() if(CV_IPP_CHECK_COND)
#ifdef HAVE_IPP
#ifdef CV_IPP_RUN_VERBOSE
#define CV_IPP_RUN_(condition, func, ...) \
{ \
if (cv::ipp::useIPP() && (condition) && func) \
{ \
printf("%s: IPP implementation is running\n", CV_Func); \
fflush(stdout); \
CV_IMPL_ADD(CV_IMPL_IPP); \
return __VA_ARGS__; \
} \
else \
{ \
printf("%s: Plain implementation is running\n", CV_Func); \
fflush(stdout); \
} \
}
#elif defined CV_IPP_RUN_ASSERT
#define CV_IPP_RUN_(condition, func, ...) \
{ \
if (cv::ipp::useIPP() && (condition)) \
{ \
if(func) \
{ \
CV_IMPL_ADD(CV_IMPL_IPP); \
} \
else \
{ \
setIppErrorStatus(); \
CV_Error(cv::Error::StsAssert, #func); \
} \
return __VA_ARGS__; \
} \
}
#else
#define CV_IPP_RUN_(condition, func, ...) \
if (cv::ipp::useIPP() && (condition) && func) \
{ \
CV_IMPL_ADD(CV_IMPL_IPP); \
return __VA_ARGS__; \
}
#endif
#else
#define CV_IPP_RUN_(condition, func, ...)
#endif
#define CV_IPP_RUN(condition, func, ...) CV_IPP_RUN_(condition, func, __VA_ARGS__)
#ifndef IPPI_CALL
# define IPPI_CALL(func) CV_Assert((func) >= 0)
#endif
/* IPP-compatible return codes */
typedef enum CvStatus
{
CV_BADMEMBLOCK_ERR = -113,
CV_INPLACE_NOT_SUPPORTED_ERR= -112,
CV_UNMATCHED_ROI_ERR = -111,
CV_NOTFOUND_ERR = -110,
CV_BADCONVERGENCE_ERR = -109,
CV_BADDEPTH_ERR = -107,
CV_BADROI_ERR = -106,
CV_BADHEADER_ERR = -105,
CV_UNMATCHED_FORMATS_ERR = -104,
CV_UNSUPPORTED_COI_ERR = -103,
CV_UNSUPPORTED_CHANNELS_ERR = -102,
CV_UNSUPPORTED_DEPTH_ERR = -101,
CV_UNSUPPORTED_FORMAT_ERR = -100,
CV_BADARG_ERR = -49, //ipp comp
CV_NOTDEFINED_ERR = -48, //ipp comp
CV_BADCHANNELS_ERR = -47, //ipp comp
CV_BADRANGE_ERR = -44, //ipp comp
CV_BADSTEP_ERR = -29, //ipp comp
CV_BADFLAG_ERR = -12,
CV_DIV_BY_ZERO_ERR = -11, //ipp comp
CV_BADCOEF_ERR = -10,
CV_BADFACTOR_ERR = -7,
CV_BADPOINT_ERR = -6,
CV_BADSCALE_ERR = -4,
CV_OUTOFMEM_ERR = -3,
CV_NULLPTR_ERR = -2,
CV_BADSIZE_ERR = -1,
CV_NO_ERR = 0,
CV_OK = CV_NO_ERR
}
CvStatus;
#ifdef HAVE_TEGRA_OPTIMIZATION
namespace tegra {
CV_EXPORTS bool useTegra();
CV_EXPORTS void setUseTegra(bool flag);
}
#endif
//! @endcond
#endif // __OPENCV_CORE_PRIVATE_HPP__

View file

@ -1,16 +0,0 @@
#ifndef OPENCV_FLANN_DUMMY_H_
#define OPENCV_FLANN_DUMMY_H_
namespace cvflann
{
#if (defined WIN32 || defined _WIN32 || defined WINCE) && defined CVAPI_EXPORTS
__declspec(dllexport)
#endif
void dummyfunc();
}
#endif /* OPENCV_FLANN_DUMMY_H_ */

View file

@ -1,680 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_VIDEOIO_HPP__
#define __OPENCV_VIDEOIO_HPP__
#include "opencv2/core.hpp"
/**
@defgroup videoio Media I/O
@{
@defgroup videoio_c C API
@defgroup videoio_ios iOS glue
@defgroup videoio_winrt WinRT glue
@}
*/
////////////////////////////////// video io /////////////////////////////////
typedef struct CvCapture CvCapture;
typedef struct CvVideoWriter CvVideoWriter;
namespace cv
{
//! @addtogroup videoio
//! @{
// Camera API
enum { CAP_ANY = 0, // autodetect
CAP_VFW = 200, // platform native
CAP_V4L = 200,
CAP_V4L2 = CAP_V4L,
CAP_FIREWARE = 300, // IEEE 1394 drivers
CAP_FIREWIRE = CAP_FIREWARE,
CAP_IEEE1394 = CAP_FIREWARE,
CAP_DC1394 = CAP_FIREWARE,
CAP_CMU1394 = CAP_FIREWARE,
CAP_QT = 500, // QuickTime
CAP_UNICAP = 600, // Unicap drivers
CAP_DSHOW = 700, // DirectShow (via videoInput)
CAP_PVAPI = 800, // PvAPI, Prosilica GigE SDK
CAP_OPENNI = 900, // OpenNI (for Kinect)
CAP_OPENNI_ASUS = 910, // OpenNI (for Asus Xtion)
CAP_ANDROID = 1000, // Android - not used
CAP_XIAPI = 1100, // XIMEA Camera API
CAP_AVFOUNDATION = 1200, // AVFoundation framework for iOS (OS X Lion will have the same API)
CAP_GIGANETIX = 1300, // Smartek Giganetix GigEVisionSDK
CAP_MSMF = 1400, // Microsoft Media Foundation (via videoInput)
CAP_WINRT = 1410, // Microsoft Windows Runtime using Media Foundation
CAP_INTELPERC = 1500, // Intel Perceptual Computing SDK
CAP_OPENNI2 = 1600, // OpenNI2 (for Kinect)
CAP_OPENNI2_ASUS = 1610, // OpenNI2 (for Asus Xtion and Occipital Structure sensors)
CAP_GPHOTO2 = 1700, // gPhoto2 connection
CAP_GSTREAMER = 1800, // GStreamer
CAP_FFMPEG = 1900, // FFMPEG
CAP_IMAGES = 2000 // OpenCV Image Sequence (e.g. img_%02d.jpg)
};
// generic properties (based on DC1394 properties)
enum { CAP_PROP_POS_MSEC =0,
CAP_PROP_POS_FRAMES =1,
CAP_PROP_POS_AVI_RATIO =2,
CAP_PROP_FRAME_WIDTH =3,
CAP_PROP_FRAME_HEIGHT =4,
CAP_PROP_FPS =5,
CAP_PROP_FOURCC =6,
CAP_PROP_FRAME_COUNT =7,
CAP_PROP_FORMAT =8,
CAP_PROP_MODE =9,
CAP_PROP_BRIGHTNESS =10,
CAP_PROP_CONTRAST =11,
CAP_PROP_SATURATION =12,
CAP_PROP_HUE =13,
CAP_PROP_GAIN =14,
CAP_PROP_EXPOSURE =15,
CAP_PROP_CONVERT_RGB =16,
CAP_PROP_WHITE_BALANCE_BLUE_U =17,
CAP_PROP_RECTIFICATION =18,
CAP_PROP_MONOCHROME =19,
CAP_PROP_SHARPNESS =20,
CAP_PROP_AUTO_EXPOSURE =21, // DC1394: exposure control done by camera, user can adjust refernce level using this feature
CAP_PROP_GAMMA =22,
CAP_PROP_TEMPERATURE =23,
CAP_PROP_TRIGGER =24,
CAP_PROP_TRIGGER_DELAY =25,
CAP_PROP_WHITE_BALANCE_RED_V =26,
CAP_PROP_ZOOM =27,
CAP_PROP_FOCUS =28,
CAP_PROP_GUID =29,
CAP_PROP_ISO_SPEED =30,
CAP_PROP_BACKLIGHT =32,
CAP_PROP_PAN =33,
CAP_PROP_TILT =34,
CAP_PROP_ROLL =35,
CAP_PROP_IRIS =36,
CAP_PROP_SETTINGS =37,
CAP_PROP_BUFFERSIZE =38,
CAP_PROP_AUTOFOCUS =39
};
// Generic camera output modes.
// Currently, these are supported through the libv4l interface only.
enum { CAP_MODE_BGR = 0, // BGR24 (default)
CAP_MODE_RGB = 1, // RGB24
CAP_MODE_GRAY = 2, // Y8
CAP_MODE_YUYV = 3 // YUYV
};
// DC1394 only
// modes of the controlling registers (can be: auto, manual, auto single push, absolute Latter allowed with any other mode)
// every feature can have only one mode turned on at a time
enum { CAP_PROP_DC1394_OFF = -4, //turn the feature off (not controlled manually nor automatically)
CAP_PROP_DC1394_MODE_MANUAL = -3, //set automatically when a value of the feature is set by the user
CAP_PROP_DC1394_MODE_AUTO = -2,
CAP_PROP_DC1394_MODE_ONE_PUSH_AUTO = -1,
CAP_PROP_DC1394_MAX = 31
};
// OpenNI map generators
enum { CAP_OPENNI_DEPTH_GENERATOR = 1 << 31,
CAP_OPENNI_IMAGE_GENERATOR = 1 << 30,
CAP_OPENNI_GENERATORS_MASK = CAP_OPENNI_DEPTH_GENERATOR + CAP_OPENNI_IMAGE_GENERATOR
};
// Properties of cameras available through OpenNI interfaces
enum { CAP_PROP_OPENNI_OUTPUT_MODE = 100,
CAP_PROP_OPENNI_FRAME_MAX_DEPTH = 101, // in mm
CAP_PROP_OPENNI_BASELINE = 102, // in mm
CAP_PROP_OPENNI_FOCAL_LENGTH = 103, // in pixels
CAP_PROP_OPENNI_REGISTRATION = 104, // flag that synchronizes the remapping depth map to image map
// by changing depth generator's view point (if the flag is "on") or
// sets this view point to its normal one (if the flag is "off").
CAP_PROP_OPENNI_REGISTRATION_ON = CAP_PROP_OPENNI_REGISTRATION,
CAP_PROP_OPENNI_APPROX_FRAME_SYNC = 105,
CAP_PROP_OPENNI_MAX_BUFFER_SIZE = 106,
CAP_PROP_OPENNI_CIRCLE_BUFFER = 107,
CAP_PROP_OPENNI_MAX_TIME_DURATION = 108,
CAP_PROP_OPENNI_GENERATOR_PRESENT = 109,
CAP_PROP_OPENNI2_SYNC = 110,
CAP_PROP_OPENNI2_MIRROR = 111
};
// OpenNI shortcats
enum { CAP_OPENNI_IMAGE_GENERATOR_PRESENT = CAP_OPENNI_IMAGE_GENERATOR + CAP_PROP_OPENNI_GENERATOR_PRESENT,
CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE = CAP_OPENNI_IMAGE_GENERATOR + CAP_PROP_OPENNI_OUTPUT_MODE,
CAP_OPENNI_DEPTH_GENERATOR_BASELINE = CAP_OPENNI_DEPTH_GENERATOR + CAP_PROP_OPENNI_BASELINE,
CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH = CAP_OPENNI_DEPTH_GENERATOR + CAP_PROP_OPENNI_FOCAL_LENGTH,
CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION = CAP_OPENNI_DEPTH_GENERATOR + CAP_PROP_OPENNI_REGISTRATION,
CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION_ON = CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION
};
// OpenNI data given from depth generator
enum { CAP_OPENNI_DEPTH_MAP = 0, // Depth values in mm (CV_16UC1)
CAP_OPENNI_POINT_CLOUD_MAP = 1, // XYZ in meters (CV_32FC3)
CAP_OPENNI_DISPARITY_MAP = 2, // Disparity in pixels (CV_8UC1)
CAP_OPENNI_DISPARITY_MAP_32F = 3, // Disparity in pixels (CV_32FC1)
CAP_OPENNI_VALID_DEPTH_MASK = 4, // CV_8UC1
// Data given from RGB image generator
CAP_OPENNI_BGR_IMAGE = 5,
CAP_OPENNI_GRAY_IMAGE = 6
};
// Supported output modes of OpenNI image generator
enum { CAP_OPENNI_VGA_30HZ = 0,
CAP_OPENNI_SXGA_15HZ = 1,
CAP_OPENNI_SXGA_30HZ = 2,
CAP_OPENNI_QVGA_30HZ = 3,
CAP_OPENNI_QVGA_60HZ = 4
};
// GStreamer
enum { CAP_PROP_GSTREAMER_QUEUE_LENGTH = 200 // default is 1
};
// PVAPI
enum { CAP_PROP_PVAPI_MULTICASTIP = 300, // ip for anable multicast master mode. 0 for disable multicast
CAP_PROP_PVAPI_FRAMESTARTTRIGGERMODE = 301, // FrameStartTriggerMode: Determines how a frame is initiated
CAP_PROP_PVAPI_DECIMATIONHORIZONTAL = 302, // Horizontal sub-sampling of the image
CAP_PROP_PVAPI_DECIMATIONVERTICAL = 303, // Vertical sub-sampling of the image
CAP_PROP_PVAPI_BINNINGX = 304, // Horizontal binning factor
CAP_PROP_PVAPI_BINNINGY = 305, // Vertical binning factor
CAP_PROP_PVAPI_PIXELFORMAT = 306 // Pixel format
};
// PVAPI: FrameStartTriggerMode
enum { CAP_PVAPI_FSTRIGMODE_FREERUN = 0, // Freerun
CAP_PVAPI_FSTRIGMODE_SYNCIN1 = 1, // SyncIn1
CAP_PVAPI_FSTRIGMODE_SYNCIN2 = 2, // SyncIn2
CAP_PVAPI_FSTRIGMODE_FIXEDRATE = 3, // FixedRate
CAP_PVAPI_FSTRIGMODE_SOFTWARE = 4 // Software
};
// PVAPI: DecimationHorizontal, DecimationVertical
enum { CAP_PVAPI_DECIMATION_OFF = 1, // Off
CAP_PVAPI_DECIMATION_2OUTOF4 = 2, // 2 out of 4 decimation
CAP_PVAPI_DECIMATION_2OUTOF8 = 4, // 2 out of 8 decimation
CAP_PVAPI_DECIMATION_2OUTOF16 = 8 // 2 out of 16 decimation
};
// PVAPI: PixelFormat
enum { CAP_PVAPI_PIXELFORMAT_MONO8 = 1, // Mono8
CAP_PVAPI_PIXELFORMAT_MONO16 = 2, // Mono16
CAP_PVAPI_PIXELFORMAT_BAYER8 = 3, // Bayer8
CAP_PVAPI_PIXELFORMAT_BAYER16 = 4, // Bayer16
CAP_PVAPI_PIXELFORMAT_RGB24 = 5, // Rgb24
CAP_PVAPI_PIXELFORMAT_BGR24 = 6, // Bgr24
CAP_PVAPI_PIXELFORMAT_RGBA32 = 7, // Rgba32
CAP_PVAPI_PIXELFORMAT_BGRA32 = 8, // Bgra32
};
// Properties of cameras available through XIMEA SDK interface
enum { CAP_PROP_XI_DOWNSAMPLING = 400, // Change image resolution by binning or skipping.
CAP_PROP_XI_DATA_FORMAT = 401, // Output data format.
CAP_PROP_XI_OFFSET_X = 402, // Horizontal offset from the origin to the area of interest (in pixels).
CAP_PROP_XI_OFFSET_Y = 403, // Vertical offset from the origin to the area of interest (in pixels).
CAP_PROP_XI_TRG_SOURCE = 404, // Defines source of trigger.
CAP_PROP_XI_TRG_SOFTWARE = 405, // Generates an internal trigger. PRM_TRG_SOURCE must be set to TRG_SOFTWARE.
CAP_PROP_XI_GPI_SELECTOR = 406, // Selects general purpose input
CAP_PROP_XI_GPI_MODE = 407, // Set general purpose input mode
CAP_PROP_XI_GPI_LEVEL = 408, // Get general purpose level
CAP_PROP_XI_GPO_SELECTOR = 409, // Selects general purpose output
CAP_PROP_XI_GPO_MODE = 410, // Set general purpose output mode
CAP_PROP_XI_LED_SELECTOR = 411, // Selects camera signalling LED
CAP_PROP_XI_LED_MODE = 412, // Define camera signalling LED functionality
CAP_PROP_XI_MANUAL_WB = 413, // Calculates White Balance(must be called during acquisition)
CAP_PROP_XI_AUTO_WB = 414, // Automatic white balance
CAP_PROP_XI_AEAG = 415, // Automatic exposure/gain
CAP_PROP_XI_EXP_PRIORITY = 416, // Exposure priority (0.5 - exposure 50%, gain 50%).
CAP_PROP_XI_AE_MAX_LIMIT = 417, // Maximum limit of exposure in AEAG procedure
CAP_PROP_XI_AG_MAX_LIMIT = 418, // Maximum limit of gain in AEAG procedure
CAP_PROP_XI_AEAG_LEVEL = 419, // Average intensity of output signal AEAG should achieve(in %)
CAP_PROP_XI_TIMEOUT = 420 // Image capture timeout in milliseconds
};
// Properties of cameras available through AVFOUNDATION interface
enum { CAP_PROP_IOS_DEVICE_FOCUS = 9001,
CAP_PROP_IOS_DEVICE_EXPOSURE = 9002,
CAP_PROP_IOS_DEVICE_FLASH = 9003,
CAP_PROP_IOS_DEVICE_WHITEBALANCE = 9004,
CAP_PROP_IOS_DEVICE_TORCH = 9005
};
// Properties of cameras available through Smartek Giganetix Ethernet Vision interface
/* --- Vladimir Litvinenko (litvinenko.vladimir@gmail.com) --- */
enum { CAP_PROP_GIGA_FRAME_OFFSET_X = 10001,
CAP_PROP_GIGA_FRAME_OFFSET_Y = 10002,
CAP_PROP_GIGA_FRAME_WIDTH_MAX = 10003,
CAP_PROP_GIGA_FRAME_HEIGH_MAX = 10004,
CAP_PROP_GIGA_FRAME_SENS_WIDTH = 10005,
CAP_PROP_GIGA_FRAME_SENS_HEIGH = 10006
};
enum { CAP_PROP_INTELPERC_PROFILE_COUNT = 11001,
CAP_PROP_INTELPERC_PROFILE_IDX = 11002,
CAP_PROP_INTELPERC_DEPTH_LOW_CONFIDENCE_VALUE = 11003,
CAP_PROP_INTELPERC_DEPTH_SATURATION_VALUE = 11004,
CAP_PROP_INTELPERC_DEPTH_CONFIDENCE_THRESHOLD = 11005,
CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_HORZ = 11006,
CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_VERT = 11007
};
// Intel PerC streams
enum { CAP_INTELPERC_DEPTH_GENERATOR = 1 << 29,
CAP_INTELPERC_IMAGE_GENERATOR = 1 << 28,
CAP_INTELPERC_GENERATORS_MASK = CAP_INTELPERC_DEPTH_GENERATOR + CAP_INTELPERC_IMAGE_GENERATOR
};
enum { CAP_INTELPERC_DEPTH_MAP = 0, // Each pixel is a 16-bit integer. The value indicates the distance from an object to the camera's XY plane or the Cartesian depth.
CAP_INTELPERC_UVDEPTH_MAP = 1, // Each pixel contains two 32-bit floating point values in the range of 0-1, representing the mapping of depth coordinates to the color coordinates.
CAP_INTELPERC_IR_MAP = 2, // Each pixel is a 16-bit integer. The value indicates the intensity of the reflected laser beam.
CAP_INTELPERC_IMAGE = 3
};
enum { VIDEOWRITER_PROP_QUALITY = 1, // Quality (0..100%) of the videostream encoded
VIDEOWRITER_PROP_FRAMEBYTES = 2, // (Read-only): Size of just encoded video frame
VIDEOWRITER_PROP_NSTRIPES = 3 // Number of stripes for parallel encoding. -1 for auto detection
};
// gPhoto2 properties, if propertyId is less than 0 then work on widget with that __additive inversed__ camera setting ID
// Get IDs by using CAP_PROP_GPHOTO2_WIDGET_ENUMERATE.
// @see CvCaptureCAM_GPHOTO2 for more info
enum { CAP_PROP_GPHOTO2_PREVIEW = 17001, // Capture only preview from liveview mode.
CAP_PROP_GPHOTO2_WIDGET_ENUMERATE = 17002, // Readonly, returns (const char *).
CAP_PROP_GPHOTO2_RELOAD_CONFIG = 17003, // Trigger, only by set. Reload camera settings.
CAP_PROP_GPHOTO2_RELOAD_ON_CHANGE = 17004, // Reload all settings on set.
CAP_PROP_GPHOTO2_COLLECT_MSGS = 17005, // Collect messages with details.
CAP_PROP_GPHOTO2_FLUSH_MSGS = 17006, // Readonly, returns (const char *).
CAP_PROP_SPEED = 17007, // Exposure speed. Can be readonly, depends on camera program.
CAP_PROP_APERTURE = 17008, // Aperture. Can be readonly, depends on camera program.
CAP_PROP_EXPOSUREPROGRAM = 17009, // Camera exposure program.
CAP_PROP_VIEWFINDER = 17010 // Enter liveview mode.
};
//enum {
class IVideoCapture;
/** @brief Class for video capturing from video files, image sequences or cameras. The class provides C++ API
for capturing video from cameras or for reading video files and image sequences. Here is how the
class can be used: :
@code
#include "opencv2/opencv.hpp"
using namespace cv;
int main(int, char**)
{
VideoCapture cap(0); // open the default camera
if(!cap.isOpened()) // check if we succeeded
return -1;
Mat edges;
namedWindow("edges",1);
for(;;)
{
Mat frame;
cap >> frame; // get a new frame from camera
cvtColor(frame, edges, COLOR_BGR2GRAY);
GaussianBlur(edges, edges, Size(7,7), 1.5, 1.5);
Canny(edges, edges, 0, 30, 3);
imshow("edges", edges);
if(waitKey(30) >= 0) break;
}
// the camera will be deinitialized automatically in VideoCapture destructor
return 0;
}
@endcode
@note In C API the black-box structure CvCapture is used instead of VideoCapture.
@note
- A basic sample on using the VideoCapture interface can be found at
opencv_source_code/samples/cpp/starter_video.cpp
- Another basic video processing sample can be found at
opencv_source_code/samples/cpp/video_dmtx.cpp
- (Python) A basic sample on using the VideoCapture interface can be found at
opencv_source_code/samples/python/video.py
- (Python) Another basic video processing sample can be found at
opencv_source_code/samples/python/video_dmtx.py
- (Python) A multi threaded video processing sample can be found at
opencv_source_code/samples/python/video_threaded.py
*/
class CV_EXPORTS_W VideoCapture
{
public:
/** @brief
@note In C API, when you finished working with video, release CvCapture structure with
cvReleaseCapture(), or use Ptr\<CvCapture\> that calls cvReleaseCapture() automatically in the
destructor.
*/
CV_WRAP VideoCapture();
/** @overload
@param filename name of the opened video file (eg. video.avi) or image sequence (eg.
img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)
*/
CV_WRAP VideoCapture(const String& filename);
/** @overload
@param filename name of the opened video file (eg. video.avi) or image sequence (eg.
img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)
@param apiPreference preferred Capture API to use. Can be used to enforce a specific reader
implementation if multiple are available: e.g. CAP_FFMPEG or CAP_IMAGES
*/
CV_WRAP VideoCapture(const String& filename, int apiPreference);
/** @overload
@param index = camera_id + domain_offset (CAP_*). id of the video capturing device to open. If there is a single
camera connected, just pass 0. Advanced Usage: to open Camera 1 using the MS Media Foundation API: index = 1 + CAP_MSMF
*/
CV_WRAP VideoCapture(int index);
virtual ~VideoCapture();
/** @brief Open video file or a capturing device for video capturing
@param filename name of the opened video file (eg. video.avi) or image sequence (eg.
img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)
The methods first call VideoCapture::release to close the already opened file or camera.
*/
CV_WRAP virtual bool open(const String& filename);
/** @overload
@param index = camera_id + domain_offset (CAP_*). id of the video capturing device to open. If there is a single
camera connected, just pass 0. Advanced Usage: to open Camera 1 using the MS Media Foundation API: index = 1 + CAP_MSMF
*/
CV_WRAP virtual bool open(int index);
/** @brief Returns true if video capturing has been initialized already.
If the previous call to VideoCapture constructor or VideoCapture::open succeeded, the method returns
true.
*/
CV_WRAP virtual bool isOpened() const;
/** @brief Closes video file or capturing device.
The methods are automatically called by subsequent VideoCapture::open and by VideoCapture
destructor.
The C function also deallocates memory and clears \*capture pointer.
*/
CV_WRAP virtual void release();
/** @brief Grabs the next frame from video file or capturing device.
The methods/functions grab the next frame from video file or camera and return true (non-zero) in
the case of success.
The primary use of the function is in multi-camera environments, especially when the cameras do not
have hardware synchronization. That is, you call VideoCapture::grab() for each camera and after that
call the slower method VideoCapture::retrieve() to decode and get frame from each camera. This way
the overhead on demosaicing or motion jpeg decompression etc. is eliminated and the retrieved frames
from different cameras will be closer in time.
Also, when a connected camera is multi-head (for example, a stereo camera or a Kinect device), the
correct way of retrieving data from it is to call VideoCapture::grab first and then call
VideoCapture::retrieve one or more times with different values of the channel parameter. See
<https://github.com/Itseez/opencv/tree/master/samples/cpp/openni_capture.cpp>
*/
CV_WRAP virtual bool grab();
/** @brief Decodes and returns the grabbed video frame.
The methods/functions decode and return the just grabbed frame. If no frames has been grabbed
(camera has been disconnected, or there are no more frames in video file), the methods return false
and the functions return NULL pointer.
@note OpenCV 1.x functions cvRetrieveFrame and cv.RetrieveFrame return image stored inside the video
capturing structure. It is not allowed to modify or release the image! You can copy the frame using
:ocvcvCloneImage and then do whatever you want with the copy.
*/
CV_WRAP virtual bool retrieve(OutputArray image, int flag = 0);
virtual VideoCapture& operator >> (CV_OUT Mat& image);
virtual VideoCapture& operator >> (CV_OUT UMat& image);
/** @brief Grabs, decodes and returns the next video frame.
The methods/functions combine VideoCapture::grab and VideoCapture::retrieve in one call. This is the
most convenient method for reading video files or capturing data from decode and return the just
grabbed frame. If no frames has been grabbed (camera has been disconnected, or there are no more
frames in video file), the methods return false and the functions return NULL pointer.
@note OpenCV 1.x functions cvRetrieveFrame and cv.RetrieveFrame return image stored inside the video
capturing structure. It is not allowed to modify or release the image! You can copy the frame using
:ocvcvCloneImage and then do whatever you want with the copy.
*/
CV_WRAP virtual bool read(OutputArray image);
/** @brief Sets a property in the VideoCapture.
@param propId Property identifier. It can be one of the following:
- **CAP_PROP_POS_MSEC** Current position of the video file in milliseconds.
- **CAP_PROP_POS_FRAMES** 0-based index of the frame to be decoded/captured next.
- **CAP_PROP_POS_AVI_RATIO** Relative position of the video file: 0 - start of the
film, 1 - end of the film.
- **CAP_PROP_FRAME_WIDTH** Width of the frames in the video stream.
- **CAP_PROP_FRAME_HEIGHT** Height of the frames in the video stream.
- **CAP_PROP_FPS** Frame rate.
- **CAP_PROP_FOURCC** 4-character code of codec.
- **CAP_PROP_FRAME_COUNT** Number of frames in the video file.
- **CAP_PROP_FORMAT** Format of the Mat objects returned by retrieve() .
- **CAP_PROP_MODE** Backend-specific value indicating the current capture mode.
- **CAP_PROP_BRIGHTNESS** Brightness of the image (only for cameras).
- **CAP_PROP_CONTRAST** Contrast of the image (only for cameras).
- **CAP_PROP_SATURATION** Saturation of the image (only for cameras).
- **CAP_PROP_HUE** Hue of the image (only for cameras).
- **CAP_PROP_GAIN** Gain of the image (only for cameras).
- **CAP_PROP_EXPOSURE** Exposure (only for cameras).
- **CAP_PROP_CONVERT_RGB** Boolean flags indicating whether images should be converted
to RGB.
- **CAP_PROP_WHITE_BALANCE** Currently unsupported
- **CAP_PROP_RECTIFICATION** Rectification flag for stereo cameras (note: only supported
by DC1394 v 2.x backend currently)
@param value Value of the property.
*/
CV_WRAP virtual bool set(int propId, double value);
/** @brief Returns the specified VideoCapture property
@param propId Property identifier. It can be one of the following:
- **CAP_PROP_POS_MSEC** Current position of the video file in milliseconds or video
capture timestamp.
- **CAP_PROP_POS_FRAMES** 0-based index of the frame to be decoded/captured next.
- **CAP_PROP_POS_AVI_RATIO** Relative position of the video file: 0 - start of the
film, 1 - end of the film.
- **CAP_PROP_FRAME_WIDTH** Width of the frames in the video stream.
- **CAP_PROP_FRAME_HEIGHT** Height of the frames in the video stream.
- **CAP_PROP_FPS** Frame rate.
- **CAP_PROP_FOURCC** 4-character code of codec.
- **CAP_PROP_FRAME_COUNT** Number of frames in the video file.
- **CAP_PROP_FORMAT** Format of the Mat objects returned by retrieve() .
- **CAP_PROP_MODE** Backend-specific value indicating the current capture mode.
- **CAP_PROP_BRIGHTNESS** Brightness of the image (only for cameras).
- **CAP_PROP_CONTRAST** Contrast of the image (only for cameras).
- **CAP_PROP_SATURATION** Saturation of the image (only for cameras).
- **CAP_PROP_HUE** Hue of the image (only for cameras).
- **CAP_PROP_GAIN** Gain of the image (only for cameras).
- **CAP_PROP_EXPOSURE** Exposure (only for cameras).
- **CAP_PROP_CONVERT_RGB** Boolean flags indicating whether images should be converted
to RGB.
- **CAP_PROP_WHITE_BALANCE** Currently not supported
- **CAP_PROP_RECTIFICATION** Rectification flag for stereo cameras (note: only supported
by DC1394 v 2.x backend currently)
@note When querying a property that is not supported by the backend used by the VideoCapture
class, value 0 is returned.
*/
CV_WRAP virtual double get(int propId) const;
/** @overload
@param filename name of the opened video file (eg. video.avi) or image sequence (eg.
img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)
@param apiPreference preferred Capture API to use. Can be used to enforce a specific reader
implementation if multiple are available: e.g. CAP_FFMPEG or CAP_IMAGES
The methods first call VideoCapture::release to close the already opened file or camera.
*/
CV_WRAP virtual bool open(const String& filename, int apiPreference);
protected:
Ptr<CvCapture> cap;
Ptr<IVideoCapture> icap;
};
class IVideoWriter;
/** @brief Video writer class.
*/
class CV_EXPORTS_W VideoWriter
{
public:
/** @brief VideoWriter constructors
The constructors/functions initialize video writers. On Linux FFMPEG is used to write videos; on
Windows FFMPEG or VFW is used; on MacOSX QTKit is used.
*/
CV_WRAP VideoWriter();
/** @overload
@param filename Name of the output video file.
@param fourcc 4-character code of codec used to compress the frames. For example,
VideoWriter::fourcc('P','I','M','1') is a MPEG-1 codec, VideoWriter::fourcc('M','J','P','G') is a
motion-jpeg codec etc. List of codes can be obtained at [Video Codecs by
FOURCC](http://www.fourcc.org/codecs.php) page. FFMPEG backend with MP4 container natively uses
other values as fourcc code: see [ObjectType](http://www.mp4ra.org/codecs.html),
so you may receive a warning message from OpenCV about fourcc code conversion.
@param fps Framerate of the created video stream.
@param frameSize Size of the video frames.
@param isColor If it is not zero, the encoder will expect and encode color frames, otherwise it
will work with grayscale frames (the flag is currently supported on Windows only).
*/
CV_WRAP VideoWriter(const String& filename, int fourcc, double fps,
Size frameSize, bool isColor = true);
virtual ~VideoWriter();
/** @brief Initializes or reinitializes video writer.
The method opens video writer. Parameters are the same as in the constructor
VideoWriter::VideoWriter.
*/
CV_WRAP virtual bool open(const String& filename, int fourcc, double fps,
Size frameSize, bool isColor = true);
/** @brief Returns true if video writer has been successfully initialized.
*/
CV_WRAP virtual bool isOpened() const;
/** @brief Closes the video writer.
The methods are automatically called by subsequent VideoWriter::open and by the VideoWriter
destructor.
*/
CV_WRAP virtual void release();
virtual VideoWriter& operator << (const Mat& image);
/** @brief Writes the next video frame
@param image The written frame
The functions/methods write the specified image to video file. It must have the same size as has
been specified when opening the video writer.
*/
CV_WRAP virtual void write(const Mat& image);
/** @brief Sets a property in the VideoWriter.
@param propId Property identifier. It can be one of the following:
- **VIDEOWRITER_PROP_QUALITY** Quality (0..100%) of the videostream encoded. Can be adjusted dynamically in some codecs.
- **VIDEOWRITER_PROP_NSTRIPES** Number of stripes for parallel encoding
@param value Value of the property.
*/
CV_WRAP virtual bool set(int propId, double value);
/** @brief Returns the specified VideoWriter property
@param propId Property identifier. It can be one of the following:
- **VIDEOWRITER_PROP_QUALITY** Current quality of the encoded videostream.
- **VIDEOWRITER_PROP_FRAMEBYTES** (Read-only) Size of just encoded video frame; note that the encoding order may be different from representation order.
- **VIDEOWRITER_PROP_NSTRIPES** Number of stripes for parallel encoding
@note When querying a property that is not supported by the backend used by the VideoWriter
class, value 0 is returned.
*/
CV_WRAP virtual double get(int propId) const;
/** @brief Concatenates 4 chars to a fourcc code
This static method constructs the fourcc code of the codec to be used in the constructor
VideoWriter::VideoWriter or VideoWriter::open.
*/
CV_WRAP static int fourcc(char c1, char c2, char c3, char c4);
protected:
Ptr<CvVideoWriter> writer;
Ptr<IVideoWriter> iwriter;
static Ptr<IVideoWriter> create(const String& filename, int fourcc, double fps,
Size frameSize, bool isColor = true);
};
template<> CV_EXPORTS void DefaultDeleter<CvCapture>::operator ()(CvCapture* obj) const;
template<> CV_EXPORTS void DefaultDeleter<CvVideoWriter>::operator ()(CvVideoWriter* obj) const;
//! @} videoio
} // cv
#endif //__OPENCV_VIDEOIO_HPP__

View file

@ -40,8 +40,8 @@
//
//M*/
#ifndef __OPENCV_OLD_CV_H__
#define __OPENCV_OLD_CV_H__
#ifndef OPENCV_OLD_CV_H
#define OPENCV_OLD_CV_H
#if defined(_MSC_VER)
#define CV_DO_PRAGMA(x) __pragma(x)

View file

@ -40,8 +40,8 @@
//
//M*/
#ifndef __OPENCV_OLD_CV_HPP__
#define __OPENCV_OLD_CV_HPP__
#ifndef OPENCV_OLD_CV_HPP
#define OPENCV_OLD_CV_HPP
//#if defined(__GNUC__)
//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"

View file

@ -39,8 +39,8 @@
//
//M*/
#ifndef __OPENCV_OLD_AUX_H__
#define __OPENCV_OLD_AUX_H__
#ifndef OPENCV_OLD_AUX_H
#define OPENCV_OLD_AUX_H
//#if defined(__GNUC__)
//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"

View file

@ -39,8 +39,8 @@
//
//M*/
#ifndef __OPENCV_OLD_AUX_HPP__
#define __OPENCV_OLD_AUX_HPP__
#ifndef OPENCV_OLD_AUX_HPP
#define OPENCV_OLD_AUX_HPP
//#if defined(__GNUC__)
//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"

View file

@ -38,8 +38,8 @@
// the use of this software, even if advised of the possibility of such damage.
#ifndef __OPENCV_OLD_WIMAGE_HPP__
#define __OPENCV_OLD_WIMAGE_HPP__
#ifndef OPENCV_OLD_WIMAGE_HPP
#define OPENCV_OLD_WIMAGE_HPP
#include "opencv2/core/wimage.hpp"

View file

@ -40,8 +40,8 @@
//
//M*/
#ifndef __OPENCV_OLD_CXCORE_H__
#define __OPENCV_OLD_CXCORE_H__
#ifndef OPENCV_OLD_CXCORE_H
#define OPENCV_OLD_CXCORE_H
//#if defined(__GNUC__)
//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"

View file

@ -40,8 +40,8 @@
//
//M*/
#ifndef __OPENCV_OLD_CXCORE_HPP__
#define __OPENCV_OLD_CXCORE_HPP__
#ifndef OPENCV_OLD_CXCORE_HPP
#define OPENCV_OLD_CXCORE_HPP
//#if defined(__GNUC__)
//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"

View file

@ -40,8 +40,8 @@
//
//M*/
#ifndef __OPENCV_OLD_EIGEN_HPP__
#define __OPENCV_OLD_EIGEN_HPP__
#ifndef OPENCV_OLD_EIGEN_HPP
#define OPENCV_OLD_EIGEN_HPP
#include "opencv2/core/eigen.hpp"

View file

@ -1,5 +1,5 @@
#ifndef __OPENCV_OLD_CXMISC_H__
#define __OPENCV_OLD_CXMISC_H__
#ifndef OPENCV_OLD_CXMISC_H
#define OPENCV_OLD_CXMISC_H
#ifdef __cplusplus
# include "opencv2/core/utility.hpp"

View file

@ -39,8 +39,8 @@
//
//M*/
#ifndef __OPENCV_OLD_HIGHGUI_H__
#define __OPENCV_OLD_HIGHGUI_H__
#ifndef OPENCV_OLD_HIGHGUI_H
#define OPENCV_OLD_HIGHGUI_H
#include "opencv2/core/core_c.h"
#include "opencv2/highgui/highgui_c.h"

View file

@ -38,8 +38,8 @@
//
//M*/
#ifndef __OPENCV_OLD_ML_H__
#define __OPENCV_OLD_ML_H__
#ifndef OPENCV_OLD_ML_H
#define OPENCV_OLD_ML_H
#include "opencv2/core/core_c.h"
#include "opencv2/ml.hpp"

View file

@ -41,8 +41,8 @@
//
//M*/
#ifndef __OPENCV_CALIB3D_HPP__
#define __OPENCV_CALIB3D_HPP__
#ifndef OPENCV_CALIB3D_HPP
#define OPENCV_CALIB3D_HPP
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
@ -96,6 +96,10 @@ u = f_x*x' + c_x \\
v = f_y*y' + c_y
\end{array}\f]
The following figure illustrates the pinhole camera model.
![Pinhole camera model](pics/pinhole_camera_model.png)
Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion.
So, the above model is extended as:
@ -114,6 +118,10 @@ v = f_y*y'' + c_y
tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
coefficients. Higher-order coefficients are not considered in OpenCV.
The next figure shows two common types of radial distortion: barrel distortion (typically \f$ k_1 > 0 \f$ and pincushion distortion (typically \f$ k_1 < 0 \f$).
![](pics/distortion_examples.png)
In some cases the image sensor may be tilted in order to focus an oblique plane in front of the
camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or
triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
@ -190,7 +198,7 @@ pattern (every view is described by several 3D-2D point correspondences).
\f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]
The pinehole projection coordinates of P is [a; b] where
The pinhole projection coordinates of P is [a; b] where
\f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]
@ -200,12 +208,12 @@ pattern (every view is described by several 3D-2D point correspondences).
The distorted point coordinates are [x'; y'] where
\f[x' = (\theta_d / r) x \\ y' = (\theta_d / r) y \f]
\f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]
Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
\f[u = f_x (x' + \alpha y') + c_x \\
v = f_y yy + c_y\f]
v = f_y y' + c_y\f]
@defgroup calib3d_c C API
@ -228,8 +236,9 @@ enum { SOLVEPNP_ITERATIVE = 0,
SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
SOLVEPNP_DLS = 3, //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
SOLVEPNP_UPNP = 4 //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
SOLVEPNP_UPNP = 4, //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
SOLVEPNP_AP3P = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
SOLVEPNP_MAX_COUNT //!< Used for count
};
enum { CALIB_CB_ADAPTIVE_THRESH = 1,
@ -259,6 +268,8 @@ enum { CALIB_USE_INTRINSIC_GUESS = 0x00001,
CALIB_FIX_S1_S2_S3_S4 = 0x10000,
CALIB_TILTED_MODEL = 0x40000,
CALIB_FIX_TAUX_TAUY = 0x80000,
CALIB_USE_QR = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
CALIB_FIX_TANGENT_DIST = 0x200000,
// only for stereo
CALIB_FIX_INTRINSIC = 0x00100,
CALIB_SAME_FOCAL_LENGTH = 0x00200,
@ -295,6 +306,12 @@ optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
*/
CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
/** @example pose_from_homography.cpp
An example program about pose estimation from coplanar points
Check @ref tutorial_homography "the corresponding tutorial" for more details
*/
/** @brief Finds a perspective transformation between two planes.
@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
@ -316,7 +333,7 @@ mask values are ignored.
@param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be.
@param confidence Confidence level, between 0 and 1.
The functions find and return the perspective transformation \f$H\f$ between the source and the
The function finds and returns the perspective transformation \f$H\f$ between the source and the
destination planes:
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f]
@ -351,13 +368,8 @@ determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note th
cannot be estimated, an empty one will be returned.
@sa
getAffineTransform, getPerspectiveTransform, estimateRigidTransform, warpPerspective,
perspectiveTransform
@note
- A example on calculating a homography for image matching can be found at
opencv_source_code/samples/cpp/video_homography.cpp
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform
*/
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
int method = 0, double ransacReprojThreshold = 3,
@ -383,8 +395,8 @@ and a rotation matrix.
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
sequence of rotations about the three principle axes that results in the same orientation of an
object, eg. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angules
sequence of rotations about the three principal axes that results in the same orientation of an
object, e.g. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
are only one of the possible solutions.
*/
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
@ -409,8 +421,8 @@ matrix and the position of a camera.
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principle axes that results in the same orientation of an object, eg. see @cite Slabaugh . Returned
tree rotation matrices and corresponding three Euler angules are only one of the possible solutions.
principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
The function is based on RQDecomp3x3 .
*/
@ -513,21 +525,27 @@ CV_EXPORTS_W void projectPoints( InputArray objectPoints,
OutputArray jacobian = noArray(),
double aspectRatio = 0 );
/** @example homography_from_camera_displacement.cpp
An example program about homography from the camera displacement
Check @ref tutorial_homography "the corresponding tutorial" for more details
*/
/** @brief Finds an object pose from 3D-2D point correspondences.
@param objectPoints Array of object points in the object coordinate space, 3xN/Nx3 1-channel or
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
@param imagePoints Array of corresponding image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel,
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2f\> can be also passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from
the model coordinate system to the camera coordinate system.
@param tvec Output translation vector.
@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
@param flags Method for solving a PnP problem:
@ -536,20 +554,116 @@ this case the function finds such a pose that minimizes reprojection error, that
of squared distances between the observed projections imagePoints and the projected (using
projectPoints ) objectPoints .
- **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem". In this case the
function requires exactly four object and image points.
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
In this case the function requires exactly four object and image points.
- **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
In this case the function requires exactly four object and image points.
- **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation".
paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
- **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
"A Direct Least-Squares (DLS) Method for PnP".
"A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
- **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
Estimation". In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
focal length.
- **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). In this case the
function requires exactly four object and image points.
The function estimates the object pose given a set of object points, their corresponding image
projections, as well as the camera matrix and the distortion coefficients.
projections, as well as the camera matrix and the distortion coefficients, see the figure below
(more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
and the Z-axis forward).
![](pnp.jpg)
Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$
using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$:
\f[
\begin{align*}
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix} &=
\bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{M}_w
\begin{bmatrix}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{bmatrix} \\
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix} &=
\begin{bmatrix}
f_x & 0 & c_x \\
0 & f_y & c_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
r_{11} & r_{12} & r_{13} & t_x \\
r_{21} & r_{22} & r_{23} & t_y \\
r_{31} & r_{32} & r_{33} & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{bmatrix}
\end{align*}
\f]
The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow to transform
a 3D point expressed in the world frame into the camera frame:
\f[
\begin{align*}
\begin{bmatrix}
X_c \\
Y_c \\
Z_c \\
1
\end{bmatrix} &=
\hspace{0.2em} ^{c}\bf{M}_w
\begin{bmatrix}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{bmatrix} \\
\begin{bmatrix}
X_c \\
Y_c \\
Z_c \\
1
\end{bmatrix} &=
\begin{bmatrix}
r_{11} & r_{12} & r_{13} & t_x \\
r_{21} & r_{22} & r_{23} & t_y \\
r_{31} & r_{32} & r_{33} & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{bmatrix}
\end{align*}
\f]
@note
- An example of how to use solvePnP for planar augmented reality can be found at
@ -564,6 +678,15 @@ projections, as well as the camera matrix and the distortion coefficients.
- Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
- The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, **SOLVEPNP_EPNP** method will be used instead.
- The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
- With **SOLVEPNP_ITERATIVE** method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
*/
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
InputArray cameraMatrix, InputArray distCoeffs,
@ -572,9 +695,9 @@ CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
@param objectPoints Array of object points in the object coordinate space, 3xN/Nx3 1-channel or
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
@param imagePoints Array of corresponding image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel,
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2f\> can be also passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
@ -604,6 +727,13 @@ makes the function resistant to outliers.
@note
- An example of how to use solvePNPRansac for object detection can be found at
opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
- The default method used to estimate the camera pose for the Minimal Sample Sets step
is #SOLVEPNP_EPNP. Exceptions are:
- if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
- if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
- The method used to estimate the camera pose using all the inliers is defined by the
flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
the method #SOLVEPNP_EPNP will be used instead.
*/
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
InputArray cameraMatrix, InputArray distCoeffs,
@ -611,6 +741,33 @@ CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoint
bool useExtrinsicGuess = false, int iterationsCount = 100,
float reprojectionError = 8.0, double confidence = 0.99,
OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
/** @brief Finds an object pose from 3 3D-2D point correspondences.
@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
vector\<Point2f\> can be also passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvecs Output rotation vectors (see Rodrigues ) that, together with tvecs , brings points from
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
@param tvecs Output translation vectors.
@param flags Method for solving a P3P problem:
- **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
- **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
The function estimates the object pose given 3 object points, their corresponding image
projections, as well as the camera matrix and the distortion coefficients.
*/
CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
InputArray cameraMatrix, InputArray distCoeffs,
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
int flags );
/** @brief Finds an initial camera matrix from 3D-2D point correspondences.
@ -638,11 +795,11 @@ CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ).
@param corners Output array of detected corners.
@param flags Various operation flags that can be zero or a combination of the following values:
- **CV_CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
- **CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
and white, rather than a fixed threshold level (computed from the average image brightness).
- **CV_CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
- **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
applying fixed or adaptive thresholding.
- **CV_CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
- **CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
square-like shape) to filter out false quads extracted at the contour retrieval stage.
- **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
and shortcut the call if none is found. This can drastically speed up the call in the
@ -701,6 +858,38 @@ found, or as colored corners connected with lines if the board was found.
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
InputArray corners, bool patternWasFound );
struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
{
CV_WRAP CirclesGridFinderParameters();
CV_PROP_RW cv::Size2f densityNeighborhoodSize;
CV_PROP_RW float minDensity;
CV_PROP_RW int kmeansAttempts;
CV_PROP_RW int minDistanceToAddKeypoint;
CV_PROP_RW int keypointScale;
CV_PROP_RW float minGraphConfidence;
CV_PROP_RW float vertexGain;
CV_PROP_RW float vertexPenalty;
CV_PROP_RW float existingVertexGain;
CV_PROP_RW float edgeGain;
CV_PROP_RW float edgePenalty;
CV_PROP_RW float convexHullFactor;
CV_PROP_RW float minRNGEdgeSwitchDist;
enum GridType
{
SYMMETRIC_GRID, ASYMMETRIC_GRID
};
GridType gridType;
};
struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters2 : public CirclesGridFinderParameters
{
CV_WRAP CirclesGridFinderParameters2();
CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from predicion. Used by CALIB_CB_CLUSTERING.
};
/** @brief Finds centers in the grid of circles.
@param image grid view of input circles; it must be an 8-bit grayscale or color image.
@ -713,6 +902,7 @@ CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSiz
- **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
perspective distortions but much more sensitive to background clutter.
@param blobDetector feature detector that finds blobs like dark circles on light background.
@param parameters struct for finding circles in a grid pattern.
The function attempts to determine whether the input image contains a grid of circles. If it is, the
function locates centers of the circles. The function returns a non-zero value if all of the centers
@ -732,6 +922,18 @@ Sample usage of detecting and drawing the centers of circles: :
@note The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments.
*/
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
OutputArray centers, int flags,
const Ptr<FeatureDetector> &blobDetector,
CirclesGridFinderParameters parameters);
/** @overload */
CV_EXPORTS_W bool findCirclesGrid2( InputArray image, Size patternSize,
OutputArray centers, int flags,
const Ptr<FeatureDetector> &blobDetector,
CirclesGridFinderParameters2 parameters);
/** @overload */
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
@ -756,7 +958,7 @@ together.
@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
@param cameraMatrix Output 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
and/or CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.
@param distCoeffs Output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
@ -767,25 +969,33 @@ k-th translation vector (see the next output parameter description) brings the c
from the model coordinate space (in which object points are specified) to the world coordinate
space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
@param tvecs Output vector of translation vectors estimated for each pattern view.
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
Order of deviations values:
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
\f$R_i, T_i\f$ are concatenated 1x3 vectors.
@param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
@param flags Different flags that may be zero or a combination of the following values:
- **CV_CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
- **CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
Note, that if intrinsic parameters are known, there is no need to use this function just to
estimate extrinsic parameters. Use solvePnP instead.
- **CV_CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
- **CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when
CV_CALIB_USE_INTRINSIC_GUESS is set too.
- **CV_CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
CALIB_USE_INTRINSIC_GUESS is set too.
- **CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
ratio fx/fy stays the same as in the input cameraMatrix . When
CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
ignored, only their ratio is computed and used further.
- **CV_CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
- **CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
to zeros and stay zero.
- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** The corresponding radial distortion
coefficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is
- **CALIB_FIX_K1,...,CALIB_FIX_K6** The corresponding radial distortion
coefficient is not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- **CV_CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
- **CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the rational model and return 8 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
@ -794,24 +1004,26 @@ backward compatibility, this extra flag should be explicitly specified to make t
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
@param criteria Termination criteria for the iterative optimization algorithm.
@return the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
points and their corresponding 2D projections in each view must be specified. That may be achieved
by using an object with a known geometry and easily detectable feature points. Such an object is
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
(when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
(when CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
be used as long as initial cameraMatrix is provided.
@ -819,7 +1031,7 @@ The algorithm performs the following steps:
- Compute the initial intrinsic parameters (the option only available for planar calibration
patterns) or read them from the input parameters. The distortion coefficients are all set to
zeros initially unless some of CV_CALIB_FIX_K? are specified.
zeros initially unless some of CALIB_FIX_K? are specified.
- Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
done using solvePnP .
@ -829,8 +1041,6 @@ The algorithm performs the following steps:
the projected (using the current estimates for camera parameters and the poses) object points
objectPoints. See projectPoints for details.
The function returns the final re-projection error.
@note
If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
@ -841,6 +1051,24 @@ The function returns the final re-projection error.
@sa
findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
*/
CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints, Size imageSize,
InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
OutputArray stdDeviationsIntrinsics,
OutputArray stdDeviationsExtrinsics,
OutputArray perViewErrors,
int flags = 0, TermCriteria criteria = TermCriteria(
TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
/** @overload double calibrateCamera( InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints, Size imageSize,
InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
OutputArray stdDeviations, OutputArray perViewErrors,
int flags = 0, TermCriteria criteria = TermCriteria(
TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) )
*/
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints, Size imageSize,
InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
@ -883,8 +1111,8 @@ observed by the first camera.
observed by the second camera.
@param cameraMatrix1 Input/output first camera matrix:
\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO ,
CV_CALIB_FIX_INTRINSIC , or CV_CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
any of CALIB_USE_INTRINSIC_GUESS , CALIB_FIX_ASPECT_RATIO ,
CALIB_FIX_INTRINSIC , or CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
matrix components must be initialized. See the flags description for details.
@param distCoeffs1 Input/output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
@ -898,21 +1126,21 @@ is similar to distCoeffs1 .
@param E Output essential matrix.
@param F Output fundamental matrix.
@param flags Different flags that may be zero or a combination of the following values:
- **CV_CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
- **CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
matrices are estimated.
- **CV_CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
- **CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
according to the specified flags. Initial values are provided by the user.
- **CV_CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
- **CV_CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
- **CV_CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
- **CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
- **CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
- **CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
.
- **CV_CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
- **CV_CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
- **CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
- **CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
zeros and fix there.
- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** Do not change the corresponding radial
distortion coefficient during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set,
- **CALIB_FIX_K1,...,CALIB_FIX_K6** Do not change the corresponding radial
distortion coefficient during the optimization. If CALIB_USE_INTRINSIC_GUESS is set,
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- **CV_CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
- **CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
compatibility, this extra flag should be explicitly specified to make the calibration
function use the rational model and return 8 coefficients. If the flag is not set, the
function computes and returns only 5 distortion coefficients.
@ -921,14 +1149,14 @@ backward compatibility, this extra flag should be explicitly specified to make t
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
@param criteria Termination criteria for the iterative optimization algorithm.
@ -940,8 +1168,8 @@ This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute
need to know the position and orientation of the second camera relative to the first camera. This is
what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:
\f[R_2=R*R_1
T_2=R*T_1 + T,\f]
\f[R_2=R*R_1\f]
\f[T_2=R*T_1 + T,\f]
Optionally, it computes the essential matrix E:
@ -956,10 +1184,10 @@ Besides the stereo-related information, the function can also perform a full cal
two cameras. However, due to the high dimensionality of the parameter space and noise in the input
data, the function can diverge from the correct solution. If the intrinsic parameters can be
estimated with high accuracy for each of the cameras individually (for example, using
calibrateCamera ), you are recommended to do so and then pass CV_CALIB_FIX_INTRINSIC flag to the
calibrateCamera ), you are recommended to do so and then pass CALIB_FIX_INTRINSIC flag to the
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
estimated at once, it makes sense to restrict some parameters, for example, pass
CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST flags, which is usually a
CALIB_SAME_FOCAL_LENGTH and CALIB_ZERO_TANGENT_DIST flags, which is usually a
reasonable assumption.
Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
@ -991,7 +1219,7 @@ camera.
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
@param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
@param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
@ -1030,7 +1258,7 @@ coordinates. The function distinguishes the following two cases:
\f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
CV_CALIB_ZERO_DISPARITY is set.
CALIB_ZERO_DISPARITY is set.
- **Vertical stereo**: the first and the second camera views are shifted relative to each other
mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
@ -1076,7 +1304,7 @@ findFundamentalMat .
@param threshold Optional threshold used to filter out the outliers. If the parameter is greater
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
rejected prior to computing the homographies. Otherwise,all the points are considered inliers.
rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
The function computes the rectification transformations without knowing intrinsic parameters of the
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
@ -1120,7 +1348,7 @@ assumed.
@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
stereoRectify for details.
@param newImgSize Image size after rectification. By default,it is set to imageSize .
@param newImgSize Image size after rectification. By default, it is set to imageSize .
@param validPixROI Optional output rectangle that outlines all-good-pixels region in the
undistorted image. See roi1, roi2 description in stereoRectify .
@param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
@ -1131,7 +1359,7 @@ best fit a subset of the source image (determined by alpha) to the corrected ima
The function computes and returns the optimal new camera matrix based on the free scaling parameter.
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
When alpha\>0 , the undistortion result is likely to have some black pixels corresponding to
When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
"virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
coefficients, the computed new camera matrix, and newImageSize should be passed to
initUndistortRectifyMap to produce the maps for remap .
@ -1242,15 +1470,15 @@ be floating-point (single or double precision).
@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix.
@param method Method for computing a fundamental matrix.
@param method Method for computing an essential matrix.
- **RANSAC** for the RANSAC algorithm.
- **MEDS** for the LMedS algorithm.
- **LMEDS** for the LMedS algorithm.
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.
@ -1273,8 +1501,8 @@ CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
be floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param focal focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principle point.
@param pp principle point of the camera.
are feature points from cameras with same focal length and principal point.
@param pp principal point of the camera.
@param method Method for computing a fundamental matrix.
- **RANSAC** for the RANSAC algorithm.
- **LMEDS** for the LMedS algorithm.
@ -1327,7 +1555,7 @@ floating-point (single or double precision).
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix.
@param R Recovered relative rotation.
@param t Recoverd relative translation.
@param t Recovered relative translation.
@param mask Input/output mask for inliers in points1 and points2.
: If it is not empty, then it marks inliers in points1 and points2 for then given essential
matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
@ -1370,10 +1598,10 @@ CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray point
floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param R Recovered relative rotation.
@param t Recoverd relative translation.
@param t Recovered relative translation.
@param focal Focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principle point.
@param pp Principle point of the camera.
are feature points from cameras with same focal length and principal point.
@param pp principal point of the camera.
@param mask Input/output mask for inliers in points1 and points2.
: If it is not empty, then it marks inliers in points1 and points2 for then given essential
matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
@ -1394,6 +1622,28 @@ CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray point
double focal = 1.0, Point2d pp = Point2d(0, 0),
InputOutputArray mask = noArray() );
/** @overload
@param E The input essential matrix.
@param points1 Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1.
@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix.
@param R Recovered relative rotation.
@param t Recovered relative translation.
@param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite points).
@param mask Input/output mask for inliers in points1 and points2.
: If it is not empty, then it marks inliers in points1 and points2 for then given essential
matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
which pass the cheirality check.
@param triangulatedPoints 3d points which were reconstructed by triangulation.
*/
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
OutputArray triangulatedPoints = noArray());
/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
@ -1504,7 +1754,7 @@ to 3D points with a very large Z value (currently set to 10000).
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
computes:
\f[\begin{array}{l} [X \; Y \; Z \; W]^T = \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]
@ -1548,6 +1798,99 @@ CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
OutputArray out, OutputArray inliers,
double ransacThreshold = 3, double confidence = 0.99);
/** @brief Computes an optimal affine transformation between two 2D point sets.
@param from First input 2D point set.
@param to Second input 2D point set.
@param inliers Output vector indicating which points are inliers.
@param method Robust method used to compute transformation. The following methods are possible:
- cv::RANSAC - RANSAC-based robust method
- cv::LMEDS - Least-Median robust method
RANSAC is the default method.
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.
@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.
@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
could not be estimated.
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
@note
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
@sa estimateAffinePartial2D, getAffineTransform
*/
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
int method = RANSAC, double ransacReprojThreshold = 3,
size_t maxIters = 2000, double confidence = 0.99,
size_t refineIters = 10);
/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.
@param from First input 2D point set.
@param to Second input 2D point set.
@param inliers Output vector indicating which points are inliers.
@param method Robust method used to compute transformation. The following methods are possible:
- cv::RANSAC - RANSAC-based robust method
- cv::LMEDS - Least-Median robust method
RANSAC is the default method.
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.
@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.
@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\f[ \begin{bmatrix} \cos(\theta)s & -\sin(\theta)s & tx \\
\sin(\theta)s & \cos(\theta)s & ty
\end{bmatrix} \f]
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ tx, ty \f$ are
translations in \f$ x, y \f$ axes respectively.
@note
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
@sa estimateAffine2D, getAffineTransform
*/
CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
int method = RANSAC, double ransacReprojThreshold = 3,
size_t maxIters = 2000, double confidence = 0.99,
size_t refineIters = 10);
/** @example decompose_homography.cpp
An example program with homography decomposition.
Check @ref tutorial_homography "the corresponding tutorial" for more details.
*/
/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
@param H The input homography matrix between two images.
@ -1683,7 +2026,8 @@ public:
{
MODE_SGBM = 0,
MODE_HH = 1,
MODE_SGBM_3WAY = 2
MODE_SGBM_3WAY = 2,
MODE_HH4 = 3
};
CV_WRAP virtual int getPreFilterCap() const = 0;
@ -1738,7 +2082,7 @@ public:
set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
to a custom value.
*/
CV_WRAP static Ptr<StereoSGBM> create(int minDisparity, int numDisparities, int blockSize,
CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
int preFilterCap = 0, int uniquenessRatio = 0,
int speckleWindowSize = 0, int speckleRange = 0,
@ -1756,15 +2100,16 @@ namespace fisheye
//! @{
enum{
CALIB_USE_INTRINSIC_GUESS = 1,
CALIB_RECOMPUTE_EXTRINSIC = 2,
CALIB_CHECK_COND = 4,
CALIB_FIX_SKEW = 8,
CALIB_FIX_K1 = 16,
CALIB_FIX_K2 = 32,
CALIB_FIX_K3 = 64,
CALIB_FIX_K4 = 128,
CALIB_FIX_INTRINSIC = 256
CALIB_USE_INTRINSIC_GUESS = 1 << 0,
CALIB_RECOMPUTE_EXTRINSIC = 1 << 1,
CALIB_CHECK_COND = 1 << 2,
CALIB_FIX_SKEW = 1 << 3,
CALIB_FIX_K1 = 1 << 4,
CALIB_FIX_K2 = 1 << 5,
CALIB_FIX_K3 = 1 << 6,
CALIB_FIX_K4 = 1 << 7,
CALIB_FIX_INTRINSIC = 1 << 8,
CALIB_FIX_PRINCIPAL_POINT = 1 << 9
};
/** @brief Projects points using fisheye model
@ -1802,6 +2147,10 @@ namespace fisheye
@param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
@param alpha The skew coefficient.
@param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
Note that the function assumes the camera matrix of the undistorted points to be identity.
This means if you want to transform back points undistorted with undistortPoints() you have to
multiply them with \f$P^{-1}\f$.
*/
CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
@ -1910,8 +2259,10 @@ namespace fisheye
of intrinsic optimization.
- **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
- **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
- **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
zero.
- **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients
are set to zeros and stay zero.
- **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too.
@param criteria Termination criteria for the iterative optimization algorithm.
*/
CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
@ -1935,7 +2286,7 @@ namespace fisheye
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
@param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
@param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
@ -1961,7 +2312,7 @@ namespace fisheye
observed by the second camera.
@param K1 Input/output first camera matrix:
\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CV_CALIB_FIX_INTRINSIC are specified,
any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CALIB_FIX_INTRINSIC are specified,
some or all of the matrix components must be initialized.
@param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
@param K2 Input/output second camera matrix. The parameter is similar to K1 .
@ -1971,7 +2322,7 @@ namespace fisheye
@param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
@param T Output translation vector between the coordinate systems of the cameras.
@param flags Different flags that may be zero or a combination of the following values:
- **fisheye::CV_CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
- **fisheye::CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
are estimated.
- **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image

View file

@ -41,8 +41,8 @@
//
//M*/
#ifndef __OPENCV_CALIB3D_C_H__
#define __OPENCV_CALIB3D_C_H__
#ifndef OPENCV_CALIB3D_C_H
#define OPENCV_CALIB3D_C_H
#include "opencv2/core/core_c.h"
@ -245,7 +245,9 @@ CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
#define CV_CALIB_FIX_S1_S2_S3_S4 65536
#define CV_CALIB_TILTED_MODEL 262144
#define CV_CALIB_FIX_TAUX_TAUY 524288
#define CV_CALIB_FIX_TANGENT_DIST 2097152
#define CV_CALIB_NINTRINSIC 18
/* Finds intrinsic and extrinsic camera parameters
from a few views of known calibration pattern */
@ -422,4 +424,4 @@ public:
#endif
#endif /* __OPENCV_CALIB3D_C_H__ */
#endif /* OPENCV_CALIB3D_C_H */

View file

@ -42,8 +42,8 @@
//
//M*/
#ifndef __OPENCV_CORE_HPP__
#define __OPENCV_CORE_HPP__
#ifndef OPENCV_CORE_HPP
#define OPENCV_CORE_HPP
#ifndef __cplusplus
# error core.hpp header must be compiled as C++
@ -74,6 +74,7 @@
@{
@defgroup core_utils_sse SSE utilities
@defgroup core_utils_neon NEON utilities
@defgroup core_utils_softfloat Softfloat support
@}
@defgroup core_opengl OpenGL interoperability
@defgroup core_ipp Intel IPP Asynchronous C/C++ Converters
@ -114,7 +115,7 @@ public:
*/
Exception();
/*!
Full constructor. Normally the constuctor is not called explicitly.
Full constructor. Normally the constructor is not called explicitly.
Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used.
*/
Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
@ -131,8 +132,8 @@ public:
int code; ///< error code @see CVStatus
String err; ///< error description
String func; ///< function name. Available only when the compiler supports getting it
String file; ///< source file name where the error has occured
int line; ///< line number in the source file where the error has occured
String file; ///< source file name where the error has occurred
int line; ///< line number in the source file where the error has occurred
};
/*! @brief Signals an error and raises the exception.
@ -273,6 +274,9 @@ of p and len.
*/
CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
/** @example copyMakeBorder_demo.cpp
An example using copyMakeBorder function
*/
/** @brief Forms a border around an image.
The function copies the source image into the middle of the destination image. The areas to the
@ -426,7 +430,7 @@ CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
/** @brief Performs per-element division of two arrays or a scalar by an array.
The functions divide divide one array by another:
The function cv::divide divides one array by another:
\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
or a scalar by an array when there is no src1 :
\f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
@ -471,6 +475,9 @@ The function can also be emulated with a matrix expression, for example:
*/
CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
/** @example AddingImagesTrackbar.cpp
*/
/** @brief Calculates the weighted sum of two arrays.
The function addWeighted calculates the weighted sum of two arrays as follows:
@ -524,6 +531,17 @@ For example:
CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
double alpha = 1, double beta = 0);
/** @brief Converts an array to half precision floating number.
This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). The input array has to have type of CV_32F or
CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error.
The format of half precision floating point is defined in IEEE 754-2008.
@param src input array.
@param dst output array.
*/
CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst);
/** @brief Performs a look-up table transform of an array.
The function LUT fills the output array with values from the look-up table. Indices of the entries
@ -542,7 +560,7 @@ CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
/** @brief Calculates the sum of array elements.
The functions sum calculate and return the sum of array elements,
The function cv::sum calculates and returns the sum of array elements,
independently for each channel.
@param src input array that must have from 1 to 4 channels.
@sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
@ -588,10 +606,10 @@ CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
/** @brief Calculates an average (mean) of array elements.
The function mean calculates the mean value M of array elements,
The function cv::mean calculates the mean value M of array elements,
independently for each channel, and return it:
\f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
When all the mask elements are 0's, the functions return Scalar::all(0)
When all the mask elements are 0's, the function returns Scalar::all(0)
@param src input array that should have from 1 to 4 channels so that the result can be stored in
Scalar_ .
@param mask optional operation mask.
@ -601,11 +619,11 @@ CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
/** Calculates a mean and standard deviation of array elements.
The function meanStdDev calculates the mean and the standard deviation M
The function cv::meanStdDev calculates the mean and the standard deviation M
of array elements independently for each channel and returns it via the
output parameters:
\f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\f]
When all the mask elements are 0's, the functions return
When all the mask elements are 0's, the function returns
mean=stddev=Scalar::all(0).
@note The calculated standard deviation is only the diagonal of the
complete normalized covariance matrix. If the full matrix is needed, you
@ -615,50 +633,57 @@ then pass the matrix to calcCovarMatrix .
@param src input array that should have from 1 to 4 channels so that the results can be stored in
Scalar_ 's.
@param mean output parameter: calculated mean value.
@param stddev output parameter: calculateded standard deviation.
@param stddev output parameter: calculated standard deviation.
@param mask optional operation mask.
@sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
*/
CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
InputArray mask=noArray());
/** @brief Calculates an absolute array norm, an absolute difference norm, or a
relative difference norm.
/** @brief Calculates the absolute norm of an array.
The functions norm calculate an absolute norm of src1 (when there is no
src2 ):
This version of cv::norm calculates the absolute norm of src1. The type of norm to calculate is specified using cv::NormTypes.
\f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f]
or an absolute or relative difference norm if src2 is there:
\f[norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f]
or
\f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f]
The functions norm return the calculated norm.
As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
is calculated as follows
\f{align*}
\| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\
\| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\
\| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2
\f}
and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
\f{align*}
\| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\
\| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\
\| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5.
\f}
The following graphic shows all values for the three norm functions \f$\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$.
It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png)
When the mask parameter is specified and it is not empty, the norm is
If normType is not specified, NORM_L2 is used.
calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is,
Multi-channel input arrays are treated as single-channel arrays, that is,
the results for all channels are combined.
Hamming norms can only be calculated with CV_8U depth arrays.
@param src1 first input array.
@param normType type of the norm (see cv::NormTypes).
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
*/
CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
/** @overload
/** @brief Calculates an absolute difference norm or a relative difference norm.
This version of cv::norm calculates the absolute difference norm
or the relative difference norm of arrays src1 and src2.
The type of norm to calculate is specified using cv::NormTypes.
@param src1 first input array.
@param src2 second input array of the same size and the same type as src1.
@param normType type of the norm (cv::NormTypes).
@ -672,10 +697,21 @@ CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
*/
CV_EXPORTS double norm( const SparseMat& src, int normType );
/** @brief computes PSNR image/video quality metric
/** @brief Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB), between two input arrays src1 and src2. Arrays must have depth CV_8U.
The PSNR is calculated as follows:
\f[
\texttt{PSNR} = 10 \cdot \log_{10}{\left( \frac{R^2}{MSE} \right) }
\f]
where R is the maximum integer value of depth CV_8U (255) and MSE is the mean squared error between the two arrays.
@param src1 first input array.
@param src2 second input array of the same size as src1.
see http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for details
@todo document
*/
CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
@ -692,7 +728,7 @@ CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
/** @brief Normalizes the norm or value range of an array.
The functions normalize scale and shift the input array elements so that
The function cv::normalize normalizes scale and shift the input array elements so that
\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
@ -762,11 +798,11 @@ CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, i
/** @brief Finds the global minimum and maximum in an array.
The functions minMaxLoc find the minimum and maximum element values and their positions. The
The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
extremums are searched across the whole array or, if mask is not an empty array, in the specified
array region.
The functions do not work with multi-channel arrays. If you need to find minimum or maximum
The function do not work with multi-channel arrays. If you need to find minimum or maximum
elements across all the channels, use Mat::reshape first to reinterpret the array as
single-channel. Or you may extract the particular channel using either extractImageCOI , or
mixChannels , or split .
@ -785,7 +821,7 @@ CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
/** @brief Finds the global minimum and maximum in an array
The function minMaxIdx finds the minimum and maximum element values and their positions. The
The function cv::minMaxIdx finds the minimum and maximum element values and their positions. The
extremums are searched across the whole array or, if mask is not an empty array, in the specified
array region. The function does not work with multi-channel arrays. If you need to find minimum or
maximum elements across all the channels, use Mat::reshape first to reinterpret the array as
@ -823,12 +859,19 @@ CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
/** @brief Reduces a matrix to a vector.
The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
The function cv::reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element
bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
modes.
raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one.
In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
And multi-channel arrays are also supported in these two reduction modes.
The following code demonstrates its usage for a single channel matrix.
@snippet snippets/core_reduce.cpp example
And the following code demonstrates its usage for a two-channel matrix.
@snippet snippets/core_reduce.cpp example2
@param src input 2D matrix.
@param dst output vector. Its size and type is defined by dim and dtype parameters.
@param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
@ -842,12 +885,16 @@ CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, in
/** @brief Creates one multi-channel array out of several single-channel ones.
The function merge merges several arrays to make a single multi-channel array. That is, each
The function cv::merge merges several arrays to make a single multi-channel array. That is, each
element of the output array will be a concatenation of the elements of the input arrays, where
elements of i-th input array are treated as mv[i].channels()-element vectors.
The function cv::split does the reverse operation. If you need to shuffle channels in some other
advanced way, use cv::mixChannels.
The following example shows how to merge 3 single channel matrices into a single 3-channel matrix.
@snippet snippets/core_merge.cpp example
@param mv input array of matrices to be merged; all the matrices in mv must have the same
size and the same depth.
@param count number of input matrices when mv is a plain C array; it must be greater than zero.
@ -867,10 +914,14 @@ CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
/** @brief Divides a multi-channel array into several single-channel arrays.
The functions split split a multi-channel array into separate single-channel arrays:
The function cv::split splits a multi-channel array into separate single-channel arrays:
\f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
If you need to extract a single channel or do some other sophisticated channel permutation, use
mixChannels .
The following example demonstrates how to split a 3-channel matrix into 3 single channel matrices.
@snippet snippets/core_split.cpp example
@param src input multi-channel array.
@param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are
reallocated, if needed.
@ -889,7 +940,7 @@ output arrays.
The function cv::mixChannels provides an advanced mechanism for shuffling image channels.
cv::split and cv::merge and some forms of cv::cvtColor are partial cases of cv::mixChannels .
cv::split,cv::merge,cv::extractChannel,cv::insertChannel and some forms of cv::cvtColor are partial cases of cv::mixChannels.
In the example below, the code splits a 4-channel BGRA image into a 3-channel BGR (with B and R
channels swapped) and a separate alpha-channel image:
@ -923,7 +974,7 @@ src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for
channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
filled with zero .
@param npairs number of index pairs in `fromTo`.
@sa cv::split, cv::merge, cv::cvtColor
@sa split, merge, extractChannel, insertChannel, cvtColor
*/
CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
const int* fromTo, size_t npairs);
@ -961,19 +1012,25 @@ filled with zero .
CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
const std::vector<int>& fromTo);
/** @brief extracts a single channel from src (coi is 0-based index)
@todo document
/** @brief Extracts a single channel from src (coi is 0-based index)
@param src input array
@param dst output array
@param coi index of channel to extract
@sa mixChannels, split
*/
CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
/** @brief inserts a single channel to dst (coi is 0-based index)
@todo document
/** @brief Inserts a single channel to dst (coi is 0-based index)
@param src input array
@param dst output array
@param coi index of channel for insertion
@sa mixChannels, merge
*/
CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
/** @brief Flips a 2D array around vertical, horizontal, or both axes.
The function flip flips the array in one of three different ways (row
The function cv::flip flips the array in one of three different ways (row
and column indices are 0-based):
\f[\texttt{dst} _{ij} =
\left\{
@ -1005,26 +1062,44 @@ around both axes.
*/
CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
enum RotateFlags {
ROTATE_90_CLOCKWISE = 0, //Rotate 90 degrees clockwise
ROTATE_180 = 1, //Rotate 180 degrees clockwise
ROTATE_90_COUNTERCLOCKWISE = 2, //Rotate 270 degrees clockwise
};
/** @brief Rotates a 2D array in multiples of 90 degrees.
The function rotate rotates the array in one of three different ways:
* Rotate by 90 degrees clockwise (rotateCode = ROTATE_90).
* Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
* Rotate by 270 degrees clockwise (rotateCode = ROTATE_270).
@param src input array.
@param dst output array of the same type as src. The size is the same with ROTATE_180,
and the rows and cols are switched for ROTATE_90 and ROTATE_270.
@param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags
@sa transpose , repeat , completeSymm, flip, RotateFlags
*/
CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode);
/** @brief Fills the output array with repeated copies of the input array.
The functions repeat duplicate the input array one or more times along each of the two axes:
The function cv::repeat duplicates the input array one or more times along each of the two axes:
\f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
The second variant of the function is more convenient to use with @ref MatrixExpressions.
@param src input array to replicate.
@param dst output array of the same type as src.
@param ny Flag to specify how many times the src is repeated along the
@param ny Flag to specify how many times the `src` is repeated along the
vertical axis.
@param nx Flag to specify how many times the src is repeated along the
@param nx Flag to specify how many times the `src` is repeated along the
horizontal axis.
@sa reduce
@param dst output array of the same type as `src`.
@sa cv::reduce
*/
CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
/** @overload
@param src input array to replicate.
@param ny Flag to specify how many times the src is repeated along the
@param ny Flag to specify how many times the `src` is repeated along the
vertical axis.
@param nx Flag to specify how many times the src is repeated along the
@param nx Flag to specify how many times the `src` is repeated along the
horizontal axis.
*/
CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
@ -1160,7 +1235,7 @@ CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
Calculates the per-element bit-wise conjunction of two arrays or an
array and a scalar.
The function calculates the per-element bit-wise logical conjunction for:
The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for:
* Two arrays when src1 and src2 have the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
* An array and a scalar when src2 is constructed from Scalar or has
@ -1187,7 +1262,7 @@ CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
/** @brief Calculates the per-element bit-wise disjunction of two arrays or an
array and a scalar.
The function calculates the per-element bit-wise logical disjunction for:
The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for:
* Two arrays when src1 and src2 have the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
* An array and a scalar when src2 is constructed from Scalar or has
@ -1214,7 +1289,7 @@ CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
/** @brief Calculates the per-element bit-wise "exclusive or" operation on two
arrays or an array and a scalar.
The function calculates the per-element bit-wise logical "exclusive-or"
The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or"
operation for:
* Two arrays when src1 and src2 have the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
@ -1241,7 +1316,7 @@ CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
/** @brief Inverts every bit of an array.
The function calculates per-element bit-wise inversion of the input
The function cv::bitwise_not calculates per-element bit-wise inversion of the input
array:
\f[\texttt{dst} (I) = \neg \texttt{src} (I)\f]
In case of a floating-point input array, its machine-specific bit
@ -1258,7 +1333,7 @@ CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
/** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
The function absdiff calculates:
The function cv::absdiff calculates:
* Absolute difference between two arrays when they have the same
size and type:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
@ -1333,7 +1408,7 @@ CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int
/** @brief Calculates per-element minimum of two arrays or an array and a scalar.
The functions min calculate the per-element minimum of two arrays:
The function cv::min calculates the per-element minimum of two arrays:
\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
or array and a scalar:
\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
@ -1354,7 +1429,7 @@ CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
/** @brief Calculates per-element maximum of two arrays or an array and a scalar.
The functions max calculate the per-element maximum of two arrays:
The function cv::max calculates the per-element maximum of two arrays:
\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
or array and a scalar:
\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
@ -1375,7 +1450,7 @@ CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
/** @brief Calculates a square root of array elements.
The functions sqrt calculate a square root of each input array element.
The function cv::sqrt calculates a square root of each input array element.
In case of multi-channel arrays, each channel is processed
independently. The accuracy is approximately the same as of the built-in
std::sqrt .
@ -1386,7 +1461,7 @@ CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
/** @brief Raises every array element to a power.
The function pow raises every element of the input array to power :
The function cv::pow raises every element of the input array to power :
\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f]
So, for a non-integer power exponent, the absolute values of input array
@ -1411,7 +1486,7 @@ CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
/** @brief Calculates the exponent of every array element.
The function exp calculates the exponent of every element of the input
The function cv::exp calculates the exponent of every element of the input
array:
\f[\texttt{dst} [I] = e^{ src(I) }\f]
@ -1427,14 +1502,11 @@ CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
/** @brief Calculates the natural logarithm of every array element.
The function log calculates the natural logarithm of the absolute value
of every element of the input array:
\f[\texttt{dst} (I) = \fork{\log |\texttt{src}(I)|}{if \(\texttt{src}(I) \ne 0\) }{\texttt{C}}{otherwise}\f]
The function cv::log calculates the natural logarithm of every element of the input array:
\f[\texttt{dst} (I) = \log (\texttt{src}(I)) \f]
Output on zero, negative and special (NaN, Inf) values is undefined.
where C is a large negative number (about -700 in the current
implementation). The maximum relative error is about 7e-6 for
single-precision input and less than 1e-10 for double-precision input.
Special values (NaN, Inf) are not handled.
@param src input array.
@param dst output array of the same size and type as src .
@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
@ -1443,7 +1515,7 @@ CV_EXPORTS_W void log(InputArray src, OutputArray dst);
/** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
The function polarToCart calculates the Cartesian coordinates of each 2D
The function cv::polarToCart calculates the Cartesian coordinates of each 2D
vector represented by the corresponding elements of magnitude and angle:
\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
@ -1466,7 +1538,7 @@ CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
/** @brief Calculates the magnitude and angle of 2D vectors.
The function cartToPolar calculates either the magnitude, angle, or both
The function cv::cartToPolar calculates either the magnitude, angle, or both
for every 2D vector (x(I),y(I)):
\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
@ -1488,7 +1560,7 @@ CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
/** @brief Calculates the rotation angle of 2D vectors.
The function phase calculates the rotation angle of each 2D vector that
The function cv::phase calculates the rotation angle of each 2D vector that
is formed from the corresponding elements of x and y :
\f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
@ -1507,7 +1579,7 @@ CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
/** @brief Calculates the magnitude of 2D vectors.
The function magnitude calculates the magnitude of 2D vectors formed
The function cv::magnitude calculates the magnitude of 2D vectors formed
from the corresponding elements of x and y arrays:
\f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
@param x floating-point array of x-coordinates of the vectors.
@ -1520,11 +1592,11 @@ CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
/** @brief Checks every element of an input array for invalid values.
The functions checkRange check that every array element is neither NaN nor infinite. When minVal \>
-DBL_MAX and maxVal \< DBL_MAX, the functions also check that each value is between minVal and
The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \>
-DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and
maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
functions either return false (when quiet=true) or throw an exception.
function either returns false (when quiet=true) or throws an exception.
@param a input array.
@param quiet a flag, indicating whether the functions quietly return false when the array elements
are out of range or they throw an exception.
@ -1542,7 +1614,7 @@ CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
/** @brief Performs generalized matrix multiplication.
The function performs generalized matrix multiplication similar to the
The function cv::gemm performs generalized matrix multiplication similar to the
gemm functions in BLAS level 3. For example,
`gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
corresponds to
@ -1573,7 +1645,7 @@ CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
/** @brief Calculates the product of a matrix and its transposition.
The function mulTransposed calculates the product of src and its
The function cv::mulTransposed calculates the product of src and its
transposition:
\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
if aTa=true , and
@ -1605,9 +1677,9 @@ CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
/** @brief Transposes a matrix.
The function transpose transposes the matrix src :
The function cv::transpose transposes the matrix src :
\f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f]
@note No complex conjugation is done in case of a complex matrix. It it
@note No complex conjugation is done in case of a complex matrix. It
should be done separately if needed.
@param src input array.
@param dst output array of the same type as src.
@ -1616,7 +1688,7 @@ CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
/** @brief Performs the matrix transformation of every array element.
The function transform performs the matrix transformation of every
The function cv::transform performs the matrix transformation of every
element of the array src and stores the results in dst :
\f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f]
(when m.cols=src.channels() ), or
@ -1636,13 +1708,13 @@ m.cols or m.cols-1.
@param dst output array of the same size and depth as src; it has as
many channels as m.rows.
@param m transformation 2x2 or 2x3 floating-point matrix.
@sa perspectiveTransform, getAffineTransform, estimateRigidTransform, warpAffine, warpPerspective
@sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective
*/
CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
/** @brief Performs the perspective matrix transformation of vectors.
The function perspectiveTransform transforms every element of src by
The function cv::perspectiveTransform transforms every element of src by
treating it as a 2D or 3D vector, in the following way:
\f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f]
where
@ -1669,7 +1741,7 @@ CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArr
/** @brief Copies the lower or the upper half of a square matrix to another half.
The function completeSymm copies the lower half of a square matrix to
The function cv::completeSymm copies the lower half of a square matrix to
its another half. The matrix diagonal remains unchanged:
* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if
lowerToUpper=false
@ -1684,7 +1756,7 @@ CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false);
/** @brief Initializes a scaled identity matrix.
The function setIdentity initializes a scaled identity matrix:
The function cv::setIdentity initializes a scaled identity matrix:
\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
The function can also be emulated using the matrix initializers and the
@ -1701,7 +1773,7 @@ CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1))
/** @brief Returns the determinant of a square floating-point matrix.
The function determinant calculates and returns the determinant of the
The function cv::determinant calculates and returns the determinant of the
specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
direct method is used. For larger matrices, the function uses LU
factorization with partial pivoting.
@ -1716,7 +1788,7 @@ CV_EXPORTS_W double determinant(InputArray mtx);
/** @brief Returns the trace of a matrix.
The function trace returns the sum of the diagonal elements of the
The function cv::trace returns the sum of the diagonal elements of the
matrix mtx .
\f[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\f]
@param mtx input matrix.
@ -1725,7 +1797,7 @@ CV_EXPORTS_W Scalar trace(InputArray mtx);
/** @brief Finds the inverse or pseudo-inverse of a matrix.
The function invert inverts the matrix src and stores the result in dst
The function cv::invert inverts the matrix src and stores the result in dst
. When the matrix src is singular or non-square, the function calculates
the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
minimal, where I is an identity matrix.
@ -1752,7 +1824,7 @@ CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_L
/** @brief Solves one or more linear systems or least-squares problems.
The function solve solves a linear system or least-squares problem (the
The function cv::solve solves a linear system or least-squares problem (the
latter is possible with SVD or QR methods, or by specifying the flag
DECOMP_NORMAL ):
\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f]
@ -1777,7 +1849,7 @@ CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
/** @brief Sorts each row or each column of a matrix.
The function sort sorts each matrix row or each matrix column in
The function cv::sort sorts each matrix row or each matrix column in
ascending or descending order. So you should pass two operation flags to
get desired behaviour. If you want to sort matrix rows or columns
lexicographically, you can use STL std::sort generic function with the
@ -1792,7 +1864,7 @@ CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
/** @brief Sorts each row or each column of a matrix.
The function sortIdx sorts each matrix row or each matrix column in the
The function cv::sortIdx sorts each matrix row or each matrix column in the
ascending or descending order. So you should pass two operation flags to
get desired behaviour. Instead of reordering the elements themselves, it
stores the indices of sorted elements in the output array. For example:
@ -1826,7 +1898,7 @@ CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
/** @brief Finds the real or complex roots of a polynomial equation.
The function solvePoly finds real and complex roots of a polynomial equation:
The function cv::solvePoly finds real and complex roots of a polynomial equation:
\f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f]
@param coeffs array of polynomial coefficients.
@param roots output (complex) array of roots.
@ -1836,13 +1908,14 @@ CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters
/** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
The functions eigen calculate just eigenvalues, or eigenvalues and eigenvectors of the symmetric
The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric
matrix src:
@code
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
@endcode
@note in the new and the old interfaces different ordering of eigenvalues and eigenvectors
parameters is used.
@note Use cv::eigenNonSymmetric for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.
@param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
(src ^T^ == src).
@param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
@ -1850,14 +1923,31 @@ in the descending order.
@param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
eigenvalues.
@sa completeSymm , PCA
@sa eigenNonSymmetric, completeSymm , PCA
*/
CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
OutputArray eigenvectors = noArray());
/** @brief Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
@note Assumes real eigenvalues.
The function calculates eigenvalues and eigenvectors (optional) of the square matrix src:
@code
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
@endcode
@param src input matrix (CV_32FC1 or CV_64FC1 type).
@param eigenvalues output vector of eigenvalues (type is the same type as src).
@param eigenvectors output matrix of eigenvectors (type is the same type as src). The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
@sa eigen
*/
CV_EXPORTS_W void eigenNonSymmetric(InputArray src, OutputArray eigenvalues,
OutputArray eigenvectors);
/** @brief Calculates the covariance matrix of a set of vectors.
The functions calcCovarMatrix calculate the covariance matrix and, optionally, the mean vector of
The function cv::calcCovarMatrix calculates the covariance matrix and, optionally, the mean vector of
the set of input vectors.
@param samples samples stored as separate matrices
@param nsamples number of samples
@ -1907,7 +1997,7 @@ CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
/** @brief Calculates the Mahalanobis distance between two vectors.
The function Mahalanobis calculates and returns the weighted distance between two vectors:
The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:
\f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
@ -1919,7 +2009,7 @@ CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar)
/** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
The function performs one of the following:
The function cv::dft performs one of the following:
- Forward the Fourier transform of a 1D vector of N elements:
\f[Y = F^{(N)} \cdot X,\f]
where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
@ -2067,7 +2157,7 @@ CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonze
/** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
The function dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
floating-point array:
- Forward Cosine transform of a 1D vector of N elements:
\f[Y = C^{(N)} \cdot X\f]
@ -2118,7 +2208,7 @@ CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
/** @brief Performs the per-element multiplication of two Fourier spectrums.
The function mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
matrices that are results of a real or complex Fourier transform.
The function, together with dft and idft , may be used to calculate convolution (pass conjB=false )
@ -2145,7 +2235,7 @@ original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the
Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
are also processed quite efficiently.
The function getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
= 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
@ -2161,7 +2251,7 @@ CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
/** @brief Returns the default random number generator.
The function theRNG returns the default random number generator. For each thread, there is a
The function cv::theRNG returns the default random number generator. For each thread, there is a
separate random number generator, so you can use the function safely in multi-thread environments.
If you just need to get a single random number using this generator or initialize an array, you can
use randu or randn instead. But if you are going to generate many random numbers inside a loop, it
@ -2170,6 +2260,14 @@ is much faster to use this function to retrieve the generator and then use RNG::
*/
CV_EXPORTS RNG& theRNG();
/** @brief Sets state of default random number generator.
The function cv::setRNGSeed sets state of default random number generator to custom value.
@param seed new state for default random number generator
@sa RNG, randu, randn
*/
CV_EXPORTS_W void setRNGSeed(int seed);
/** @brief Generates a single uniformly-distributed random number or an array of random numbers.
Non-template variant of the function fills the matrix dst with uniformly-distributed
@ -2184,7 +2282,7 @@ CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
/** @brief Fills the array with normally distributed random numbers.
The function randn fills the matrix dst with normally distributed random numbers with the specified
The function cv::randn fills the matrix dst with normally distributed random numbers with the specified
mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
value range of the output array data type.
@param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
@ -2197,7 +2295,7 @@ CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev
/** @brief Shuffles the array elements randomly.
The function randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
@param dst input/output numerical 1D array.
@param iterFactor scale factor that determines the number of random swap operations (see the details
@ -2316,11 +2414,11 @@ public:
The operator performs %PCA of the supplied dataset. It is safe to reuse
the same PCA structure for multiple datasets. That is, if the structure
has been previously used with another dataset, the existing internal
data is reclaimed and the new eigenvalues, @ref eigenvectors , and @ref
data is reclaimed and the new @ref eigenvalues, @ref eigenvectors and @ref
mean are allocated and computed.
The computed eigenvalues are sorted from the largest to the smallest and
the corresponding eigenvectors are stored as eigenvectors rows.
The computed @ref eigenvalues are sorted from the largest to the smallest and
the corresponding @ref eigenvectors are stored as eigenvectors rows.
@param data input samples stored as the matrix rows or as the matrix
columns.
@ -2400,11 +2498,17 @@ public:
*/
void backProject(InputArray vec, OutputArray result) const;
/** @brief write and load PCA matrix
/** @brief write PCA objects
*/
void write(FileStorage& fs ) const;
void read(const FileNode& fs);
Writes @ref eigenvalues @ref eigenvectors and @ref mean to specified FileStorage
*/
void write(FileStorage& fs) const;
/** @brief load PCA objects
Loads @ref eigenvalues @ref eigenvectors and @ref mean from specified FileNode
*/
void read(const FileNode& fn);
Mat eigenvectors; //!< eigenvectors of the covariation matrix
Mat eigenvalues; //!< eigenvalues of the covariation matrix
@ -2716,7 +2820,7 @@ public:
double a1 = rng.uniform((double)0, (double)1);
// produces float from [0, 1)
double b = rng.uniform(0.f, 1.f);
float b = rng.uniform(0.f, 1.f);
// produces double from [0, 1)
double c = rng.uniform(0., 1.);
@ -2732,8 +2836,8 @@ public:
want a floating-point random number, but the range boundaries are
integer numbers, either put dots in the end, if they are constants, or
use explicit type cast operators, as in the a1 initialization above.
@param a lower inclusive boundary of the returned random numbers.
@param b upper non-inclusive boundary of the returned random numbers.
@param a lower inclusive boundary of the returned random number.
@param b upper non-inclusive boundary of the returned random number.
*/
int uniform(int a, int b);
/** @overload */
@ -2788,6 +2892,8 @@ public:
double gaussian(double sigma);
uint64 state;
bool operator ==(const RNG& other) const;
};
/** @brief Mersenne Twister random number generator
@ -2987,19 +3093,25 @@ public:
*/
virtual void write(FileStorage& fs) const { (void)fs; }
/** @brief simplified API for language bindings
* @overload
*/
CV_WRAP void write(const Ptr<FileStorage>& fs, const String& name = String()) const;
/** @brief Reads algorithm parameters from a file storage
*/
virtual void read(const FileNode& fn) { (void)fn; }
CV_WRAP virtual void read(const FileNode& fn) { (void)fn; }
/** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
*/
virtual bool empty() const { return false; }
CV_WRAP virtual bool empty() const { return false; }
/** @brief Reads algorithm from the file node
This is static template method of Algorithm. It's usage is following (in the case of SVM):
@code
Ptr<SVM> svm = Algorithm::read<SVM>(fn);
cv::FileStorage fsRead("example.xml", FileStorage::READ);
Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());
@endcode
In order to make this method work, the derived class must overwrite Algorithm::read(const
FileNode& fn) and also have static create() method without parameters
@ -3027,7 +3139,9 @@ public:
template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String())
{
FileStorage fs(filename, FileStorage::READ);
CV_Assert(fs.isOpened());
FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
if (fn.empty()) return Ptr<_Tp>();
Ptr<_Tp> obj = _Tp::create();
obj->read(fn);
return !obj->empty() ? obj : Ptr<_Tp>();
@ -3059,6 +3173,9 @@ public:
/** Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string. */
CV_WRAP virtual String getDefaultName() const;
protected:
void writeFormat(FileStorage& fs) const;
};
struct Param {
@ -3164,5 +3281,6 @@ template<> struct ParamType<uchar>
#include "opencv2/core/cvstd.inl.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/optim.hpp"
#include "opencv2/core/ovx.hpp"
#endif /*__OPENCV_CORE_HPP__*/
#endif /*OPENCV_CORE_HPP*/

View file

@ -41,8 +41,8 @@
//
//M*/
#ifndef __OPENCV_CORE_AFFINE3_HPP__
#define __OPENCV_CORE_AFFINE3_HPP__
#ifndef OPENCV_CORE_AFFINE3_HPP
#define OPENCV_CORE_AFFINE3_HPP
#ifdef __cplusplus
@ -153,15 +153,24 @@ namespace cv
typedef _Tp channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = 16,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<typename _Tp>
struct Depth< Affine3<_Tp> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp>
struct Type< Affine3<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 16) }; };
} // namespace
//! @} core
}
@ -202,7 +211,7 @@ cv::Affine3<T>::Affine3(const Vec3& _rvec, const Vec3& t)
template<typename T> inline
cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t)
{
CV_Assert(data.type() == cv::DataType<T>::type);
CV_Assert(data.type() == cv::traits::Type<T>::value);
if (data.cols == 4 && data.rows == 4)
{
@ -213,11 +222,13 @@ cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t)
{
rotation(data(Rect(0, 0, 3, 3)));
translation(data(Rect(3, 0, 1, 3)));
return;
}
else
{
rotation(data);
translation(t);
}
rotation(data);
translation(t);
matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
matrix.val[15] = 1;
}
@ -241,30 +252,25 @@ void cv::Affine3<T>::rotation(const Mat3& R)
template<typename T> inline
void cv::Affine3<T>::rotation(const Vec3& _rvec)
{
double rx = _rvec[0], ry = _rvec[1], rz = _rvec[2];
double theta = std::sqrt(rx*rx + ry*ry + rz*rz);
double theta = norm(_rvec);
if (theta < DBL_EPSILON)
rotation(Mat3::eye());
else
{
const double I[] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
double c = std::cos(theta);
double s = std::sin(theta);
double c1 = 1. - c;
double itheta = (theta != 0) ? 1./theta : 0.;
rx *= itheta; ry *= itheta; rz *= itheta;
Point3_<T> r = _rvec*itheta;
double rrt[] = { rx*rx, rx*ry, rx*rz, rx*ry, ry*ry, ry*rz, rx*rz, ry*rz, rz*rz };
double _r_x_[] = { 0, -rz, ry, rz, 0, -rx, -ry, rx, 0 };
Mat3 R;
Mat3 rrt( r.x*r.x, r.x*r.y, r.x*r.z, r.x*r.y, r.y*r.y, r.y*r.z, r.x*r.z, r.y*r.z, r.z*r.z );
Mat3 r_x( 0, -r.z, r.y, r.z, 0, -r.x, -r.y, r.x, 0 );
// R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x]
// where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0]
for(int k = 0; k < 9; ++k)
R.val[k] = static_cast<float_type>(c*I[k] + c1*rrt[k] + s*_r_x_[k]);
Mat3 R = c*Mat3::eye() + c1*rrt + s*r_x;
rotation(R);
}
@ -274,7 +280,7 @@ void cv::Affine3<T>::rotation(const Vec3& _rvec)
template<typename T> inline
void cv::Affine3<T>::rotation(const cv::Mat& data)
{
CV_Assert(data.type() == cv::DataType<T>::type);
CV_Assert(data.type() == cv::traits::Type<T>::value);
if (data.cols == 3 && data.rows == 3)
{
@ -488,21 +494,21 @@ cv::Vec3d cv::operator*(const cv::Affine3d& affine, const cv::Vec3d& v)
template<typename T> inline
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine)
{
cv::Mat(4, 4, cv::DataType<T>::type, affine.matrix().data()).copyTo(matrix);
cv::Mat(4, 4, cv::traits::Type<T>::value, affine.matrix().data()).copyTo(matrix);
}
template<typename T> inline
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine)
{
Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> a = affine;
cv::Mat(4, 4, cv::DataType<T>::type, a.matrix().data()).copyTo(matrix);
cv::Mat(4, 4, cv::traits::Type<T>::value, a.matrix().data()).copyTo(matrix);
}
template<typename T> inline
cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const
{
Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> r;
cv::Mat hdr(4, 4, cv::DataType<T>::type, r.matrix().data());
cv::Mat hdr(4, 4, cv::traits::Type<T>::value, r.matrix().data());
cv::Mat(matrix, false).copyTo(hdr);
return r;
}
@ -519,4 +525,4 @@ cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine>() const
#endif /* __cplusplus */
#endif /* __OPENCV_CORE_AFFINE3_HPP__ */
#endif /* OPENCV_CORE_AFFINE3_HPP */

View file

@ -42,13 +42,15 @@
//
//M*/
#ifndef __OPENCV_CORE_BASE_HPP__
#define __OPENCV_CORE_BASE_HPP__
#ifndef OPENCV_CORE_BASE_HPP
#define OPENCV_CORE_BASE_HPP
#ifndef __cplusplus
# error base.hpp header must be compiled as C++
#endif
#include "opencv2/opencv_modules.hpp"
#include <climits>
#include <algorithm>
@ -64,38 +66,38 @@ namespace cv
namespace Error {
//! error codes
enum Code {
StsOk= 0, //!< everithing is ok
StsOk= 0, //!< everything is ok
StsBackTrace= -1, //!< pseudo error for back trace
StsError= -2, //!< unknown /unspecified error
StsInternal= -3, //!< internal error (bad state)
StsNoMem= -4, //!< insufficient memory
StsBadArg= -5, //!< function arg/param is bad
StsBadFunc= -6, //!< unsupported function
StsNoConv= -7, //!< iter. didn't converge
StsNoConv= -7, //!< iteration didn't converge
StsAutoTrace= -8, //!< tracing
HeaderIsNull= -9, //!< image header is NULL
BadImageSize= -10, //!< image size is invalid
BadOffset= -11, //!< offset is invalid
BadDataPtr= -12, //!<
BadStep= -13, //!<
BadStep= -13, //!< image step is wrong, this may happen for a non-continuous matrix.
BadModelOrChSeq= -14, //!<
BadNumChannels= -15, //!<
BadNumChannels= -15, //!< bad number of channels, for example, some functions accept only single channel matrices.
BadNumChannel1U= -16, //!<
BadDepth= -17, //!<
BadDepth= -17, //!< input image depth is not supported by the function
BadAlphaChannel= -18, //!<
BadOrder= -19, //!<
BadOrigin= -20, //!<
BadAlign= -21, //!<
BadOrder= -19, //!< number of dimensions is out of range
BadOrigin= -20, //!< incorrect input origin
BadAlign= -21, //!< incorrect input align
BadCallBack= -22, //!<
BadTileSize= -23, //!<
BadCOI= -24, //!<
BadROISize= -25, //!<
BadCOI= -24, //!< input COI is not supported
BadROISize= -25, //!< incorrect input roi
MaskIsTiled= -26, //!<
StsNullPtr= -27, //!< null pointer
StsVecLengthErr= -28, //!< incorrect vector length
StsFilterStructContentErr= -29, //!< incorr. filter structure content
StsKernelStructContentErr= -30, //!< incorr. transform kernel content
StsFilterOffsetErr= -31, //!< incorrect filter ofset value
StsFilterStructContentErr= -29, //!< incorrect filter structure content
StsKernelStructContentErr= -30, //!< incorrect transform kernel content
StsFilterOffsetErr= -31, //!< incorrect filter offset value
StsBadSize= -201, //!< the input/output structure size is incorrect
StsDivByZero= -202, //!< division by zero
StsInplaceNotSupported= -203, //!< in-place operation is not supported
@ -111,13 +113,13 @@ enum Code {
StsNotImplemented= -213, //!< the requested function/feature is not implemented
StsBadMemBlock= -214, //!< an allocated block has been corrupted
StsAssert= -215, //!< assertion failed
GpuNotSupported= -216,
GpuApiCallError= -217,
OpenGlNotSupported= -218,
OpenGlApiCallError= -219,
OpenCLApiCallError= -220,
GpuNotSupported= -216, //!< no CUDA support
GpuApiCallError= -217, //!< GPU API call error
OpenGlNotSupported= -218, //!< no OpenGL support
OpenGlApiCallError= -219, //!< OpenGL API call error
OpenCLApiCallError= -220, //!< OpenCL API call error
OpenCLDoubleNotSupported= -221,
OpenCLInitError= -222,
OpenCLInitError= -222, //!< OpenCL initialization error
OpenCLNoAMDBlasFft= -223
};
} //Error
@ -150,46 +152,57 @@ enum DecompTypes {
};
/** norm types
- For one array:
\f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f]
- Absolute norm for two arrays
\f[norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f]
src1 and src2 denote input arrays.
*/
- Relative norm for two arrays
\f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f]
As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
is calculated as follows
\f{align*}
\| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\
\| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\
\| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2
\f}
and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
\f{align*}
\| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\
\| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\
\| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5.
\f}
The following graphic shows all values for the three norm functions \f$\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$.
It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png)
*/
enum NormTypes { NORM_INF = 1,
enum NormTypes {
/**
\f[
norm = \forkthree
{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_INF}\) }
\f]
*/
NORM_INF = 1,
/**
\f[
norm = \forkthree
{\| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\)}
{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L1}\) }
\f]*/
NORM_L1 = 2,
/**
\f[
norm = \forkthree
{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L2}\) }
\f]
*/
NORM_L2 = 4,
/**
\f[
norm = \forkthree
{ \| \texttt{src1} \| _{L_2} ^{2} = \sum_I \texttt{src1}(I)^2} {if \(\texttt{normType} = \texttt{NORM_L2SQR}\)}
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} ^{2} = \sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2 }{if \(\texttt{normType} = \texttt{NORM_L2SQR}\) }
{ \left(\frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}}\right)^2 }{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L2}\) }
\f]
*/
NORM_L2SQR = 5,
/**
In the case of one input array, calculates the Hamming distance of the array from zero,
In the case of two input arrays, calculates the Hamming distance between the arrays.
*/
NORM_HAMMING = 6,
/**
Similar to NORM_HAMMING, but in the calculation, each two bits of the input sequence will
be added and treated as a single bit to be used in the same calculation as NORM_HAMMING.
*/
NORM_HAMMING2 = 7,
NORM_TYPE_MASK = 7,
NORM_TYPE_MASK = 7, //!< bit-mask which can be used to separate norm type from norm flags
NORM_RELATIVE = 8, //!< flag
NORM_MINMAX = 32 //!< flag
};
@ -237,6 +250,10 @@ enum DftFlags {
into a real array and inverse transformation is executed, the function treats the input as a
packed complex-conjugate symmetrical array, and the output will also be a real array). */
DFT_REAL_OUTPUT = 32,
/** specifies that input is complex input. If this flag is set, the input must have 2 channels.
On the other hand, for backwards compatibility reason, if input has 2 channels, input is
already considered complex. */
DFT_COMPLEX_INPUT = 64,
/** performs an inverse 1D or 2D transform instead of the default forward transform. */
DCT_INVERSE = DFT_INVERSE,
/** performs a forward or inverse transform of every individual row of the input
@ -325,7 +342,23 @@ enum BorderTypes {
#define CV_SUPPRESS_DEPRECATED_START
#define CV_SUPPRESS_DEPRECATED_END
#endif
#define CV_UNUSED(name) (void)name
#if defined __GNUC__ && !defined __EXCEPTIONS
#define CV_TRY
#define CV_CATCH(A, B) for (A B; false; )
#define CV_CATCH_ALL if (false)
#define CV_THROW(A) abort()
#define CV_RETHROW() abort()
#else
#define CV_TRY try
#define CV_CATCH(A, B) catch(const A & B)
#define CV_CATCH_ALL catch(...)
#define CV_THROW(A) throw A
#define CV_RETHROW() throw
#endif
//! @endcond
/*! @brief Signals an error and raises the exception.
@ -336,8 +369,8 @@ It is possible to alternate error processing by using redirectError().
@param _code - error code (Error::Code)
@param _err - error description
@param _func - function name. Available only when the compiler supports getting it
@param _file - source file name where the error has occured
@param _line - line number in the source file where the error has occured
@param _file - source file name where the error has occurred
@param _line - line number in the source file where the error has occurred
@see CV_Error, CV_Error_, CV_ErrorNoReturn, CV_ErrorNoReturn_, CV_Assert, CV_DbgAssert
*/
CV_EXPORTS void error(int _code, const String& _err, const char* _func, const char* _file, int _line);
@ -375,6 +408,17 @@ CV_INLINE CV_NORETURN void errorNoReturn(int _code, const String& _err, const ch
#define CV_Func ""
#endif
#ifdef CV_STATIC_ANALYSIS
// In practice, some macro are not processed correctly (noreturn is not detected).
// We need to use simplified definition for them.
#define CV_Error(...) do { abort(); } while (0)
#define CV_Error_(...) do { abort(); } while (0)
#define CV_Assert(cond) do { if (!(cond)) abort(); } while (0)
#define CV_ErrorNoReturn(...) do { abort(); } while (0)
#define CV_ErrorNoReturn_(...) do { abort(); } while (0)
#else // CV_STATIC_ANALYSIS
/** @brief Call the error handler.
Currently, the error handler prints the error code and the error message to the standard
@ -407,7 +451,22 @@ The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression.
raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release
configurations while CV_DbgAssert is only retained in the Debug configuration.
*/
#define CV_Assert( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ )
#define CV_VA_NUM_ARGS_HELPER(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N
#define CV_VA_NUM_ARGS(...) CV_VA_NUM_ARGS_HELPER(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
#define CV_Assert_1( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ )
#define CV_Assert_2( expr1, expr2 ) CV_Assert_1(expr1); CV_Assert_1(expr2)
#define CV_Assert_3( expr1, expr2, expr3 ) CV_Assert_2(expr1, expr2); CV_Assert_1(expr3)
#define CV_Assert_4( expr1, expr2, expr3, expr4 ) CV_Assert_3(expr1, expr2, expr3); CV_Assert_1(expr4)
#define CV_Assert_5( expr1, expr2, expr3, expr4, expr5 ) CV_Assert_4(expr1, expr2, expr3, expr4); CV_Assert_1(expr5)
#define CV_Assert_6( expr1, expr2, expr3, expr4, expr5, expr6 ) CV_Assert_5(expr1, expr2, expr3, expr4, expr5); CV_Assert_1(expr6)
#define CV_Assert_7( expr1, expr2, expr3, expr4, expr5, expr6, expr7 ) CV_Assert_6(expr1, expr2, expr3, expr4, expr5, expr6 ); CV_Assert_1(expr7)
#define CV_Assert_8( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ) CV_Assert_7(expr1, expr2, expr3, expr4, expr5, expr6, expr7 ); CV_Assert_1(expr8)
#define CV_Assert_9( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ) CV_Assert_8(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ); CV_Assert_1(expr9)
#define CV_Assert_10( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9, expr10 ) CV_Assert_9(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ); CV_Assert_1(expr10)
#define CV_Assert(...) CVAUX_CONCAT(CV_Assert_, CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__)
/** same as CV_Error(code,msg), but does not return */
#define CV_ErrorNoReturn( code, msg ) cv::errorNoReturn( code, msg, CV_Func, __FILE__, __LINE__ )
@ -415,6 +474,8 @@ configurations while CV_DbgAssert is only retained in the Debug configuration.
/** same as CV_Error_(code,args), but does not return */
#define CV_ErrorNoReturn_( code, args ) cv::errorNoReturn( code, cv::format args, CV_Func, __FILE__, __LINE__ )
#endif // CV_STATIC_ANALYSIS
/** replaced with CV_Assert(expr) in Debug configuration */
#ifdef _DEBUG
# define CV_DbgAssert(expr) CV_Assert(expr)
@ -665,13 +726,23 @@ namespace cudev
namespace ipp
{
CV_EXPORTS int getIppFeatures();
CV_EXPORTS void setIppStatus(int status, const char * const funcname = NULL, const char * const filename = NULL,
#if OPENCV_ABI_COMPATIBILITY > 300
CV_EXPORTS unsigned long long getIppFeatures();
#else
CV_EXPORTS int getIppFeatures();
#endif
CV_EXPORTS void setIppStatus(int status, const char * const funcname = NULL, const char * const filename = NULL,
int line = 0);
CV_EXPORTS int getIppStatus();
CV_EXPORTS String getIppErrorLocation();
CV_EXPORTS bool useIPP();
CV_EXPORTS void setUseIPP(bool flag);
CV_EXPORTS int getIppStatus();
CV_EXPORTS String getIppErrorLocation();
CV_EXPORTS_W bool useIPP();
CV_EXPORTS_W void setUseIPP(bool flag);
CV_EXPORTS_W String getIppVersion();
// IPP Not-Exact mode. This function may force use of IPP then both IPP and OpenCV provide proper results
// but have internal accuracy differences which have to much direct or indirect impact on accuracy tests.
CV_EXPORTS_W bool useIPP_NE();
CV_EXPORTS_W void setUseIPP_NE(bool flag);
} // ipp
@ -685,5 +756,6 @@ CV_EXPORTS void setUseIPP(bool flag);
} // cv
#include "opencv2/core/neon_utils.hpp"
#include "opencv2/core/vsx_utils.hpp"
#endif //__OPENCV_CORE_BASE_HPP__
#endif //OPENCV_CORE_BASE_HPP

View file

@ -4,8 +4,13 @@
//
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
#ifndef __OPENCV_CORE_BUFFER_POOL_HPP__
#define __OPENCV_CORE_BUFFER_POOL_HPP__
#ifndef OPENCV_CORE_BUFFER_POOL_HPP
#define OPENCV_CORE_BUFFER_POOL_HPP
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4265)
#endif
namespace cv
{
@ -28,4 +33,8 @@ public:
}
#endif // __OPENCV_CORE_BUFFER_POOL_HPP__
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // OPENCV_CORE_BUFFER_POOL_HPP

View file

@ -42,8 +42,8 @@
//M*/
#ifndef __OPENCV_CORE_C_H__
#define __OPENCV_CORE_C_H__
#ifndef OPENCV_CORE_C_H
#define OPENCV_CORE_C_H
#include "opencv2/core/types_c.h"
@ -359,7 +359,7 @@ CVAPI(CvMat*) cvGetSubRect( const CvArr* arr, CvMat* submat, CvRect rect );
/** @brief Returns array row or row span.
The functions return the header, corresponding to a specified row/row span of the input array.
The function returns the header, corresponding to a specified row/row span of the input array.
cvGetRow(arr, submat, row) is a shortcut for cvGetRows(arr, submat, row, row+1).
@param arr Input array
@param submat Pointer to the resulting sub-array header
@ -385,7 +385,7 @@ CV_INLINE CvMat* cvGetRow( const CvArr* arr, CvMat* submat, int row )
/** @brief Returns one of more array columns.
The functions return the header, corresponding to a specified column span of the input array. That
The function returns the header, corresponding to a specified column span of the input array. That
is, no data is copied. Therefore, any modifications of the submatrix will affect the original array.
If you need to copy the columns, use cvCloneMat. cvGetCol(arr, submat, col) is a shortcut for
@ -1976,8 +1976,16 @@ CVAPI(void) cvSetIPLAllocators( Cv_iplCreateImageHeader create_header,
The function opens file storage for reading or writing data. In the latter case, a new file is
created or an existing file is rewritten. The type of the read or written file is determined by the
filename extension: .xml for XML and .yml or .yaml for YAML. The function returns a pointer to the
CvFileStorage structure. If the file cannot be opened then the function returns NULL.
filename extension: .xml for XML, .yml or .yaml for YAML and .json for JSON.
At the same time, it also supports adding parameters like "example.xml?base64". The three ways
are the same:
@snippet samples/cpp/filestorage_base64.cpp suffix_in_file_name
@snippet samples/cpp/filestorage_base64.cpp flag_write_base64
@snippet samples/cpp/filestorage_base64.cpp flag_write_and_flag_base64
The function returns a pointer to the CvFileStorage structure.
If the file cannot be opened then the function returns NULL.
@param filename Name of the file associated with the storage
@param memstorage Memory storage used for temporary data and for
: storing dynamic structures, such as CvSeq or CvGraph . If it is NULL, a temporary memory
@ -1985,6 +1993,7 @@ CvFileStorage structure. If the file cannot be opened then the function returns
@param flags Can be one of the following:
> - **CV_STORAGE_READ** the storage is open for reading
> - **CV_STORAGE_WRITE** the storage is open for writing
(use **CV_STORAGE_WRITE | CV_STORAGE_WRITE_BASE64** to write rawdata in Base64)
@param encoding
*/
CVAPI(CvFileStorage*) cvOpenFileStorage( const char* filename, CvMemStorage* memstorage,
@ -2022,7 +2031,8 @@ One and only one of the two above flags must be specified
@param type_name Optional parameter - the object type name. In
case of XML it is written as a type_id attribute of the structure opening tag. In the case of
YAML it is written after a colon following the structure name (see the example in
CvFileStorage description). Mainly it is used with user objects. When the storage is read, the
CvFileStorage description). In case of JSON it is written as a name/value pair.
Mainly it is used with user objects. When the storage is read, the
encoded type name is used to determine the object type (see CvTypeInfo and cvFindType ).
@param attributes This parameter is not used in the current implementation
*/
@ -2162,7 +2172,7 @@ the file with multiple streams looks like this:
@endcode
The YAML file will look like this:
@code{.yaml}
%YAML:1.0
%YAML 1.0
# stream #1 data
...
---
@ -2187,6 +2197,28 @@ to a sequence rather than a map.
CVAPI(void) cvWriteRawData( CvFileStorage* fs, const void* src,
int len, const char* dt );
/** @brief Writes multiple numbers in Base64.
If either CV_STORAGE_WRITE_BASE64 or cv::FileStorage::WRITE_BASE64 is used,
this function will be the same as cvWriteRawData. If neither, the main
difference is that it outputs a sequence in Base64 encoding rather than
in plain text.
This function can only be used to write a sequence with a type "binary".
Consider the following two examples where their output is the same:
@snippet samples/cpp/filestorage_base64.cpp without_base64_flag
and
@snippet samples/cpp/filestorage_base64.cpp with_write_base64_flag
@param fs File storage
@param src Pointer to the written array
@param len Number of the array elements to write
@param dt Specification of each array element, see @ref format_spec "format specification"
*/
CVAPI(void) cvWriteRawDataBase64( CvFileStorage* fs, const void* src,
int len, const char* dt );
/** @brief Returns a unique pointer for a given name.
The function returns a unique pointer for each particular file node name. This pointer can be then
@ -2468,7 +2500,7 @@ CVAPI(void) cvReadRawData( const CvFileStorage* fs, const CvFileNode* src,
/** @brief Writes a file node to another file storage.
The function writes a copy of a file node to file storage. Possible applications of the function are
merging several file storages into one and conversion between XML and YAML formats.
merging several file storages into one and conversion between XML, YAML and JSON formats.
@param fs Destination file storage
@param new_node_name New name of the file node in the destination file storage. To keep the
existing name, use cvcvGetFileNodeName
@ -2622,7 +2654,7 @@ CVAPI(int) cvGetErrMode( void );
/** Sets error processing mode, returns previously used mode */
CVAPI(int) cvSetErrMode( int mode );
/** Sets error status and performs some additonal actions (displaying message box,
/** Sets error status and performs some additional actions (displaying message box,
writing message to stderr, terminating application etc.)
depending on the current error mode */
CVAPI(void) cvError( int status, const char* func_name,
@ -2631,7 +2663,7 @@ CVAPI(void) cvError( int status, const char* func_name,
/** Retrieves textual description of the error given its code */
CVAPI(const char*) cvErrorStr( int status );
/** Retrieves detailed information about the last error occured */
/** Retrieves detailed information about the last error occurred */
CVAPI(int) cvGetErrInfo( const char** errcode_desc, const char** description,
const char** filename, int* line );

View file

@ -41,8 +41,8 @@
//
//M*/
#ifndef __OPENCV_CORE_CUDA_HPP__
#define __OPENCV_CORE_CUDA_HPP__
#ifndef OPENCV_CORE_CUDA_HPP
#define OPENCV_CORE_CUDA_HPP
#ifndef __cplusplus
# error cuda.hpp header must be compiled as C++
@ -327,6 +327,34 @@ The function does not reallocate memory if the matrix has proper attributes alre
*/
CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);
/** @brief BufferPool for use with CUDA streams
* BufferPool utilizes cuda::Stream's allocator to create new buffers. It is
* particularly useful when BufferPoolUsage is set to true, or a custom
* allocator is specified for the cuda::Stream, and you want to implement your
* own stream based functions utilizing the same underlying GPU memory
* management.
*/
class CV_EXPORTS BufferPool
{
public:
//! Gets the BufferPool for the given stream.
explicit BufferPool(Stream& stream);
//! Allocates a new GpuMat of given size and type.
GpuMat getBuffer(int rows, int cols, int type);
//! Allocates a new GpuMat of given size and type.
GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); }
//! Returns the allocator associated with the stream.
Ptr<GpuMat::Allocator> getAllocator() const { return allocator_; }
private:
Ptr<GpuMat::Allocator> allocator_;
};
//! BufferPool management (must be called before Stream creation)
CV_EXPORTS void setBufferPoolUsage(bool on);
CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount);
@ -447,7 +475,26 @@ CV_EXPORTS void unregisterPageLocked(Mat& m);
functions use the constant GPU memory, and next call may update the memory before the previous one
has been finished. But calling different operations asynchronously is safe because each operation
has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are
also safe. :
also safe.
@note The Stream class is not thread-safe. Please use different Stream objects for different CPU threads.
@code
void thread1()
{
cv::cuda::Stream stream1;
cv::cuda::func1(..., stream1);
}
void thread2()
{
cv::cuda::Stream stream2;
cv::cuda::func2(..., stream2);
}
@endcode
@note By default all CUDA routines are launched in Stream::Null() object, if the stream is not specified by user.
In multi-threading environment the stream objects must be passed explicitly (see previous note).
*/
class CV_EXPORTS Stream
{
@ -460,6 +507,9 @@ public:
//! creates a new asynchronous stream
Stream();
//! creates a new asynchronous stream with custom allocator
Stream(const Ptr<GpuMat::Allocator>& allocator);
/** @brief Returns true if the current stream queue is finished. Otherwise, it returns false.
*/
bool queryIfComplete() const;
@ -545,7 +595,8 @@ private:
/** @brief Returns the number of installed CUDA-enabled devices.
Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support,
this function returns 0.
this function returns 0. If the CUDA driver is not installed, or is incompatible, this function
returns -1.
*/
CV_EXPORTS int getCudaEnabledDeviceCount();
@ -836,6 +887,15 @@ private:
CV_EXPORTS void printCudaDeviceInfo(int device);
CV_EXPORTS void printShortCudaDeviceInfo(int device);
/** @brief Converts an array to half precision floating number.
@param _src input array.
@param _dst output array.
@param stream Stream for the asynchronous version.
@sa convertFp16
*/
CV_EXPORTS void convertFp16(InputArray _src, OutputArray _dst, Stream& stream = Stream::Null());
//! @} cudacore_init
}} // namespace cv { namespace cuda {
@ -843,4 +903,4 @@ CV_EXPORTS void printShortCudaDeviceInfo(int device);
#include "opencv2/core/cuda.inl.hpp"
#endif /* __OPENCV_CORE_CUDA_HPP__ */
#endif /* OPENCV_CORE_CUDA_HPP */

View file

@ -41,8 +41,8 @@
//
//M*/
#ifndef __OPENCV_CORE_CUDAINL_HPP__
#define __OPENCV_CORE_CUDAINL_HPP__
#ifndef OPENCV_CORE_CUDAINL_HPP
#define OPENCV_CORE_CUDAINL_HPP
#include "opencv2/core/cuda.hpp"
@ -628,4 +628,4 @@ Mat::Mat(const cuda::GpuMat& m)
//! @endcond
#endif // __OPENCV_CORE_CUDAINL_HPP__
#endif // OPENCV_CORE_CUDAINL_HPP

View file

@ -40,8 +40,8 @@
//
//M*/
#ifndef __OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP__
#define __OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP__
#ifndef OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP
#define OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP
#ifndef __cplusplus
# error cuda_stream_accessor.hpp header must be compiled as C++
@ -83,4 +83,4 @@ namespace cv
}
}
#endif /* __OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP__ */
#endif /* OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP */

View file

@ -40,8 +40,8 @@
//
//M*/
#ifndef __OPENCV_CORE_CUDA_TYPES_HPP__
#define __OPENCV_CORE_CUDA_TYPES_HPP__
#ifndef OPENCV_CORE_CUDA_TYPES_HPP
#define OPENCV_CORE_CUDA_TYPES_HPP
#ifndef __cplusplus
# error cuda_types.hpp header must be compiled as C++
@ -132,4 +132,4 @@ namespace cv
//! @endcond
#endif /* __OPENCV_CORE_CUDA_TYPES_HPP__ */
#endif /* OPENCV_CORE_CUDA_TYPES_HPP */

View file

@ -0,0 +1,228 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#if defined __OPENCV_BUILD \
#include "cv_cpu_config.h"
#include "cv_cpu_helper.h"
#ifdef CV_CPU_DISPATCH_MODE
#define CV_CPU_OPTIMIZATION_NAMESPACE __CV_CAT(opt_, CV_CPU_DISPATCH_MODE)
#define CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN namespace __CV_CAT(opt_, CV_CPU_DISPATCH_MODE) {
#define CV_CPU_OPTIMIZATION_NAMESPACE_END }
#else
#define CV_CPU_OPTIMIZATION_NAMESPACE cpu_baseline
#define CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN namespace cpu_baseline {
#define CV_CPU_OPTIMIZATION_NAMESPACE_END }
#endif
#define __CV_CPU_DISPATCH_CHAIN_END(fn, args, mode, ...) /* done */
#define __CV_CPU_DISPATCH(fn, args, mode, ...) __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#define __CV_CPU_DISPATCH_EXPAND(fn, args, ...) __CV_EXPAND(__CV_CPU_DISPATCH(fn, args, __VA_ARGS__))
#define CV_CPU_DISPATCH(fn, args, ...) __CV_CPU_DISPATCH_EXPAND(fn, args, __VA_ARGS__, END) // expand macros
#if defined CV_ENABLE_INTRINSICS \
&& !defined CV_DISABLE_OPTIMIZATION \
&& !defined __CUDACC__ /* do not include SSE/AVX/NEON headers for NVCC compiler */ \
#ifdef CV_CPU_COMPILE_SSE2
# include <emmintrin.h>
# define CV_MMX 1
# define CV_SSE 1
# define CV_SSE2 1
#endif
#ifdef CV_CPU_COMPILE_SSE3
# include <pmmintrin.h>
# define CV_SSE3 1
#endif
#ifdef CV_CPU_COMPILE_SSSE3
# include <tmmintrin.h>
# define CV_SSSE3 1
#endif
#ifdef CV_CPU_COMPILE_SSE4_1
# include <smmintrin.h>
# define CV_SSE4_1 1
#endif
#ifdef CV_CPU_COMPILE_SSE4_2
# include <nmmintrin.h>
# define CV_SSE4_2 1
#endif
#ifdef CV_CPU_COMPILE_POPCNT
# ifdef _MSC_VER
# include <nmmintrin.h>
# if defined(_M_X64)
# define CV_POPCNT_U64 _mm_popcnt_u64
# endif
# define CV_POPCNT_U32 _mm_popcnt_u32
# else
# include <popcntintrin.h>
# if defined(__x86_64__)
# define CV_POPCNT_U64 __builtin_popcountll
# endif
# define CV_POPCNT_U32 __builtin_popcount
# endif
# define CV_POPCNT 1
#endif
#ifdef CV_CPU_COMPILE_AVX
# include <immintrin.h>
# define CV_AVX 1
#endif
#ifdef CV_CPU_COMPILE_FP16
# if defined(__arm__) || defined(__aarch64__) || defined(_M_ARM)
# include <arm_neon.h>
# else
# include <immintrin.h>
# endif
# define CV_FP16 1
#endif
#ifdef CV_CPU_COMPILE_AVX2
# include <immintrin.h>
# define CV_AVX2 1
#endif
#ifdef CV_CPU_COMPILE_FMA3
# define CV_FMA3 1
#endif
#if defined _WIN32 && defined(_M_ARM)
# include <Intrin.h>
# include <arm_neon.h>
# define CV_NEON 1
#elif defined(__ARM_NEON__) || (defined (__ARM_NEON) && defined(__aarch64__))
# include <arm_neon.h>
# define CV_NEON 1
#endif
#if defined(__ARM_NEON__) || defined(__aarch64__)
# include <arm_neon.h>
#endif
#if defined(__VSX__) && defined(__PPC64__) && defined(__LITTLE_ENDIAN__)
# include <altivec.h>
# undef vector
# undef pixel
# undef bool
# define CV_VSX 1
#endif
#endif // CV_ENABLE_INTRINSICS && !CV_DISABLE_OPTIMIZATION && !__CUDACC__
#if defined CV_CPU_COMPILE_AVX && !defined CV_CPU_BASELINE_COMPILE_AVX
struct VZeroUpperGuard {
#ifdef __GNUC__
__attribute__((always_inline))
#endif
inline ~VZeroUpperGuard() { _mm256_zeroupper(); }
};
#define __CV_AVX_GUARD VZeroUpperGuard __vzeroupper_guard; (void)__vzeroupper_guard;
#endif
#ifdef __CV_AVX_GUARD
#define CV_AVX_GUARD __CV_AVX_GUARD
#else
#define CV_AVX_GUARD
#endif
#endif // __OPENCV_BUILD
#if !defined __OPENCV_BUILD /* Compatibility code */ \
&& !defined __CUDACC__ /* do not include SSE/AVX/NEON headers for NVCC compiler */
#if defined __SSE2__ || defined _M_X64 || (defined _M_IX86_FP && _M_IX86_FP >= 2)
# include <emmintrin.h>
# define CV_MMX 1
# define CV_SSE 1
# define CV_SSE2 1
#elif defined _WIN32 && defined(_M_ARM)
# include <Intrin.h>
# include <arm_neon.h>
# define CV_NEON 1
#elif defined(__ARM_NEON__) || (defined (__ARM_NEON) && defined(__aarch64__))
# include <arm_neon.h>
# define CV_NEON 1
#elif defined(__VSX__) && defined(__PPC64__) && defined(__LITTLE_ENDIAN__)
# include <altivec.h>
# undef vector
# undef pixel
# undef bool
# define CV_VSX 1
#endif
#endif // !__OPENCV_BUILD && !__CUDACC (Compatibility code)
#ifndef CV_MMX
# define CV_MMX 0
#endif
#ifndef CV_SSE
# define CV_SSE 0
#endif
#ifndef CV_SSE2
# define CV_SSE2 0
#endif
#ifndef CV_SSE3
# define CV_SSE3 0
#endif
#ifndef CV_SSSE3
# define CV_SSSE3 0
#endif
#ifndef CV_SSE4_1
# define CV_SSE4_1 0
#endif
#ifndef CV_SSE4_2
# define CV_SSE4_2 0
#endif
#ifndef CV_POPCNT
# define CV_POPCNT 0
#endif
#ifndef CV_AVX
# define CV_AVX 0
#endif
#ifndef CV_FP16
# define CV_FP16 0
#endif
#ifndef CV_AVX2
# define CV_AVX2 0
#endif
#ifndef CV_FMA3
# define CV_FMA3 0
#endif
#ifndef CV_AVX_512F
# define CV_AVX_512F 0
#endif
#ifndef CV_AVX_512BW
# define CV_AVX_512BW 0
#endif
#ifndef CV_AVX_512CD
# define CV_AVX_512CD 0
#endif
#ifndef CV_AVX_512DQ
# define CV_AVX_512DQ 0
#endif
#ifndef CV_AVX_512ER
# define CV_AVX_512ER 0
#endif
#ifndef CV_AVX_512IFMA512
# define CV_AVX_512IFMA512 0
#endif
#ifndef CV_AVX_512PF
# define CV_AVX_512PF 0
#endif
#ifndef CV_AVX_512VBMI
# define CV_AVX_512VBMI 0
#endif
#ifndef CV_AVX_512VL
# define CV_AVX_512VL 0
#endif
#ifndef CV_NEON
# define CV_NEON 0
#endif
#ifndef CV_VSX
# define CV_VSX 0
#endif

View file

@ -0,0 +1,199 @@
// AUTOGENERATED, DO NOT EDIT
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_SSE
# define CV_TRY_SSE 1
# define CV_CPU_HAS_SUPPORT_SSE 1
# define CV_CPU_CALL_SSE(fn, args) return (opt_SSE::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_SSE
# define CV_TRY_SSE 1
# define CV_CPU_HAS_SUPPORT_SSE (cv::checkHardwareSupport(CV_CPU_SSE))
# define CV_CPU_CALL_SSE(fn, args) if (CV_CPU_HAS_SUPPORT_SSE) return (opt_SSE::fn args)
#else
# define CV_TRY_SSE 0
# define CV_CPU_HAS_SUPPORT_SSE 0
# define CV_CPU_CALL_SSE(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_SSE(fn, args, mode, ...) CV_CPU_CALL_SSE(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_SSE2
# define CV_TRY_SSE2 1
# define CV_CPU_HAS_SUPPORT_SSE2 1
# define CV_CPU_CALL_SSE2(fn, args) return (opt_SSE2::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_SSE2
# define CV_TRY_SSE2 1
# define CV_CPU_HAS_SUPPORT_SSE2 (cv::checkHardwareSupport(CV_CPU_SSE2))
# define CV_CPU_CALL_SSE2(fn, args) if (CV_CPU_HAS_SUPPORT_SSE2) return (opt_SSE2::fn args)
#else
# define CV_TRY_SSE2 0
# define CV_CPU_HAS_SUPPORT_SSE2 0
# define CV_CPU_CALL_SSE2(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_SSE2(fn, args, mode, ...) CV_CPU_CALL_SSE2(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_SSE3
# define CV_TRY_SSE3 1
# define CV_CPU_HAS_SUPPORT_SSE3 1
# define CV_CPU_CALL_SSE3(fn, args) return (opt_SSE3::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_SSE3
# define CV_TRY_SSE3 1
# define CV_CPU_HAS_SUPPORT_SSE3 (cv::checkHardwareSupport(CV_CPU_SSE3))
# define CV_CPU_CALL_SSE3(fn, args) if (CV_CPU_HAS_SUPPORT_SSE3) return (opt_SSE3::fn args)
#else
# define CV_TRY_SSE3 0
# define CV_CPU_HAS_SUPPORT_SSE3 0
# define CV_CPU_CALL_SSE3(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_SSE3(fn, args, mode, ...) CV_CPU_CALL_SSE3(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_SSSE3
# define CV_TRY_SSSE3 1
# define CV_CPU_HAS_SUPPORT_SSSE3 1
# define CV_CPU_CALL_SSSE3(fn, args) return (opt_SSSE3::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_SSSE3
# define CV_TRY_SSSE3 1
# define CV_CPU_HAS_SUPPORT_SSSE3 (cv::checkHardwareSupport(CV_CPU_SSSE3))
# define CV_CPU_CALL_SSSE3(fn, args) if (CV_CPU_HAS_SUPPORT_SSSE3) return (opt_SSSE3::fn args)
#else
# define CV_TRY_SSSE3 0
# define CV_CPU_HAS_SUPPORT_SSSE3 0
# define CV_CPU_CALL_SSSE3(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_SSSE3(fn, args, mode, ...) CV_CPU_CALL_SSSE3(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_SSE4_1
# define CV_TRY_SSE4_1 1
# define CV_CPU_HAS_SUPPORT_SSE4_1 1
# define CV_CPU_CALL_SSE4_1(fn, args) return (opt_SSE4_1::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_SSE4_1
# define CV_TRY_SSE4_1 1
# define CV_CPU_HAS_SUPPORT_SSE4_1 (cv::checkHardwareSupport(CV_CPU_SSE4_1))
# define CV_CPU_CALL_SSE4_1(fn, args) if (CV_CPU_HAS_SUPPORT_SSE4_1) return (opt_SSE4_1::fn args)
#else
# define CV_TRY_SSE4_1 0
# define CV_CPU_HAS_SUPPORT_SSE4_1 0
# define CV_CPU_CALL_SSE4_1(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_SSE4_1(fn, args, mode, ...) CV_CPU_CALL_SSE4_1(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_SSE4_2
# define CV_TRY_SSE4_2 1
# define CV_CPU_HAS_SUPPORT_SSE4_2 1
# define CV_CPU_CALL_SSE4_2(fn, args) return (opt_SSE4_2::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_SSE4_2
# define CV_TRY_SSE4_2 1
# define CV_CPU_HAS_SUPPORT_SSE4_2 (cv::checkHardwareSupport(CV_CPU_SSE4_2))
# define CV_CPU_CALL_SSE4_2(fn, args) if (CV_CPU_HAS_SUPPORT_SSE4_2) return (opt_SSE4_2::fn args)
#else
# define CV_TRY_SSE4_2 0
# define CV_CPU_HAS_SUPPORT_SSE4_2 0
# define CV_CPU_CALL_SSE4_2(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_SSE4_2(fn, args, mode, ...) CV_CPU_CALL_SSE4_2(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_POPCNT
# define CV_TRY_POPCNT 1
# define CV_CPU_HAS_SUPPORT_POPCNT 1
# define CV_CPU_CALL_POPCNT(fn, args) return (opt_POPCNT::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_POPCNT
# define CV_TRY_POPCNT 1
# define CV_CPU_HAS_SUPPORT_POPCNT (cv::checkHardwareSupport(CV_CPU_POPCNT))
# define CV_CPU_CALL_POPCNT(fn, args) if (CV_CPU_HAS_SUPPORT_POPCNT) return (opt_POPCNT::fn args)
#else
# define CV_TRY_POPCNT 0
# define CV_CPU_HAS_SUPPORT_POPCNT 0
# define CV_CPU_CALL_POPCNT(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_POPCNT(fn, args, mode, ...) CV_CPU_CALL_POPCNT(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_AVX
# define CV_TRY_AVX 1
# define CV_CPU_HAS_SUPPORT_AVX 1
# define CV_CPU_CALL_AVX(fn, args) return (opt_AVX::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_AVX
# define CV_TRY_AVX 1
# define CV_CPU_HAS_SUPPORT_AVX (cv::checkHardwareSupport(CV_CPU_AVX))
# define CV_CPU_CALL_AVX(fn, args) if (CV_CPU_HAS_SUPPORT_AVX) return (opt_AVX::fn args)
#else
# define CV_TRY_AVX 0
# define CV_CPU_HAS_SUPPORT_AVX 0
# define CV_CPU_CALL_AVX(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_AVX(fn, args, mode, ...) CV_CPU_CALL_AVX(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_FP16
# define CV_TRY_FP16 1
# define CV_CPU_HAS_SUPPORT_FP16 1
# define CV_CPU_CALL_FP16(fn, args) return (opt_FP16::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_FP16
# define CV_TRY_FP16 1
# define CV_CPU_HAS_SUPPORT_FP16 (cv::checkHardwareSupport(CV_CPU_FP16))
# define CV_CPU_CALL_FP16(fn, args) if (CV_CPU_HAS_SUPPORT_FP16) return (opt_FP16::fn args)
#else
# define CV_TRY_FP16 0
# define CV_CPU_HAS_SUPPORT_FP16 0
# define CV_CPU_CALL_FP16(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_FP16(fn, args, mode, ...) CV_CPU_CALL_FP16(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_AVX2
# define CV_TRY_AVX2 1
# define CV_CPU_HAS_SUPPORT_AVX2 1
# define CV_CPU_CALL_AVX2(fn, args) return (opt_AVX2::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_AVX2
# define CV_TRY_AVX2 1
# define CV_CPU_HAS_SUPPORT_AVX2 (cv::checkHardwareSupport(CV_CPU_AVX2))
# define CV_CPU_CALL_AVX2(fn, args) if (CV_CPU_HAS_SUPPORT_AVX2) return (opt_AVX2::fn args)
#else
# define CV_TRY_AVX2 0
# define CV_CPU_HAS_SUPPORT_AVX2 0
# define CV_CPU_CALL_AVX2(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_AVX2(fn, args, mode, ...) CV_CPU_CALL_AVX2(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_FMA3
# define CV_TRY_FMA3 1
# define CV_CPU_HAS_SUPPORT_FMA3 1
# define CV_CPU_CALL_FMA3(fn, args) return (opt_FMA3::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_FMA3
# define CV_TRY_FMA3 1
# define CV_CPU_HAS_SUPPORT_FMA3 (cv::checkHardwareSupport(CV_CPU_FMA3))
# define CV_CPU_CALL_FMA3(fn, args) if (CV_CPU_HAS_SUPPORT_FMA3) return (opt_FMA3::fn args)
#else
# define CV_TRY_FMA3 0
# define CV_CPU_HAS_SUPPORT_FMA3 0
# define CV_CPU_CALL_FMA3(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_FMA3(fn, args, mode, ...) CV_CPU_CALL_FMA3(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_NEON
# define CV_TRY_NEON 1
# define CV_CPU_HAS_SUPPORT_NEON 1
# define CV_CPU_CALL_NEON(fn, args) return (opt_NEON::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_NEON
# define CV_TRY_NEON 1
# define CV_CPU_HAS_SUPPORT_NEON (cv::checkHardwareSupport(CV_CPU_NEON))
# define CV_CPU_CALL_NEON(fn, args) if (CV_CPU_HAS_SUPPORT_NEON) return (opt_NEON::fn args)
#else
# define CV_TRY_NEON 0
# define CV_CPU_HAS_SUPPORT_NEON 0
# define CV_CPU_CALL_NEON(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_NEON(fn, args, mode, ...) CV_CPU_CALL_NEON(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_VSX
# define CV_TRY_VSX 1
# define CV_CPU_HAS_SUPPORT_VSX 1
# define CV_CPU_CALL_VSX(fn, args) return (opt_VSX::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_VSX
# define CV_TRY_VSX 1
# define CV_CPU_HAS_SUPPORT_VSX (cv::checkHardwareSupport(CV_CPU_VSX))
# define CV_CPU_CALL_VSX(fn, args) if (CV_CPU_HAS_SUPPORT_VSX) return (opt_VSX::fn args)
#else
# define CV_TRY_VSX 0
# define CV_CPU_HAS_SUPPORT_VSX 0
# define CV_CPU_CALL_VSX(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_VSX(fn, args, mode, ...) CV_CPU_CALL_VSX(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#define CV_CPU_CALL_BASELINE(fn, args) return (cpu_baseline::fn args)
#define __CV_CPU_DISPATCH_CHAIN_BASELINE(fn, args, mode, ...) CV_CPU_CALL_BASELINE(fn, args) /* last in sequence */

View file

@ -42,15 +42,43 @@
//
//M*/
#ifndef __OPENCV_CORE_CVDEF_H__
#define __OPENCV_CORE_CVDEF_H__
#ifndef OPENCV_CORE_CVDEF_H
#define OPENCV_CORE_CVDEF_H
//! @addtogroup core_utils
//! @{
#if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300
# define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */
#if !defined CV_DOXYGEN && !defined CV_IGNORE_DEBUG_BUILD_GUARD
#if (defined(_MSC_VER) && (defined(DEBUG) || defined(_DEBUG))) || \
(defined(_GLIBCXX_DEBUG) || defined(_GLIBCXX_DEBUG_PEDANTIC))
// Guard to prevent using of binary incompatible binaries / runtimes
// https://github.com/opencv/opencv/pull/9161
#define CV__DEBUG_NS_BEGIN namespace debug_build_guard {
#define CV__DEBUG_NS_END }
namespace cv { namespace debug_build_guard { } using namespace debug_build_guard; }
#endif
#endif
#ifndef CV__DEBUG_NS_BEGIN
#define CV__DEBUG_NS_BEGIN
#define CV__DEBUG_NS_END
#endif
#ifdef __OPENCV_BUILD
#include "cvconfig.h"
#endif
#ifndef __CV_EXPAND
#define __CV_EXPAND(x) x
#endif
#ifndef __CV_CAT
#define __CV_CAT__(x, y) x ## y
#define __CV_CAT_(x, y) __CV_CAT__(x, y)
#define __CV_CAT(x, y) __CV_CAT_(x, y)
#endif
// undef problematic defines sometimes defined by system headers (windows.h in particular)
#undef small
@ -59,10 +87,6 @@
#undef abs
#undef Complex
#if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300
# define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */
#endif
#include <limits.h>
#include "opencv2/core/hal/interface.h"
@ -88,7 +112,7 @@
# endif
#endif
#if defined CV_ICC && !defined CV_ENABLE_UNROLLED
#if defined CV_DISABLE_OPTIMIZATION || (defined CV_ICC && !defined CV_ENABLE_UNROLLED)
# define CV_ENABLE_UNROLLED 0
#else
# define CV_ENABLE_UNROLLED 1
@ -112,7 +136,7 @@
#define CV_CPU_SSE4_1 6
#define CV_CPU_SSE4_2 7
#define CV_CPU_POPCNT 8
#define CV_CPU_FP16 9
#define CV_CPU_AVX 10
#define CV_CPU_AVX2 11
#define CV_CPU_FMA3 12
@ -129,6 +153,8 @@
#define CV_CPU_NEON 100
#define CV_CPU_VSX 200
// when adding to this list remember to update the following enum
#define CV_HARDWARE_MAX_FEATURE 255
@ -143,7 +169,7 @@ enum CpuFeatures {
CPU_SSE4_1 = 6,
CPU_SSE4_2 = 7,
CPU_POPCNT = 8,
CPU_FP16 = 9,
CPU_AVX = 10,
CPU_AVX2 = 11,
CPU_FMA3 = 12,
@ -158,156 +184,53 @@ enum CpuFeatures {
CPU_AVX_512VBMI = 20,
CPU_AVX_512VL = 21,
CPU_NEON = 100
CPU_NEON = 100,
CPU_VSX = 200
};
// do not include SSE/AVX/NEON headers for NVCC compiler
#ifndef __CUDACC__
#if defined __SSE2__ || defined _M_X64 || (defined _M_IX86_FP && _M_IX86_FP >= 2)
# include <emmintrin.h>
# define CV_MMX 1
# define CV_SSE 1
# define CV_SSE2 1
# if defined __SSE3__ || (defined _MSC_VER && _MSC_VER >= 1500)
# include <pmmintrin.h>
# define CV_SSE3 1
# endif
# if defined __SSSE3__ || (defined _MSC_VER && _MSC_VER >= 1500)
# include <tmmintrin.h>
# define CV_SSSE3 1
# endif
# if defined __SSE4_1__ || (defined _MSC_VER && _MSC_VER >= 1500)
# include <smmintrin.h>
# define CV_SSE4_1 1
# endif
# if defined __SSE4_2__ || (defined _MSC_VER && _MSC_VER >= 1500)
# include <nmmintrin.h>
# define CV_SSE4_2 1
# endif
# if defined __POPCNT__ || (defined _MSC_VER && _MSC_VER >= 1500)
# ifdef _MSC_VER
# include <nmmintrin.h>
# else
# include <popcntintrin.h>
# endif
# define CV_POPCNT 1
# endif
# if defined __AVX__ || (defined _MSC_VER && _MSC_VER >= 1600 && 0)
// MS Visual Studio 2010 (2012?) has no macro pre-defined to identify the use of /arch:AVX
// See: http://connect.microsoft.com/VisualStudio/feedback/details/605858/arch-avx-should-define-a-predefined-macro-in-x64-and-set-a-unique-value-for-m-ix86-fp-in-win32
# include <immintrin.h>
# define CV_AVX 1
# if defined(_XCR_XFEATURE_ENABLED_MASK)
# define __xgetbv() _xgetbv(_XCR_XFEATURE_ENABLED_MASK)
# else
# define __xgetbv() 0
# endif
# endif
# if defined __AVX2__ || (defined _MSC_VER && _MSC_VER >= 1800 && 0)
# include <immintrin.h>
# define CV_AVX2 1
# if defined __FMA__
# define CV_FMA3 1
# endif
# endif
#endif
#include "cv_cpu_dispatch.h"
#if (defined WIN32 || defined _WIN32) && defined(_M_ARM)
# include <Intrin.h>
# include "arm_neon.h"
# define CV_NEON 1
# define CPU_HAS_NEON_FEATURE (true)
#elif defined(__ARM_NEON__) || (defined (__ARM_NEON) && defined(__aarch64__))
# include <arm_neon.h>
# define CV_NEON 1
#endif
#if defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__ || defined __ARM_NEON__) && !defined __SOFTFP__
# define CV_VFP 1
#endif
#endif // __CUDACC__
#ifndef CV_POPCNT
#define CV_POPCNT 0
#endif
#ifndef CV_MMX
# define CV_MMX 0
#endif
#ifndef CV_SSE
# define CV_SSE 0
#endif
#ifndef CV_SSE2
# define CV_SSE2 0
#endif
#ifndef CV_SSE3
# define CV_SSE3 0
#endif
#ifndef CV_SSSE3
# define CV_SSSE3 0
#endif
#ifndef CV_SSE4_1
# define CV_SSE4_1 0
#endif
#ifndef CV_SSE4_2
# define CV_SSE4_2 0
#endif
#ifndef CV_AVX
# define CV_AVX 0
#endif
#ifndef CV_AVX2
# define CV_AVX2 0
#endif
#ifndef CV_FMA3
# define CV_FMA3 0
#endif
#ifndef CV_AVX_512F
# define CV_AVX_512F 0
#endif
#ifndef CV_AVX_512BW
# define CV_AVX_512BW 0
#endif
#ifndef CV_AVX_512CD
# define CV_AVX_512CD 0
#endif
#ifndef CV_AVX_512DQ
# define CV_AVX_512DQ 0
#endif
#ifndef CV_AVX_512ER
# define CV_AVX_512ER 0
#endif
#ifndef CV_AVX_512IFMA512
# define CV_AVX_512IFMA512 0
#endif
#ifndef CV_AVX_512PF
# define CV_AVX_512PF 0
#endif
#ifndef CV_AVX_512VBMI
# define CV_AVX_512VBMI 0
#endif
#ifndef CV_AVX_512VL
# define CV_AVX_512VL 0
#endif
#ifndef CV_NEON
# define CV_NEON 0
#endif
#ifndef CV_VFP
# define CV_VFP 0
#endif
/* fundamental constants */
#define CV_PI 3.1415926535897932384626433832795
#define CV_2PI 6.283185307179586476925286766559
#define CV_2PI 6.283185307179586476925286766559
#define CV_LOG2 0.69314718055994530941723212145818
#if defined __ARM_FP16_FORMAT_IEEE \
&& !defined __CUDACC__
# define CV_FP16_TYPE 1
#else
# define CV_FP16_TYPE 0
#endif
typedef union Cv16suf
{
short i;
#if CV_FP16_TYPE
__fp16 h;
#endif
struct _fp16Format
{
unsigned int significand : 10;
unsigned int exponent : 5;
unsigned int sign : 1;
} fmt;
}
Cv16suf;
typedef union Cv32suf
{
int i;
unsigned u;
float f;
struct _fp32Format
{
unsigned int significand : 23;
unsigned int exponent : 8;
unsigned int sign : 1;
} fmt;
}
Cv32suf;
@ -325,12 +248,32 @@ Cv64suf;
# define DISABLE_OPENCV_24_COMPATIBILITY
#endif
#if (defined WIN32 || defined _WIN32 || defined WINCE || defined __CYGWIN__) && defined CVAPI_EXPORTS
# define CV_EXPORTS __declspec(dllexport)
#elif defined __GNUC__ && __GNUC__ >= 4
# define CV_EXPORTS __attribute__ ((visibility ("default")))
#ifdef CVAPI_EXPORTS
# if (defined _WIN32 || defined WINCE || defined __CYGWIN__)
# define CV_EXPORTS __declspec(dllexport)
# elif defined __GNUC__ && __GNUC__ >= 4
# define CV_EXPORTS __attribute__ ((visibility ("default")))
# endif
#endif
#ifndef CV_EXPORTS
# define CV_EXPORTS
#endif
#ifdef _MSC_VER
# define CV_EXPORTS_TEMPLATE
#else
# define CV_EXPORTS
# define CV_EXPORTS_TEMPLATE CV_EXPORTS
#endif
#ifndef CV_DEPRECATED
# if defined(__GNUC__)
# define CV_DEPRECATED __attribute__ ((deprecated))
# elif defined(_MSC_VER)
# define CV_DEPRECATED __declspec(deprecated)
# else
# define CV_DEPRECATED
# endif
#endif
#ifndef CV_EXTERN_C
@ -357,67 +300,6 @@ Cv64suf;
* Matrix type (Mat) *
\****************************************************************************************/
#define CV_CN_MAX 512
#define CV_CN_SHIFT 3
#define CV_DEPTH_MAX (1 << CV_CN_SHIFT)
#define CV_8U 0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7
#define CV_MAT_DEPTH_MASK (CV_DEPTH_MAX - 1)
#define CV_MAT_DEPTH(flags) ((flags) & CV_MAT_DEPTH_MASK)
#define CV_MAKETYPE(depth,cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT))
#define CV_MAKE_TYPE CV_MAKETYPE
#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n))
#define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n))
#define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n))
#define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n))
#define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n))
#define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n))
#define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))
#define CV_MAT_CN_MASK ((CV_CN_MAX - 1) << CV_CN_SHIFT)
#define CV_MAT_CN(flags) ((((flags) & CV_MAT_CN_MASK) >> CV_CN_SHIFT) + 1)
#define CV_MAT_TYPE_MASK (CV_DEPTH_MAX*CV_CN_MAX - 1)
@ -431,7 +313,7 @@ Cv64suf;
#define CV_IS_SUBMAT(flags) ((flags) & CV_MAT_SUBMAT_FLAG)
/** Size of each channel item,
0x124489 = 1000 0100 0100 0010 0010 0001 0001 ~ array of sizeof(arr_type_elem) */
0x8442211 = 1000 0100 0100 0010 0010 0001 0001 ~ array of sizeof(arr_type_elem) */
#define CV_ELEM_SIZE1(type) \
((((sizeof(size_t)<<28)|0x8442211) >> CV_MAT_DEPTH(type)*4) & 15)
@ -447,14 +329,36 @@ Cv64suf;
# define MAX(a,b) ((a) < (b) ? (b) : (a))
#endif
/****************************************************************************************\
* static analysys *
\****************************************************************************************/
// In practice, some macro are not processed correctly (noreturn is not detected).
// We need to use simplified definition for them.
#ifndef CV_STATIC_ANALYSIS
# if defined(__KLOCWORK__) || defined(__clang_analyzer__) || defined(__COVERITY__)
# define CV_STATIC_ANALYSIS
# endif
#endif
/****************************************************************************************\
* Thread sanitizer *
\****************************************************************************************/
#ifndef CV_THREAD_SANITIZER
# if defined(__has_feature)
# if __has_feature(thread_sanitizer)
# define CV_THREAD_SANITIZER
# endif
# endif
#endif
/****************************************************************************************\
* exchange-add operation for atomic operations on reference counters *
\****************************************************************************************/
#if defined __INTEL_COMPILER && !(defined WIN32 || defined _WIN32)
// atomic increment on the linux version of the Intel(tm) compiler
# define CV_XADD(addr, delta) (int)_InterlockedExchangeAdd(const_cast<void*>(reinterpret_cast<volatile void*>(addr)), delta)
#elif defined __GNUC__
#ifdef CV_XADD
// allow to use user-defined macro
#elif defined __GNUC__ || defined __clang__
# if defined __clang__ && __clang_major__ >= 3 && !defined __ANDROID__ && !defined __EMSCRIPTEN__ && !defined(__CUDACC__)
# ifdef __ATOMIC_ACQ_REL
# define CV_XADD(addr, delta) __c11_atomic_fetch_add((_Atomic(int)*)(addr), delta, __ATOMIC_ACQ_REL)
@ -492,12 +396,26 @@ Cv64suf;
#endif
/****************************************************************************************\
* C++ 11 *
\****************************************************************************************/
#ifndef CV_CXX11
# if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1800)
# define CV_CXX11 1
# endif
#else
# if CV_CXX11 == 0
# undef CV_CXX11
# endif
#endif
/****************************************************************************************\
* C++ Move semantics *
\****************************************************************************************/
#ifndef CV_CXX_MOVE_SEMANTICS
# if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) || defined(_MSC_VER) && _MSC_VER >= 1600
# if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) || (defined(_MSC_VER) && _MSC_VER >= 1600)
# define CV_CXX_MOVE_SEMANTICS 1
# elif defined(__clang)
# if __has_feature(cxx_rvalue_references)
@ -510,6 +428,21 @@ Cv64suf;
# endif
#endif
/****************************************************************************************\
* C++11 std::array *
\****************************************************************************************/
#ifndef CV_CXX_STD_ARRAY
# if __cplusplus >= 201103L
# define CV_CXX_STD_ARRAY 1
# include <array>
# endif
#else
# if CV_CXX_STD_ARRAY == 0
# undef CV_CXX_STD_ARRAY
# endif
#endif
//! @}
#endif // __OPENCV_CORE_CVDEF_H__
#endif // OPENCV_CORE_CVDEF_H

View file

@ -41,25 +41,21 @@
//
//M*/
#ifndef __OPENCV_CORE_CVSTD_HPP__
#define __OPENCV_CORE_CVSTD_HPP__
#ifndef OPENCV_CORE_CVSTD_HPP
#define OPENCV_CORE_CVSTD_HPP
#ifndef __cplusplus
# error cvstd.hpp header must be compiled as C++
#endif
#include "opencv2/core/cvdef.h"
#include <cstddef>
#include <cstring>
#include <cctype>
#ifndef OPENCV_NOSTL
# include <string>
#endif
#include <string>
// import useful primitives from stl
#ifndef OPENCV_NOSTL_TRANSITIONAL
# include <algorithm>
# include <utility>
# include <cstdlib> //for abs(int)
@ -67,6 +63,11 @@
namespace cv
{
static inline uchar abs(uchar a) { return a; }
static inline ushort abs(ushort a) { return a; }
static inline unsigned abs(unsigned a) { return a; }
static inline uint64 abs(uint64 a) { return a; }
using std::min;
using std::max;
using std::abs;
@ -77,29 +78,6 @@ namespace cv
using std::log;
}
namespace std
{
static inline uchar abs(uchar a) { return a; }
static inline ushort abs(ushort a) { return a; }
static inline unsigned abs(unsigned a) { return a; }
static inline uint64 abs(uint64 a) { return a; }
}
#else
namespace cv
{
template<typename T> static inline T min(T a, T b) { return a < b ? a : b; }
template<typename T> static inline T max(T a, T b) { return a > b ? a : b; }
template<typename T> static inline T abs(T a) { return a < 0 ? -a : a; }
template<typename T> static inline void swap(T& a, T& b) { T tmp = a; a = b; b = tmp; }
template<> inline uchar abs(uchar a) { return a; }
template<> inline ushort abs(ushort a) { return a; }
template<> inline unsigned abs(unsigned a) { return a; }
template<> inline uint64 abs(uint64 a) { return a; }
}
#endif
namespace cv {
//! @addtogroup core_utils
@ -492,7 +470,7 @@ public:
static const size_t npos = size_t(-1);
explicit String();
String();
String(const String& str);
String(const String& str, size_t pos, size_t len = npos);
String(const char* s);
@ -559,7 +537,6 @@ public:
String toLowerCase() const;
#ifndef OPENCV_NOSTL
String(const std::string& str);
String(const std::string& str, size_t pos, size_t len = npos);
String& operator=(const std::string& str);
@ -568,7 +545,6 @@ public:
friend String operator+ (const String& lhs, const std::string& rhs);
friend String operator+ (const std::string& lhs, const String& rhs);
#endif
private:
char* cstr_;
@ -622,6 +598,7 @@ String::String(const char* s)
{
if (!s) return;
size_t len = strlen(s);
if (!len) return;
memcpy(allocate(len), s, len);
}
@ -630,6 +607,7 @@ String::String(const char* s, size_t n)
: cstr_(0), len_(0)
{
if (!n) return;
if (!s) return;
memcpy(allocate(n), s, n);
}
@ -637,6 +615,7 @@ inline
String::String(size_t n, char c)
: cstr_(0), len_(0)
{
if (!n) return;
memset(allocate(n), c, n);
}
@ -645,6 +624,7 @@ String::String(const char* first, const char* last)
: cstr_(0), len_(0)
{
size_t len = (size_t)(last - first);
if (!len) return;
memcpy(allocate(len), first, len);
}
@ -653,6 +633,7 @@ String::String(Iterator first, Iterator last)
: cstr_(0), len_(0)
{
size_t len = (size_t)(last - first);
if (!len) return;
char* str = allocate(len);
while (first != last)
{
@ -685,7 +666,7 @@ String& String::operator=(const char* s)
deallocate();
if (!s) return *this;
size_t len = strlen(s);
memcpy(allocate(len), s, len);
if (len) memcpy(allocate(len), s, len);
return *this;
}
@ -751,7 +732,7 @@ const char* String::begin() const
inline
const char* String::end() const
{
return len_ ? cstr_ + 1 : 0;
return len_ ? cstr_ + len_ : NULL;
}
inline
@ -958,8 +939,9 @@ size_t String::find_last_of(const char* s, size_t pos) const
inline
String String::toLowerCase() const
{
if (!cstr_)
return String();
String res(cstr_, len_);
for (size_t i = 0; i < len_; ++i)
res.cstr_[i] = (char) ::tolower(cstr_[i]);
@ -978,8 +960,8 @@ String operator + (const String& lhs, const String& rhs)
{
String s;
s.allocate(lhs.len_ + rhs.len_);
memcpy(s.cstr_, lhs.cstr_, lhs.len_);
memcpy(s.cstr_ + lhs.len_, rhs.cstr_, rhs.len_);
if (lhs.len_) memcpy(s.cstr_, lhs.cstr_, lhs.len_);
if (rhs.len_) memcpy(s.cstr_ + lhs.len_, rhs.cstr_, rhs.len_);
return s;
}
@ -989,8 +971,8 @@ String operator + (const String& lhs, const char* rhs)
String s;
size_t rhslen = strlen(rhs);
s.allocate(lhs.len_ + rhslen);
memcpy(s.cstr_, lhs.cstr_, lhs.len_);
memcpy(s.cstr_ + lhs.len_, rhs, rhslen);
if (lhs.len_) memcpy(s.cstr_, lhs.cstr_, lhs.len_);
if (rhslen) memcpy(s.cstr_ + lhs.len_, rhs, rhslen);
return s;
}
@ -1000,8 +982,8 @@ String operator + (const char* lhs, const String& rhs)
String s;
size_t lhslen = strlen(lhs);
s.allocate(lhslen + rhs.len_);
memcpy(s.cstr_, lhs, lhslen);
memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_);
if (lhslen) memcpy(s.cstr_, lhs, lhslen);
if (rhs.len_) memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_);
return s;
}
@ -1010,7 +992,7 @@ String operator + (const String& lhs, char rhs)
{
String s;
s.allocate(lhs.len_ + 1);
memcpy(s.cstr_, lhs.cstr_, lhs.len_);
if (lhs.len_) memcpy(s.cstr_, lhs.cstr_, lhs.len_);
s.cstr_[lhs.len_] = rhs;
return s;
}
@ -1021,7 +1003,7 @@ String operator + (char lhs, const String& rhs)
String s;
s.allocate(rhs.len_ + 1);
s.cstr_[0] = lhs;
memcpy(s.cstr_ + 1, rhs.cstr_, rhs.len_);
if (rhs.len_) memcpy(s.cstr_ + 1, rhs.cstr_, rhs.len_);
return s;
}
@ -1048,22 +1030,11 @@ static inline bool operator>= (const String& lhs, const char* rhs) { return lh
} // cv
#ifndef OPENCV_NOSTL_TRANSITIONAL
namespace std
{
static inline void swap(cv::String& a, cv::String& b) { a.swap(b); }
}
#else
namespace cv
{
template<> inline
void swap<cv::String>(cv::String& a, cv::String& b)
{
a.swap(b);
}
}
#endif
#include "opencv2/core/ptr.inl.hpp"
#endif //__OPENCV_CORE_CVSTD_HPP__
#endif //OPENCV_CORE_CVSTD_HPP

View file

@ -41,19 +41,21 @@
//
//M*/
#ifndef __OPENCV_CORE_CVSTDINL_HPP__
#define __OPENCV_CORE_CVSTDINL_HPP__
#ifndef OPENCV_CORE_CVSTDINL_HPP
#define OPENCV_CORE_CVSTDINL_HPP
#ifndef OPENCV_NOSTL
# include <complex>
# include <ostream>
#endif
#include <complex>
#include <ostream>
//! @cond IGNORED
#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable: 4127 )
#endif
namespace cv
{
#ifndef OPENCV_NOSTL
template<typename _Tp> class DataType< std::complex<_Tp> >
{
@ -78,7 +80,7 @@ String::String(const std::string& str)
if (!str.empty())
{
size_t len = str.size();
memcpy(allocate(len), str.c_str(), len);
if (len) memcpy(allocate(len), str.c_str(), len);
}
}
@ -100,7 +102,7 @@ String& String::operator = (const std::string& str)
if (!str.empty())
{
size_t len = str.size();
memcpy(allocate(len), str.c_str(), len);
if (len) memcpy(allocate(len), str.c_str(), len);
}
return *this;
}
@ -124,8 +126,8 @@ String operator + (const String& lhs, const std::string& rhs)
String s;
size_t rhslen = rhs.size();
s.allocate(lhs.len_ + rhslen);
memcpy(s.cstr_, lhs.cstr_, lhs.len_);
memcpy(s.cstr_ + lhs.len_, rhs.c_str(), rhslen);
if (lhs.len_) memcpy(s.cstr_, lhs.cstr_, lhs.len_);
if (rhslen) memcpy(s.cstr_ + lhs.len_, rhs.c_str(), rhslen);
return s;
}
@ -135,8 +137,8 @@ String operator + (const std::string& lhs, const String& rhs)
String s;
size_t lhslen = lhs.size();
s.allocate(lhslen + rhs.len_);
memcpy(s.cstr_, lhs.c_str(), lhslen);
memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_);
if (lhslen) memcpy(s.cstr_, lhs.c_str(), lhslen);
if (rhs.len_) memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_);
return s;
}
@ -151,9 +153,7 @@ FileNode::operator std::string() const
template<> inline
void operator >> (const FileNode& n, std::string& value)
{
String val;
read(n, val, val);
value = val;
read(n, value, std::string());
}
template<> inline
@ -183,6 +183,18 @@ std::ostream& operator << (std::ostream& out, const Mat& mtx)
return out << Formatter::get()->format(mtx);
}
static inline
std::ostream& operator << (std::ostream& out, const UMat& m)
{
return out << m.getMat(ACCESS_READ);
}
template<typename _Tp> static inline
std::ostream& operator << (std::ostream& out, const Complex<_Tp>& c)
{
return out << "(" << c.re << "," << c.im << ")";
}
template<typename _Tp> static inline
std::ostream& operator << (std::ostream& out, const std::vector<Point_<_Tp> >& vec)
{
@ -221,14 +233,7 @@ template<typename _Tp, int n> static inline
std::ostream& operator << (std::ostream& out, const Vec<_Tp, n>& vec)
{
out << "[";
#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable: 4127 )
#endif
if(Vec<_Tp, n>::depth < CV_32F)
#ifdef _MSC_VER
#pragma warning( pop )
#endif
if (cv::traits::Depth<_Tp>::value <= CV_32S)
{
for (int i = 0; i < n - 1; ++i) {
out << (int)vec[i] << ", ";
@ -258,10 +263,24 @@ std::ostream& operator << (std::ostream& out, const Rect_<_Tp>& rect)
return out << "[" << rect.width << " x " << rect.height << " from (" << rect.x << ", " << rect.y << ")]";
}
static inline std::ostream& operator << (std::ostream& out, const MatSize& msize)
{
int i, dims = msize.p[-1];
for( i = 0; i < dims; i++ )
{
out << msize.p[i];
if( i < dims-1 )
out << " x ";
}
return out;
}
#endif // OPENCV_NOSTL
} // cv
#ifdef _MSC_VER
#pragma warning( pop )
#endif
//! @endcond
#endif // __OPENCV_CORE_CVSTDINL_HPP__
#endif // OPENCV_CORE_CVSTDINL_HPP

View file

@ -39,8 +39,8 @@
//
//M*/
#ifndef __OPENCV_CORE_DIRECTX_HPP__
#define __OPENCV_CORE_DIRECTX_HPP__
#ifndef OPENCV_CORE_DIRECTX_HPP
#define OPENCV_CORE_DIRECTX_HPP
#include "mat.hpp"
#include "ocl.hpp"
@ -181,4 +181,4 @@ CV_EXPORTS int getTypeFromD3DFORMAT(const int iD3DFORMAT); // enum D3DTYPE for D
} } // namespace cv::directx
#endif // __OPENCV_CORE_DIRECTX_HPP__
#endif // OPENCV_CORE_DIRECTX_HPP

View file

@ -42,8 +42,8 @@
//M*/
#ifndef __OPENCV_CORE_EIGEN_HPP__
#define __OPENCV_CORE_EIGEN_HPP__
#ifndef OPENCV_CORE_EIGEN_HPP
#define OPENCV_CORE_EIGEN_HPP
#include "opencv2/core.hpp"
@ -64,14 +64,14 @@ void eigen2cv( const Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCo
{
if( !(src.Flags & Eigen::RowMajorBit) )
{
Mat _src(src.cols(), src.rows(), DataType<_Tp>::type,
(void*)src.data(), src.stride()*sizeof(_Tp));
Mat _src(src.cols(), src.rows(), traits::Type<_Tp>::value,
(void*)src.data(), src.outerStride()*sizeof(_Tp));
transpose(_src, dst);
}
else
{
Mat _src(src.rows(), src.cols(), DataType<_Tp>::type,
(void*)src.data(), src.stride()*sizeof(_Tp));
Mat _src(src.rows(), src.cols(), traits::Type<_Tp>::value,
(void*)src.data(), src.outerStride()*sizeof(_Tp));
_src.copyTo(dst);
}
}
@ -98,8 +98,8 @@ void cv2eigen( const Mat& src,
CV_DbgAssert(src.rows == _rows && src.cols == _cols);
if( !(dst.Flags & Eigen::RowMajorBit) )
{
const Mat _dst(src.cols, src.rows, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(src.cols, src.rows, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
if( src.type() == _dst.type() )
transpose(src, _dst);
else if( src.cols == src.rows )
@ -112,8 +112,8 @@ void cv2eigen( const Mat& src,
}
else
{
const Mat _dst(src.rows, src.cols, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(src.rows, src.cols, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
src.convertTo(_dst, _dst.type());
}
}
@ -125,14 +125,14 @@ void cv2eigen( const Matx<_Tp, _rows, _cols>& src,
{
if( !(dst.Flags & Eigen::RowMajorBit) )
{
const Mat _dst(_cols, _rows, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(_cols, _rows, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
transpose(src, _dst);
}
else
{
const Mat _dst(_rows, _cols, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(_rows, _cols, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
Mat(src).copyTo(_dst);
}
}
@ -144,8 +144,8 @@ void cv2eigen( const Mat& src,
dst.resize(src.rows, src.cols);
if( !(dst.Flags & Eigen::RowMajorBit) )
{
const Mat _dst(src.cols, src.rows, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(src.cols, src.rows, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
if( src.type() == _dst.type() )
transpose(src, _dst);
else if( src.cols == src.rows )
@ -158,8 +158,8 @@ void cv2eigen( const Mat& src,
}
else
{
const Mat _dst(src.rows, src.cols, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(src.rows, src.cols, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
src.convertTo(_dst, _dst.type());
}
}
@ -172,14 +172,14 @@ void cv2eigen( const Matx<_Tp, _rows, _cols>& src,
dst.resize(_rows, _cols);
if( !(dst.Flags & Eigen::RowMajorBit) )
{
const Mat _dst(_cols, _rows, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(_cols, _rows, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
transpose(src, _dst);
}
else
{
const Mat _dst(_rows, _cols, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(_rows, _cols, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
Mat(src).copyTo(_dst);
}
}
@ -193,8 +193,8 @@ void cv2eigen( const Mat& src,
if( !(dst.Flags & Eigen::RowMajorBit) )
{
const Mat _dst(src.cols, src.rows, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(src.cols, src.rows, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
if( src.type() == _dst.type() )
transpose(src, _dst);
else
@ -202,8 +202,8 @@ void cv2eigen( const Mat& src,
}
else
{
const Mat _dst(src.rows, src.cols, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(src.rows, src.cols, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
src.convertTo(_dst, _dst.type());
}
}
@ -217,14 +217,14 @@ void cv2eigen( const Matx<_Tp, _rows, 1>& src,
if( !(dst.Flags & Eigen::RowMajorBit) )
{
const Mat _dst(1, _rows, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(1, _rows, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
transpose(src, _dst);
}
else
{
const Mat _dst(_rows, 1, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(_rows, 1, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
src.copyTo(_dst);
}
}
@ -238,8 +238,8 @@ void cv2eigen( const Mat& src,
dst.resize(src.cols);
if( !(dst.Flags & Eigen::RowMajorBit) )
{
const Mat _dst(src.cols, src.rows, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(src.cols, src.rows, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
if( src.type() == _dst.type() )
transpose(src, _dst);
else
@ -247,8 +247,8 @@ void cv2eigen( const Mat& src,
}
else
{
const Mat _dst(src.rows, src.cols, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(src.rows, src.cols, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
src.convertTo(_dst, _dst.type());
}
}
@ -261,14 +261,14 @@ void cv2eigen( const Matx<_Tp, 1, _cols>& src,
dst.resize(_cols);
if( !(dst.Flags & Eigen::RowMajorBit) )
{
const Mat _dst(_cols, 1, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(_cols, 1, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
transpose(src, _dst);
}
else
{
const Mat _dst(1, _cols, DataType<_Tp>::type,
dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
const Mat _dst(1, _cols, traits::Type<_Tp>::value,
dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp)));
Mat(src).copyTo(_dst);
}
}

View file

@ -42,11 +42,17 @@
//
//M*/
#ifndef __OPENCV_CORE_FAST_MATH_HPP__
#define __OPENCV_CORE_FAST_MATH_HPP__
#ifndef OPENCV_CORE_FAST_MATH_HPP
#define OPENCV_CORE_FAST_MATH_HPP
#include "opencv2/core/cvdef.h"
#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ \
&& defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
#include <emmintrin.h>
#endif
//! @addtogroup core_utils
//! @{
@ -54,24 +60,27 @@
* fast math *
\****************************************************************************************/
#if defined __BORLANDC__
# include <fastmath.h>
#elif defined __cplusplus
#ifdef __cplusplus
# include <cmath>
#else
# include <math.h>
# ifdef __BORLANDC__
# include <fastmath.h>
# else
# include <math.h>
# endif
#endif
#ifdef HAVE_TEGRA_OPTIMIZATION
# include "tegra_round.hpp"
#endif
#if CV_VFP
#if defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__ || defined __ARM_NEON__) && !defined __SOFTFP__ && !defined(__CUDACC__)
// 1. general scheme
#define ARM_ROUND(_value, _asm_string) \
int res; \
float temp; \
asm(_asm_string : [res] "=r" (res), [temp] "=w" (temp) : [value] "w" (_value)); \
(void)temp; \
__asm__(_asm_string : [res] "=r" (res), [temp] "=w" (temp) : [value] "w" (_value)); \
return res
// 2. version for double
#ifdef __clang__
@ -81,7 +90,7 @@
#endif
// 3. version for float
#define ARM_ROUND_FLT(value) ARM_ROUND(value, "vcvtr.s32.f32 %[temp], %[value]\n vmov %[res], %[temp]")
#endif // CV_VFP
#endif
/** @brief Rounds floating-point number to the nearest integer
@ -92,7 +101,7 @@ CV_INLINE int
cvRound( double value )
{
#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ \
&& defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
&& defined __SSE2__ && !defined __APPLE__) || CV_SSE2) && !defined(__CUDACC__)
__m128d t = _mm_set_sd( value );
return _mm_cvtsd_si32(t);
#elif defined _MSC_VER && defined _M_IX86
@ -107,7 +116,7 @@ cvRound( double value )
defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
TEGRA_ROUND_DBL(value);
#elif defined CV_ICC || defined __GNUC__
# if CV_VFP
# if defined ARM_ROUND_DBL
ARM_ROUND_DBL(value);
# else
return (int)lrint(value);
@ -129,18 +138,8 @@ cvRound( double value )
*/
CV_INLINE int cvFloor( double value )
{
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
__m128d t = _mm_set_sd( value );
int i = _mm_cvtsd_si32(t);
return i - _mm_movemask_pd(_mm_cmplt_sd(t, _mm_cvtsi32_sd(t,i)));
#elif defined __GNUC__
int i = (int)value;
return i - (i > value);
#else
int i = cvRound(value);
float diff = (float)(value - i);
return i - (diff < 0);
#endif
}
/** @brief Rounds floating-point number to the nearest integer not smaller than the original.
@ -152,18 +151,8 @@ CV_INLINE int cvFloor( double value )
*/
CV_INLINE int cvCeil( double value )
{
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__)
__m128d t = _mm_set_sd( value );
int i = _mm_cvtsd_si32(t);
return i + _mm_movemask_pd(_mm_cmplt_sd(_mm_cvtsi32_sd(t,i), t));
#elif defined __GNUC__
int i = (int)value;
return i + (i < value);
#else
int i = cvRound(value);
float diff = (float)(i - value);
return i + (diff < 0);
#endif
}
/** @brief Determines if the argument is Not A Number.
@ -199,8 +188,8 @@ CV_INLINE int cvIsInf( double value )
/** @overload */
CV_INLINE int cvRound(float value)
{
#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ && \
defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ \
&& defined __SSE2__ && !defined __APPLE__) || CV_SSE2) && !defined(__CUDACC__)
__m128 t = _mm_set_ss( value );
return _mm_cvtss_si32(t);
#elif defined _MSC_VER && defined _M_IX86
@ -215,7 +204,7 @@ CV_INLINE int cvRound(float value)
defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
TEGRA_ROUND_FLT(value);
#elif defined CV_ICC || defined __GNUC__
# if CV_VFP
# if defined ARM_ROUND_FLT
ARM_ROUND_FLT(value);
# else
return (int)lrintf(value);
@ -236,18 +225,8 @@ CV_INLINE int cvRound( int value )
/** @overload */
CV_INLINE int cvFloor( float value )
{
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
__m128 t = _mm_set_ss( value );
int i = _mm_cvtss_si32(t);
return i - _mm_movemask_ps(_mm_cmplt_ss(t, _mm_cvtsi32_ss(t,i)));
#elif defined __GNUC__
int i = (int)value;
return i - (i > value);
#else
int i = cvRound(value);
float diff = (float)(value - i);
return i - (diff < 0);
#endif
}
/** @overload */
@ -259,18 +238,8 @@ CV_INLINE int cvFloor( int value )
/** @overload */
CV_INLINE int cvCeil( float value )
{
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__)
__m128 t = _mm_set_ss( value );
int i = _mm_cvtss_si32(t);
return i + _mm_movemask_ps(_mm_cmplt_ss(_mm_cvtsi32_ss(t,i), t));
#elif defined __GNUC__
int i = (int)value;
return i + (i < value);
#else
int i = cvRound(value);
float diff = (float)(i - value);
return i + (diff < 0);
#endif
}
/** @overload */

View file

@ -42,23 +42,13 @@
//
//M*/
#ifndef __OPENCV_HAL_HPP__
#define __OPENCV_HAL_HPP__
#ifndef OPENCV_HAL_HPP
#define OPENCV_HAL_HPP
#include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp"
#include "opencv2/core/hal/interface.h"
//! @cond IGNORED
#define CALL_HAL(name, fun, ...) \
int res = fun(__VA_ARGS__); \
if (res == CV_HAL_ERROR_OK) \
return; \
else if (res != CV_HAL_ERROR_NOT_IMPLEMENTED) \
CV_Error_(cv::Error::StsInternal, \
("HAL implementation " CVAUX_STR(name) " ==> " CVAUX_STR(fun) " returned %d (0x%08x)", res, res));
//! @endcond
namespace cv { namespace hal {
//! @addtogroup core_hal_functions
@ -74,6 +64,23 @@ CV_EXPORTS int LU32f(float* A, size_t astep, int m, float* b, size_t bstep, int
CV_EXPORTS int LU64f(double* A, size_t astep, int m, double* b, size_t bstep, int n);
CV_EXPORTS bool Cholesky32f(float* A, size_t astep, int m, float* b, size_t bstep, int n);
CV_EXPORTS bool Cholesky64f(double* A, size_t astep, int m, double* b, size_t bstep, int n);
CV_EXPORTS void SVD32f(float* At, size_t astep, float* W, float* U, size_t ustep, float* Vt, size_t vstep, int m, int n, int flags);
CV_EXPORTS void SVD64f(double* At, size_t astep, double* W, double* U, size_t ustep, double* Vt, size_t vstep, int m, int n, int flags);
CV_EXPORTS int QR32f(float* A, size_t astep, int m, int n, int k, float* b, size_t bstep, float* hFactors);
CV_EXPORTS int QR64f(double* A, size_t astep, int m, int n, int k, double* b, size_t bstep, double* hFactors);
CV_EXPORTS void gemm32f(const float* src1, size_t src1_step, const float* src2, size_t src2_step,
float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step,
int m_a, int n_a, int n_d, int flags);
CV_EXPORTS void gemm64f(const double* src1, size_t src1_step, const double* src2, size_t src2_step,
double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step,
int m_a, int n_a, int n_d, int flags);
CV_EXPORTS void gemm32fc(const float* src1, size_t src1_step, const float* src2, size_t src2_step,
float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step,
int m_a, int n_a, int n_d, int flags);
CV_EXPORTS void gemm64fc(const double* src1, size_t src1_step, const double* src2, size_t src2_step,
double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step,
int m_a, int n_a, int n_d, int flags);
CV_EXPORTS int normL1_(const uchar* a, const uchar* b, int n);
CV_EXPORTS float normL1_(const float* a, const float* b, int n);
@ -84,7 +91,8 @@ CV_EXPORTS void exp64f(const double* src, double* dst, int n);
CV_EXPORTS void log32f(const float* src, float* dst, int n);
CV_EXPORTS void log64f(const double* src, double* dst, int n);
CV_EXPORTS void fastAtan2(const float* y, const float* x, float* dst, int n, bool angleInDegrees);
CV_EXPORTS void fastAtan32f(const float* y, const float* x, float* dst, int n, bool angleInDegrees);
CV_EXPORTS void fastAtan64f(const double* y, const double* x, double* dst, int n, bool angleInDegrees);
CV_EXPORTS void magnitude32f(const float* x, const float* y, float* dst, int n);
CV_EXPORTS void magnitude64f(const double* x, const double* y, double* dst, int n);
CV_EXPORTS void sqrt32f(const float* src, float* dst, int len);
@ -171,13 +179,13 @@ CV_EXPORTS void div32s( const int* src1, size_t step1, const int* src2, size_t s
CV_EXPORTS void div32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void div64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip8u( const uchar *, size_t, const uchar * src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip8s( const schar *, size_t, const schar * src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip16u( const ushort *, size_t, const ushort * src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip16s( const short *, size_t, const short * src2, size_t step2, short* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip32s( const int *, size_t, const int * src2, size_t step2, int* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip32f( const float *, size_t, const float * src2, size_t step2, float* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void recip64f( const double *, size_t, const double * src2, size_t step2, double* dst, size_t step, int width, int height, void* scale);
CV_EXPORTS void addWeighted8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _scalars );
CV_EXPORTS void addWeighted8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scalars );
@ -187,6 +195,29 @@ CV_EXPORTS void addWeighted32s( const int* src1, size_t step1, const int* src2,
CV_EXPORTS void addWeighted32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scalars );
CV_EXPORTS void addWeighted64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scalars );
struct CV_EXPORTS DFT1D
{
static Ptr<DFT1D> create(int len, int count, int depth, int flags, bool * useBuffer = 0);
virtual void apply(const uchar *src, uchar *dst) = 0;
virtual ~DFT1D() {}
};
struct CV_EXPORTS DFT2D
{
static Ptr<DFT2D> create(int width, int height, int depth,
int src_channels, int dst_channels,
int flags, int nonzero_rows = 0);
virtual void apply(const uchar *src_data, size_t src_step, uchar *dst_data, size_t dst_step) = 0;
virtual ~DFT2D() {}
};
struct CV_EXPORTS DCT2D
{
static Ptr<DCT2D> create(int width, int height, int depth, int flags);
virtual void apply(const uchar *src_data, size_t src_step, uchar *dst_data, size_t dst_step) = 0;
virtual ~DCT2D() {}
};
//! @} core_hal
//=============================================================================
@ -204,6 +235,7 @@ CV_EXPORTS void exp(const double* src, double* dst, int n);
CV_EXPORTS void log(const float* src, float* dst, int n);
CV_EXPORTS void log(const double* src, double* dst, int n);
CV_EXPORTS void fastAtan2(const float* y, const float* x, float* dst, int n, bool angleInDegrees);
CV_EXPORTS void magnitude(const float* x, const float* y, float* dst, int n);
CV_EXPORTS void magnitude(const double* x, const double* y, double* dst, int n);
CV_EXPORTS void sqrt(const float* src, float* dst, int len);
@ -215,4 +247,4 @@ CV_EXPORTS void invSqrt(const double* src, double* dst, int len);
}} //cv::hal
#endif //__OPENCV_HAL_HPP__
#endif //OPENCV_HAL_HPP

View file

@ -0,0 +1,182 @@
#ifndef OPENCV_CORE_HAL_INTERFACE_H
#define OPENCV_CORE_HAL_INTERFACE_H
//! @addtogroup core_hal_interface
//! @{
//! @name Return codes
//! @{
#define CV_HAL_ERROR_OK 0
#define CV_HAL_ERROR_NOT_IMPLEMENTED 1
#define CV_HAL_ERROR_UNKNOWN -1
//! @}
#ifdef __cplusplus
#include <cstddef>
#else
#include <stddef.h>
#include <stdbool.h>
#endif
//! @name Data types
//! primitive types
//! - schar - signed 1 byte integer
//! - uchar - unsigned 1 byte integer
//! - short - signed 2 byte integer
//! - ushort - unsigned 2 byte integer
//! - int - signed 4 byte integer
//! - uint - unsigned 4 byte integer
//! - int64 - signed 8 byte integer
//! - uint64 - unsigned 8 byte integer
//! @{
#if !defined _MSC_VER && !defined __BORLANDC__
# if defined __cplusplus && __cplusplus >= 201103L && !defined __APPLE__
# include <cstdint>
# ifdef __NEWLIB__
typedef unsigned int uint;
# else
typedef std::uint32_t uint;
# endif
# else
# include <stdint.h>
typedef uint32_t uint;
# endif
#else
typedef unsigned uint;
#endif
typedef signed char schar;
#ifndef __IPL_H__
typedef unsigned char uchar;
typedef unsigned short ushort;
#endif
#if defined _MSC_VER || defined __BORLANDC__
typedef __int64 int64;
typedef unsigned __int64 uint64;
# define CV_BIG_INT(n) n##I64
# define CV_BIG_UINT(n) n##UI64
#else
typedef int64_t int64;
typedef uint64_t uint64;
# define CV_BIG_INT(n) n##LL
# define CV_BIG_UINT(n) n##ULL
#endif
#define CV_CN_MAX 512
#define CV_CN_SHIFT 3
#define CV_DEPTH_MAX (1 << CV_CN_SHIFT)
#define CV_8U 0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7
#define CV_MAT_DEPTH_MASK (CV_DEPTH_MAX - 1)
#define CV_MAT_DEPTH(flags) ((flags) & CV_MAT_DEPTH_MASK)
#define CV_MAKETYPE(depth,cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT))
#define CV_MAKE_TYPE CV_MAKETYPE
#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n))
#define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n))
#define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n))
#define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n))
#define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n))
#define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n))
#define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))
//! @}
//! @name Comparison operation
//! @sa cv::CmpTypes
//! @{
#define CV_HAL_CMP_EQ 0
#define CV_HAL_CMP_GT 1
#define CV_HAL_CMP_GE 2
#define CV_HAL_CMP_LT 3
#define CV_HAL_CMP_LE 4
#define CV_HAL_CMP_NE 5
//! @}
//! @name Border processing modes
//! @sa cv::BorderTypes
//! @{
#define CV_HAL_BORDER_CONSTANT 0
#define CV_HAL_BORDER_REPLICATE 1
#define CV_HAL_BORDER_REFLECT 2
#define CV_HAL_BORDER_WRAP 3
#define CV_HAL_BORDER_REFLECT_101 4
#define CV_HAL_BORDER_TRANSPARENT 5
#define CV_HAL_BORDER_ISOLATED 16
//! @}
//! @name DFT flags
//! @{
#define CV_HAL_DFT_INVERSE 1
#define CV_HAL_DFT_SCALE 2
#define CV_HAL_DFT_ROWS 4
#define CV_HAL_DFT_COMPLEX_OUTPUT 16
#define CV_HAL_DFT_REAL_OUTPUT 32
#define CV_HAL_DFT_TWO_STAGE 64
#define CV_HAL_DFT_STAGE_COLS 128
#define CV_HAL_DFT_IS_CONTINUOUS 512
#define CV_HAL_DFT_IS_INPLACE 1024
//! @}
//! @name SVD flags
//! @{
#define CV_HAL_SVD_NO_UV 1
#define CV_HAL_SVD_SHORT_UV 2
#define CV_HAL_SVD_MODIFY_A 4
#define CV_HAL_SVD_FULL_UV 8
//! @}
//! @name Gemm flags
//! @{
#define CV_HAL_GEMM_1_T 1
#define CV_HAL_GEMM_2_T 2
#define CV_HAL_GEMM_3_T 4
//! @}
//! @}
#endif

View file

@ -42,8 +42,8 @@
//
//M*/
#ifndef __OPENCV_HAL_INTRIN_HPP__
#define __OPENCV_HAL_INTRIN_HPP__
#ifndef OPENCV_HAL_INTRIN_HPP
#define OPENCV_HAL_INTRIN_HPP
#include <cmath>
#include <float.h>
@ -60,6 +60,25 @@
// access from within opencv code more accessible
namespace cv {
#ifndef CV_DOXYGEN
#ifdef CV_CPU_DISPATCH_MODE
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE __CV_CAT(hal_, CV_CPU_DISPATCH_MODE)
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace __CV_CAT(hal_, CV_CPU_DISPATCH_MODE) {
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
#else
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE hal_baseline
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace hal_baseline {
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
#endif
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
using namespace CV_CPU_OPTIMIZATION_HAL_NAMESPACE;
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
#endif
//! @addtogroup core_hal_intrin
//! @{
@ -281,11 +300,15 @@ template <typename T> struct V_SIMD128Traits
//! @}
#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
#endif
}
#ifdef CV_DOXYGEN
# undef CV_SSE2
# undef CV_NEON
# undef CV_VSX
#endif
#if CV_SSE2
@ -296,6 +319,10 @@ template <typename T> struct V_SIMD128Traits
#include "opencv2/core/hal/intrin_neon.hpp"
#elif CV_VSX
#include "opencv2/core/hal/intrin_vsx.hpp"
#else
#include "opencv2/core/hal/intrin_cpp.hpp"
@ -317,4 +344,129 @@ template <typename T> struct V_SIMD128Traits
//! @}
//==================================================================================================
//! @cond IGNORED
namespace cv {
#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
#endif
template <typename R> struct V_RegTrait128;
template <> struct V_RegTrait128<uchar> {
typedef v_uint8x16 reg;
typedef v_uint16x8 w_reg;
typedef v_uint32x4 q_reg;
typedef v_uint8x16 u_reg;
static v_uint8x16 zero() { return v_setzero_u8(); }
static v_uint8x16 all(uchar val) { return v_setall_u8(val); }
};
template <> struct V_RegTrait128<schar> {
typedef v_int8x16 reg;
typedef v_int16x8 w_reg;
typedef v_int32x4 q_reg;
typedef v_uint8x16 u_reg;
static v_int8x16 zero() { return v_setzero_s8(); }
static v_int8x16 all(schar val) { return v_setall_s8(val); }
};
template <> struct V_RegTrait128<ushort> {
typedef v_uint16x8 reg;
typedef v_uint32x4 w_reg;
typedef v_int16x8 int_reg;
typedef v_uint16x8 u_reg;
static v_uint16x8 zero() { return v_setzero_u16(); }
static v_uint16x8 all(ushort val) { return v_setall_u16(val); }
};
template <> struct V_RegTrait128<short> {
typedef v_int16x8 reg;
typedef v_int32x4 w_reg;
typedef v_uint16x8 u_reg;
static v_int16x8 zero() { return v_setzero_s16(); }
static v_int16x8 all(short val) { return v_setall_s16(val); }
};
template <> struct V_RegTrait128<unsigned> {
typedef v_uint32x4 reg;
typedef v_uint64x2 w_reg;
typedef v_int32x4 int_reg;
typedef v_uint32x4 u_reg;
static v_uint32x4 zero() { return v_setzero_u32(); }
static v_uint32x4 all(unsigned val) { return v_setall_u32(val); }
};
template <> struct V_RegTrait128<int> {
typedef v_int32x4 reg;
typedef v_int64x2 w_reg;
typedef v_uint32x4 u_reg;
static v_int32x4 zero() { return v_setzero_s32(); }
static v_int32x4 all(int val) { return v_setall_s32(val); }
};
template <> struct V_RegTrait128<uint64> {
typedef v_uint64x2 reg;
static v_uint64x2 zero() { return v_setzero_u64(); }
static v_uint64x2 all(uint64 val) { return v_setall_u64(val); }
};
template <> struct V_RegTrait128<int64> {
typedef v_int64x2 reg;
static v_int64x2 zero() { return v_setzero_s64(); }
static v_int64x2 all(int64 val) { return v_setall_s64(val); }
};
template <> struct V_RegTrait128<float> {
typedef v_float32x4 reg;
typedef v_int32x4 int_reg;
typedef v_float32x4 u_reg;
static v_float32x4 zero() { return v_setzero_f32(); }
static v_float32x4 all(float val) { return v_setall_f32(val); }
};
#if CV_SIMD128_64F
template <> struct V_RegTrait128<double> {
typedef v_float64x2 reg;
typedef v_int32x4 int_reg;
typedef v_float64x2 u_reg;
static v_float64x2 zero() { return v_setzero_f64(); }
static v_float64x2 all(double val) { return v_setall_f64(val); }
};
#endif
inline unsigned int trailingZeros32(unsigned int value) {
#if defined(_MSC_VER)
#if (_MSC_VER < 1700) || defined(_M_ARM)
unsigned long index = 0;
_BitScanForward(&index, value);
return (unsigned int)index;
#else
return _tzcnt_u32(value);
#endif
#elif defined(__GNUC__) || defined(__GNUG__)
return __builtin_ctz(value);
#elif defined(__ICC) || defined(__INTEL_COMPILER)
return _bit_scan_forward(value);
#elif defined(__clang__)
return llvm.cttz.i32(value, true);
#else
static const int MultiplyDeBruijnBitPosition[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 };
return MultiplyDeBruijnBitPosition[((uint32_t)((value & -value) * 0x077CB531U)) >> 27];
#endif
}
#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
#endif
} // cv::
//! @endcond
#endif

View file

@ -42,8 +42,8 @@
//
//M*/
#ifndef __OPENCV_HAL_INTRIN_CPP_HPP__
#define __OPENCV_HAL_INTRIN_CPP_HPP__
#ifndef OPENCV_HAL_INTRIN_CPP_HPP
#define OPENCV_HAL_INTRIN_CPP_HPP
#include <limits>
#include <cstring>
@ -53,6 +53,10 @@
namespace cv
{
#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
#endif
/** @addtogroup core_hal_intrin
"Universal intrinsics" is a types and functions set intended to simplify vectorization of code on
@ -95,7 +99,7 @@ block and to save contents of the register to memory block.
@ref v_setall_s8, @ref v_setall_u8, ...,
@ref v_setzero_u8, @ref v_setzero_s8, ...
- Memory operations:
@ref v_load, @ref v_load_aligned, @ref v_load_halves,
@ref v_load, @ref v_load_aligned, @ref v_load_low, @ref v_load_halves,
@ref v_store, @ref v_store_aligned,
@ref v_store_high, @ref v_store_low
@ -103,7 +107,7 @@ block and to save contents of the register to memory block.
These operations allow to reorder or recombine elements in one or multiple vectors.
- Interleave, deinterleave (3 and 4 channels): @ref v_load_deinterleave, @ref v_store_interleave
- Interleave, deinterleave (2, 3 and 4 channels): @ref v_load_deinterleave, @ref v_store_interleave
- Expand: @ref v_load_expand, @ref v_load_expand_q, @ref v_expand
- Pack: @ref v_pack, @ref v_pack_u, @ref v_rshr_pack, @ref v_rshr_pack_u,
@ref v_pack_store, @ref v_pack_u_store, @ref v_rshr_pack_store, @ref v_rshr_pack_u_store
@ -116,32 +120,32 @@ These operations allow to reorder or recombine elements in one or multiple vecto
Element-wise binary and unary operations.
- Arithmetics:
@ref operator+(const v_reg &a, const v_reg &b) "+",
@ref operator-(const v_reg &a, const v_reg &b) "-",
@ref operator*(const v_reg &a, const v_reg &b) "*",
@ref operator/(const v_reg &a, const v_reg &b) "/",
@ref operator +(const v_reg &a, const v_reg &b) "+",
@ref operator -(const v_reg &a, const v_reg &b) "-",
@ref operator *(const v_reg &a, const v_reg &b) "*",
@ref operator /(const v_reg &a, const v_reg &b) "/",
@ref v_mul_expand
- Non-saturating arithmetics: @ref v_add_wrap, @ref v_sub_wrap
- Bitwise shifts:
@ref operator<<(const v_reg &a, int s) "<<",
@ref operator>>(const v_reg &a, int s) ">>",
@ref operator <<(const v_reg &a, int s) "<<",
@ref operator >>(const v_reg &a, int s) ">>",
@ref v_shl, @ref v_shr
- Bitwise logic:
@ref operator&(const v_reg &a, const v_reg &b) "&",
@ref operator|(const v_reg &a, const v_reg &b) "|",
@ref operator^(const v_reg &a, const v_reg &b) "^",
@ref operator~(const v_reg &a) "~"
@ref operator |(const v_reg &a, const v_reg &b) "|",
@ref operator ^(const v_reg &a, const v_reg &b) "^",
@ref operator ~(const v_reg &a) "~"
- Comparison:
@ref operator>(const v_reg &a, const v_reg &b) ">",
@ref operator>=(const v_reg &a, const v_reg &b) ">=",
@ref operator<(const v_reg &a, const v_reg &b) "<",
@ref operator<=(const v_reg &a, const v_reg &b) "<=",
@ref operator >(const v_reg &a, const v_reg &b) ">",
@ref operator >=(const v_reg &a, const v_reg &b) ">=",
@ref operator <(const v_reg &a, const v_reg &b) "<",
@ref operator <=(const v_reg &a, const v_reg &b) "<=",
@ref operator==(const v_reg &a, const v_reg &b) "==",
@ref operator!=(const v_reg &a, const v_reg &b) "!="
@ref operator !=(const v_reg &a, const v_reg &b) "!="
- min/max: @ref v_min, @ref v_max
@ -149,7 +153,7 @@ Element-wise binary and unary operations.
Most of these operations return only one value.
- Reduce: @ref v_reduce_min, @ref v_reduce_max, @ref v_reduce_sum
- Reduce: @ref v_reduce_min, @ref v_reduce_max, @ref v_reduce_sum, @ref v_popcount
- Mask: @ref v_signmask, @ref v_check_all, @ref v_check_any, @ref v_select
### Other math
@ -455,8 +459,10 @@ template<typename _Tp, int n> inline v_reg<_Tp, n> operator ~ (const v_reg<_Tp,
{
v_reg<_Tp, n> c;
for( int i = 0; i < n; i++ )
{
c.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int(~V_TypeTraits<_Tp>::reinterpret_int(a.s[i]));
return c;
}
return c;
}
//! @brief Helper macro
@ -572,6 +578,49 @@ Scheme:
For 32-bit integer and 32-bit floating point types. */
OPENCV_HAL_IMPL_REDUCE_MINMAX_FUNC(v_reduce_max, std::max)
static const unsigned char popCountTable[] =
{
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
};
/** @brief Count the 1 bits in the vector and return 4 values
Scheme:
@code
{A1 A2 A3 ...} => popcount(A1)
@endcode
Any types but result will be in v_uint32x4*/
template<typename _Tp, int n> inline v_uint32x4 v_popcount(const v_reg<_Tp, n>& a)
{
v_uint8x16 b;
b = v_reinterpret_as_u8(a);
for( int i = 0; i < v_uint8x16::nlanes; i++ )
{
b.s[i] = popCountTable[b.s[i]];
}
v_uint32x4 c;
for( int i = 0; i < v_uint32x4::nlanes; i++ )
{
c.s[i] = b.s[i*4] + b.s[i*4+1] + b.s[i*4+2] + b.s[i*4+3];
}
return c;
}
//! @cond IGNORED
template<typename _Tp, int n>
inline void v_minmax( const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b,
@ -672,7 +721,7 @@ inline v_reg<typename V_TypeTraits<_Tp>::abs_type, n> v_absdiff(const v_reg<_Tp,
{
typedef typename V_TypeTraits<_Tp>::abs_type rtype;
v_reg<rtype, n> c;
const rtype mask = std::numeric_limits<_Tp>::is_signed ? (1 << (sizeof(rtype)*8 - 1)) : 0;
const rtype mask = (rtype)(std::numeric_limits<_Tp>::is_signed ? (1 << (sizeof(rtype)*8 - 1)) : 0);
for( int i = 0; i < n; i++ )
{
rtype ua = a.s[i] ^ mask;
@ -836,12 +885,59 @@ template<typename _Tp, int n> inline v_reg<_Tp, n> operator shift_op(const v_reg
/** @brief Bitwise shift left
For 16-, 32- and 64-bit integer values. */
OPENCV_HAL_IMPL_SHIFT_OP(<<)
OPENCV_HAL_IMPL_SHIFT_OP(<< )
/** @brief Bitwise shift right
For 16-, 32- and 64-bit integer values. */
OPENCV_HAL_IMPL_SHIFT_OP(>>)
OPENCV_HAL_IMPL_SHIFT_OP(>> )
/** @brief Element shift left among vector
For all type */
#define OPENCV_HAL_IMPL_ROTATE_SHIFT_OP(suffix,opA,opB) \
template<int imm, typename _Tp, int n> inline v_reg<_Tp, n> v_rotate_##suffix(const v_reg<_Tp, n>& a) \
{ \
v_reg<_Tp, n> b; \
for (int i = 0; i < n; i++) \
{ \
int sIndex = i opA imm; \
if (0 <= sIndex && sIndex < n) \
{ \
b.s[i] = a.s[sIndex]; \
} \
else \
{ \
b.s[i] = 0; \
} \
} \
return b; \
} \
template<int imm, typename _Tp, int n> inline v_reg<_Tp, n> v_rotate_##suffix(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \
{ \
v_reg<_Tp, n> c; \
for (int i = 0; i < n; i++) \
{ \
int aIndex = i opA imm; \
int bIndex = i opA imm opB n; \
if (0 <= bIndex && bIndex < n) \
{ \
c.s[i] = b.s[bIndex]; \
} \
else if (0 <= aIndex && aIndex < n) \
{ \
c.s[i] = a.s[aIndex]; \
} \
else \
{ \
c.s[i] = 0; \
} \
} \
return c; \
}
OPENCV_HAL_IMPL_ROTATE_SHIFT_OP(left, -, +)
OPENCV_HAL_IMPL_ROTATE_SHIFT_OP(right, +, -)
/** @brief Sum packed values
@ -858,6 +954,27 @@ template<typename _Tp, int n> inline typename V_TypeTraits<_Tp>::sum_type v_redu
return c;
}
/** @brief Sums all elements of each input vector, returns the vector of sums
Scheme:
@code
result[0] = a[0] + a[1] + a[2] + a[3]
result[1] = b[0] + b[1] + b[2] + b[3]
result[2] = c[0] + c[1] + c[2] + c[3]
result[3] = d[0] + d[1] + d[2] + d[3]
@endcode
*/
inline v_float32x4 v_reduce_sum4(const v_float32x4& a, const v_float32x4& b,
const v_float32x4& c, const v_float32x4& d)
{
v_float32x4 r;
r.s[0] = a.s[0] + a.s[1] + a.s[2] + a.s[3];
r.s[1] = b.s[0] + b.s[1] + b.s[2] + b.s[3];
r.s[2] = c.s[0] + c.s[1] + c.s[2] + c.s[3];
r.s[3] = d.s[0] + d.s[1] + d.s[2] + d.s[3];
return r;
}
/** @brief Get negative values mask
Returned value is a bit mask with bits set to 1 on places corresponding to negative packed values indexes.
@ -1010,6 +1127,26 @@ inline v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> v_load_aligned(const _Tp* ptr)
return v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes>(ptr);
}
/** @brief Load 64-bits of data to lower part (high part is undefined).
@param ptr memory block containing data for first half (0..n/2)
@code{.cpp}
int lo[2] = { 1, 2 };
v_int32x4 r = v_load_low(lo);
@endcode
*/
template<typename _Tp>
inline v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> v_load_low(const _Tp* ptr)
{
v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> c;
for( int i = 0; i < c.nlanes/2; i++ )
{
c.s[i] = ptr[i];
}
return c;
}
/** @brief Load register contents from two memory blocks
@param loptr memory block containing data for first half (0..n/2)
@ -1075,12 +1212,31 @@ v_load_expand_q(const _Tp* ptr)
return c;
}
/** @brief Load and deinterleave (4 channels)
/** @brief Load and deinterleave (2 channels)
Load data from memory deinterleave and store to 4 registers.
Load data from memory deinterleave and store to 2 registers.
Scheme:
@code
{A1 B1 C1 D1 A2 B2 C2 D2 ...} ==> {A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...}, {D1 D2 ...}
{A1 B1 A2 B2 ...} ==> {A1 A2 ...}, {B1 B2 ...}
@endcode
For all types except 64-bit. */
template<typename _Tp, int n> inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a,
v_reg<_Tp, n>& b)
{
int i, i2;
for( i = i2 = 0; i < n; i++, i2 += 2 )
{
a.s[i] = ptr[i2];
b.s[i] = ptr[i2+1];
}
}
/** @brief Load and deinterleave (3 channels)
Load data from memory deinterleave and store to 3 registers.
Scheme:
@code
{A1 B1 C1 A2 B2 C2 ...} ==> {A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...}
@endcode
For all types except 64-bit. */
template<typename _Tp, int n> inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a,
@ -1095,12 +1251,12 @@ template<typename _Tp, int n> inline void v_load_deinterleave(const _Tp* ptr, v_
}
}
/** @brief Load and deinterleave (3 channels)
/** @brief Load and deinterleave (4 channels)
Load data from memory deinterleave and store to 3 registers.
Load data from memory deinterleave and store to 4 registers.
Scheme:
@code
{A1 B1 C1 A2 B2 C2 ...} ==> {A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...}
{A1 B1 C1 D1 A2 B2 C2 D2 ...} ==> {A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...}, {D1 D2 ...}
@endcode
For all types except 64-bit. */
template<typename _Tp, int n>
@ -1118,12 +1274,32 @@ inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a,
}
}
/** @brief Interleave and store (2 channels)
Interleave and store data from 2 registers to memory.
Scheme:
@code
{A1 A2 ...}, {B1 B2 ...} ==> {A1 B1 A2 B2 ...}
@endcode
For all types except 64-bit. */
template<typename _Tp, int n>
inline void v_store_interleave( _Tp* ptr, const v_reg<_Tp, n>& a,
const v_reg<_Tp, n>& b)
{
int i, i2;
for( i = i2 = 0; i < n; i++, i2 += 2 )
{
ptr[i2] = a.s[i];
ptr[i2+1] = b.s[i];
}
}
/** @brief Interleave and store (3 channels)
Interleave and store data from 3 registers to memory.
Scheme:
@code
{A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...}, {D1 D2 ...} ==> {A1 B1 C1 D1 A2 B2 C2 D2 ...}
{A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...} ==> {A1 B1 C1 A2 B2 C2 ...}
@endcode
For all types except 64-bit. */
template<typename _Tp, int n>
@ -1586,14 +1762,14 @@ OPENCV_HAL_IMPL_C_RSHIFTR(v_int64x2, int64)
//! @brief Helper macro
//! @ingroup core_hal_intrin_impl
#define OPENCV_HAL_IMPL_C_PACK(_Tpvec, _Tpnvec, _Tpn, pack_suffix) \
#define OPENCV_HAL_IMPL_C_PACK(_Tpvec, _Tpnvec, _Tpn, pack_suffix, cast) \
inline _Tpnvec v_##pack_suffix(const _Tpvec& a, const _Tpvec& b) \
{ \
_Tpnvec c; \
for( int i = 0; i < _Tpvec::nlanes; i++ ) \
{ \
c.s[i] = saturate_cast<_Tpn>(a.s[i]); \
c.s[i+_Tpvec::nlanes] = saturate_cast<_Tpn>(b.s[i]); \
c.s[i] = cast<_Tpn>(a.s[i]); \
c.s[i+_Tpvec::nlanes] = cast<_Tpn>(b.s[i]); \
} \
return c; \
}
@ -1607,26 +1783,28 @@ inline _Tpnvec v_##pack_suffix(const _Tpvec& a, const _Tpvec& b) \
//!
//! - pack: for 16-, 32- and 64-bit integer input types
//! - pack_u: for 16- and 32-bit signed integer input types
OPENCV_HAL_IMPL_C_PACK(v_uint16x8, v_uint8x16, uchar, pack)
OPENCV_HAL_IMPL_C_PACK(v_int16x8, v_int8x16, schar, pack)
OPENCV_HAL_IMPL_C_PACK(v_uint32x4, v_uint16x8, ushort, pack)
OPENCV_HAL_IMPL_C_PACK(v_int32x4, v_int16x8, short, pack)
OPENCV_HAL_IMPL_C_PACK(v_uint64x2, v_uint32x4, unsigned, pack)
OPENCV_HAL_IMPL_C_PACK(v_int64x2, v_int32x4, int, pack)
OPENCV_HAL_IMPL_C_PACK(v_int16x8, v_uint8x16, uchar, pack_u)
OPENCV_HAL_IMPL_C_PACK(v_int32x4, v_uint16x8, ushort, pack_u)
//!
//! @note All variants except 64-bit use saturation.
OPENCV_HAL_IMPL_C_PACK(v_uint16x8, v_uint8x16, uchar, pack, saturate_cast)
OPENCV_HAL_IMPL_C_PACK(v_int16x8, v_int8x16, schar, pack, saturate_cast)
OPENCV_HAL_IMPL_C_PACK(v_uint32x4, v_uint16x8, ushort, pack, saturate_cast)
OPENCV_HAL_IMPL_C_PACK(v_int32x4, v_int16x8, short, pack, saturate_cast)
OPENCV_HAL_IMPL_C_PACK(v_uint64x2, v_uint32x4, unsigned, pack, static_cast)
OPENCV_HAL_IMPL_C_PACK(v_int64x2, v_int32x4, int, pack, static_cast)
OPENCV_HAL_IMPL_C_PACK(v_int16x8, v_uint8x16, uchar, pack_u, saturate_cast)
OPENCV_HAL_IMPL_C_PACK(v_int32x4, v_uint16x8, ushort, pack_u, saturate_cast)
//! @}
//! @brief Helper macro
//! @ingroup core_hal_intrin_impl
#define OPENCV_HAL_IMPL_C_RSHR_PACK(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix) \
#define OPENCV_HAL_IMPL_C_RSHR_PACK(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix, cast) \
template<int n> inline _Tpnvec v_rshr_##pack_suffix(const _Tpvec& a, const _Tpvec& b) \
{ \
_Tpnvec c; \
for( int i = 0; i < _Tpvec::nlanes; i++ ) \
{ \
c.s[i] = saturate_cast<_Tpn>((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \
c.s[i+_Tpvec::nlanes] = saturate_cast<_Tpn>((b.s[i] + ((_Tp)1 << (n - 1))) >> n); \
c.s[i] = cast<_Tpn>((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \
c.s[i+_Tpvec::nlanes] = cast<_Tpn>((b.s[i] + ((_Tp)1 << (n - 1))) >> n); \
} \
return c; \
}
@ -1640,51 +1818,55 @@ template<int n> inline _Tpnvec v_rshr_##pack_suffix(const _Tpvec& a, const _Tpve
//!
//! - pack: for 16-, 32- and 64-bit integer input types
//! - pack_u: for 16- and 32-bit signed integer input types
OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint16x8, ushort, v_uint8x16, uchar, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int16x8, short, v_int8x16, schar, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint32x4, unsigned, v_uint16x8, ushort, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int32x4, int, v_int16x8, short, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint64x2, uint64, v_uint32x4, unsigned, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int64x2, int64, v_int32x4, int, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int16x8, short, v_uint8x16, uchar, pack_u)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int32x4, int, v_uint16x8, ushort, pack_u)
//!
//! @note All variants except 64-bit use saturation.
OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint16x8, ushort, v_uint8x16, uchar, pack, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int16x8, short, v_int8x16, schar, pack, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint32x4, unsigned, v_uint16x8, ushort, pack, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int32x4, int, v_int16x8, short, pack, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint64x2, uint64, v_uint32x4, unsigned, pack, static_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int64x2, int64, v_int32x4, int, pack, static_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int16x8, short, v_uint8x16, uchar, pack_u, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK(v_int32x4, int, v_uint16x8, ushort, pack_u, saturate_cast)
//! @}
//! @brief Helper macro
//! @ingroup core_hal_intrin_impl
#define OPENCV_HAL_IMPL_C_PACK_STORE(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix) \
#define OPENCV_HAL_IMPL_C_PACK_STORE(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix, cast) \
inline void v_##pack_suffix##_store(_Tpn* ptr, const _Tpvec& a) \
{ \
for( int i = 0; i < _Tpvec::nlanes; i++ ) \
ptr[i] = saturate_cast<_Tpn>(a.s[i]); \
ptr[i] = cast<_Tpn>(a.s[i]); \
}
//! @name Pack and store
//! @{
//! @brief Store values from the input vector into memory with pack
//!
//! Values will be stored into memory with saturating conversion to narrower type.
//! Values will be stored into memory with conversion to narrower type.
//! Variant with _u_ suffix converts to corresponding unsigned type.
//!
//! - pack: for 16-, 32- and 64-bit integer input types
//! - pack_u: for 16- and 32-bit signed integer input types
OPENCV_HAL_IMPL_C_PACK_STORE(v_uint16x8, ushort, v_uint8x16, uchar, pack)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int16x8, short, v_int8x16, schar, pack)
OPENCV_HAL_IMPL_C_PACK_STORE(v_uint32x4, unsigned, v_uint16x8, ushort, pack)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int32x4, int, v_int16x8, short, pack)
OPENCV_HAL_IMPL_C_PACK_STORE(v_uint64x2, uint64, v_uint32x4, unsigned, pack)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int64x2, int64, v_int32x4, int, pack)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int16x8, short, v_uint8x16, uchar, pack_u)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int32x4, int, v_uint16x8, ushort, pack_u)
//!
//! @note All variants except 64-bit use saturation.
OPENCV_HAL_IMPL_C_PACK_STORE(v_uint16x8, ushort, v_uint8x16, uchar, pack, saturate_cast)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int16x8, short, v_int8x16, schar, pack, saturate_cast)
OPENCV_HAL_IMPL_C_PACK_STORE(v_uint32x4, unsigned, v_uint16x8, ushort, pack, saturate_cast)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int32x4, int, v_int16x8, short, pack, saturate_cast)
OPENCV_HAL_IMPL_C_PACK_STORE(v_uint64x2, uint64, v_uint32x4, unsigned, pack, static_cast)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int64x2, int64, v_int32x4, int, pack, static_cast)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int16x8, short, v_uint8x16, uchar, pack_u, saturate_cast)
OPENCV_HAL_IMPL_C_PACK_STORE(v_int32x4, int, v_uint16x8, ushort, pack_u, saturate_cast)
//! @}
//! @brief Helper macro
//! @ingroup core_hal_intrin_impl
#define OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix) \
#define OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix, cast) \
template<int n> inline void v_rshr_##pack_suffix##_store(_Tpn* ptr, const _Tpvec& a) \
{ \
for( int i = 0; i < _Tpvec::nlanes; i++ ) \
ptr[i] = saturate_cast<_Tpn>((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \
ptr[i] = cast<_Tpn>((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \
}
//! @name Pack and store with rounding shift
@ -1696,14 +1878,16 @@ template<int n> inline void v_rshr_##pack_suffix##_store(_Tpn* ptr, const _Tpvec
//!
//! - pack: for 16-, 32- and 64-bit integer input types
//! - pack_u: for 16- and 32-bit signed integer input types
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint16x8, ushort, v_uint8x16, uchar, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int16x8, short, v_int8x16, schar, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint32x4, unsigned, v_uint16x8, ushort, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int32x4, int, v_int16x8, short, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint64x2, uint64, v_uint32x4, unsigned, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int64x2, int64, v_int32x4, int, pack)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int16x8, short, v_uint8x16, uchar, pack_u)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int32x4, int, v_uint16x8, ushort, pack_u)
//!
//! @note All variants except 64-bit use saturation.
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint16x8, ushort, v_uint8x16, uchar, pack, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int16x8, short, v_int8x16, schar, pack, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint32x4, unsigned, v_uint16x8, ushort, pack, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int32x4, int, v_int16x8, short, pack, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint64x2, uint64, v_uint32x4, unsigned, pack, static_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int64x2, int64, v_int32x4, int, pack, static_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int16x8, short, v_uint8x16, uchar, pack_u, saturate_cast)
OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int32x4, int, v_uint16x8, ushort, pack_u, saturate_cast)
//! @}
/** @brief Matrix multiplication
@ -1731,8 +1915,45 @@ inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0,
v.s[0]*m0.s[3] + v.s[1]*m1.s[3] + v.s[2]*m2.s[3] + v.s[3]*m3.s[3]);
}
/** @brief Matrix multiplication and add
Scheme:
@code
{A0 A1 A2 } |V0| |D0|
{B0 B1 B2 } |V1| |D1|
{C0 C1 C2 } x |V2| + |D2|
====================
{R0 R1 R2 R3}, where:
R0 = A0V0 + A1V1 + A2V2 + D0,
R1 = B0V0 + B1V1 + B2V2 + D1
...
@endcode
*/
inline v_float32x4 v_matmuladd(const v_float32x4& v, const v_float32x4& m0,
const v_float32x4& m1, const v_float32x4& m2,
const v_float32x4& m3)
{
return v_float32x4(v.s[0]*m0.s[0] + v.s[1]*m1.s[0] + v.s[2]*m2.s[0] + m3.s[0],
v.s[0]*m0.s[1] + v.s[1]*m1.s[1] + v.s[2]*m2.s[1] + m3.s[1],
v.s[0]*m0.s[2] + v.s[1]*m1.s[2] + v.s[2]*m2.s[2] + m3.s[2],
v.s[0]*m0.s[3] + v.s[1]*m1.s[3] + v.s[2]*m2.s[3] + m3.s[3]);
}
//! @}
//! @name Check SIMD support
//! @{
//! @brief Check CPU capability of SIMD operation
static inline bool hasSIMD128()
{
return false;
}
//! @}
#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
#endif
}
#endif

View file

@ -42,17 +42,42 @@
//
//M*/
#ifndef __OPENCV_HAL_INTRIN_NEON_HPP__
#define __OPENCV_HAL_INTRIN_NEON_HPP__
#ifndef OPENCV_HAL_INTRIN_NEON_HPP
#define OPENCV_HAL_INTRIN_NEON_HPP
#include <algorithm>
#include "opencv2/core/utility.hpp"
namespace cv
{
//! @cond IGNORED
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
#define CV_SIMD128 1
#if defined(__aarch64__)
#define CV_SIMD128_64F 1
#else
#define CV_SIMD128_64F 0
#endif
#if CV_SIMD128_64F
#define OPENCV_HAL_IMPL_NEON_REINTERPRET(_Tpv, suffix) \
template <typename T> static inline \
_Tpv vreinterpretq_##suffix##_f64(T a) { return (_Tpv) a; } \
template <typename T> static inline \
float64x2_t vreinterpretq_f64_##suffix(T a) { return (float64x2_t) a; }
OPENCV_HAL_IMPL_NEON_REINTERPRET(uint8x16_t, u8)
OPENCV_HAL_IMPL_NEON_REINTERPRET(int8x16_t, s8)
OPENCV_HAL_IMPL_NEON_REINTERPRET(uint16x8_t, u16)
OPENCV_HAL_IMPL_NEON_REINTERPRET(int16x8_t, s16)
OPENCV_HAL_IMPL_NEON_REINTERPRET(uint32x4_t, u32)
OPENCV_HAL_IMPL_NEON_REINTERPRET(int32x4_t, s32)
OPENCV_HAL_IMPL_NEON_REINTERPRET(uint64x2_t, u64)
OPENCV_HAL_IMPL_NEON_REINTERPRET(int64x2_t, s64)
OPENCV_HAL_IMPL_NEON_REINTERPRET(float32x4_t, f32)
#endif
struct v_uint8x16
{
@ -201,7 +226,7 @@ struct v_uint64x2
v_uint64x2() {}
explicit v_uint64x2(uint64x2_t v) : val(v) {}
v_uint64x2(unsigned v0, unsigned v1)
v_uint64x2(uint64 v0, uint64 v1)
{
uint64 v[] = {v0, v1};
val = vld1q_u64(v);
@ -220,7 +245,7 @@ struct v_int64x2
v_int64x2() {}
explicit v_int64x2(int64x2_t v) : val(v) {}
v_int64x2(int v0, int v1)
v_int64x2(int64 v0, int64 v1)
{
int64 v[] = {v0, v1};
val = vld1q_s64(v);
@ -232,6 +257,70 @@ struct v_int64x2
int64x2_t val;
};
#if CV_SIMD128_64F
struct v_float64x2
{
typedef double lane_type;
enum { nlanes = 2 };
v_float64x2() {}
explicit v_float64x2(float64x2_t v) : val(v) {}
v_float64x2(double v0, double v1)
{
double v[] = {v0, v1};
val = vld1q_f64(v);
}
double get0() const
{
return vgetq_lane_f64(val, 0);
}
float64x2_t val;
};
#endif
#if CV_FP16
// Workaround for old compilers
template <typename T> static inline int16x4_t vreinterpret_s16_f16(T a)
{ return (int16x4_t)a; }
template <typename T> static inline float16x4_t vreinterpret_f16_s16(T a)
{ return (float16x4_t)a; }
template <typename T> static inline float16x4_t cv_vld1_f16(const T* ptr)
{
#ifndef vld1_f16 // APPLE compiler defines vld1_f16 as macro
return vreinterpret_f16_s16(vld1_s16((const short*)ptr));
#else
return vld1_f16((const __fp16*)ptr);
#endif
}
template <typename T> static inline void cv_vst1_f16(T* ptr, float16x4_t a)
{
#ifndef vst1_f16 // APPLE compiler defines vst1_f16 as macro
vst1_s16((short*)ptr, vreinterpret_s16_f16(a));
#else
vst1_f16((__fp16*)ptr, a);
#endif
}
struct v_float16x4
{
typedef short lane_type;
enum { nlanes = 4 };
v_float16x4() {}
explicit v_float16x4(float16x4_t v) : val(v) {}
v_float16x4(short v0, short v1, short v2, short v3)
{
short v[] = {v0, v1, v2, v3};
val = cv_vld1_f16(v);
}
short get0() const
{
return vget_lane_s16(vreinterpret_s16_f16(val), 0);
}
float16x4_t val;
};
#endif
#define OPENCV_HAL_IMPL_NEON_INIT(_Tpv, _Tp, suffix) \
inline v_##_Tpv v_setzero_##suffix() { return v_##_Tpv(vdupq_n_##suffix((_Tp)0)); } \
inline v_##_Tpv v_setall_##suffix(_Tp v) { return v_##_Tpv(vdupq_n_##suffix(v)); } \
@ -255,41 +344,56 @@ OPENCV_HAL_IMPL_NEON_INIT(int32x4, int, s32)
OPENCV_HAL_IMPL_NEON_INIT(uint64x2, uint64, u64)
OPENCV_HAL_IMPL_NEON_INIT(int64x2, int64, s64)
OPENCV_HAL_IMPL_NEON_INIT(float32x4, float, f32)
#if CV_SIMD128_64F
#define OPENCV_HAL_IMPL_NEON_INIT_64(_Tpv, suffix) \
inline v_float64x2 v_reinterpret_as_f64(const v_##_Tpv& v) { return v_float64x2(vreinterpretq_f64_##suffix(v.val)); }
OPENCV_HAL_IMPL_NEON_INIT(float64x2, double, f64)
OPENCV_HAL_IMPL_NEON_INIT_64(uint8x16, u8)
OPENCV_HAL_IMPL_NEON_INIT_64(int8x16, s8)
OPENCV_HAL_IMPL_NEON_INIT_64(uint16x8, u16)
OPENCV_HAL_IMPL_NEON_INIT_64(int16x8, s16)
OPENCV_HAL_IMPL_NEON_INIT_64(uint32x4, u32)
OPENCV_HAL_IMPL_NEON_INIT_64(int32x4, s32)
OPENCV_HAL_IMPL_NEON_INIT_64(uint64x2, u64)
OPENCV_HAL_IMPL_NEON_INIT_64(int64x2, s64)
OPENCV_HAL_IMPL_NEON_INIT_64(float32x4, f32)
OPENCV_HAL_IMPL_NEON_INIT_64(float64x2, f64)
#endif
#define OPENCV_HAL_IMPL_NEON_PACK(_Tpvec, _Tp, hreg, suffix, _Tpwvec, wsuffix, pack, op) \
#define OPENCV_HAL_IMPL_NEON_PACK(_Tpvec, _Tp, hreg, suffix, _Tpwvec, pack, mov, rshr) \
inline _Tpvec v_##pack(const _Tpwvec& a, const _Tpwvec& b) \
{ \
hreg a1 = vqmov##op##_##wsuffix(a.val), b1 = vqmov##op##_##wsuffix(b.val); \
hreg a1 = mov(a.val), b1 = mov(b.val); \
return _Tpvec(vcombine_##suffix(a1, b1)); \
} \
inline void v_##pack##_store(_Tp* ptr, const _Tpwvec& a) \
{ \
hreg a1 = vqmov##op##_##wsuffix(a.val); \
hreg a1 = mov(a.val); \
vst1_##suffix(ptr, a1); \
} \
template<int n> inline \
_Tpvec v_rshr_##pack(const _Tpwvec& a, const _Tpwvec& b) \
{ \
hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \
hreg b1 = vqrshr##op##_n_##wsuffix(b.val, n); \
hreg a1 = rshr(a.val, n); \
hreg b1 = rshr(b.val, n); \
return _Tpvec(vcombine_##suffix(a1, b1)); \
} \
template<int n> inline \
void v_rshr_##pack##_store(_Tp* ptr, const _Tpwvec& a) \
{ \
hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \
hreg a1 = rshr(a.val, n); \
vst1_##suffix(ptr, a1); \
}
OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_uint16x8, u16, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_int8x16, schar, int8x8_t, s8, v_int16x8, s16, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_uint32x4, u32, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_int16x8, short, int16x4_t, s16, v_int32x4, s32, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_uint32x4, unsigned, uint32x2_t, u32, v_uint64x2, u64, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_int32x4, int, int32x2_t, s32, v_int64x2, s64, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_uint16x8, pack, vqmovn_u16, vqrshrn_n_u16)
OPENCV_HAL_IMPL_NEON_PACK(v_int8x16, schar, int8x8_t, s8, v_int16x8, pack, vqmovn_s16, vqrshrn_n_s16)
OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_uint32x4, pack, vqmovn_u32, vqrshrn_n_u32)
OPENCV_HAL_IMPL_NEON_PACK(v_int16x8, short, int16x4_t, s16, v_int32x4, pack, vqmovn_s32, vqrshrn_n_s32)
OPENCV_HAL_IMPL_NEON_PACK(v_uint32x4, unsigned, uint32x2_t, u32, v_uint64x2, pack, vmovn_u64, vrshrn_n_u64)
OPENCV_HAL_IMPL_NEON_PACK(v_int32x4, int, int32x2_t, s32, v_int64x2, pack, vmovn_s64, vrshrn_n_s64)
OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_int16x8, s16, pack_u, un)
OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_int32x4, s32, pack_u, un)
OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_int16x8, pack_u, vqmovun_s16, vqrshrun_n_s16)
OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_int32x4, pack_u, vqmovun_s32, vqrshrun_n_s32)
inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0,
const v_float32x4& m1, const v_float32x4& m2,
@ -303,6 +407,18 @@ inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0,
return v_float32x4(res);
}
inline v_float32x4 v_matmuladd(const v_float32x4& v, const v_float32x4& m0,
const v_float32x4& m1, const v_float32x4& m2,
const v_float32x4& a)
{
float32x2_t vl = vget_low_f32(v.val), vh = vget_high_f32(v.val);
float32x4_t res = vmulq_lane_f32(m0.val, vl, 0);
res = vmlaq_lane_f32(res, m1.val, vl, 1);
res = vmlaq_lane_f32(res, m2.val, vh, 0);
res = vaddq_f32(res, a.val);
return v_float32x4(res);
}
#define OPENCV_HAL_IMPL_NEON_BIN_OP(bin_op, _Tpvec, intrin) \
inline _Tpvec operator bin_op (const _Tpvec& a, const _Tpvec& b) \
{ \
@ -337,7 +453,13 @@ OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int64x2, vaddq_s64)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int64x2, vsubq_s64)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint64x2, vaddq_u64)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint64x2, vsubq_u64)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_BIN_OP(/, v_float32x4, vdivq_f32)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_float64x2, vaddq_f64)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_float64x2, vsubq_f64)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_float64x2, vmulq_f64)
OPENCV_HAL_IMPL_NEON_BIN_OP(/, v_float64x2, vdivq_f64)
#else
inline v_float32x4 operator / (const v_float32x4& a, const v_float32x4& b)
{
float32x4_t reciprocal = vrecpeq_f32(b.val);
@ -353,6 +475,7 @@ inline v_float32x4& operator /= (v_float32x4& a, const v_float32x4& b)
a.val = vmulq_f32(a.val, reciprocal);
return a;
}
#endif
inline void v_mul_expand(const v_int16x8& a, const v_int16x8& b,
v_int32x4& c, v_int32x4& d)
@ -421,6 +544,18 @@ inline v_float32x4 operator ~ (const v_float32x4& a)
return v_float32x4(vreinterpretq_f32_s32(vmvnq_s32(vreinterpretq_s32_f32(a.val))));
}
#if CV_SIMD128_64F
inline v_float32x4 v_sqrt(const v_float32x4& x)
{
return v_float32x4(vsqrtq_f32(x.val));
}
inline v_float32x4 v_invsqrt(const v_float32x4& x)
{
v_float32x4 one = v_setall_f32(1.0f);
return one / v_sqrt(x);
}
#else
inline v_float32x4 v_sqrt(const v_float32x4& x)
{
float32x4_t x1 = vmaxq_f32(x.val, vdupq_n_f32(FLT_MIN));
@ -437,10 +572,54 @@ inline v_float32x4 v_invsqrt(const v_float32x4& x)
e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x.val, e), e), e);
return v_float32x4(e);
}
#endif
#define OPENCV_HAL_IMPL_NEON_ABS(_Tpuvec, _Tpsvec, usuffix, ssuffix) \
inline _Tpuvec v_abs(const _Tpsvec& a) { return v_reinterpret_as_##usuffix(_Tpsvec(vabsq_##ssuffix(a.val))); }
OPENCV_HAL_IMPL_NEON_ABS(v_uint8x16, v_int8x16, u8, s8)
OPENCV_HAL_IMPL_NEON_ABS(v_uint16x8, v_int16x8, u16, s16)
OPENCV_HAL_IMPL_NEON_ABS(v_uint32x4, v_int32x4, u32, s32)
inline v_float32x4 v_abs(v_float32x4 x)
{ return v_float32x4(vabsq_f32(x.val)); }
#if CV_SIMD128_64F
#define OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(bin_op, intrin) \
inline v_float64x2 operator bin_op (const v_float64x2& a, const v_float64x2& b) \
{ \
return v_float64x2(vreinterpretq_f64_s64(intrin(vreinterpretq_s64_f64(a.val), vreinterpretq_s64_f64(b.val)))); \
} \
inline v_float64x2& operator bin_op##= (v_float64x2& a, const v_float64x2& b) \
{ \
a.val = vreinterpretq_f64_s64(intrin(vreinterpretq_s64_f64(a.val), vreinterpretq_s64_f64(b.val))); \
return a; \
}
OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(&, vandq_s64)
OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(|, vorrq_s64)
OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(^, veorq_s64)
inline v_float64x2 operator ~ (const v_float64x2& a)
{
return v_float64x2(vreinterpretq_f64_s32(vmvnq_s32(vreinterpretq_s32_f64(a.val))));
}
inline v_float64x2 v_sqrt(const v_float64x2& x)
{
return v_float64x2(vsqrtq_f64(x.val));
}
inline v_float64x2 v_invsqrt(const v_float64x2& x)
{
v_float64x2 one = v_setall_f64(1.0f);
return one / v_sqrt(x);
}
inline v_float64x2 v_abs(v_float64x2 x)
{ return v_float64x2(vabsq_f64(x.val)); }
#endif
// TODO: exp, log, sin, cos
#define OPENCV_HAL_IMPL_NEON_BIN_FUNC(_Tpvec, func, intrin) \
@ -463,8 +642,23 @@ OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_min, vminq_s32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_max, vmaxq_s32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_min, vminq_f32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_max, vmaxq_f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_min, vminq_f64)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_max, vmaxq_f64)
#endif
#if CV_SIMD128_64F
inline int64x2_t vmvnq_s64(int64x2_t a)
{
int64x2_t vx = vreinterpretq_s64_u32(vdupq_n_u32(0xFFFFFFFF));
return veorq_s64(a, vx);
}
inline uint64x2_t vmvnq_u64(uint64x2_t a)
{
uint64x2_t vx = vreinterpretq_u64_u32(vdupq_n_u32(0xFFFFFFFF));
return veorq_u64(a, vx);
}
#endif
#define OPENCV_HAL_IMPL_NEON_INT_CMP_OP(_Tpvec, cast, suffix, not_suffix) \
inline _Tpvec operator == (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(cast(vceqq_##suffix(a.val, b.val))); } \
@ -486,6 +680,11 @@ OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int16x8, vreinterpretq_s16_u16, s16, u16)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint32x4, OPENCV_HAL_NOP, u32, u32)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int32x4, vreinterpretq_s32_u32, s32, u32)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float32x4, vreinterpretq_f32_u32, f32, u32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint64x2, OPENCV_HAL_NOP, u64, u64)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int64x2, vreinterpretq_s64_u64, s64, u64)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float64x2, vreinterpretq_f64_u64, f64, u64)
#endif
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_add_wrap, vaddq_u8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_add_wrap, vaddq_s8)
@ -501,6 +700,9 @@ OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_absdiff, vabdq_u8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_absdiff, vabdq_u16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_absdiff, vabdq_u32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_absdiff, vabdq_f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_absdiff, vabdq_f64)
#endif
#define OPENCV_HAL_IMPL_NEON_BIN_FUNC2(_Tpvec, _Tpvec2, cast, func, intrin) \
inline _Tpvec2 func(const _Tpvec& a, const _Tpvec& b) \
@ -528,6 +730,24 @@ inline v_float32x4 v_muladd(const v_float32x4& a, const v_float32x4& b, const v_
return v_float32x4(vmlaq_f32(c.val, a.val, b.val));
}
#if CV_SIMD128_64F
inline v_float64x2 v_magnitude(const v_float64x2& a, const v_float64x2& b)
{
v_float64x2 x(vaddq_f64(vmulq_f64(a.val, a.val), vmulq_f64(b.val, b.val)));
return v_sqrt(x);
}
inline v_float64x2 v_sqr_magnitude(const v_float64x2& a, const v_float64x2& b)
{
return v_float64x2(vaddq_f64(vmulq_f64(a.val, a.val), vmulq_f64(b.val, b.val)));
}
inline v_float64x2 v_muladd(const v_float64x2& a, const v_float64x2& b, const v_float64x2& c)
{
return v_float64x2(vaddq_f64(c.val, vmulq_f64(a.val, b.val)));
}
#endif
// trade efficiency for convenience
#define OPENCV_HAL_IMPL_NEON_SHIFT_OP(_Tpvec, suffix, _Tps, ssuffix) \
inline _Tpvec operator << (const _Tpvec& a, int n) \
@ -539,7 +759,15 @@ template<int n> inline _Tpvec v_shl(const _Tpvec& a) \
template<int n> inline _Tpvec v_shr(const _Tpvec& a) \
{ return _Tpvec(vshrq_n_##suffix(a.val, n)); } \
template<int n> inline _Tpvec v_rshr(const _Tpvec& a) \
{ return _Tpvec(vrshrq_n_##suffix(a.val, n)); }
{ return _Tpvec(vrshrq_n_##suffix(a.val, n)); } \
template<int n> inline _Tpvec v_rotate_right(const _Tpvec& a) \
{ return _Tpvec(vextq_##suffix(a.val, vdupq_n_##suffix(0), n)); } \
template<int n> inline _Tpvec v_rotate_left(const _Tpvec& a) \
{ return _Tpvec(vextq_##suffix(vdupq_n_##suffix(0), a.val, _Tpvec::nlanes - n)); } \
template<int n> inline _Tpvec v_rotate_right(const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vextq_##suffix(a.val, b.val, n)); } \
template<int n> inline _Tpvec v_rotate_left(const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vextq_##suffix(b.val, a.val, _Tpvec::nlanes - n)); }
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint8x16, u8, schar, s8)
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int8x16, s8, schar, s8)
@ -555,6 +783,8 @@ inline _Tpvec v_load(const _Tp* ptr) \
{ return _Tpvec(vld1q_##suffix(ptr)); } \
inline _Tpvec v_load_aligned(const _Tp* ptr) \
{ return _Tpvec(vld1q_##suffix(ptr)); } \
inline _Tpvec v_load_low(const _Tp* ptr) \
{ return _Tpvec(vcombine_##suffix(vld1_##suffix(ptr), vdup_n_##suffix((_Tp)0))); } \
inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \
{ return _Tpvec(vcombine_##suffix(vld1_##suffix(ptr0), vld1_##suffix(ptr1))); } \
inline void v_store(_Tp* ptr, const _Tpvec& a) \
@ -575,26 +805,80 @@ OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int32x4, int, s32)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint64x2, uint64, u64)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int64x2, int64, s64)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float32x4, float, f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float64x2, double, f64)
#endif
#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(_Tpvec, scalartype, func, scalar_func) \
#if CV_FP16
// Workaround for old comiplers
inline v_float16x4 v_load_f16(const short* ptr)
{ return v_float16x4(cv_vld1_f16(ptr)); }
inline void v_store_f16(short* ptr, v_float16x4& a)
{ cv_vst1_f16(ptr, a.val); }
#endif
#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(_Tpvec, _Tpnvec, scalartype, func, vectorfunc, suffix) \
inline scalartype v_reduce_##func(const _Tpvec& a) \
{ \
scalartype CV_DECL_ALIGNED(16) buf[4]; \
v_store_aligned(buf, a); \
scalartype s0 = scalar_func(buf[0], buf[1]); \
scalartype s1 = scalar_func(buf[2], buf[3]); \
return scalar_func(s0, s1); \
_Tpnvec##_t a0 = vp##vectorfunc##_##suffix(vget_low_##suffix(a.val), vget_high_##suffix(a.val)); \
a0 = vp##vectorfunc##_##suffix(a0, a0); \
return (scalartype)vget_lane_##suffix(vp##vectorfunc##_##suffix(a0, a0),0); \
}
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, unsigned, sum, OPENCV_HAL_ADD)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, unsigned, max, std::max)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, unsigned, min, std::min)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int, sum, OPENCV_HAL_ADD)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int, max, std::max)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int, min, std::min)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float, sum, OPENCV_HAL_ADD)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float, max, std::max)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float, min, std::min)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, sum, add, u16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, max, max, u16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, min, min, u16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, sum, add, s16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, max, max, s16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, min, min, s16)
#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(_Tpvec, _Tpnvec, scalartype, func, vectorfunc, suffix) \
inline scalartype v_reduce_##func(const _Tpvec& a) \
{ \
_Tpnvec##_t a0 = vp##vectorfunc##_##suffix(vget_low_##suffix(a.val), vget_high_##suffix(a.val)); \
return (scalartype)vget_lane_##suffix(vp##vectorfunc##_##suffix(a0, vget_high_##suffix(a.val)),0); \
}
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, sum, add, u32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, max, max, u32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, min, min, u32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, sum, add, s32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, max, max, s32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, min, min, s32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, sum, add, f32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, max, max, f32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, min, min, f32)
inline v_float32x4 v_reduce_sum4(const v_float32x4& a, const v_float32x4& b,
const v_float32x4& c, const v_float32x4& d)
{
float32x4x2_t ab = vtrnq_f32(a.val, b.val);
float32x4x2_t cd = vtrnq_f32(c.val, d.val);
float32x4_t u0 = vaddq_f32(ab.val[0], ab.val[1]); // a0+a1 b0+b1 a2+a3 b2+b3
float32x4_t u1 = vaddq_f32(cd.val[0], cd.val[1]); // c0+c1 d0+d1 c2+c3 d2+d3
float32x4_t v0 = vcombine_f32(vget_low_f32(u0), vget_low_f32(u1));
float32x4_t v1 = vcombine_f32(vget_high_f32(u0), vget_high_f32(u1));
return v_float32x4(vaddq_f32(v0, v1));
}
#define OPENCV_HAL_IMPL_NEON_POPCOUNT(_Tpvec, cast) \
inline v_uint32x4 v_popcount(const _Tpvec& a) \
{ \
uint8x16_t t = vcntq_u8(cast(a.val)); \
uint16x8_t t0 = vpaddlq_u8(t); /* 16 -> 8 */ \
uint32x4_t t1 = vpaddlq_u16(t0); /* 8 -> 4 */ \
return v_uint32x4(t1); \
}
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_uint8x16, OPENCV_HAL_NOP)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_uint16x8, vreinterpretq_u8_u16)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_uint32x4, vreinterpretq_u8_u32)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_int8x16, vreinterpretq_u8_s8)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_int16x8, vreinterpretq_u8_s16)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_int32x4, vreinterpretq_u8_s32)
inline int v_signmask(const v_uint8x16& a)
{
@ -627,6 +911,16 @@ inline int v_signmask(const v_int32x4& a)
{ return v_signmask(v_reinterpret_as_u32(a)); }
inline int v_signmask(const v_float32x4& a)
{ return v_signmask(v_reinterpret_as_u32(a)); }
#if CV_SIMD128_64F
inline int v_signmask(const v_uint64x2& a)
{
int64x1_t m0 = vdup_n_s64(0);
uint64x2_t v0 = vshlq_u64(vshrq_n_u64(a.val, 63), vcombine_s64(m0, m0));
return (int)vgetq_lane_u64(v0, 0) + ((int)vgetq_lane_u64(v0, 1) << 1);
}
inline int v_signmask(const v_float64x2& a)
{ return v_signmask(v_reinterpret_as_u64(a)); }
#endif
#define OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(_Tpvec, suffix, shift) \
inline bool v_check_all(const v_##_Tpvec& a) \
@ -645,6 +939,9 @@ inline bool v_check_any(const v_##_Tpvec& a) \
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint8x16, u8, 7)
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint16x8, u16, 15)
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint32x4, u32, 31)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint64x2, u64, 63)
#endif
inline bool v_check_all(const v_int8x16& a)
{ return v_check_all(v_reinterpret_as_u8(a)); }
@ -664,6 +961,17 @@ inline bool v_check_any(const v_int32x4& a)
inline bool v_check_any(const v_float32x4& a)
{ return v_check_any(v_reinterpret_as_u32(a)); }
#if CV_SIMD128_64F
inline bool v_check_all(const v_int64x2& a)
{ return v_check_all(v_reinterpret_as_u64(a)); }
inline bool v_check_all(const v_float64x2& a)
{ return v_check_all(v_reinterpret_as_u64(a)); }
inline bool v_check_any(const v_int64x2& a)
{ return v_check_any(v_reinterpret_as_u64(a)); }
inline bool v_check_any(const v_float64x2& a)
{ return v_check_any(v_reinterpret_as_u64(a)); }
#endif
#define OPENCV_HAL_IMPL_NEON_SELECT(_Tpvec, suffix, usuffix) \
inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \
{ \
@ -677,6 +985,9 @@ OPENCV_HAL_IMPL_NEON_SELECT(v_int16x8, s16, u16)
OPENCV_HAL_IMPL_NEON_SELECT(v_uint32x4, u32, u32)
OPENCV_HAL_IMPL_NEON_SELECT(v_int32x4, s32, u32)
OPENCV_HAL_IMPL_NEON_SELECT(v_float32x4, f32, u32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_SELECT(v_float64x2, f64, u64)
#endif
#define OPENCV_HAL_IMPL_NEON_EXPAND(_Tpvec, _Tpwvec, _Tp, suffix) \
inline void v_expand(const _Tpvec& a, _Tpwvec& b0, _Tpwvec& b1) \
@ -710,6 +1021,27 @@ inline v_int32x4 v_load_expand_q(const schar* ptr)
return v_int32x4(vmovl_s16(v1));
}
#if defined(__aarch64__)
#define OPENCV_HAL_IMPL_NEON_UNPACKS(_Tpvec, suffix) \
inline void v_zip(const v_##_Tpvec& a0, const v_##_Tpvec& a1, v_##_Tpvec& b0, v_##_Tpvec& b1) \
{ \
b0.val = vzip1q_##suffix(a0.val, a1.val); \
b1.val = vzip2q_##suffix(a0.val, a1.val); \
} \
inline v_##_Tpvec v_combine_low(const v_##_Tpvec& a, const v_##_Tpvec& b) \
{ \
return v_##_Tpvec(vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val))); \
} \
inline v_##_Tpvec v_combine_high(const v_##_Tpvec& a, const v_##_Tpvec& b) \
{ \
return v_##_Tpvec(vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val))); \
} \
inline void v_recombine(const v_##_Tpvec& a, const v_##_Tpvec& b, v_##_Tpvec& c, v_##_Tpvec& d) \
{ \
c.val = vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val)); \
d.val = vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val)); \
}
#else
#define OPENCV_HAL_IMPL_NEON_UNPACKS(_Tpvec, suffix) \
inline void v_zip(const v_##_Tpvec& a0, const v_##_Tpvec& a1, v_##_Tpvec& b0, v_##_Tpvec& b1) \
{ \
@ -730,6 +1062,7 @@ inline void v_recombine(const v_##_Tpvec& a, const v_##_Tpvec& b, v_##_Tpvec& c,
c.val = vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val)); \
d.val = vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val)); \
}
#endif
OPENCV_HAL_IMPL_NEON_UNPACKS(uint8x16, u8)
OPENCV_HAL_IMPL_NEON_UNPACKS(int8x16, s8)
@ -738,6 +1071,9 @@ OPENCV_HAL_IMPL_NEON_UNPACKS(int16x8, s16)
OPENCV_HAL_IMPL_NEON_UNPACKS(uint32x4, u32)
OPENCV_HAL_IMPL_NEON_UNPACKS(int32x4, s32)
OPENCV_HAL_IMPL_NEON_UNPACKS(float32x4, f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_UNPACKS(float64x2, f64)
#endif
#define OPENCV_HAL_IMPL_NEON_EXTRACT(_Tpvec, suffix) \
template <int s> \
@ -755,6 +1091,9 @@ OPENCV_HAL_IMPL_NEON_EXTRACT(int32x4, s32)
OPENCV_HAL_IMPL_NEON_EXTRACT(uint64x2, u64)
OPENCV_HAL_IMPL_NEON_EXTRACT(int64x2, s64)
OPENCV_HAL_IMPL_NEON_EXTRACT(float32x4, f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_EXTRACT(float64x2, f64)
#endif
inline v_int32x4 v_round(const v_float32x4& a)
{
@ -782,6 +1121,38 @@ inline v_int32x4 v_ceil(const v_float32x4& a)
inline v_int32x4 v_trunc(const v_float32x4& a)
{ return v_int32x4(vcvtq_s32_f32(a.val)); }
#if CV_SIMD128_64F
inline v_int32x4 v_round(const v_float64x2& a)
{
static const int32x2_t zero = vdup_n_s32(0);
return v_int32x4(vcombine_s32(vmovn_s64(vcvtaq_s64_f64(a.val)), zero));
}
inline v_int32x4 v_floor(const v_float64x2& a)
{
static const int32x2_t zero = vdup_n_s32(0);
int64x2_t a1 = vcvtq_s64_f64(a.val);
uint64x2_t mask = vcgtq_f64(vcvtq_f64_s64(a1), a.val);
a1 = vaddq_s64(a1, vreinterpretq_s64_u64(mask));
return v_int32x4(vcombine_s32(vmovn_s64(a1), zero));
}
inline v_int32x4 v_ceil(const v_float64x2& a)
{
static const int32x2_t zero = vdup_n_s32(0);
int64x2_t a1 = vcvtq_s64_f64(a.val);
uint64x2_t mask = vcgtq_f64(a.val, vcvtq_f64_s64(a1));
a1 = vsubq_s64(a1, vreinterpretq_s64_u64(mask));
return v_int32x4(vcombine_s32(vmovn_s64(a1), zero));
}
inline v_int32x4 v_trunc(const v_float64x2& a)
{
static const int32x2_t zero = vdup_n_s32(0);
return v_int32x4(vcombine_s32(vmovn_s64(vcvtaq_s64_f64(a.val)), zero));
}
#endif
#define OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(_Tpvec, suffix) \
inline void v_transpose4x4(const v_##_Tpvec& a0, const v_##_Tpvec& a1, \
const v_##_Tpvec& a2, const v_##_Tpvec& a3, \
@ -809,6 +1180,12 @@ OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(int32x4, s32)
OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(float32x4, f32)
#define OPENCV_HAL_IMPL_NEON_INTERLEAVED(_Tpvec, _Tp, suffix) \
inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b) \
{ \
_Tpvec##x2_t v = vld2q_##suffix(ptr); \
a.val = v.val[0]; \
b.val = v.val[1]; \
} \
inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, v_##_Tpvec& c) \
{ \
_Tpvec##x3_t v = vld3q_##suffix(ptr); \
@ -825,6 +1202,13 @@ inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, \
c.val = v.val[2]; \
d.val = v.val[3]; \
} \
inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b) \
{ \
_Tpvec##x2_t v; \
v.val[0] = a.val; \
v.val[1] = b.val; \
vst2q_##suffix(ptr, v); \
} \
inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b, const v_##_Tpvec& c) \
{ \
_Tpvec##x3_t v; \
@ -851,12 +1235,67 @@ OPENCV_HAL_IMPL_NEON_INTERLEAVED(int16x8, short, s16)
OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint32x4, unsigned, u32)
OPENCV_HAL_IMPL_NEON_INTERLEAVED(int32x4, int, s32)
OPENCV_HAL_IMPL_NEON_INTERLEAVED(float32x4, float, f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_INTERLEAVED(float64x2, double, f64)
#endif
inline v_float32x4 v_cvt_f32(const v_int32x4& a)
{
return v_float32x4(vcvtq_f32_s32(a.val));
}
#if CV_SIMD128_64F
inline v_float32x4 v_cvt_f32(const v_float64x2& a)
{
float32x2_t zero = vdup_n_f32(0.0f);
return v_float32x4(vcombine_f32(vcvt_f32_f64(a.val), zero));
}
inline v_float64x2 v_cvt_f64(const v_int32x4& a)
{
return v_float64x2(vcvt_f64_f32(vcvt_f32_s32(vget_low_s32(a.val))));
}
inline v_float64x2 v_cvt_f64_high(const v_int32x4& a)
{
return v_float64x2(vcvt_f64_f32(vcvt_f32_s32(vget_high_s32(a.val))));
}
inline v_float64x2 v_cvt_f64(const v_float32x4& a)
{
return v_float64x2(vcvt_f64_f32(vget_low_f32(a.val)));
}
inline v_float64x2 v_cvt_f64_high(const v_float32x4& a)
{
return v_float64x2(vcvt_f64_f32(vget_high_f32(a.val)));
}
#endif
#if CV_FP16
inline v_float32x4 v_cvt_f32(const v_float16x4& a)
{
return v_float32x4(vcvt_f32_f16(a.val));
}
inline v_float16x4 v_cvt_f16(const v_float32x4& a)
{
return v_float16x4(vcvt_f16_f32(a.val));
}
#endif
//! @name Check SIMD support
//! @{
//! @brief Check CPU capability of SIMD operation
static inline bool hasSIMD128()
{
return (CV_CPU_HAS_SUPPORT_NEON) ? true : false;
}
//! @}
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
//! @endcond
}

View file

@ -42,10 +42,11 @@
//
//M*/
#ifndef __OPENCV_HAL_SSE_HPP__
#define __OPENCV_HAL_SSE_HPP__
#ifndef OPENCV_HAL_SSE_HPP
#define OPENCV_HAL_SSE_HPP
#include <algorithm>
#include "opencv2/core/utility.hpp"
#define CV_SIMD128 1
#define CV_SIMD128_64F 1
@ -55,12 +56,14 @@ namespace cv
//! @cond IGNORED
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
struct v_uint8x16
{
typedef uchar lane_type;
enum { nlanes = 16 };
v_uint8x16() {}
v_uint8x16() : val(_mm_setzero_si128()) {}
explicit v_uint8x16(__m128i v) : val(v) {}
v_uint8x16(uchar v0, uchar v1, uchar v2, uchar v3, uchar v4, uchar v5, uchar v6, uchar v7,
uchar v8, uchar v9, uchar v10, uchar v11, uchar v12, uchar v13, uchar v14, uchar v15)
@ -83,7 +86,7 @@ struct v_int8x16
typedef schar lane_type;
enum { nlanes = 16 };
v_int8x16() {}
v_int8x16() : val(_mm_setzero_si128()) {}
explicit v_int8x16(__m128i v) : val(v) {}
v_int8x16(schar v0, schar v1, schar v2, schar v3, schar v4, schar v5, schar v6, schar v7,
schar v8, schar v9, schar v10, schar v11, schar v12, schar v13, schar v14, schar v15)
@ -106,7 +109,7 @@ struct v_uint16x8
typedef ushort lane_type;
enum { nlanes = 8 };
v_uint16x8() {}
v_uint16x8() : val(_mm_setzero_si128()) {}
explicit v_uint16x8(__m128i v) : val(v) {}
v_uint16x8(ushort v0, ushort v1, ushort v2, ushort v3, ushort v4, ushort v5, ushort v6, ushort v7)
{
@ -126,7 +129,7 @@ struct v_int16x8
typedef short lane_type;
enum { nlanes = 8 };
v_int16x8() {}
v_int16x8() : val(_mm_setzero_si128()) {}
explicit v_int16x8(__m128i v) : val(v) {}
v_int16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7)
{
@ -145,7 +148,7 @@ struct v_uint32x4
typedef unsigned lane_type;
enum { nlanes = 4 };
v_uint32x4() {}
v_uint32x4() : val(_mm_setzero_si128()) {}
explicit v_uint32x4(__m128i v) : val(v) {}
v_uint32x4(unsigned v0, unsigned v1, unsigned v2, unsigned v3)
{
@ -163,7 +166,7 @@ struct v_int32x4
typedef int lane_type;
enum { nlanes = 4 };
v_int32x4() {}
v_int32x4() : val(_mm_setzero_si128()) {}
explicit v_int32x4(__m128i v) : val(v) {}
v_int32x4(int v0, int v1, int v2, int v3)
{
@ -181,7 +184,7 @@ struct v_float32x4
typedef float lane_type;
enum { nlanes = 4 };
v_float32x4() {}
v_float32x4() : val(_mm_setzero_ps()) {}
explicit v_float32x4(__m128 v) : val(v) {}
v_float32x4(float v0, float v1, float v2, float v3)
{
@ -199,7 +202,7 @@ struct v_uint64x2
typedef uint64 lane_type;
enum { nlanes = 2 };
v_uint64x2() {}
v_uint64x2() : val(_mm_setzero_si128()) {}
explicit v_uint64x2(__m128i v) : val(v) {}
v_uint64x2(uint64 v0, uint64 v1)
{
@ -219,7 +222,7 @@ struct v_int64x2
typedef int64 lane_type;
enum { nlanes = 2 };
v_int64x2() {}
v_int64x2() : val(_mm_setzero_si128()) {}
explicit v_int64x2(__m128i v) : val(v) {}
v_int64x2(int64 v0, int64 v1)
{
@ -239,7 +242,7 @@ struct v_float64x2
typedef double lane_type;
enum { nlanes = 2 };
v_float64x2() {}
v_float64x2() : val(_mm_setzero_pd()) {}
explicit v_float64x2(__m128d v) : val(v) {}
v_float64x2(double v0, double v1)
{
@ -252,6 +255,26 @@ struct v_float64x2
__m128d val;
};
#if CV_FP16
struct v_float16x4
{
typedef short lane_type;
enum { nlanes = 4 };
v_float16x4() : val(_mm_setzero_si128()) {}
explicit v_float16x4(__m128i v) : val(v) {}
v_float16x4(short v0, short v1, short v2, short v3)
{
val = _mm_setr_epi16(v0, v1, v2, v3, 0, 0, 0, 0);
}
short get0() const
{
return (short)_mm_cvtsi128_si32(val);
}
__m128i val;
};
#endif
#define OPENCV_HAL_IMPL_SSE_INITVEC(_Tpvec, _Tp, suffix, zsuffix, ssuffix, _Tps, cast) \
inline _Tpvec v_setzero_##suffix() { return _Tpvec(_mm_setzero_##zsuffix()); } \
inline _Tpvec v_setall_##suffix(_Tp v) { return _Tpvec(_mm_set1_##ssuffix((_Tps)v)); } \
@ -579,6 +602,16 @@ inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0,
return v_float32x4(_mm_add_ps(_mm_add_ps(v0, v1), _mm_add_ps(v2, v3)));
}
inline v_float32x4 v_matmuladd(const v_float32x4& v, const v_float32x4& m0,
const v_float32x4& m1, const v_float32x4& m2,
const v_float32x4& a)
{
__m128 v0 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(0, 0, 0, 0)), m0.val);
__m128 v1 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(1, 1, 1, 1)), m1.val);
__m128 v2 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(2, 2, 2, 2)), m2.val);
return v_float32x4(_mm_add_ps(_mm_add_ps(v0, v1), _mm_add_ps(v2, a.val)));
}
#define OPENCV_HAL_IMPL_SSE_BIN_OP(bin_op, _Tpvec, intrin) \
inline _Tpvec operator bin_op (const _Tpvec& a, const _Tpvec& b) \
@ -719,6 +752,18 @@ inline v_float64x2 v_invsqrt(const v_float64x2& x)
return v_float64x2(_mm_div_pd(v_1, _mm_sqrt_pd(x.val)));
}
#define OPENCV_HAL_IMPL_SSE_ABS_INT_FUNC(_Tpuvec, _Tpsvec, func, suffix, subWidth) \
inline _Tpuvec v_abs(const _Tpsvec& x) \
{ return _Tpuvec(_mm_##func##_ep##suffix(x.val, _mm_sub_ep##subWidth(_mm_setzero_si128(), x.val))); }
OPENCV_HAL_IMPL_SSE_ABS_INT_FUNC(v_uint8x16, v_int8x16, min, u8, i8)
OPENCV_HAL_IMPL_SSE_ABS_INT_FUNC(v_uint16x8, v_int16x8, max, i16, i16)
inline v_uint32x4 v_abs(const v_int32x4& x)
{
__m128i s = _mm_srli_epi32(x.val, 31);
__m128i f = _mm_srai_epi32(x.val, 31);
return v_uint32x4(_mm_add_epi32(_mm_xor_si128(x.val, f), s));
}
inline v_float32x4 v_abs(const v_float32x4& x)
{ return v_float32x4(_mm_and_ps(x.val, _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff)))); }
inline v_float64x2 v_abs(const v_float64x2& x)
@ -864,6 +909,15 @@ inline _Tpvec operator >= (const _Tpvec& a, const _Tpvec& b) \
OPENCV_HAL_IMPL_SSE_FLT_CMP_OP(v_float32x4, ps)
OPENCV_HAL_IMPL_SSE_FLT_CMP_OP(v_float64x2, pd)
#define OPENCV_HAL_IMPL_SSE_64BIT_CMP_OP(_Tpvec, cast) \
inline _Tpvec operator == (const _Tpvec& a, const _Tpvec& b) \
{ return cast(v_reinterpret_as_f64(a) == v_reinterpret_as_f64(b)); } \
inline _Tpvec operator != (const _Tpvec& a, const _Tpvec& b) \
{ return cast(v_reinterpret_as_f64(a) != v_reinterpret_as_f64(b)); }
OPENCV_HAL_IMPL_SSE_64BIT_CMP_OP(v_uint64x2, v_reinterpret_as_u64);
OPENCV_HAL_IMPL_SSE_64BIT_CMP_OP(v_int64x2, v_reinterpret_as_s64);
OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_add_wrap, _mm_add_epi8)
OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int8x16, v_add_wrap, _mm_add_epi8)
OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint16x8, v_add_wrap, _mm_add_epi16)
@ -967,11 +1021,40 @@ OPENCV_HAL_IMPL_SSE_SHIFT_OP(v_uint16x8, v_int16x8, epi16, _mm_srai_epi16)
OPENCV_HAL_IMPL_SSE_SHIFT_OP(v_uint32x4, v_int32x4, epi32, _mm_srai_epi32)
OPENCV_HAL_IMPL_SSE_SHIFT_OP(v_uint64x2, v_int64x2, epi64, v_srai_epi64)
template<int imm, typename _Tpvec>
inline _Tpvec v_rotate_right(const _Tpvec &a)
{
enum { CV_SHIFT = imm*(sizeof(typename _Tpvec::lane_type)) };
return _Tpvec(_mm_srli_si128(a.val, CV_SHIFT));
}
template<int imm, typename _Tpvec>
inline _Tpvec v_rotate_left(const _Tpvec &a)
{
enum { CV_SHIFT = imm*(sizeof(typename _Tpvec::lane_type)) };
return _Tpvec(_mm_slli_si128(a.val, CV_SHIFT));
}
template<int imm, typename _Tpvec>
inline _Tpvec v_rotate_right(const _Tpvec &a, const _Tpvec &b)
{
enum { CV_SHIFT1 = imm*(sizeof(typename _Tpvec::lane_type)) };
enum { CV_SHIFT2 = 16 - imm*(sizeof(typename _Tpvec::lane_type)) };
return _Tpvec(_mm_or_si128(_mm_srli_si128(a.val, CV_SHIFT1), _mm_slli_si128(b.val, CV_SHIFT2)));
}
template<int imm, typename _Tpvec>
inline _Tpvec v_rotate_left(const _Tpvec &a, const _Tpvec &b)
{
enum { CV_SHIFT1 = imm*(sizeof(typename _Tpvec::lane_type)) };
enum { CV_SHIFT2 = 16 - imm*(sizeof(typename _Tpvec::lane_type)) };
return _Tpvec(_mm_or_si128(_mm_slli_si128(a.val, CV_SHIFT1), _mm_srli_si128(b.val, CV_SHIFT2)));
}
#define OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(_Tpvec, _Tp) \
inline _Tpvec v_load(const _Tp* ptr) \
{ return _Tpvec(_mm_loadu_si128((const __m128i*)ptr)); } \
inline _Tpvec v_load_aligned(const _Tp* ptr) \
{ return _Tpvec(_mm_load_si128((const __m128i*)ptr)); } \
inline _Tpvec v_load_low(const _Tp* ptr) \
{ return _Tpvec(_mm_loadl_epi64((const __m128i*)ptr)); } \
inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \
{ \
return _Tpvec(_mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i*)ptr0), \
@ -1000,6 +1083,8 @@ inline _Tpvec v_load(const _Tp* ptr) \
{ return _Tpvec(_mm_loadu_##suffix(ptr)); } \
inline _Tpvec v_load_aligned(const _Tp* ptr) \
{ return _Tpvec(_mm_load_##suffix(ptr)); } \
inline _Tpvec v_load_low(const _Tp* ptr) \
{ return _Tpvec(_mm_castsi128_##suffix(_mm_loadl_epi64((const __m128i*)ptr))); } \
inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \
{ \
return _Tpvec(_mm_castsi128_##suffix( \
@ -1021,6 +1106,62 @@ inline void v_store_high(_Tp* ptr, const _Tpvec& a) \
OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(v_float32x4, float, ps)
OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(v_float64x2, double, pd)
#if CV_FP16
inline v_float16x4 v_load_f16(const short* ptr)
{ return v_float16x4(_mm_loadl_epi64((const __m128i*)ptr)); }
inline void v_store_f16(short* ptr, v_float16x4& a)
{ _mm_storel_epi64((__m128i*)ptr, a.val); }
#endif
#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(_Tpvec, scalartype, func, suffix, sbit) \
inline scalartype v_reduce_##func(const v_##_Tpvec& a) \
{ \
__m128i val = a.val; \
val = _mm_##func##_##suffix(val, _mm_srli_si128(val,8)); \
val = _mm_##func##_##suffix(val, _mm_srli_si128(val,4)); \
val = _mm_##func##_##suffix(val, _mm_srli_si128(val,2)); \
return (scalartype)_mm_cvtsi128_si32(val); \
} \
inline unsigned scalartype v_reduce_##func(const v_u##_Tpvec& a) \
{ \
__m128i val = a.val; \
__m128i smask = _mm_set1_epi16(sbit); \
val = _mm_xor_si128(val, smask); \
val = _mm_##func##_##suffix(val, _mm_srli_si128(val,8)); \
val = _mm_##func##_##suffix(val, _mm_srli_si128(val,4)); \
val = _mm_##func##_##suffix(val, _mm_srli_si128(val,2)); \
return (unsigned scalartype)(_mm_cvtsi128_si32(val) ^ sbit); \
}
#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_8_SUM(_Tpvec, scalartype, suffix) \
inline scalartype v_reduce_sum(const v_##_Tpvec& a) \
{ \
__m128i val = a.val; \
val = _mm_adds_epi##suffix(val, _mm_srli_si128(val, 8)); \
val = _mm_adds_epi##suffix(val, _mm_srli_si128(val, 4)); \
val = _mm_adds_epi##suffix(val, _mm_srli_si128(val, 2)); \
return (scalartype)_mm_cvtsi128_si32(val); \
} \
inline unsigned scalartype v_reduce_sum(const v_u##_Tpvec& a) \
{ \
__m128i val = a.val; \
val = _mm_adds_epu##suffix(val, _mm_srli_si128(val, 8)); \
val = _mm_adds_epu##suffix(val, _mm_srli_si128(val, 4)); \
val = _mm_adds_epu##suffix(val, _mm_srli_si128(val, 2)); \
return (unsigned scalartype)_mm_cvtsi128_si32(val); \
}
OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(int16x8, short, max, epi16, (short)-32768)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(int16x8, short, min, epi16, (short)-32768)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_8_SUM(int16x8, short, 16)
#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_4_SUM(_Tpvec, scalartype, regtype, suffix, cast_from, cast_to, extract) \
inline scalartype v_reduce_sum(const _Tpvec& a) \
{ \
regtype val = a.val; \
val = _mm_add_##suffix(val, cast_to(_mm_srli_si128(cast_from(val), 8))); \
val = _mm_add_##suffix(val, cast_to(_mm_srli_si128(cast_from(val), 4))); \
return (scalartype)_mm_cvt##extract(val); \
}
#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(_Tpvec, scalartype, func, scalar_func) \
inline scalartype v_reduce_##func(const _Tpvec& a) \
{ \
@ -1031,16 +1172,53 @@ inline scalartype v_reduce_##func(const _Tpvec& a) \
return scalar_func(s0, s1); \
}
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_uint32x4, unsigned, sum, OPENCV_HAL_ADD)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4_SUM(v_uint32x4, unsigned, __m128i, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP, si128_si32)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4_SUM(v_int32x4, int, __m128i, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP, si128_si32)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4_SUM(v_float32x4, float, __m128, ps, _mm_castps_si128, _mm_castsi128_ps, ss_f32)
inline v_float32x4 v_reduce_sum4(const v_float32x4& a, const v_float32x4& b,
const v_float32x4& c, const v_float32x4& d)
{
#if CV_SSE3
__m128 ab = _mm_hadd_ps(a.val, b.val);
__m128 cd = _mm_hadd_ps(c.val, d.val);
return v_float32x4(_mm_hadd_ps(ab, cd));
#else
__m128 ac = _mm_add_ps(_mm_unpacklo_ps(a.val, c.val), _mm_unpackhi_ps(a.val, c.val));
__m128 bd = _mm_add_ps(_mm_unpacklo_ps(b.val, d.val), _mm_unpackhi_ps(b.val, d.val));
return v_float32x4(_mm_add_ps(_mm_unpacklo_ps(ac, bd), _mm_unpackhi_ps(ac, bd)));
#endif
}
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_uint32x4, unsigned, max, std::max)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_uint32x4, unsigned, min, std::min)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_int32x4, int, sum, OPENCV_HAL_ADD)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_int32x4, int, max, std::max)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_int32x4, int, min, std::min)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_float32x4, float, sum, OPENCV_HAL_ADD)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_float32x4, float, max, std::max)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_float32x4, float, min, std::min)
#define OPENCV_HAL_IMPL_SSE_POPCOUNT(_Tpvec) \
inline v_uint32x4 v_popcount(const _Tpvec& a) \
{ \
__m128i m1 = _mm_set1_epi32(0x55555555); \
__m128i m2 = _mm_set1_epi32(0x33333333); \
__m128i m4 = _mm_set1_epi32(0x0f0f0f0f); \
__m128i p = a.val; \
p = _mm_add_epi32(_mm_and_si128(_mm_srli_epi32(p, 1), m1), _mm_and_si128(p, m1)); \
p = _mm_add_epi32(_mm_and_si128(_mm_srli_epi32(p, 2), m2), _mm_and_si128(p, m2)); \
p = _mm_add_epi32(_mm_and_si128(_mm_srli_epi32(p, 4), m4), _mm_and_si128(p, m4)); \
p = _mm_adds_epi8(p, _mm_srli_si128(p, 1)); \
p = _mm_adds_epi8(p, _mm_srli_si128(p, 2)); \
return v_uint32x4(_mm_and_si128(p, _mm_set1_epi32(0x000000ff))); \
}
OPENCV_HAL_IMPL_SSE_POPCOUNT(v_uint8x16)
OPENCV_HAL_IMPL_SSE_POPCOUNT(v_uint16x8)
OPENCV_HAL_IMPL_SSE_POPCOUNT(v_uint32x4)
OPENCV_HAL_IMPL_SSE_POPCOUNT(v_int8x16)
OPENCV_HAL_IMPL_SSE_POPCOUNT(v_int16x8)
OPENCV_HAL_IMPL_SSE_POPCOUNT(v_int32x4)
#define OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(_Tpvec, suffix, pack_op, and_op, signmask, allmask) \
inline int v_signmask(const _Tpvec& a) \
{ \
@ -1256,6 +1434,24 @@ OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(v_int32x4, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NO
OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(v_float32x4, ps, _mm_castps_si128, _mm_castsi128_ps)
// adopted from sse_utils.hpp
inline void v_load_deinterleave(const uchar* ptr, v_uint8x16& a, v_uint8x16& b)
{
__m128i t00 = _mm_loadu_si128((const __m128i*)ptr);
__m128i t01 = _mm_loadu_si128((const __m128i*)(ptr + 16));
__m128i t10 = _mm_unpacklo_epi8(t00, t01);
__m128i t11 = _mm_unpackhi_epi8(t00, t01);
__m128i t20 = _mm_unpacklo_epi8(t10, t11);
__m128i t21 = _mm_unpackhi_epi8(t10, t11);
__m128i t30 = _mm_unpacklo_epi8(t20, t21);
__m128i t31 = _mm_unpackhi_epi8(t20, t21);
a.val = _mm_unpacklo_epi8(t30, t31);
b.val = _mm_unpackhi_epi8(t30, t31);
}
inline void v_load_deinterleave(const uchar* ptr, v_uint8x16& a, v_uint8x16& b, v_uint8x16& c)
{
__m128i t00 = _mm_loadu_si128((const __m128i*)ptr);
@ -1374,6 +1570,65 @@ inline void v_load_deinterleave(const unsigned* ptr, v_uint32x4& a, v_uint32x4&
v_transpose4x4(u0, u1, u2, u3, a, b, c, d);
}
inline void v_load_deinterleave(const uint64 *ptr, v_uint64x2& a, v_uint64x2& b, v_uint64x2& c)
{
__m128i t0 = _mm_loadu_si128((const __m128i*)ptr);
__m128i t1 = _mm_loadu_si128((const __m128i*)(ptr + 2));
__m128i t2 = _mm_loadu_si128((const __m128i*)(ptr + 4));
a = v_uint64x2(_mm_unpacklo_epi64(t0, _mm_unpackhi_epi64(t1, t1)));
b = v_uint64x2(_mm_unpacklo_epi64(_mm_unpackhi_epi64(t0, t0), t2));
c = v_uint64x2(_mm_unpacklo_epi64(t1, _mm_unpackhi_epi64(t2, t2)));
}
inline void v_load_deinterleave(const int64 *ptr, v_int64x2& a, v_int64x2& b, v_int64x2& c)
{
v_uint64x2 t0, t1, t2;
v_load_deinterleave((const uint64*)ptr, t0, t1, t2);
a = v_reinterpret_as_s64(t0);
b = v_reinterpret_as_s64(t1);
c = v_reinterpret_as_s64(t2);
}
inline void v_load_deinterleave(const double *ptr, v_float64x2& a, v_float64x2& b, v_float64x2& c)
{
v_uint64x2 t0, t1, t2;
v_load_deinterleave((const uint64*)ptr, t0, t1, t2);
a = v_reinterpret_as_f64(t0);
b = v_reinterpret_as_f64(t1);
c = v_reinterpret_as_f64(t2);
}
// 2-channel, float only
inline void v_load_deinterleave(const float* ptr, v_float32x4& a, v_float32x4& b)
{
const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1);
__m128 u0 = _mm_loadu_ps(ptr); // a0 b0 a1 b1
__m128 u1 = _mm_loadu_ps((ptr + 4)); // a2 b2 a3 b3
a.val = _mm_shuffle_ps(u0, u1, mask_lo); // a0 a1 a2 a3
b.val = _mm_shuffle_ps(u0, u1, mask_hi); // b0 b1 ab b3
}
inline void v_store_interleave( short* ptr, const v_int16x8& a, const v_int16x8& b )
{
__m128i t0, t1;
t0 = _mm_unpacklo_epi16(a.val, b.val);
t1 = _mm_unpackhi_epi16(a.val, b.val);
_mm_storeu_si128((__m128i*)(ptr), t0);
_mm_storeu_si128((__m128i*)(ptr + 8), t1);
}
inline void v_store_interleave( uchar* ptr, const v_uint8x16& a, const v_uint8x16& b)
{
__m128i v0 = _mm_unpacklo_epi8(a.val, b.val);
__m128i v1 = _mm_unpackhi_epi8(a.val, b.val);
_mm_storeu_si128((__m128i*)(ptr), v0);
_mm_storeu_si128((__m128i*)(ptr + 16), v1);
}
inline void v_store_interleave( uchar* ptr, const v_uint8x16& a, const v_uint8x16& b,
const v_uint8x16& c )
{
@ -1529,6 +1784,39 @@ inline void v_store_interleave(unsigned* ptr, const v_uint32x4& a, const v_uint3
v_store(ptr + 12, t3);
}
// 2-channel, float only
inline void v_store_interleave(float* ptr, const v_float32x4& a, const v_float32x4& b)
{
// a0 a1 a2 a3 ...
// b0 b1 b2 b3 ...
__m128 u0 = _mm_unpacklo_ps(a.val, b.val); // a0 b0 a1 b1
__m128 u1 = _mm_unpackhi_ps(a.val, b.val); // a2 b2 a3 b3
_mm_storeu_ps(ptr, u0);
_mm_storeu_ps((ptr + 4), u1);
}
inline void v_store_interleave(uint64 *ptr, const v_uint64x2& a, const v_uint64x2& b, const v_uint64x2& c)
{
__m128i t0 = _mm_unpacklo_epi64(a.val, b.val);
__m128i t1 = _mm_unpacklo_epi64(c.val, _mm_unpackhi_epi64(a.val, a.val));
__m128i t2 = _mm_unpackhi_epi64(b.val, c.val);
_mm_storeu_si128((__m128i*)ptr, t0);
_mm_storeu_si128((__m128i*)(ptr + 2), t1);
_mm_storeu_si128((__m128i*)(ptr + 4), t2);
}
inline void v_store_interleave(int64 *ptr, const v_int64x2& a, const v_int64x2& b, const v_int64x2& c)
{
v_store_interleave((uint64*)ptr, v_reinterpret_as_u64(a), v_reinterpret_as_u64(b), v_reinterpret_as_u64(c));
}
inline void v_store_interleave(double *ptr, const v_float64x2& a, const v_float64x2& b, const v_float64x2& c)
{
v_store_interleave((uint64*)ptr, v_reinterpret_as_u64(a), v_reinterpret_as_u64(b), v_reinterpret_as_u64(c));
}
#define OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(_Tpvec, _Tp, suffix, _Tpuvec, _Tpu, usuffix) \
inline void v_load_deinterleave( const _Tp* ptr, _Tpvec& a0, \
_Tpvec& b0, _Tpvec& c0 ) \
@ -1587,11 +1875,45 @@ inline v_float64x2 v_cvt_f64(const v_int32x4& a)
return v_float64x2(_mm_cvtepi32_pd(a.val));
}
inline v_float64x2 v_cvt_f64_high(const v_int32x4& a)
{
return v_float64x2(_mm_cvtepi32_pd(_mm_srli_si128(a.val,8)));
}
inline v_float64x2 v_cvt_f64(const v_float32x4& a)
{
return v_float64x2(_mm_cvtps_pd(a.val));
}
inline v_float64x2 v_cvt_f64_high(const v_float32x4& a)
{
return v_float64x2(_mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(a.val),8))));
}
#if CV_FP16
inline v_float32x4 v_cvt_f32(const v_float16x4& a)
{
return v_float32x4(_mm_cvtph_ps(a.val));
}
inline v_float16x4 v_cvt_f16(const v_float32x4& a)
{
return v_float16x4(_mm_cvtps_ph(a.val, 0));
}
#endif
//! @name Check SIMD support
//! @{
//! @brief Check CPU capability of SIMD operation
static inline bool hasSIMD128()
{
return (CV_CPU_HAS_SUPPORT_SSE2) ? true : false;
}
//! @}
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
//! @endcond
}

View file

@ -0,0 +1,962 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_HAL_VSX_HPP
#define OPENCV_HAL_VSX_HPP
#include <algorithm>
#include "opencv2/core/utility.hpp"
#define CV_SIMD128 1
#define CV_SIMD128_64F 1
/**
* todo: supporting half precision for power9
* convert instractions xvcvhpsp, xvcvsphp
**/
namespace cv
{
//! @cond IGNORED
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
///////// Types ////////////
struct v_uint8x16
{
typedef uchar lane_type;
enum { nlanes = 16 };
vec_uchar16 val;
explicit v_uint8x16(const vec_uchar16& v) : val(v)
{}
v_uint8x16() : val(vec_uchar16_z)
{}
v_uint8x16(vec_bchar16 v) : val(vec_uchar16_c(v))
{}
v_uint8x16(uchar v0, uchar v1, uchar v2, uchar v3, uchar v4, uchar v5, uchar v6, uchar v7,
uchar v8, uchar v9, uchar v10, uchar v11, uchar v12, uchar v13, uchar v14, uchar v15)
: val(vec_uchar16_set(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15))
{}
uchar get0() const
{ return vec_extract(val, 0); }
};
struct v_int8x16
{
typedef schar lane_type;
enum { nlanes = 16 };
vec_char16 val;
explicit v_int8x16(const vec_char16& v) : val(v)
{}
v_int8x16() : val(vec_char16_z)
{}
v_int8x16(vec_bchar16 v) : val(vec_char16_c(v))
{}
v_int8x16(schar v0, schar v1, schar v2, schar v3, schar v4, schar v5, schar v6, schar v7,
schar v8, schar v9, schar v10, schar v11, schar v12, schar v13, schar v14, schar v15)
: val(vec_char16_set(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15))
{}
schar get0() const
{ return vec_extract(val, 0); }
};
struct v_uint16x8
{
typedef ushort lane_type;
enum { nlanes = 8 };
vec_ushort8 val;
explicit v_uint16x8(const vec_ushort8& v) : val(v)
{}
v_uint16x8() : val(vec_ushort8_z)
{}
v_uint16x8(vec_bshort8 v) : val(vec_ushort8_c(v))
{}
v_uint16x8(ushort v0, ushort v1, ushort v2, ushort v3, ushort v4, ushort v5, ushort v6, ushort v7)
: val(vec_ushort8_set(v0, v1, v2, v3, v4, v5, v6, v7))
{}
ushort get0() const
{ return vec_extract(val, 0); }
};
struct v_int16x8
{
typedef short lane_type;
enum { nlanes = 8 };
vec_short8 val;
explicit v_int16x8(const vec_short8& v) : val(v)
{}
v_int16x8() : val(vec_short8_z)
{}
v_int16x8(vec_bshort8 v) : val(vec_short8_c(v))
{}
v_int16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7)
: val(vec_short8_set(v0, v1, v2, v3, v4, v5, v6, v7))
{}
short get0() const
{ return vec_extract(val, 0); }
};
struct v_uint32x4
{
typedef unsigned lane_type;
enum { nlanes = 4 };
vec_uint4 val;
explicit v_uint32x4(const vec_uint4& v) : val(v)
{}
v_uint32x4() : val(vec_uint4_z)
{}
v_uint32x4(vec_bint4 v) : val(vec_uint4_c(v))
{}
v_uint32x4(unsigned v0, unsigned v1, unsigned v2, unsigned v3) : val(vec_uint4_set(v0, v1, v2, v3))
{}
uint get0() const
{ return vec_extract(val, 0); }
};
struct v_int32x4
{
typedef int lane_type;
enum { nlanes = 4 };
vec_int4 val;
explicit v_int32x4(const vec_int4& v) : val(v)
{}
v_int32x4() : val(vec_int4_z)
{}
v_int32x4(vec_bint4 v) : val(vec_int4_c(v))
{}
v_int32x4(int v0, int v1, int v2, int v3) : val(vec_int4_set(v0, v1, v2, v3))
{}
int get0() const
{ return vec_extract(val, 0); }
};
struct v_float32x4
{
typedef float lane_type;
enum { nlanes = 4 };
vec_float4 val;
explicit v_float32x4(const vec_float4& v) : val(v)
{}
v_float32x4() : val(vec_float4_z)
{}
v_float32x4(vec_bint4 v) : val(vec_float4_c(v))
{}
v_float32x4(float v0, float v1, float v2, float v3) : val(vec_float4_set(v0, v1, v2, v3))
{}
float get0() const
{ return vec_extract(val, 0); }
};
struct v_uint64x2
{
typedef uint64 lane_type;
enum { nlanes = 2 };
vec_udword2 val;
explicit v_uint64x2(const vec_udword2& v) : val(v)
{}
v_uint64x2() : val(vec_udword2_z)
{}
v_uint64x2(vec_bdword2 v) : val(vec_udword2_c(v))
{}
v_uint64x2(uint64 v0, uint64 v1) : val(vec_udword2_set(v0, v1))
{}
uint64 get0() const
{ return vec_extract(val, 0); }
};
struct v_int64x2
{
typedef int64 lane_type;
enum { nlanes = 2 };
vec_dword2 val;
explicit v_int64x2(const vec_dword2& v) : val(v)
{}
v_int64x2() : val(vec_dword2_z)
{}
v_int64x2(vec_bdword2 v) : val(vec_dword2_c(v))
{}
v_int64x2(int64 v0, int64 v1) : val(vec_dword2_set(v0, v1))
{}
int64 get0() const
{ return vec_extract(val, 0); }
};
struct v_float64x2
{
typedef double lane_type;
enum { nlanes = 2 };
vec_double2 val;
explicit v_float64x2(const vec_double2& v) : val(v)
{}
v_float64x2() : val(vec_double2_z)
{}
v_float64x2(vec_bdword2 v) : val(vec_double2_c(v))
{}
v_float64x2(double v0, double v1) : val(vec_double2_set(v0, v1))
{}
double get0() const
{ return vec_extract(val, 0); }
};
//////////////// Load and store operations ///////////////
/*
* clang-5 aborted during parse "vec_xxx_c" only if it's
* inside a function template which is defined by preprocessor macro.
*
* if vec_xxx_c defined as C++ cast, clang-5 will pass it
*/
#define OPENCV_HAL_IMPL_VSX_INITVEC(_Tpvec, _Tp, suffix, cast) \
inline _Tpvec v_setzero_##suffix() { return _Tpvec(); } \
inline _Tpvec v_setall_##suffix(_Tp v) { return _Tpvec(vec_splats((_Tp)v));} \
template<typename _Tpvec0> inline _Tpvec v_reinterpret_as_##suffix(const _Tpvec0 &a) \
{ return _Tpvec((cast)a.val); }
OPENCV_HAL_IMPL_VSX_INITVEC(v_uint8x16, uchar, u8, vec_uchar16)
OPENCV_HAL_IMPL_VSX_INITVEC(v_int8x16, schar, s8, vec_char16)
OPENCV_HAL_IMPL_VSX_INITVEC(v_uint16x8, ushort, u16, vec_ushort8)
OPENCV_HAL_IMPL_VSX_INITVEC(v_int16x8, short, s16, vec_short8)
OPENCV_HAL_IMPL_VSX_INITVEC(v_uint32x4, uint, u32, vec_uint4)
OPENCV_HAL_IMPL_VSX_INITVEC(v_int32x4, int, s32, vec_int4)
OPENCV_HAL_IMPL_VSX_INITVEC(v_uint64x2, uint64, u64, vec_udword2)
OPENCV_HAL_IMPL_VSX_INITVEC(v_int64x2, int64, s64, vec_dword2)
OPENCV_HAL_IMPL_VSX_INITVEC(v_float32x4, float, f32, vec_float4)
OPENCV_HAL_IMPL_VSX_INITVEC(v_float64x2, double, f64, vec_double2)
#define OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(_Tpvec, _Tp, ld_func, st_func) \
inline _Tpvec v_load(const _Tp* ptr) \
{ return _Tpvec(ld_func(0, ptr)); } \
inline _Tpvec v_load_aligned(const _Tp* ptr) \
{ return _Tpvec(ld_func(0, ptr)); } \
inline _Tpvec v_load_low(const _Tp* ptr) \
{ return _Tpvec(vec_ld_l8(ptr)); } \
inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \
{ return _Tpvec(vec_mergesqh(vec_ld_l8(ptr0), vec_ld_l8(ptr1))); } \
inline void v_store(_Tp* ptr, const _Tpvec& a) \
{ st_func(a.val, 0, ptr); } \
inline void v_store_aligned(_Tp* ptr, const _Tpvec& a) \
{ st_func(a.val, 0, ptr); } \
inline void v_store_low(_Tp* ptr, const _Tpvec& a) \
{ vec_st_l8(a.val, ptr); } \
inline void v_store_high(_Tp* ptr, const _Tpvec& a) \
{ vec_st_h8(a.val, ptr); }
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_uint8x16, uchar, vsx_ld, vsx_st)
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_int8x16, schar, vsx_ld, vsx_st)
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_uint16x8, ushort, vsx_ld, vsx_st)
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_int16x8, short, vsx_ld, vsx_st)
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_uint32x4, uint, vsx_ld, vsx_st)
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_int32x4, int, vsx_ld, vsx_st)
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_float32x4, float, vsx_ld, vsx_st)
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_float64x2, double, vsx_ld, vsx_st)
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_uint64x2, uint64, vsx_ld2, vsx_st2)
OPENCV_HAL_IMPL_VSX_LOADSTORE_INT_OP(v_int64x2, int64, vsx_ld2, vsx_st2)
//////////////// Value reordering ///////////////
/* de&interleave */
#define OPENCV_HAL_IMPL_VSX_INTERLEAVE(_Tp, _Tpvec) \
inline void v_load_deinterleave(const _Tp* ptr, _Tpvec& a, _Tpvec& b) \
{ vec_ld_deinterleave(ptr, a.val, b.val);} \
inline void v_load_deinterleave(const _Tp* ptr, _Tpvec& a, \
_Tpvec& b, _Tpvec& c) \
{ vec_ld_deinterleave(ptr, a.val, b.val, c.val); } \
inline void v_load_deinterleave(const _Tp* ptr, _Tpvec& a, _Tpvec& b, \
_Tpvec& c, _Tpvec& d) \
{ vec_ld_deinterleave(ptr, a.val, b.val, c.val, d.val); } \
inline void v_store_interleave(_Tp* ptr, const _Tpvec& a, const _Tpvec& b) \
{ vec_st_interleave(a.val, b.val, ptr); } \
inline void v_store_interleave(_Tp* ptr, const _Tpvec& a, \
const _Tpvec& b, const _Tpvec& c) \
{ vec_st_interleave(a.val, b.val, c.val, ptr); } \
inline void v_store_interleave(_Tp* ptr, const _Tpvec& a, const _Tpvec& b, \
const _Tpvec& c, const _Tpvec& d) \
{ vec_st_interleave(a.val, b.val, c.val, d.val, ptr); }
OPENCV_HAL_IMPL_VSX_INTERLEAVE(uchar, v_uint8x16)
OPENCV_HAL_IMPL_VSX_INTERLEAVE(schar, v_int8x16)
OPENCV_HAL_IMPL_VSX_INTERLEAVE(ushort, v_uint16x8)
OPENCV_HAL_IMPL_VSX_INTERLEAVE(short, v_int16x8)
OPENCV_HAL_IMPL_VSX_INTERLEAVE(uint, v_uint32x4)
OPENCV_HAL_IMPL_VSX_INTERLEAVE(int, v_int32x4)
OPENCV_HAL_IMPL_VSX_INTERLEAVE(float, v_float32x4)
OPENCV_HAL_IMPL_VSX_INTERLEAVE(double, v_float64x2)
/* Expand */
#define OPENCV_HAL_IMPL_VSX_EXPAND(_Tpvec, _Tpwvec, _Tp, fl, fh) \
inline void v_expand(const _Tpvec& a, _Tpwvec& b0, _Tpwvec& b1) \
{ \
b0.val = fh(a.val); \
b1.val = fl(a.val); \
} \
inline _Tpwvec v_load_expand(const _Tp* ptr) \
{ return _Tpwvec(fh(vsx_ld(0, ptr))); }
OPENCV_HAL_IMPL_VSX_EXPAND(v_uint8x16, v_uint16x8, uchar, vec_unpacklu, vec_unpackhu)
OPENCV_HAL_IMPL_VSX_EXPAND(v_int8x16, v_int16x8, schar, vec_unpackl, vec_unpackh)
OPENCV_HAL_IMPL_VSX_EXPAND(v_uint16x8, v_uint32x4, ushort, vec_unpacklu, vec_unpackhu)
OPENCV_HAL_IMPL_VSX_EXPAND(v_int16x8, v_int32x4, short, vec_unpackl, vec_unpackh)
OPENCV_HAL_IMPL_VSX_EXPAND(v_uint32x4, v_uint64x2, uint, vec_unpacklu, vec_unpackhu)
OPENCV_HAL_IMPL_VSX_EXPAND(v_int32x4, v_int64x2, int, vec_unpackl, vec_unpackh)
inline v_uint32x4 v_load_expand_q(const uchar* ptr)
{ return v_uint32x4(vec_ld_buw(ptr)); }
inline v_int32x4 v_load_expand_q(const schar* ptr)
{ return v_int32x4(vec_ld_bsw(ptr)); }
/* pack */
#define OPENCV_HAL_IMPL_VSX_PACK(_Tpvec, _Tp, _Tpwvec, _Tpvn, _Tpdel, sfnc, pkfnc, addfnc, pack) \
inline _Tpvec v_##pack(const _Tpwvec& a, const _Tpwvec& b) \
{ \
return _Tpvec(pkfnc(a.val, b.val)); \
} \
inline void v_##pack##_store(_Tp* ptr, const _Tpwvec& a) \
{ \
vec_st_l8(pkfnc(a.val, a.val), ptr); \
} \
template<int n> \
inline _Tpvec v_rshr_##pack(const _Tpwvec& a, const _Tpwvec& b) \
{ \
const __vector _Tpvn vn = vec_splats((_Tpvn)n); \
const __vector _Tpdel delta = vec_splats((_Tpdel)((_Tpdel)1 << (n-1))); \
return _Tpvec(pkfnc(sfnc(addfnc(a.val, delta), vn), sfnc(addfnc(b.val, delta), vn))); \
} \
template<int n> \
inline void v_rshr_##pack##_store(_Tp* ptr, const _Tpwvec& a) \
{ \
const __vector _Tpvn vn = vec_splats((_Tpvn)n); \
const __vector _Tpdel delta = vec_splats((_Tpdel)((_Tpdel)1 << (n-1))); \
vec_st_l8(pkfnc(sfnc(addfnc(a.val, delta), vn), delta), ptr); \
}
OPENCV_HAL_IMPL_VSX_PACK(v_uint8x16, uchar, v_uint16x8, unsigned short, unsigned short,
vec_sr, vec_packs, vec_adds, pack)
OPENCV_HAL_IMPL_VSX_PACK(v_int8x16, schar, v_int16x8, unsigned short, short,
vec_sra, vec_packs, vec_adds, pack)
OPENCV_HAL_IMPL_VSX_PACK(v_uint16x8, ushort, v_uint32x4, unsigned int, unsigned int,
vec_sr, vec_packs, vec_add, pack)
OPENCV_HAL_IMPL_VSX_PACK(v_int16x8, short, v_int32x4, unsigned int, int,
vec_sra, vec_packs, vec_add, pack)
OPENCV_HAL_IMPL_VSX_PACK(v_uint32x4, uint, v_uint64x2, unsigned long long, unsigned long long,
vec_sr, vec_pack, vec_add, pack)
OPENCV_HAL_IMPL_VSX_PACK(v_int32x4, int, v_int64x2, unsigned long long, long long,
vec_sra, vec_pack, vec_add, pack)
OPENCV_HAL_IMPL_VSX_PACK(v_uint8x16, uchar, v_int16x8, unsigned short, short,
vec_sra, vec_packsu, vec_adds, pack_u)
OPENCV_HAL_IMPL_VSX_PACK(v_uint16x8, ushort, v_int32x4, unsigned int, int,
vec_sra, vec_packsu, vec_add, pack_u)
// Following variant is not implemented on other platforms:
//OPENCV_HAL_IMPL_VSX_PACK(v_uint32x4, uint, v_int64x2, unsigned long long, long long,
// vec_sra, vec_packsu, vec_add, pack_u)
/* Recombine */
template <typename _Tpvec>
inline void v_zip(const _Tpvec& a0, const _Tpvec& a1, _Tpvec& b0, _Tpvec& b1)
{
b0.val = vec_mergeh(a0.val, a1.val);
b1.val = vec_mergel(a0.val, a1.val);
}
template <typename _Tpvec>
inline _Tpvec v_combine_high(const _Tpvec& a, const _Tpvec& b)
{ return _Tpvec(vec_mergesql(a.val, b.val)); }
template <typename _Tpvec>
inline _Tpvec v_combine_low(const _Tpvec& a, const _Tpvec& b)
{ return _Tpvec(vec_mergesqh(a.val, b.val)); }
template <typename _Tpvec>
inline void v_recombine(const _Tpvec& a, const _Tpvec& b, _Tpvec& c, _Tpvec& d)
{
c.val = vec_mergesqh(a.val, b.val);
d.val = vec_mergesql(a.val, b.val);
}
/* Extract */
template<int s, typename _Tpvec>
inline _Tpvec v_extract(const _Tpvec& a, const _Tpvec& b)
{
const int w = sizeof(typename _Tpvec::lane_type);
const int n = _Tpvec::nlanes;
const unsigned int sf = ((w * n) - (s * w));
if (s == 0)
return _Tpvec(a.val);
else if (sf > 15)
return _Tpvec();
// bitwise it just to make xlc happy
return _Tpvec(vec_sld(b.val, a.val, sf & 15));
}
#define OPENCV_HAL_IMPL_VSX_EXTRACT_2(_Tpvec) \
template<int s> \
inline _Tpvec v_extract(const _Tpvec& a, const _Tpvec& b) \
{ \
switch(s) { \
case 0: return _Tpvec(a.val); \
case 2: return _Tpvec(b.val); \
case 1: return _Tpvec(vec_sldw(b.val, a.val, 2)); \
default: return _Tpvec(); \
} \
}
OPENCV_HAL_IMPL_VSX_EXTRACT_2(v_uint64x2)
OPENCV_HAL_IMPL_VSX_EXTRACT_2(v_int64x2)
////////// Arithmetic, bitwise and comparison operations /////////
/* Element-wise binary and unary operations */
/** Arithmetics **/
#define OPENCV_HAL_IMPL_VSX_BIN_OP(bin_op, _Tpvec, intrin) \
inline _Tpvec operator bin_op (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(intrin(a.val, b.val)); } \
inline _Tpvec& operator bin_op##= (_Tpvec& a, const _Tpvec& b) \
{ a.val = intrin(a.val, b.val); return a; }
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_uint8x16, vec_adds)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_uint8x16, vec_subs)
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_int8x16, vec_adds)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_int8x16, vec_subs)
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_uint16x8, vec_adds)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_uint16x8, vec_subs)
OPENCV_HAL_IMPL_VSX_BIN_OP(*, v_uint16x8, vec_mul)
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_int16x8, vec_adds)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_int16x8, vec_subs)
OPENCV_HAL_IMPL_VSX_BIN_OP(*, v_int16x8, vec_mul)
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_uint32x4, vec_add)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_uint32x4, vec_sub)
OPENCV_HAL_IMPL_VSX_BIN_OP(*, v_uint32x4, vec_mul)
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_int32x4, vec_add)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_int32x4, vec_sub)
OPENCV_HAL_IMPL_VSX_BIN_OP(*, v_int32x4, vec_mul)
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_float32x4, vec_add)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_float32x4, vec_sub)
OPENCV_HAL_IMPL_VSX_BIN_OP(*, v_float32x4, vec_mul)
OPENCV_HAL_IMPL_VSX_BIN_OP(/, v_float32x4, vec_div)
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_float64x2, vec_add)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_float64x2, vec_sub)
OPENCV_HAL_IMPL_VSX_BIN_OP(*, v_float64x2, vec_mul)
OPENCV_HAL_IMPL_VSX_BIN_OP(/, v_float64x2, vec_div)
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_uint64x2, vec_add)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_uint64x2, vec_sub)
OPENCV_HAL_IMPL_VSX_BIN_OP(+, v_int64x2, vec_add)
OPENCV_HAL_IMPL_VSX_BIN_OP(-, v_int64x2, vec_sub)
inline void v_mul_expand(const v_int16x8& a, const v_int16x8& b, v_int32x4& c, v_int32x4& d)
{
c.val = vec_mul(vec_unpackh(a.val), vec_unpackh(b.val));
d.val = vec_mul(vec_unpackl(a.val), vec_unpackl(b.val));
}
inline void v_mul_expand(const v_uint16x8& a, const v_uint16x8& b, v_uint32x4& c, v_uint32x4& d)
{
c.val = vec_mul(vec_unpackhu(a.val), vec_unpackhu(b.val));
d.val = vec_mul(vec_unpacklu(a.val), vec_unpacklu(b.val));
}
inline void v_mul_expand(const v_uint32x4& a, const v_uint32x4& b, v_uint64x2& c, v_uint64x2& d)
{
c.val = vec_mul(vec_unpackhu(a.val), vec_unpackhu(b.val));
d.val = vec_mul(vec_unpacklu(a.val), vec_unpacklu(b.val));
}
/** Non-saturating arithmetics **/
#define OPENCV_HAL_IMPL_VSX_BIN_FUNC(func, intrin) \
template<typename _Tpvec> \
inline _Tpvec func(const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(intrin(a.val, b.val)); }
OPENCV_HAL_IMPL_VSX_BIN_FUNC(v_add_wrap, vec_add)
OPENCV_HAL_IMPL_VSX_BIN_FUNC(v_sub_wrap, vec_sub)
/** Bitwise shifts **/
#define OPENCV_HAL_IMPL_VSX_SHIFT_OP(_Tpvec, shr, splfunc) \
inline _Tpvec operator << (const _Tpvec& a, int imm) \
{ return _Tpvec(vec_sl(a.val, splfunc(imm))); } \
inline _Tpvec operator >> (const _Tpvec& a, int imm) \
{ return _Tpvec(shr(a.val, splfunc(imm))); } \
template<int imm> inline _Tpvec v_shl(const _Tpvec& a) \
{ return _Tpvec(vec_sl(a.val, splfunc(imm))); } \
template<int imm> inline _Tpvec v_shr(const _Tpvec& a) \
{ return _Tpvec(shr(a.val, splfunc(imm))); }
OPENCV_HAL_IMPL_VSX_SHIFT_OP(v_uint8x16, vec_sr, vec_uchar16_sp)
OPENCV_HAL_IMPL_VSX_SHIFT_OP(v_uint16x8, vec_sr, vec_ushort8_sp)
OPENCV_HAL_IMPL_VSX_SHIFT_OP(v_uint32x4, vec_sr, vec_uint4_sp)
OPENCV_HAL_IMPL_VSX_SHIFT_OP(v_uint64x2, vec_sr, vec_udword2_sp)
// algebraic right shift
OPENCV_HAL_IMPL_VSX_SHIFT_OP(v_int8x16, vec_sra, vec_uchar16_sp)
OPENCV_HAL_IMPL_VSX_SHIFT_OP(v_int16x8, vec_sra, vec_ushort8_sp)
OPENCV_HAL_IMPL_VSX_SHIFT_OP(v_int32x4, vec_sra, vec_uint4_sp)
OPENCV_HAL_IMPL_VSX_SHIFT_OP(v_int64x2, vec_sra, vec_udword2_sp)
/** Bitwise logic **/
#define OPENCV_HAL_IMPL_VSX_LOGIC_OP(_Tpvec) \
OPENCV_HAL_IMPL_VSX_BIN_OP(&, _Tpvec, vec_and) \
OPENCV_HAL_IMPL_VSX_BIN_OP(|, _Tpvec, vec_or) \
OPENCV_HAL_IMPL_VSX_BIN_OP(^, _Tpvec, vec_xor) \
inline _Tpvec operator ~ (const _Tpvec& a) \
{ return _Tpvec(vec_not(a.val)); }
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_uint8x16)
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_int8x16)
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_uint16x8)
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_int16x8)
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_uint32x4)
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_int32x4)
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_uint64x2)
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_int64x2)
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_float32x4)
OPENCV_HAL_IMPL_VSX_LOGIC_OP(v_float64x2)
/** Bitwise select **/
#define OPENCV_HAL_IMPL_VSX_SELECT(_Tpvec, cast) \
inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vec_sel(b.val, a.val, cast(mask.val))); }
OPENCV_HAL_IMPL_VSX_SELECT(v_uint8x16, vec_bchar16_c)
OPENCV_HAL_IMPL_VSX_SELECT(v_int8x16, vec_bchar16_c)
OPENCV_HAL_IMPL_VSX_SELECT(v_uint16x8, vec_bshort8_c)
OPENCV_HAL_IMPL_VSX_SELECT(v_int16x8, vec_bshort8_c)
OPENCV_HAL_IMPL_VSX_SELECT(v_uint32x4, vec_bint4_c)
OPENCV_HAL_IMPL_VSX_SELECT(v_int32x4, vec_bint4_c)
OPENCV_HAL_IMPL_VSX_SELECT(v_float32x4, vec_bint4_c)
OPENCV_HAL_IMPL_VSX_SELECT(v_float64x2, vec_bdword2_c)
/** Comparison **/
#define OPENCV_HAL_IMPL_VSX_INT_CMP_OP(_Tpvec) \
inline _Tpvec operator == (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vec_cmpeq(a.val, b.val)); } \
inline _Tpvec operator != (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vec_cmpne(a.val, b.val)); } \
inline _Tpvec operator < (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vec_cmplt(a.val, b.val)); } \
inline _Tpvec operator > (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vec_cmpgt(a.val, b.val)); } \
inline _Tpvec operator <= (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vec_cmple(a.val, b.val)); } \
inline _Tpvec operator >= (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vec_cmpge(a.val, b.val)); }
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_uint8x16)
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_int8x16)
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_uint16x8)
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_int16x8)
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_uint32x4)
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_int32x4)
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_float32x4)
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_float64x2)
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_uint64x2)
OPENCV_HAL_IMPL_VSX_INT_CMP_OP(v_int64x2)
/** min/max **/
OPENCV_HAL_IMPL_VSX_BIN_FUNC(v_min, vec_min)
OPENCV_HAL_IMPL_VSX_BIN_FUNC(v_max, vec_max)
/** Rotate **/
#define OPENCV_IMPL_VSX_ROTATE(_Tpvec, suffix, shf, cast) \
template<int imm> \
inline _Tpvec v_rotate_##suffix(const _Tpvec& a) \
{ \
const int wd = imm * sizeof(typename _Tpvec::lane_type); \
if (wd > 15) \
return _Tpvec(); \
return _Tpvec((cast)shf(vec_uchar16_c(a.val), vec_uchar16_sp(wd << 3))); \
}
#define OPENCV_IMPL_VSX_ROTATE_LR(_Tpvec, cast) \
OPENCV_IMPL_VSX_ROTATE(_Tpvec, left, vec_slo, cast) \
OPENCV_IMPL_VSX_ROTATE(_Tpvec, right, vec_sro, cast)
OPENCV_IMPL_VSX_ROTATE_LR(v_uint8x16, vec_uchar16)
OPENCV_IMPL_VSX_ROTATE_LR(v_int8x16, vec_char16)
OPENCV_IMPL_VSX_ROTATE_LR(v_uint16x8, vec_ushort8)
OPENCV_IMPL_VSX_ROTATE_LR(v_int16x8, vec_short8)
OPENCV_IMPL_VSX_ROTATE_LR(v_uint32x4, vec_uint4)
OPENCV_IMPL_VSX_ROTATE_LR(v_int32x4, vec_int4)
OPENCV_IMPL_VSX_ROTATE_LR(v_uint64x2, vec_udword2)
OPENCV_IMPL_VSX_ROTATE_LR(v_int64x2, vec_dword2)
template<int imm, typename _Tpvec>
inline _Tpvec v_rotate_right(const _Tpvec& a, const _Tpvec& b)
{
enum { CV_SHIFT = 16 - imm * (sizeof(typename _Tpvec::lane_type)) };
if (CV_SHIFT == 16)
return a;
#ifdef __IBMCPP__
return _Tpvec(vec_sld(b.val, a.val, CV_SHIFT & 15));
#else
return _Tpvec(vec_sld(b.val, a.val, CV_SHIFT));
#endif
}
template<int imm, typename _Tpvec>
inline _Tpvec v_rotate_left(const _Tpvec& a, const _Tpvec& b)
{
enum { CV_SHIFT = imm * (sizeof(typename _Tpvec::lane_type)) };
if (CV_SHIFT == 16)
return b;
return _Tpvec(vec_sld(a.val, b.val, CV_SHIFT));
}
#define OPENCV_IMPL_VSX_ROTATE_64(_Tpvec, suffix, rg1, rg2) \
template<int imm> \
inline _Tpvec v_rotate_##suffix(const _Tpvec& a, const _Tpvec& b) \
{ \
if (imm == 1) \
return _Tpvec(vec_permi(rg1.val, rg2.val, 2)); \
return imm ? b : a; \
}
OPENCV_IMPL_VSX_ROTATE_64(v_int64x2, right, a, b)
OPENCV_IMPL_VSX_ROTATE_64(v_uint64x2, right, a, b)
OPENCV_IMPL_VSX_ROTATE_64(v_int64x2, left, b, a)
OPENCV_IMPL_VSX_ROTATE_64(v_uint64x2, left, b, a)
////////// Reduce and mask /////////
/** Reduce **/
inline short v_reduce_sum(const v_int16x8& a)
{
const vec_int4 zero = vec_int4_z;
return saturate_cast<short>(vec_extract(vec_sums(vec_sum4s(a.val, zero), zero), 3));
}
inline ushort v_reduce_sum(const v_uint16x8& a)
{
const vec_int4 v4 = vec_int4_c(vec_unpackhu(vec_adds(a.val, vec_sld(a.val, a.val, 8))));
return saturate_cast<ushort>(vec_extract(vec_sums(v4, vec_int4_z), 3));
}
#define OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(_Tpvec, _Tpvec2, scalartype, suffix, func) \
inline scalartype v_reduce_##suffix(const _Tpvec& a) \
{ \
const _Tpvec2 rs = func(a.val, vec_sld(a.val, a.val, 8)); \
return vec_extract(func(rs, vec_sld(rs, rs, 4)), 0); \
}
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_uint32x4, vec_uint4, uint, sum, vec_add)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_uint32x4, vec_uint4, uint, max, vec_max)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_uint32x4, vec_uint4, uint, min, vec_min)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_int32x4, vec_int4, int, sum, vec_add)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_int32x4, vec_int4, int, max, vec_max)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_int32x4, vec_int4, int, min, vec_min)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_float32x4, vec_float4, float, sum, vec_add)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_float32x4, vec_float4, float, max, vec_max)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_float32x4, vec_float4, float, min, vec_min)
#define OPENCV_HAL_IMPL_VSX_REDUCE_OP_8(_Tpvec, _Tpvec2, scalartype, suffix, func) \
inline scalartype v_reduce_##suffix(const _Tpvec& a) \
{ \
_Tpvec2 rs = func(a.val, vec_sld(a.val, a.val, 8)); \
rs = func(rs, vec_sld(rs, rs, 4)); \
return vec_extract(func(rs, vec_sld(rs, rs, 2)), 0); \
}
OPENCV_HAL_IMPL_VSX_REDUCE_OP_8(v_uint16x8, vec_ushort8, ushort, max, vec_max)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_8(v_uint16x8, vec_ushort8, ushort, min, vec_min)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_8(v_int16x8, vec_short8, short, max, vec_max)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_8(v_int16x8, vec_short8, short, min, vec_min)
inline v_float32x4 v_reduce_sum4(const v_float32x4& a, const v_float32x4& b,
const v_float32x4& c, const v_float32x4& d)
{
vec_float4 ac = vec_add(vec_mergel(a.val, c.val), vec_mergeh(a.val, c.val));
ac = vec_add(ac, vec_sld(ac, ac, 8));
vec_float4 bd = vec_add(vec_mergel(b.val, d.val), vec_mergeh(b.val, d.val));
bd = vec_add(bd, vec_sld(bd, bd, 8));
return v_float32x4(vec_mergeh(ac, bd));
}
/** Popcount **/
template<typename _Tpvec>
inline v_uint32x4 v_popcount(const _Tpvec& a)
{ return v_uint32x4(vec_popcntu(vec_uint4_c(a.val))); }
/** Mask **/
inline int v_signmask(const v_uint8x16& a)
{
vec_uchar16 sv = vec_sr(a.val, vec_uchar16_sp(7));
static const vec_uchar16 slm = {0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7};
sv = vec_sl(sv, slm);
vec_uint4 sv4 = vec_sum4s(sv, vec_uint4_z);
static const vec_uint4 slm4 = {0, 0, 8, 8};
sv4 = vec_sl(sv4, slm4);
return vec_extract(vec_sums((vec_int4) sv4, vec_int4_z), 3);
}
inline int v_signmask(const v_int8x16& a)
{ return v_signmask(v_reinterpret_as_u8(a)); }
inline int v_signmask(const v_int16x8& a)
{
static const vec_ushort8 slm = {0, 1, 2, 3, 4, 5, 6, 7};
vec_short8 sv = vec_sr(a.val, vec_ushort8_sp(15));
sv = vec_sl(sv, slm);
vec_int4 svi = vec_int4_z;
svi = vec_sums(vec_sum4s(sv, svi), svi);
return vec_extract(svi, 3);
}
inline int v_signmask(const v_uint16x8& a)
{ return v_signmask(v_reinterpret_as_s16(a)); }
inline int v_signmask(const v_int32x4& a)
{
static const vec_uint4 slm = {0, 1, 2, 3};
vec_int4 sv = vec_sr(a.val, vec_uint4_sp(31));
sv = vec_sl(sv, slm);
sv = vec_sums(sv, vec_int4_z);
return vec_extract(sv, 3);
}
inline int v_signmask(const v_uint32x4& a)
{ return v_signmask(v_reinterpret_as_s32(a)); }
inline int v_signmask(const v_float32x4& a)
{ return v_signmask(v_reinterpret_as_s32(a)); }
inline int v_signmask(const v_int64x2& a)
{
VSX_UNUSED(const vec_dword2) sv = vec_sr(a.val, vec_udword2_sp(63));
return (int)vec_extract(sv, 0) | (int)vec_extract(sv, 1) << 1;
}
inline int v_signmask(const v_uint64x2& a)
{ return v_signmask(v_reinterpret_as_s64(a)); }
inline int v_signmask(const v_float64x2& a)
{ return v_signmask(v_reinterpret_as_s64(a)); }
template<typename _Tpvec>
inline bool v_check_all(const _Tpvec& a)
{ return vec_all_lt(a.val, _Tpvec().val);}
inline bool v_check_all(const v_uint8x16 &a)
{ return v_check_all(v_reinterpret_as_s8(a)); }
inline bool v_check_all(const v_uint16x8 &a)
{ return v_check_all(v_reinterpret_as_s16(a)); }
inline bool v_check_all(const v_uint32x4 &a)
{ return v_check_all(v_reinterpret_as_s32(a)); }
template<typename _Tpvec>
inline bool v_check_any(const _Tpvec& a)
{ return vec_any_lt(a.val, _Tpvec().val);}
inline bool v_check_any(const v_uint8x16 &a)
{ return v_check_any(v_reinterpret_as_s8(a)); }
inline bool v_check_any(const v_uint16x8 &a)
{ return v_check_any(v_reinterpret_as_s16(a)); }
inline bool v_check_any(const v_uint32x4 &a)
{ return v_check_any(v_reinterpret_as_s32(a)); }
////////// Other math /////////
/** Some frequent operations **/
inline v_float32x4 v_sqrt(const v_float32x4& x)
{ return v_float32x4(vec_sqrt(x.val)); }
inline v_float64x2 v_sqrt(const v_float64x2& x)
{ return v_float64x2(vec_sqrt(x.val)); }
inline v_float32x4 v_invsqrt(const v_float32x4& x)
{ return v_float32x4(vec_rsqrt(x.val)); }
inline v_float64x2 v_invsqrt(const v_float64x2& x)
{ return v_float64x2(vec_rsqrt(x.val)); }
#define OPENCV_HAL_IMPL_VSX_MULADD(_Tpvec) \
inline _Tpvec v_magnitude(const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vec_sqrt(vec_madd(a.val, a.val, vec_mul(b.val, b.val)))); } \
inline _Tpvec v_sqr_magnitude(const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(vec_madd(a.val, a.val, vec_mul(b.val, b.val))); } \
inline _Tpvec v_muladd(const _Tpvec& a, const _Tpvec& b, const _Tpvec& c) \
{ return _Tpvec(vec_madd(a.val, b.val, c.val)); }
OPENCV_HAL_IMPL_VSX_MULADD(v_float32x4)
OPENCV_HAL_IMPL_VSX_MULADD(v_float64x2)
// TODO: exp, log, sin, cos
/** Absolute values **/
inline v_uint8x16 v_abs(const v_int8x16& x)
{ return v_uint8x16(vec_uchar16_c(vec_abs(x.val))); }
inline v_uint16x8 v_abs(const v_int16x8& x)
{ return v_uint16x8(vec_ushort8_c(vec_abs(x.val))); }
inline v_uint32x4 v_abs(const v_int32x4& x)
{ return v_uint32x4(vec_uint4_c(vec_abs(x.val))); }
inline v_float32x4 v_abs(const v_float32x4& x)
{ return v_float32x4(vec_abs(x.val)); }
inline v_float64x2 v_abs(const v_float64x2& x)
{ return v_float64x2(vec_abs(x.val)); }
OPENCV_HAL_IMPL_VSX_BIN_FUNC(v_absdiff, vec_absd)
#define OPENCV_HAL_IMPL_VSX_BIN_FUNC2(_Tpvec, _Tpvec2, cast, func, intrin) \
inline _Tpvec2 func(const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec2(cast(intrin(a.val, b.val))); }
OPENCV_HAL_IMPL_VSX_BIN_FUNC2(v_int8x16, v_uint8x16, vec_uchar16_c, v_absdiff, vec_absd)
OPENCV_HAL_IMPL_VSX_BIN_FUNC2(v_int16x8, v_uint16x8, vec_ushort8_c, v_absdiff, vec_absd)
OPENCV_HAL_IMPL_VSX_BIN_FUNC2(v_int32x4, v_uint32x4, vec_uint4_c, v_absdiff, vec_absd)
OPENCV_HAL_IMPL_VSX_BIN_FUNC2(v_int64x2, v_uint64x2, vec_udword2_c, v_absdiff, vec_absd)
////////// Conversions /////////
/** Rounding **/
inline v_int32x4 v_round(const v_float32x4& a)
{ return v_int32x4(vec_cts(vec_round(a.val))); }
inline v_int32x4 v_round(const v_float64x2& a)
{ return v_int32x4(vec_mergesqo(vec_ctso(vec_round(a.val)), vec_int4_z)); }
inline v_int32x4 v_floor(const v_float32x4& a)
{ return v_int32x4(vec_cts(vec_floor(a.val))); }
inline v_int32x4 v_floor(const v_float64x2& a)
{ return v_int32x4(vec_mergesqo(vec_ctso(vec_floor(a.val)), vec_int4_z)); }
inline v_int32x4 v_ceil(const v_float32x4& a)
{ return v_int32x4(vec_cts(vec_ceil(a.val))); }
inline v_int32x4 v_ceil(const v_float64x2& a)
{ return v_int32x4(vec_mergesqo(vec_ctso(vec_ceil(a.val)), vec_int4_z)); }
inline v_int32x4 v_trunc(const v_float32x4& a)
{ return v_int32x4(vec_cts(a.val)); }
inline v_int32x4 v_trunc(const v_float64x2& a)
{ return v_int32x4(vec_mergesqo(vec_ctso(a.val), vec_int4_z)); }
/** To float **/
inline v_float32x4 v_cvt_f32(const v_int32x4& a)
{ return v_float32x4(vec_ctf(a.val)); }
inline v_float32x4 v_cvt_f32(const v_float64x2& a)
{ return v_float32x4(vec_mergesqo(vec_cvfo(a.val), vec_float4_z)); }
inline v_float64x2 v_cvt_f64(const v_int32x4& a)
{ return v_float64x2(vec_ctdo(vec_mergeh(a.val, a.val))); }
inline v_float64x2 v_cvt_f64_high(const v_int32x4& a)
{ return v_float64x2(vec_ctdo(vec_mergel(a.val, a.val))); }
inline v_float64x2 v_cvt_f64(const v_float32x4& a)
{ return v_float64x2(vec_cvfo(vec_mergeh(a.val, a.val))); }
inline v_float64x2 v_cvt_f64_high(const v_float32x4& a)
{ return v_float64x2(vec_cvfo(vec_mergel(a.val, a.val))); }
/** Reinterpret **/
/** its up there with load and store operations **/
////////// Matrix operations /////////
inline v_int32x4 v_dotprod(const v_int16x8& a, const v_int16x8& b)
{ return v_int32x4(vec_msum(a.val, b.val, vec_int4_z)); }
inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0,
const v_float32x4& m1, const v_float32x4& m2,
const v_float32x4& m3)
{
const vec_float4 v0 = vec_splat(v.val, 0);
const vec_float4 v1 = vec_splat(v.val, 1);
const vec_float4 v2 = vec_splat(v.val, 2);
VSX_UNUSED(const vec_float4) v3 = vec_splat(v.val, 3);
return v_float32x4(vec_madd(v0, m0.val, vec_madd(v1, m1.val, vec_madd(v2, m2.val, vec_mul(v3, m3.val)))));
}
inline v_float32x4 v_matmuladd(const v_float32x4& v, const v_float32x4& m0,
const v_float32x4& m1, const v_float32x4& m2,
const v_float32x4& a)
{
const vec_float4 v0 = vec_splat(v.val, 0);
const vec_float4 v1 = vec_splat(v.val, 1);
const vec_float4 v2 = vec_splat(v.val, 2);
return v_float32x4(vec_madd(v0, m0.val, vec_madd(v1, m1.val, vec_madd(v2, m2.val, a.val))));
}
#define OPENCV_HAL_IMPL_VSX_TRANSPOSE4x4(_Tpvec, _Tpvec2) \
inline void v_transpose4x4(const _Tpvec& a0, const _Tpvec& a1, \
const _Tpvec& a2, const _Tpvec& a3, \
_Tpvec& b0, _Tpvec& b1, _Tpvec& b2, _Tpvec& b3) \
{ \
_Tpvec2 a02 = vec_mergeh(a0.val, a2.val); \
_Tpvec2 a13 = vec_mergeh(a1.val, a3.val); \
b0.val = vec_mergeh(a02, a13); \
b1.val = vec_mergel(a02, a13); \
a02 = vec_mergel(a0.val, a2.val); \
a13 = vec_mergel(a1.val, a3.val); \
b2.val = vec_mergeh(a02, a13); \
b3.val = vec_mergel(a02, a13); \
}
OPENCV_HAL_IMPL_VSX_TRANSPOSE4x4(v_uint32x4, vec_uint4)
OPENCV_HAL_IMPL_VSX_TRANSPOSE4x4(v_int32x4, vec_int4)
OPENCV_HAL_IMPL_VSX_TRANSPOSE4x4(v_float32x4, vec_float4)
//! @name Check SIMD support
//! @{
//! @brief Check CPU capability of SIMD operation
static inline bool hasSIMD128()
{
return (CV_CPU_HAS_SUPPORT_VSX) ? true : false;
}
//! @}
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
//! @endcond
}
#endif // OPENCV_HAL_VSX_HPP

View file

@ -42,8 +42,8 @@
//
//M*/
#ifndef __OPENCV_CORE_IPPASYNC_HPP__
#define __OPENCV_CORE_IPPASYNC_HPP__
#ifndef OPENCV_CORE_IPPASYNC_HPP
#define OPENCV_CORE_IPPASYNC_HPP
#ifdef HAVE_IPP_A

View file

@ -41,8 +41,8 @@
//
//M*/
#ifndef __OPENCV_CORE_MAT_HPP__
#define __OPENCV_CORE_MAT_HPP__
#ifndef OPENCV_CORE_MAT_HPP
#define OPENCV_CORE_MAT_HPP
#ifndef __cplusplus
# error mat.hpp header must be compiled as C++
@ -53,6 +53,10 @@
#include "opencv2/core/bufferpool.hpp"
#ifdef CV_CXX11
#include <type_traits>
#endif
namespace cv
{
@ -62,6 +66,8 @@ namespace cv
enum { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25,
ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 };
CV__DEBUG_NS_BEGIN
class CV_EXPORTS _OutputArray;
//////////////////////// Input/Output Array Arguments /////////////////////////////////
@ -73,8 +79,8 @@ It is defined as:
typedef const _InputArray& InputArray;
@endcode
where _InputArray is a class that can be constructed from `Mat`, `Mat_<T>`, `Matx<T, m, n>`,
`std::vector<T>`, `std::vector<std::vector<T> >` or `std::vector<Mat>`. It can also be constructed
from a matrix expression.
`std::vector<T>`, `std::vector<std::vector<T> >`, `std::vector<Mat>`, `std::vector<Mat_<T> >`,
`UMat`, `std::vector<UMat>` or `double`. It can also be constructed from a matrix expression.
Since this is mostly implementation-level class, and its interface may change in future versions, we
do not describe it in details. There are a few key things, though, that should be kept in mind:
@ -165,7 +171,9 @@ public:
UMAT =10 << KIND_SHIFT,
STD_VECTOR_UMAT =11 << KIND_SHIFT,
STD_BOOL_VECTOR =12 << KIND_SHIFT,
STD_VECTOR_CUDA_GPU_MAT = 13 << KIND_SHIFT
STD_VECTOR_CUDA_GPU_MAT = 13 << KIND_SHIFT,
STD_ARRAY =14 << KIND_SHIFT,
STD_ARRAY_MAT =15 << KIND_SHIFT
};
_InputArray();
@ -177,6 +185,7 @@ public:
template<typename _Tp> _InputArray(const std::vector<_Tp>& vec);
_InputArray(const std::vector<bool>& vec);
template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec);
_InputArray(const std::vector<std::vector<bool> >&);
template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec);
template<typename _Tp> _InputArray(const _Tp* vec, int n);
template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx);
@ -189,6 +198,11 @@ public:
_InputArray(const UMat& um);
_InputArray(const std::vector<UMat>& umv);
#ifdef CV_CXX_STD_ARRAY
template<typename _Tp, std::size_t _Nm> _InputArray(const std::array<_Tp, _Nm>& arr);
template<std::size_t _Nm> _InputArray(const std::array<Mat, _Nm>& arr);
#endif
Mat getMat(int idx=-1) const;
Mat getMat_(int idx=-1) const;
UMat getUMat(int idx=-1) const;
@ -293,6 +307,7 @@ public:
template<typename _Tp> _OutputArray(std::vector<_Tp>& vec);
_OutputArray(std::vector<bool>& vec);
template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec);
_OutputArray(std::vector<std::vector<bool> >&);
template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec);
template<typename _Tp> _OutputArray(Mat_<_Tp>& m);
template<typename _Tp> _OutputArray(_Tp* vec, int n);
@ -316,6 +331,13 @@ public:
_OutputArray(const UMat& m);
_OutputArray(const std::vector<UMat>& vec);
#ifdef CV_CXX_STD_ARRAY
template<typename _Tp, std::size_t _Nm> _OutputArray(std::array<_Tp, _Nm>& arr);
template<typename _Tp, std::size_t _Nm> _OutputArray(const std::array<_Tp, _Nm>& arr);
template<std::size_t _Nm> _OutputArray(std::array<Mat, _Nm>& arr);
template<std::size_t _Nm> _OutputArray(const std::array<Mat, _Nm>& arr);
#endif
bool fixedSize() const;
bool fixedType() const;
bool needed() const;
@ -335,6 +357,9 @@ public:
void assign(const UMat& u) const;
void assign(const Mat& m) const;
void assign(const std::vector<UMat>& v) const;
void assign(const std::vector<Mat>& v) const;
};
@ -374,8 +399,18 @@ public:
template<typename _Tp, int m, int n> _InputOutputArray(const Matx<_Tp, m, n>& matx);
_InputOutputArray(const UMat& m);
_InputOutputArray(const std::vector<UMat>& vec);
#ifdef CV_CXX_STD_ARRAY
template<typename _Tp, std::size_t _Nm> _InputOutputArray(std::array<_Tp, _Nm>& arr);
template<typename _Tp, std::size_t _Nm> _InputOutputArray(const std::array<_Tp, _Nm>& arr);
template<std::size_t _Nm> _InputOutputArray(std::array<Mat, _Nm>& arr);
template<std::size_t _Nm> _InputOutputArray(const std::array<Mat, _Nm>& arr);
#endif
};
CV__DEBUG_NS_END
typedef const _InputArray& InputArray;
typedef InputArray InputArrayOfArrays;
typedef const _OutputArray& OutputArray;
@ -473,7 +508,9 @@ struct CV_EXPORTS UMatData
{
enum { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2,
DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24,
USER_ALLOCATED=32, DEVICE_MEM_MAPPED=64};
USER_ALLOCATED=32, DEVICE_MEM_MAPPED=64,
ASYNC_CLEANUP=128
};
UMatData(const MatAllocator* allocator);
~UMatData();
@ -548,7 +585,7 @@ protected:
An example demonstrating the serial out capabilities of cv::Mat
*/
/** @brief n-dimensional dense array class
/** @brief n-dimensional dense array class \anchor CVMat_Details
The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It
can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel
@ -660,7 +697,7 @@ sub-matrices.
- Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:
@code
// create a double-precision identity martix and add it to M.
// create a double-precision identity matrix and add it to M.
M += Mat::eye(M.rows, M.cols, CV_64F);
@endcode
@ -693,7 +730,7 @@ If you need to process a whole row of a 2D array, the most efficient way is to g
the row first, and then just use the plain C operator [] :
@code
// compute sum of positive matrix elements
// (assuming that M isa double-precision matrix)
// (assuming that M is a double-precision matrix)
double sum=0;
for(int i = 0; i < M.rows; i++)
{
@ -736,6 +773,8 @@ Finally, there are STL-style iterators that are smart enough to skip gaps betwee
@endcode
The matrix iterators are random-access iterators, so they can be passed to any STL algorithm,
including std::sort().
@note Matrix Expressions and arithmetic see MatExpr
*/
class CV_EXPORTS Mat
{
@ -794,6 +833,13 @@ public:
*/
Mat(int ndims, const int* sizes, int type);
/** @overload
@param sizes Array of integers specifying an n-dimensional array shape.
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
*/
Mat(const std::vector<int>& sizes, int type);
/** @overload
@param ndims Array dimensionality.
@param sizes Array of integers specifying an n-dimensional array shape.
@ -805,6 +851,17 @@ public:
*/
Mat(int ndims, const int* sizes, int type, const Scalar& s);
/** @overload
@param sizes Array of integers specifying an n-dimensional array shape.
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
@param s An optional value to initialize each matrix element with. To set all the matrix elements to
the particular value after the construction, use the assignment operator
Mat::operator=(const Scalar& value) .
*/
Mat(const std::vector<int>& sizes, int type, const Scalar& s);
/** @overload
@param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
@ -861,6 +918,20 @@ public:
*/
Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0);
/** @overload
@param sizes Array of integers specifying an n-dimensional array shape.
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
@param data Pointer to the user data. Matrix constructors that take data and step parameters do not
allocate matrix data. Instead, they just initialize the matrix header that points to the specified
data, which means that no data is copied. This operation is very efficient and can be used to
process external data using OpenCV functions. The external data is not automatically deallocated, so
you should take care of it.
@param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always
set to the element size). If not specified, the matrix is assumed to be continuous.
*/
Mat(const std::vector<int>& sizes, int type, void* data, const size_t* steps=0);
/** @overload
@param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
@ -893,6 +964,16 @@ public:
*/
Mat(const Mat& m, const Range* ranges);
/** @overload
@param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
formed using such a constructor, you also modify the corresponding elements of m . If you want to
have an independent copy of the sub-array, use Mat::clone() .
@param ranges Array of selected ranges of m along each dimensionality.
*/
Mat(const Mat& m, const std::vector<Range>& ranges);
/** @overload
@param vec STL vector whose elements form the matrix. The matrix has a single column and the number
of rows equal to the number of vector elements. Type of the matrix matches the type of vector
@ -911,6 +992,19 @@ public:
*/
template<typename _Tp> explicit Mat(const std::vector<_Tp>& vec, bool copyData=false);
#ifdef CV_CXX11
/** @overload
*/
template<typename _Tp, typename = typename std::enable_if<std::is_arithmetic<_Tp>::value>::type>
explicit Mat(const std::initializer_list<_Tp> list);
#endif
#ifdef CV_CXX_STD_ARRAY
/** @overload
*/
template<typename _Tp, size_t _Nm> explicit Mat(const std::array<_Tp, _Nm>& arr, bool copyData=false);
#endif
/** @overload
*/
template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true);
@ -1037,18 +1131,40 @@ public:
single-column matrix. Similarly to Mat::row and Mat::col, this is an O(1) operation.
@param d index of the diagonal, with the following values:
- `d=0` is the main diagonal.
- `d>0` is a diagonal from the lower half. For example, d=1 means the diagonal is set
- `d<0` is a diagonal from the lower half. For example, d=-1 means the diagonal is set
immediately below the main one.
- `d<0` is a diagonal from the upper half. For example, d=-1 means the diagonal is set
- `d>0` is a diagonal from the upper half. For example, d=1 means the diagonal is set
immediately above the main one.
For example:
@code
Mat m = (Mat_<int>(3,3) <<
1,2,3,
4,5,6,
7,8,9);
Mat d0 = m.diag(0);
Mat d1 = m.diag(1);
Mat d_1 = m.diag(-1);
@endcode
The resulting matrices are
@code
d0 =
[1;
5;
9]
d1 =
[2;
6]
d_1 =
[4;
8]
@endcode
*/
Mat diag(int d=0) const;
/** @brief creates a diagonal matrix
The method makes a new header for the specified matrix diagonal. The new matrix is represented as a
single-column matrix. Similarly to Mat::row and Mat::col, this is an O(1) operation.
@param d Single-column matrix that forms a diagonal matrix
The method creates a square diagonal matrix from specified main diagonal.
@param d One-dimensional matrix that represents the main diagonal.
*/
static Mat diag(const Mat& d);
@ -1079,8 +1195,8 @@ public:
/** @overload
@param m Destination matrix. If it does not have a proper size or type before the operation, it is
reallocated.
@param mask Operation mask. Its non-zero elements indicate which matrix elements need to be copied.
The mask has to be of type CV_8U and can have 1 or multiple channels.
@param mask Operation mask of the same size as \*this. Its non-zero elements indicate which matrix
elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels.
*/
void copyTo( OutputArray m, InputArray mask ) const;
@ -1116,7 +1232,8 @@ public:
This is an advanced variant of the Mat::operator=(const Scalar& s) operator.
@param value Assigned scalar converted to the actual array type.
@param mask Operation mask of the same size as \*this.
@param mask Operation mask of the same size as \*this. Its non-zero elements indicate which matrix
elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels
*/
Mat& setTo(InputArray value, InputArray mask=noArray());
@ -1149,6 +1266,9 @@ public:
/** @overload */
Mat reshape(int cn, int newndims, const int* newsz) const;
/** @overload */
Mat reshape(int cn, const std::vector<int>& newshape) const;
/** @brief Transposes a matrix.
The method performs matrix transposition by means of matrix expressions. It does not perform the
@ -1329,6 +1449,12 @@ public:
*/
void create(int ndims, const int* sizes, int type);
/** @overload
@param sizes Array of integers specifying a new array shape.
@param type New matrix type.
*/
void create(const std::vector<int>& sizes, int type);
/** @brief Increments the reference counter.
The method increments the reference counter associated with the matrix data. If the matrix header
@ -1355,7 +1481,7 @@ public:
*/
void release();
//! deallocates the matrix data
//! internal use function, consider to use 'release' method instead; deallocates the matrix data
void deallocate();
//! internal use function; properly re-allocates _size, _step arrays
void copySize(const Mat& m);
@ -1369,6 +1495,14 @@ public:
*/
void reserve(size_t sz);
/** @brief Reserves space for the certain number of bytes.
The method reserves space for sz bytes. If the matrix already has enough space to store sz bytes,
nothing happens. If matrix has to be reallocated its previous content could be lost.
@param sz Number of bytes.
*/
void reserveBuffer(size_t sz);
/** @brief Changes the number of matrix rows.
The methods change the number of matrix rows. If the matrix is reallocated, the first
@ -1401,6 +1535,11 @@ public:
*/
template<typename _Tp> void push_back(const Mat_<_Tp>& elem);
/** @overload
@param elem Added element(s).
*/
template<typename _Tp> void push_back(const std::vector<_Tp>& elem);
/** @overload
@param m Added line(s).
*/
@ -1479,6 +1618,11 @@ public:
*/
Mat operator()( const Range* ranges ) const;
/** @overload
@param ranges Array of selected ranges along each array dimension.
*/
Mat operator()(const std::vector<Range>& ranges) const;
// //! converts header to CvMat; no data is copied
// operator CvMat() const;
// //! converts header to CvMatND; no data is copied
@ -1490,6 +1634,10 @@ public:
template<typename _Tp, int n> operator Vec<_Tp, n>() const;
template<typename _Tp, int m, int n> operator Matx<_Tp, m, n>() const;
#ifdef CV_CXX_STD_ARRAY
template<typename _Tp, std::size_t _Nm> operator std::array<_Tp, _Nm>() const;
#endif
/** @brief Reports whether the matrix is continuous or not.
The method returns true if the matrix elements are stored continuously without gaps at the end of
@ -1522,7 +1670,7 @@ public:
inv_scale = 1.f/alpha_scale;
CV_Assert( src1.type() == src2.type() &&
src1.type() == CV_MAKETYPE(DataType<T>::depth, 4) &&
src1.type() == CV_MAKETYPE(traits::Depth<T>::value, 4) &&
src1.size() == src2.size());
Size size = src1.size();
dst.create(size, src1.type());
@ -1632,6 +1780,12 @@ public:
*/
size_t total() const;
/** @brief Returns the total number of array elements.
The method returns the number of elements within a certain sub-array slice with startDim <= dim < endDim
*/
size_t total(int startDim, int endDim=INT_MAX) const;
//! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
@ -1645,10 +1799,16 @@ public:
/** @overload */
const uchar* ptr(int i0=0) const;
/** @overload */
uchar* ptr(int i0, int i1);
/** @overload */
const uchar* ptr(int i0, int i1) const;
/** @overload
@param row Index along the dimension 0
@param col Index along the dimension 1
*/
uchar* ptr(int row, int col);
/** @overload
@param row Index along the dimension 0
@param col Index along the dimension 1
*/
const uchar* ptr(int row, int col) const;
/** @overload */
uchar* ptr(int i0, int i1, int i2);
@ -1668,10 +1828,16 @@ public:
template<typename _Tp> _Tp* ptr(int i0=0);
/** @overload */
template<typename _Tp> const _Tp* ptr(int i0=0) const;
/** @overload */
template<typename _Tp> _Tp* ptr(int i0, int i1);
/** @overload */
template<typename _Tp> const _Tp* ptr(int i0, int i1) const;
/** @overload
@param row Index along the dimension 0
@param col Index along the dimension 1
*/
template<typename _Tp> _Tp* ptr(int row, int col);
/** @overload
@param row Index along the dimension 0
@param col Index along the dimension 1
*/
template<typename _Tp> const _Tp* ptr(int row, int col) const;
/** @overload */
template<typename _Tp> _Tp* ptr(int i0, int i1, int i2);
/** @overload */
@ -1702,6 +1868,17 @@ public:
for(int j = 0; j < H.cols; j++)
H.at<double>(i,j)=1./(i+j+1);
@endcode
Keep in mind that the size identifier used in the at operator cannot be chosen at random. It depends
on the image from which you are trying to retrieve the data. The table below gives a better insight in this:
- If matrix is of type `CV_8U` then use `Mat.at<uchar>(y,x)`.
- If matrix is of type `CV_8S` then use `Mat.at<schar>(y,x)`.
- If matrix is of type `CV_16U` then use `Mat.at<ushort>(y,x)`.
- If matrix is of type `CV_16S` then use `Mat.at<short>(y,x)`.
- If matrix is of type `CV_32S` then use `Mat.at<int>(y,x)`.
- If matrix is of type `CV_32F` then use `Mat.at<float>(y,x)`.
- If matrix is of type `CV_64F` then use `Mat.at<double>(y,x)`.
@param i0 Index along the dimension 0
*/
template<typename _Tp> _Tp& at(int i0=0);
@ -1710,15 +1887,15 @@ public:
*/
template<typename _Tp> const _Tp& at(int i0=0) const;
/** @overload
@param i0 Index along the dimension 0
@param i1 Index along the dimension 1
@param row Index along the dimension 0
@param col Index along the dimension 1
*/
template<typename _Tp> _Tp& at(int i0, int i1);
template<typename _Tp> _Tp& at(int row, int col);
/** @overload
@param i0 Index along the dimension 0
@param i1 Index along the dimension 1
@param row Index along the dimension 0
@param col Index along the dimension 1
*/
template<typename _Tp> const _Tp& at(int i0, int i1) const;
template<typename _Tp> const _Tp& at(int row, int col) const;
/** @overload
@param i0 Index along the dimension 0
@ -1773,7 +1950,7 @@ public:
inv_scale = 1.f/alpha_scale;
CV_Assert( src1.type() == src2.type() &&
src1.type() == DataType<VT>::type &&
src1.type() == traits::Type<VT>::value &&
src1.size() == src2.size());
Size size = src1.size();
dst.create(size, src1.type());
@ -1805,19 +1982,18 @@ public:
template<typename _Tp> MatIterator_<_Tp> end();
template<typename _Tp> MatConstIterator_<_Tp> end() const;
/** @brief Invoke with arguments functor, and runs the functor over all matrix element.
/** @brief Runs the given functor over all matrix elements in parallel.
The methods runs operation in parallel. Operation is passed by arguments. Operation have to be a
function pointer, a function object or a lambda(C++11).
The operation passed as argument has to be a function pointer, a function object or a lambda(C++11).
All of below operation is equal. Put 0xFF to first channel of all matrix elements:
Example 1. All of the operations below put 0xFF the first channel of all matrix elements:
@code
Mat image(1920, 1080, CV_8UC3);
typedef cv::Point3_<uint8_t> Pixel;
// first. raw pointer access.
for (int r = 0; r < image.rows; ++r) {
Pixel* ptr = image.ptr<Pixel>(0, r);
Pixel* ptr = image.ptr<Pixel>(r, 0);
const Pixel* ptr_end = ptr + image.cols;
for (; ptr != ptr_end; ++ptr) {
ptr->x = 255;
@ -1842,18 +2018,18 @@ public:
p.x = 255;
});
@endcode
position parameter is index of current pixel:
Example 2. Using the pixel's position:
@code
// Creating 3D matrix (255 x 255 x 255) typed uint8_t,
// and initialize all elements by the value which equals elements position.
// i.e. pixels (x,y,z) = (1,2,3) is (b,g,r) = (1,2,3).
// Creating 3D matrix (255 x 255 x 255) typed uint8_t
// and initialize all elements by the value which equals elements position.
// i.e. pixels (x,y,z) = (1,2,3) is (b,g,r) = (1,2,3).
int sizes[] = { 255, 255, 255 };
typedef cv::Point3_<uint8_t> Pixel;
Mat_<Pixel> image = Mat::zeros(3, sizes, CV_8UC3);
image.forEachWithPosition([&](Pixel& pixel, const int position[]) -> void{
image.forEach<Pixel>([&](Pixel& pixel, const int position[]) -> void {
pixel.x = position[0];
pixel.y = position[1];
pixel.z = position[2];
@ -1913,7 +2089,7 @@ protected:
/** @brief Template matrix class derived from Mat
@code
@code{.cpp}
template<typename _Tp> class Mat_ : public Mat
{
public:
@ -1925,7 +2101,7 @@ protected:
The class `Mat_<_Tp>` is a *thin* template wrapper on top of the Mat class. It does not have any
extra data fields. Nor this class nor Mat has any virtual methods. Thus, references or pointers to
these two classes can be freely but carefully converted one to another. For example:
@code
@code{.cpp}
// create a 100x100 8-bit matrix
Mat M(100,100,CV_8U);
// this will be compiled fine. no any data conversion will be done.
@ -1937,7 +2113,7 @@ While Mat is sufficient in most cases, Mat_ can be more convenient if you use a
access operations and if you know matrix type at the compilation time. Note that
`Mat::at(int y,int x)` and `Mat_::operator()(int y,int x)` do absolutely the same
and run at the same speed, but the latter is certainly shorter:
@code
@code{.cpp}
Mat_<double> M(20,20);
for(int i = 0; i < M.rows; i++)
for(int j = 0; j < M.cols; j++)
@ -1947,7 +2123,7 @@ and run at the same speed, but the latter is certainly shorter:
cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0);
@endcode
To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter:
@code
@code{.cpp}
// allocate a 320x240 color image and fill it with green (in RGB space)
Mat_<Vec3b> img(240, 320, Vec3b(0,255,0));
// now draw a diagonal white line
@ -1957,6 +2133,17 @@ To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter:
for(int i = 0; i < img.rows; i++)
for(int j = 0; j < img.cols; j++)
img(i,j)[2] ^= (uchar)(i ^ j);
@endcode
Mat_ is fully compatible with C++11 range-based for loop. For example such loop
can be used to safely apply look-up table:
@code{.cpp}
void applyTable(Mat_<uchar>& I, const uchar* const table)
{
for(auto& pixel : I)
{
pixel = table[pixel];
}
}
@endcode
*/
template<typename _Tp> class Mat_ : public Mat
@ -1995,6 +2182,8 @@ public:
Mat_(const Mat_& m, const Rect& roi);
//! selects a submatrix, n-dim version
Mat_(const Mat_& m, const Range* ranges);
//! selects a submatrix, n-dim version
Mat_(const Mat_& m, const std::vector<Range>& ranges);
//! from a matrix expression
explicit Mat_(const MatExpr& e);
//! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column
@ -2005,6 +2194,14 @@ public:
explicit Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer);
#ifdef CV_CXX11
Mat_(std::initializer_list<_Tp> values);
#endif
#ifdef CV_CXX_STD_ARRAY
template <std::size_t _Nm> explicit Mat_(const std::array<_Tp, _Nm>& arr, bool copyData=false);
#endif
Mat_& operator = (const Mat& m);
Mat_& operator = (const Mat_& m);
//! set all the elements to s.
@ -2029,6 +2226,8 @@ public:
void create(Size _size);
//! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type)
void create(int _ndims, const int* _sizes);
//! equivalent to Mat::release()
void release();
//! cross-product
Mat_ cross(const Mat_& m) const;
//! data type conversion
@ -2064,6 +2263,7 @@ public:
Mat_ operator()( const Range& rowRange, const Range& colRange ) const;
Mat_ operator()( const Rect& roi ) const;
Mat_ operator()( const Range* ranges ) const;
Mat_ operator()(const std::vector<Range>& ranges) const;
//! more convenient forms of row and element access operators
_Tp* operator [](int y);
@ -2084,9 +2284,9 @@ public:
//! returns read-only reference to the specified element (1D case)
const _Tp& operator ()(int idx0) const;
//! returns reference to the specified element (2D case)
_Tp& operator ()(int idx0, int idx1);
_Tp& operator ()(int row, int col);
//! returns read-only reference to the specified element (2D case)
const _Tp& operator ()(int idx0, int idx1) const;
const _Tp& operator ()(int row, int col) const;
//! returns reference to the specified element (3D case)
_Tp& operator ()(int idx0, int idx1, int idx2);
//! returns read-only reference to the specified element (3D case)
@ -2097,6 +2297,12 @@ public:
//! conversion to vector.
operator std::vector<_Tp>() const;
#ifdef CV_CXX_STD_ARRAY
//! conversion to array.
template<std::size_t _Nm> operator std::array<_Tp, _Nm>() const;
#endif
//! conversion to Vec
template<int n> operator Vec<typename DataType<_Tp>::channel_type, n>() const;
//! conversion to Matx
@ -2168,8 +2374,10 @@ public:
UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all());
UMat(const UMat& m, const Rect& roi);
UMat(const UMat& m, const Range* ranges);
UMat(const UMat& m, const std::vector<Range>& ranges);
//! builds matrix from std::vector with or without copying the data
template<typename _Tp> explicit UMat(const std::vector<_Tp>& vec, bool copyData=false);
//! builds matrix from cv::Vec; the data is copied by default
template<typename _Tp, int n> explicit UMat(const Vec<_Tp, n>& vec, bool copyData=true);
//! builds matrix from cv::Matx; the data is copied by default
@ -2199,9 +2407,9 @@ public:
UMat colRange(int startcol, int endcol) const;
UMat colRange(const Range& r) const;
//! ... for the specified diagonal
// (d=0 - the main diagonal,
// >0 - a diagonal from the lower half,
// <0 - a diagonal from the upper half)
//! (d=0 - the main diagonal,
//! >0 - a diagonal from the upper half,
//! <0 - a diagonal from the lower half)
UMat diag(int d=0) const;
//! constructs a square diagonal matrix which main diagonal is vector "d"
static UMat diag(const UMat& d);
@ -2213,7 +2421,7 @@ public:
void copyTo( OutputArray m ) const;
//! copies those matrix elements to "m" that are marked with non-zero mask elements.
void copyTo( OutputArray m, InputArray mask ) const;
//! converts matrix to another datatype with optional scalng. See cvConvertScale.
//! converts matrix to another datatype with optional scaling. See cvConvertScale.
void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
void assignTo( UMat& m, int type=-1 ) const;
@ -2252,6 +2460,7 @@ public:
void create(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
void create(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
void create(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
void create(const std::vector<int>& sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
//! increases the reference counter; use with care to avoid memleaks
void addref();
@ -2273,6 +2482,7 @@ public:
UMat operator()( Range rowRange, Range colRange ) const;
UMat operator()( const Rect& roi ) const;
UMat operator()( const Range* ranges ) const;
UMat operator()(const std::vector<Range>& ranges) const;
//! returns true iff the matrix data is continuous
// (i.e. when there are no gaps between successive rows).
@ -2308,6 +2518,10 @@ public:
UMat& operator = (UMat&& m);
#endif
/*! Returns the OpenCL buffer handle on which UMat operates on.
The UMat instance should be kept alive during the use of the handle to prevent the buffer to be
returned to the OpenCV buffer pool.
*/
void* handle(int accessFlags) const;
void ndoffset(size_t* ofs) const;
@ -2359,15 +2573,16 @@ Elements can be accessed using the following methods:
SparseMat::find), for example:
@code
const int dims = 5;
int size[] = {10, 10, 10, 10, 10};
int size[5] = {10, 10, 10, 10, 10};
SparseMat sparse_mat(dims, size, CV_32F);
for(int i = 0; i < 1000; i++)
{
int idx[dims];
for(int k = 0; k < dims; k++)
idx[k] = rand()
idx[k] = rand() % size[k];
sparse_mat.ref<float>(idx) += 1.f;
}
cout << "nnz = " << sparse_mat.nzcount() << endl;
@endcode
- Sparse matrix iterators. They are similar to MatIterator but different from NAryMatIterator.
That is, the iteration loop is familiar to STL users:
@ -2504,11 +2719,11 @@ public:
/*!
@param [out] m - output matrix; if it does not have a proper size or type before the operation,
it is reallocated
@param [in] rtype desired output matrix type or, rather, the depth since the number of channels
@param [in] rtype - desired output matrix type or, rather, the depth since the number of channels
are the same as the input has; if rtype is negative, the output matrix will have the
same type as the input.
@param [in] alpha optional scale factor
@param [in] beta optional delta added to the scaled values
@param [in] alpha - optional scale factor
@param [in] beta - optional delta added to the scaled values
*/
void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;
@ -2782,9 +2997,7 @@ public:
typedef const uchar** pointer;
typedef uchar* reference;
#ifndef OPENCV_NOSTL
typedef std::random_access_iterator_tag iterator_category;
#endif
//! default constructor
MatConstIterator();
@ -2849,9 +3062,7 @@ public:
typedef const _Tp* pointer;
typedef const _Tp& reference;
#ifndef OPENCV_NOSTL
typedef std::random_access_iterator_tag iterator_category;
#endif
//! default constructor
MatConstIterator_();
@ -2869,9 +3080,9 @@ public:
//! copy operator
MatConstIterator_& operator = (const MatConstIterator_& it);
//! returns the current matrix element
_Tp operator *() const;
const _Tp& operator *() const;
//! returns the i-th matrix element, relative to the current
_Tp operator [](ptrdiff_t i) const;
const _Tp& operator [](ptrdiff_t i) const;
//! shifts the iterator forward by the specified number of elements
MatConstIterator_& operator += (ptrdiff_t ofs);
@ -2902,9 +3113,7 @@ public:
typedef _Tp* pointer;
typedef _Tp& reference;
#ifndef OPENCV_NOSTL
typedef std::random_access_iterator_tag iterator_category;
#endif
//! the default constructor
MatIterator_();
@ -3038,9 +3247,7 @@ template<typename _Tp> class SparseMatConstIterator_ : public SparseMatConstIter
{
public:
#ifndef OPENCV_NOSTL
typedef std::forward_iterator_tag iterator_category;
#endif
//! the default constructor
SparseMatConstIterator_();
@ -3074,9 +3281,7 @@ template<typename _Tp> class SparseMatIterator_ : public SparseMatConstIterator_
{
public:
#ifndef OPENCV_NOSTL
typedef std::forward_iterator_tag iterator_category;
#endif
//! the default constructor
SparseMatIterator_();
@ -3135,21 +3340,29 @@ The example below illustrates how you can compute a normalized and threshold 3D
}
minProb *= image.rows*image.cols;
Mat plane;
NAryMatIterator it(&hist, &plane, 1);
// initialize iterator (the style is different from STL).
// after initialization the iterator will contain
// the number of slices or planes the iterator will go through.
// it simultaneously increments iterators for several matrices
// supplied as a null terminated list of pointers
const Mat* arrays[] = {&hist, 0};
Mat planes[1];
NAryMatIterator itNAry(arrays, planes, 1);
double s = 0;
// iterate through the matrix. on each iteration
// it.planes[*] (of type Mat) will be set to the current plane.
for(int p = 0; p < it.nplanes; p++, ++it)
// itNAry.planes[i] (of type Mat) will be set to the current plane
// of the i-th n-dim matrix passed to the iterator constructor.
for(int p = 0; p < itNAry.nplanes; p++, ++itNAry)
{
threshold(it.planes[0], it.planes[0], minProb, 0, THRESH_TOZERO);
s += sum(it.planes[0])[0];
threshold(itNAry.planes[0], itNAry.planes[0], minProb, 0, THRESH_TOZERO);
s += sum(itNAry.planes[0])[0];
}
s = 1./s;
it = NAryMatIterator(&hist, &plane, 1);
for(int p = 0; p < it.nplanes; p++, ++it)
it.planes[0] *= s;
itNAry = NAryMatIterator(arrays, planes, 1);
for(int p = 0; p < itNAry.nplanes; p++, ++itNAry)
itNAry.planes[0] *= s;
}
@endcode
*/
@ -3428,4 +3641,4 @@ CV_EXPORTS MatExpr abs(const MatExpr& e);
#include "opencv2/core/mat.inl.hpp"
#endif // __OPENCV_CORE_MAT_HPP__
#endif // OPENCV_CORE_MAT_HPP

View file

@ -41,8 +41,8 @@
//
//M*/
#ifndef __OPENCV_CORE_MATX_HPP__
#define __OPENCV_CORE_MATX_HPP__
#ifndef OPENCV_CORE_MATX_HPP
#define OPENCV_CORE_MATX_HPP
#ifndef __cplusplus
# error matx.hpp header must be compiled as C++
@ -53,6 +53,10 @@
#include "opencv2/core/traits.hpp"
#include "opencv2/core/saturate.hpp"
#ifdef CV_CXX11
#include <initializer_list>
#endif
namespace cv
{
@ -77,21 +81,33 @@ If you need a more flexible type, use Mat . The elements of the matrix M are acc
M(i,j) notation. Most of the common matrix operations (see also @ref MatrixExpressions ) are
available. To do an operation on Matx that is not implemented, you can easily convert the matrix to
Mat and backwards:
@code
@code{.cpp}
Matx33f m(1, 2, 3,
4, 5, 6,
7, 8, 9);
cout << sum(Mat(m*m.t())) << endl;
@endcode
@endcode
Except of the plain constructor which takes a list of elements, Matx can be initialized from a C-array:
@code{.cpp}
float values[] = { 1, 2, 3};
Matx31f m(values);
@endcode
In case if C++11 features are avaliable, std::initializer_list can be also used to initizlize Matx:
@code{.cpp}
Matx31f m = { 1, 2, 3};
@endcode
*/
template<typename _Tp, int m, int n> class Matx
{
public:
enum { depth = DataType<_Tp>::depth,
enum {
rows = m,
cols = n,
channels = rows*cols,
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
depth = traits::Type<_Tp>::value,
type = CV_MAKETYPE(depth, channels),
#endif
shortdim = (m < n ? m : n)
};
@ -125,6 +141,10 @@ public:
_Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix
explicit Matx(const _Tp* vals); //!< initialize from a plain array
#ifdef CV_CXX11
Matx(std::initializer_list<_Tp>); //!< initialize from an initializer list
#endif
static Matx all(_Tp alpha);
static Matx zeros();
static Matx ones();
@ -242,13 +262,23 @@ public:
typedef value_type vec_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = m * n,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
};
namespace traits {
template<typename _Tp, int m, int n>
struct Depth< Matx<_Tp, m, n> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp, int m, int n>
struct Type< Matx<_Tp, m, n> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, n*m) }; };
} // namespace
/** @brief Comma-separated Matrix Initializer
*/
template<typename _Tp, int m, int n> class MatxCommaInitializer
@ -306,9 +336,13 @@ template<typename _Tp, int cn> class Vec : public Matx<_Tp, cn, 1>
{
public:
typedef _Tp value_type;
enum { depth = Matx<_Tp, cn, 1>::depth,
enum {
channels = cn,
type = CV_MAKETYPE(depth, channels)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
depth = Matx<_Tp, cn, 1>::depth,
type = CV_MAKETYPE(depth, channels),
#endif
_dummy_enum_finalizer = 0
};
//! default constructor
@ -327,6 +361,10 @@ public:
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13); //!< 14-element vector constructor
explicit Vec(const _Tp* values);
#ifdef CV_CXX11
Vec(std::initializer_list<_Tp>);
#endif
Vec(const Vec<_Tp, cn>& v);
static Vec all(_Tp alpha);
@ -401,13 +439,24 @@ public:
typedef value_type vec_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = cn,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
depth = DataType<channel_type>::depth,
type = CV_MAKETYPE(depth, channels),
#endif
_dummy_enum_finalizer = 0
};
};
namespace traits {
template<typename _Tp, int cn>
struct Depth< Vec<_Tp, cn> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp, int cn>
struct Type< Vec<_Tp, cn> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, cn) }; };
} // namespace
/** @brief Comma-separated Vec Initializer
*/
template<typename _Tp, int m> class VecCommaInitializer : public MatxCommaInitializer<_Tp, m, 1>
@ -438,7 +487,7 @@ template<typename _Tp, int m> struct Matx_DetOp
return p;
for( int i = 0; i < m; i++ )
p *= temp(i, i);
return 1./p;
return p;
}
};
@ -590,11 +639,12 @@ Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13)
{
CV_StaticAssert(channels == 14, "Matx should have at least 14 elements.");
CV_StaticAssert(channels >= 14, "Matx should have at least 14 elements.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11;
val[12] = v12; val[13] = v13;
for (int i = 14; i < channels; i++) val[i] = _Tp(0);
}
@ -615,6 +665,19 @@ Matx<_Tp, m, n>::Matx(const _Tp* values)
for( int i = 0; i < channels; i++ ) val[i] = values[i];
}
#ifdef CV_CXX11
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(std::initializer_list<_Tp> list)
{
CV_DbgAssert(list.size() == channels);
int i = 0;
for(const auto& elem : list)
{
val[i++] = elem;
}
}
#endif
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> Matx<_Tp, m, n>::all(_Tp alpha)
{
@ -956,6 +1019,12 @@ template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(const _Tp* values)
: Matx<_Tp, cn, 1>(values) {}
#ifdef CV_CXX11
template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(std::initializer_list<_Tp> list)
: Matx<_Tp, cn, 1>(list) {}
#endif
template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(const Vec<_Tp, cn>& m)
: Matx<_Tp, cn, 1>(m.val) {}
@ -1022,17 +1091,17 @@ Vec<_Tp, cn> Vec<_Tp, cn>::cross(const Vec<_Tp, cn>&) const
template<> inline
Vec<float, 3> Vec<float, 3>::cross(const Vec<float, 3>& v) const
{
return Vec<float,3>(val[1]*v.val[2] - val[2]*v.val[1],
val[2]*v.val[0] - val[0]*v.val[2],
val[0]*v.val[1] - val[1]*v.val[0]);
return Vec<float,3>(this->val[1]*v.val[2] - this->val[2]*v.val[1],
this->val[2]*v.val[0] - this->val[0]*v.val[2],
this->val[0]*v.val[1] - this->val[1]*v.val[0]);
}
template<> inline
Vec<double, 3> Vec<double, 3>::cross(const Vec<double, 3>& v) const
{
return Vec<double,3>(val[1]*v.val[2] - val[2]*v.val[1],
val[2]*v.val[0] - val[0]*v.val[2],
val[0]*v.val[1] - val[1]*v.val[0]);
return Vec<double,3>(this->val[1]*v.val[2] - this->val[2]*v.val[1],
this->val[2]*v.val[0] - this->val[0]*v.val[2],
this->val[0]*v.val[1] - this->val[1]*v.val[0]);
}
template<typename _Tp, int cn> template<typename T2> inline
@ -1080,7 +1149,7 @@ Vec<_Tp, cn> normalize(const Vec<_Tp, cn>& v)
//////////////////////////////// matx comma initializer //////////////////////////////////
//////////////////////////////// vec comma initializer //////////////////////////////////
template<typename _Tp, typename _T2, int cn> static inline
@ -1404,4 +1473,4 @@ template<typename _Tp> inline Vec<_Tp, 4>& operator *= (Vec<_Tp, 4>& v1, const V
} // cv
#endif // __OPENCV_CORE_MATX_HPP__
#endif // OPENCV_CORE_MATX_HPP

View file

@ -39,8 +39,8 @@
//
//M*/
#ifndef __OPENCV_HAL_NEON_UTILS_HPP__
#define __OPENCV_HAL_NEON_UTILS_HPP__
#ifndef OPENCV_HAL_NEON_UTILS_HPP
#define OPENCV_HAL_NEON_UTILS_HPP
#include "opencv2/core/cvdef.h"
@ -125,4 +125,4 @@ inline float32x2_t cv_vsqrt_f32(float32x2_t val)
//! @}
#endif // __OPENCV_HAL_NEON_UTILS_HPP__
#endif // OPENCV_HAL_NEON_UTILS_HPP

View file

@ -39,8 +39,8 @@
//
//M*/
#ifndef __OPENCV_OPENCL_HPP__
#define __OPENCV_OPENCL_HPP__
#ifndef OPENCV_OPENCL_HPP
#define OPENCV_OPENCL_HPP
#include "opencv2/core.hpp"
@ -91,6 +91,7 @@ public:
String name() const;
String extensions() const;
bool isExtensionSupported(const String& extensionName) const;
String version() const;
String vendorName() const;
String OpenCL_C_Version() const;
@ -160,6 +161,9 @@ public:
uint imagePitchAlignment() const;
uint imageBaseAddressAlignment() const;
/// deprecated, use isExtensionSupported() method (probably with "cl_khr_subgroups" value)
bool intelSubgroupsSupport() const;
size_t image2DMaxWidth() const;
size_t image2DMaxHeight() const;
@ -246,6 +250,7 @@ public:
const Device& device(size_t idx) const;
Program getProg(const ProgramSource& prog,
const String& buildopt, String& errmsg);
void unloadProg(Program& prog);
static Context& getDefault(bool initialize = true);
void* ptr() const;
@ -256,6 +261,8 @@ public:
void setUseSVM(bool enabled);
struct Impl;
inline Impl* getImpl() const { return (Impl*)p; }
//protected:
Impl* p;
};
@ -276,55 +283,38 @@ protected:
Impl* p;
};
/*
//! @brief Attaches OpenCL context to OpenCV
//
//! @note Note:
// OpenCV will check if available OpenCL platform has platformName name,
// then assign context to OpenCV and call clRetainContext function.
// The deviceID device will be used as target device and new command queue
// will be created.
//
// Params:
//! @param platformName - name of OpenCL platform to attach,
//! this string is used to check if platform is available
//! to OpenCV at runtime
//! @param platfromID - ID of platform attached context was created for
//! @param context - OpenCL context to be attached to OpenCV
//! @param deviceID - ID of device, must be created from attached context
/** @brief Attaches OpenCL context to OpenCV
@note
OpenCV will check if available OpenCL platform has platformName name, then assign context to
OpenCV and call `clRetainContext` function. The deviceID device will be used as target device and
new command queue will be created.
@param platformName name of OpenCL platform to attach, this string is used to check if platform is available to OpenCV at runtime
@param platformID ID of platform attached context was created for
@param context OpenCL context to be attached to OpenCV
@param deviceID ID of device, must be created from attached context
*/
CV_EXPORTS void attachContext(const String& platformName, void* platformID, void* context, void* deviceID);
/*
//! @brief Convert OpenCL buffer to UMat
//
//! @note Note:
// OpenCL buffer (cl_mem_buffer) should contain 2D image data, compatible with OpenCV.
// Memory content is not copied from clBuffer to UMat. Instead, buffer handle assigned
// to UMat and clRetainMemObject is called.
//
// Params:
//! @param cl_mem_buffer - source clBuffer handle
//! @param step - num of bytes in single row
//! @param rows - number of rows
//! @param cols - number of cols
//! @param type - OpenCV type of image
//! @param dst - destination UMat
/** @brief Convert OpenCL buffer to UMat
@note
OpenCL buffer (cl_mem_buffer) should contain 2D image data, compatible with OpenCV. Memory
content is not copied from `clBuffer` to UMat. Instead, buffer handle assigned to UMat and
`clRetainMemObject` is called.
@param cl_mem_buffer source clBuffer handle
@param step num of bytes in single row
@param rows number of rows
@param cols number of cols
@param type OpenCV type of image
@param dst destination UMat
*/
CV_EXPORTS void convertFromBuffer(void* cl_mem_buffer, size_t step, int rows, int cols, int type, UMat& dst);
/*
//! @brief Convert OpenCL image2d_t to UMat
//
//! @note Note:
// OpenCL image2d_t (cl_mem_image), should be compatible with OpenCV
// UMat formats.
// Memory content is copied from image to UMat with
// clEnqueueCopyImageToBuffer function.
//
// Params:
//! @param cl_mem_image - source image2d_t handle
//! @param dst - destination UMat
/** @brief Convert OpenCL image2d_t to UMat
@note
OpenCL `image2d_t` (cl_mem_image), should be compatible with OpenCV UMat formats. Memory content
is copied from image to UMat with `clEnqueueCopyImageToBuffer` function.
@param cl_mem_image source image2d_t handle
@param dst destination UMat
*/
CV_EXPORTS void convertFromImage(void* cl_mem_image, UMat& dst);
@ -345,8 +335,12 @@ public:
void* ptr() const;
static Queue& getDefault();
/// @brief Returns OpenCL command queue with enable profiling mode support
const Queue& getProfilingQueue() const;
struct Impl; friend struct Impl;
inline Impl* getImpl() const { return p; }
protected:
struct Impl;
Impl* p;
};
@ -567,11 +561,26 @@ public:
i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11);
i = set(i, a12); i = set(i, a13); i = set(i, a14); set(i, a15); return *this;
}
/** @brief Run the OpenCL kernel.
@param dims the work problem dimensions. It is the length of globalsize and localsize. It can be either 1, 2 or 3.
@param globalsize work items for each dimension. It is not the final globalsize passed to
OpenCL. Each dimension will be adjusted to the nearest integer divisible by the corresponding
value in localsize. If localsize is NULL, it will still be adjusted depending on dims. The
adjusted values are greater than or equal to the original values.
@param localsize work-group size for each dimension.
@param sync specify whether to wait for OpenCL computation to finish before return.
@param q command queue
*/
bool run(int dims, size_t globalsize[],
size_t localsize[], bool sync, const Queue& q=Queue());
bool runTask(bool sync, const Queue& q=Queue());
/** @brief Similar to synchronized run() call with returning of kernel execution time
* Separate OpenCL command queue may be used (with CL_QUEUE_PROFILING_ENABLE)
* @return Execution time in nanoseconds or negative number on error
*/
int64 runProfiling(int dims, size_t globalsize[], size_t localsize[], const Queue& q=Queue());
size_t workGroupSize() const;
size_t preferedWorkGroupSizeMultiple() const;
bool compileWorkGroupSize(size_t wsz[]) const;
@ -590,7 +599,6 @@ public:
Program();
Program(const ProgramSource& src,
const String& buildflags, String& errmsg);
explicit Program(const String& buf);
Program(const Program& prog);
Program& operator = (const Program& prog);
@ -598,38 +606,104 @@ public:
bool create(const ProgramSource& src,
const String& buildflags, String& errmsg);
bool read(const String& buf, const String& buildflags);
bool write(String& buf) const;
const ProgramSource& source() const;
void* ptr() const;
String getPrefix() const;
static String getPrefix(const String& buildflags);
/**
* @brief Query device-specific program binary.
*
* Returns RAW OpenCL executable binary without additional attachments.
*
* @sa ProgramSource::fromBinary
*
* @param[out] binary output buffer
*/
void getBinary(std::vector<char>& binary) const;
struct Impl; friend struct Impl;
inline Impl* getImpl() const { return (Impl*)p; }
protected:
struct Impl;
Impl* p;
public:
#ifndef OPENCV_REMOVE_DEPRECATED_API
// TODO Remove this
CV_DEPRECATED bool read(const String& buf, const String& buildflags); // removed, use ProgramSource instead
CV_DEPRECATED bool write(String& buf) const; // removed, use getBinary() method instead (RAW OpenCL binary)
CV_DEPRECATED const ProgramSource& source() const; // implementation removed
CV_DEPRECATED String getPrefix() const; // deprecated, implementation replaced
CV_DEPRECATED static String getPrefix(const String& buildflags); // deprecated, implementation replaced
#endif
};
class CV_EXPORTS ProgramSource
{
public:
typedef uint64 hash_t;
typedef uint64 hash_t; // deprecated
ProgramSource();
explicit ProgramSource(const String& prog);
explicit ProgramSource(const char* prog);
explicit ProgramSource(const String& module, const String& name, const String& codeStr, const String& codeHash);
explicit ProgramSource(const String& prog); // deprecated
explicit ProgramSource(const char* prog); // deprecated
~ProgramSource();
ProgramSource(const ProgramSource& prog);
ProgramSource& operator = (const ProgramSource& prog);
const String& source() const;
hash_t hash() const;
const String& source() const; // deprecated
hash_t hash() const; // deprecated
/** @brief Describe OpenCL program binary.
* Do not call clCreateProgramWithBinary() and/or clBuildProgram().
*
* Caller should guarantee binary buffer lifetime greater than ProgramSource object (and any of its copies).
*
* This kind of binary is not portable between platforms in general - it is specific to OpenCL vendor / device / driver version.
*
* @param module name of program owner module
* @param name unique name of program (module+name is used as key for OpenCL program caching)
* @param binary buffer address. See buffer lifetime requirement in description.
* @param size buffer size
* @param buildOptions additional program-related build options passed to clBuildProgram()
* @return created ProgramSource object
*/
static ProgramSource fromBinary(const String& module, const String& name,
const unsigned char* binary, const size_t size,
const cv::String& buildOptions = cv::String());
/** @brief Describe OpenCL program in SPIR format.
* Do not call clCreateProgramWithBinary() and/or clBuildProgram().
*
* Supports SPIR 1.2 by default (pass '-spir-std=X.Y' in buildOptions to override this behavior)
*
* Caller should guarantee binary buffer lifetime greater than ProgramSource object (and any of its copies).
*
* Programs in this format are portable between OpenCL implementations with 'khr_spir' extension:
* https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/cl_khr_spir.html
* (but they are not portable between different platforms: 32-bit / 64-bit)
*
* Note: these programs can't support vendor specific extensions, like 'cl_intel_subgroups'.
*
* @param module name of program owner module
* @param name unique name of program (module+name is used as key for OpenCL program caching)
* @param binary buffer address. See buffer lifetime requirement in description.
* @param size buffer size
* @param buildOptions additional program-related build options passed to clBuildProgram()
* (these options are added automatically: '-x spir' and '-spir-std=1.2')
* @return created ProgramSource object.
*/
static ProgramSource fromSPIR(const String& module, const String& name,
const unsigned char* binary, const size_t size,
const cv::String& buildOptions = cv::String());
//OpenCL 2.1+ only
//static Program fromSPIRV(const String& module, const String& name,
// const unsigned char* binary, const size_t size,
// const cv::String& buildOptions = cv::String());
struct Impl; friend struct Impl;
inline Impl* getImpl() const { return (Impl*)p; }
protected:
struct Impl;
Impl* p;
};
@ -658,6 +732,7 @@ CV_EXPORTS const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf)
CV_EXPORTS const char* typeToStr(int t);
CV_EXPORTS const char* memopTypeToStr(int t);
CV_EXPORTS const char* vecopTypeToStr(int t);
CV_EXPORTS const char* getOpenCLErrorString(int errorCode);
CV_EXPORTS String kernelToStr(InputArray _kernel, int ddepth = -1, const char * name = NULL);
CV_EXPORTS void getPlatfomsInfo(std::vector<PlatformInfo>& platform_info);
@ -697,22 +772,25 @@ class CV_EXPORTS Image2D
public:
Image2D();
// src: The UMat from which to get image properties and data
// norm: Flag to enable the use of normalized channel data types
// alias: Flag indicating that the image should alias the src UMat.
// If true, changes to the image or src will be reflected in
// both objects.
/**
@param src UMat object from which to get image properties and data
@param norm flag to enable the use of normalized channel data types
@param alias flag indicating that the image should alias the src UMat. If true, changes to the
image or src will be reflected in both objects.
*/
explicit Image2D(const UMat &src, bool norm = false, bool alias = false);
Image2D(const Image2D & i);
~Image2D();
Image2D & operator = (const Image2D & i);
// Indicates if creating an aliased image should succeed. Depends on the
// underlying platform and the dimensions of the UMat.
/** Indicates if creating an aliased image should succeed.
Depends on the underlying platform and the dimensions of the UMat.
*/
static bool canCreateAlias(const UMat &u);
// Indicates if the image format is supported.
/** Indicates if the image format is supported.
*/
static bool isFormatSupported(int depth, int cn, bool norm);
void* ptr() const;
@ -721,6 +799,24 @@ protected:
Impl* p;
};
class CV_EXPORTS Timer
{
public:
Timer(const Queue& q);
~Timer();
void start();
void stop();
uint64 durationNS() const; //< duration in nanoseconds
protected:
struct Impl;
Impl* const p;
private:
Timer(const Timer&); // disabled
Timer& operator=(const Timer&); // disabled
};
CV_EXPORTS MatAllocator* getOpenCLAllocator();
@ -728,6 +824,9 @@ CV_EXPORTS MatAllocator* getOpenCLAllocator();
#ifdef __OPENCV_BUILD
namespace internal {
CV_EXPORTS bool isOpenCLForced();
#define OCL_FORCE_CHECK(condition) (cv::ocl::internal::isOpenCLForced() || (condition))
CV_EXPORTS bool isPerformanceCheckBypassed();
#define OCL_PERFORMANCE_CHECK(condition) (cv::ocl::internal::isPerformanceCheckBypassed() || (condition))

View file

@ -39,26 +39,31 @@
//
//M*/
#ifndef __OPENCV_OPENCL_GENBASE_HPP__
#define __OPENCV_OPENCL_GENBASE_HPP__
namespace cv
{
namespace ocl
{
#ifndef OPENCV_OPENCL_GENBASE_HPP
#define OPENCV_OPENCL_GENBASE_HPP
//! @cond IGNORED
struct ProgramEntry
namespace cv {
namespace ocl {
class ProgramSource;
namespace internal {
struct CV_EXPORTS ProgramEntry
{
const char* module;
const char* name;
const char* programStr;
const char* programCode;
const char* programHash;
ProgramSource* pProgramSource;
operator ProgramSource& () const;
};
} } } // namespace
//! @endcond
}
}
#endif

View file

@ -40,8 +40,8 @@
//
//M*/
#ifndef __OPENCV_CORE_OPENGL_HPP__
#define __OPENCV_CORE_OPENGL_HPP__
#ifndef OPENCV_CORE_OPENGL_HPP
#define OPENCV_CORE_OPENGL_HPP
#ifndef __cplusplus
# error opengl.hpp header must be compiled as C++
@ -726,4 +726,4 @@ bool cv::ogl::Arrays::empty() const
//! @endcond
#endif /* __OPENCV_CORE_OPENGL_HPP__ */
#endif /* OPENCV_CORE_OPENGL_HPP */

View file

@ -42,8 +42,8 @@
//
//M*/
#ifndef __OPENCV_CORE_OPERATIONS_HPP__
#define __OPENCV_CORE_OPERATIONS_HPP__
#ifndef OPENCV_CORE_OPERATIONS_HPP
#define OPENCV_CORE_OPERATIONS_HPP
#ifndef __cplusplus
# error operations.hpp header must be compiled as C++
@ -82,7 +82,7 @@ template<typename _Tp> struct Matx_FastInvOp<_Tp, 2>
{
bool operator()(const Matx<_Tp, 2, 2>& a, Matx<_Tp, 2, 2>& b, int) const
{
_Tp d = determinant(a);
_Tp d = (_Tp)determinant(a);
if( d == 0 )
return false;
d = 1/d;
@ -137,7 +137,7 @@ template<typename _Tp> struct Matx_FastSolveOp<_Tp, 2, 1>
bool operator()(const Matx<_Tp, 2, 2>& a, const Matx<_Tp, 2, 1>& b,
Matx<_Tp, 2, 1>& x, int) const
{
_Tp d = determinant(a);
_Tp d = (_Tp)determinant(a);
if( d == 0 )
return false;
d = 1/d;
@ -349,6 +349,8 @@ inline int RNG::uniform(int a, int b) { return a == b ? a : (int)(next(
inline float RNG::uniform(float a, float b) { return ((float)*this)*(b - a) + a; }
inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; }
inline bool RNG::operator ==(const RNG& other) const { return state == other.state; }
inline unsigned RNG::next()
{
state = (uint64)(unsigned)state* /*CV_RNG_COEFF*/ 4164903690U + (unsigned)(state >> 32);

View file

@ -39,8 +39,8 @@
//
//M*/
#ifndef __OPENCV_OPTIM_HPP__
#define __OPENCV_OPTIM_HPP__
#ifndef OPENCV_OPTIM_HPP
#define OPENCV_OPTIM_HPP
#include "opencv2/core.hpp"
@ -73,7 +73,7 @@ public:
/** @brief Getter for the optimized function.
The optimized function is represented by Function interface, which requires derivatives to
implement the sole method calc(double*) to evaluate the function.
implement the calc(double*) and getDim() methods to evaluate the function.
@return Smart-pointer to an object that implements Function interface - it represents the
function that is being optimized. It can be empty, if no function was given so far.

View file

@ -0,0 +1,28 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
// OpenVX related definitions and declarations
#pragma once
#ifndef OPENCV_OVX_HPP
#define OPENCV_OVX_HPP
#include "cvdef.h"
namespace cv
{
/// Check if use of OpenVX is possible
CV_EXPORTS_W bool haveOpenVX();
/// Check if use of OpenVX is enabled
CV_EXPORTS_W bool useOpenVX();
/// Enable/disable use of OpenVX
CV_EXPORTS_W void setUseOpenVX(bool flag);
} // namespace cv
#endif // OPENCV_OVX_HPP

View file

@ -41,8 +41,13 @@
//
//M*/
#ifndef __OPENCV_CORE_PERSISTENCE_HPP__
#define __OPENCV_CORE_PERSISTENCE_HPP__
#ifndef OPENCV_CORE_PERSISTENCE_HPP
#define OPENCV_CORE_PERSISTENCE_HPP
#ifndef CV_DOXYGEN
/// Define to support persistence legacy formats
#define CV__LEGACY_PERSISTENCE
#endif
#ifndef __cplusplus
# error persistence.hpp header must be compiled as C++
@ -57,8 +62,9 @@ Several functions that are described below take CvFileStorage\* as inputs and al
save or to load hierarchical collections that consist of scalar values, standard CXCore objects
(such as matrices, sequences, graphs), and user-defined objects.
OpenCV can read and write data in XML (<http://www.w3c.org/XML>) or YAML (<http://www.yaml.org>)
formats. Below is an example of 3x3 floating-point identity matrix A, stored in XML and YAML files
OpenCV can read and write data in XML (<http://www.w3c.org/XML>), YAML (<http://www.yaml.org>) or
JSON (<http://www.json.org/>) formats. Below is an example of 3x3 floating-point identity matrix A,
stored in XML and YAML files
using CXCore functions:
XML:
@code{.xml}
@ -85,10 +91,13 @@ As it can be seen from the examples, XML uses nested tags to represent hierarchy
indentation for that purpose (similar to the Python programming language).
The same functions can read and write data in both formats; the particular format is determined by
the extension of the opened file, ".xml" for XML files and ".yml" or ".yaml" for YAML.
the extension of the opened file, ".xml" for XML files, ".yml" or ".yaml" for YAML and ".json" for
JSON.
*/
typedef struct CvFileStorage CvFileStorage;
typedef struct CvFileNode CvFileNode;
typedef struct CvMat CvMat;
typedef struct CvMatND CvMatND;
//! @} core_c
@ -99,20 +108,20 @@ namespace cv {
/** @addtogroup core_xml
XML/YAML file storages. {#xml_storage}
XML/YAML/JSON file storages. {#xml_storage}
=======================
Writing to a file storage.
--------------------------
You can store and then restore various OpenCV data structures to/from XML (<http://www.w3c.org/XML>)
or YAML (<http://www.yaml.org>) formats. Also, it is possible store and load arbitrarily complex
data structures, which include OpenCV data structures, as well as primitive data types (integer and
floating-point numbers and text strings) as their elements.
You can store and then restore various OpenCV data structures to/from XML (<http://www.w3c.org/XML>),
YAML (<http://www.yaml.org>) or JSON (<http://www.json.org/>) formats. Also, it is possible to store
and load arbitrarily complex data structures, which include OpenCV data structures, as well as
primitive data types (integer and floating-point numbers and text strings) as their elements.
Use the following procedure to write something to XML or YAML:
Use the following procedure to write something to XML, YAML or JSON:
-# Create new FileStorage and open it for writing. It can be done with a single call to
FileStorage::FileStorage constructor that takes a filename, or you can use the default constructor
and then call FileStorage::open. Format of the file (XML or YAML) is determined from the filename
extension (".xml" and ".yml"/".yaml", respectively)
and then call FileStorage::open. Format of the file (XML, YAML or JSON) is determined from the filename
extension (".xml", ".yml"/".yaml" and ".json", respectively)
-# Write all the data you want using the streaming operator `<<`, just like in the case of STL
streams.
-# Close the file using FileStorage::release. FileStorage destructor also closes the file.
@ -151,7 +160,7 @@ Here is an example:
return 0;
}
@endcode
The sample above stores to XML and integer, text string (calibration date), 2 matrices, and a custom
The sample above stores to YML an integer, a text string (calibration date), 2 matrices, and a custom
structure "feature", which includes feature coordinates and LBP (local binary pattern) value. Here
is output of the sample:
@code{.yaml}
@ -175,19 +184,19 @@ features:
- { x:344, y:158, lbp:[ 1, 1, 0, 0, 0, 0, 1, 0 ] }
@endcode
As an exercise, you can replace ".yml" with ".xml" in the sample above and see, how the
As an exercise, you can replace ".yml" with ".xml" or ".json" in the sample above and see, how the
corresponding XML file will look like.
Several things can be noted by looking at the sample code and the output:
- The produced YAML (and XML) consists of heterogeneous collections that can be nested. There are 2
types of collections: named collections (mappings) and unnamed collections (sequences). In mappings
- The produced YAML (and XML/JSON) consists of heterogeneous collections that can be nested. There are
2 types of collections: named collections (mappings) and unnamed collections (sequences). In mappings
each element has a name and is accessed by name. This is similar to structures and std::map in
C/C++ and dictionaries in Python. In sequences elements do not have names, they are accessed by
indices. This is similar to arrays and std::vector in C/C++ and lists, tuples in Python.
"Heterogeneous" means that elements of each single collection can have different types.
Top-level collection in YAML/XML is a mapping. Each matrix is stored as a mapping, and the matrix
Top-level collection in YAML/XML/JSON is a mapping. Each matrix is stored as a mapping, and the matrix
elements are stored as a sequence. Then, there is a sequence of features, where each feature is
represented a mapping, and lbp value in a nested sequence.
@ -203,7 +212,7 @@ Several things can be noted by looking at the sample code and the output:
- To write a sequence, you first write the special string `[`, then write the elements, then
write the closing `]`.
- In YAML (but not XML), mappings and sequences can be written in a compact Python-like inline
- In YAML/JSON (but not XML), mappings and sequences can be written in a compact Python-like inline
form. In the sample above matrix elements, as well as each feature, including its lbp value, is
stored in such inline form. To store a mapping/sequence in a compact form, put `:` after the
opening character, e.g. use `{:` instead of `{` and `[:` instead of `[`. When the
@ -211,7 +220,7 @@ Several things can be noted by looking at the sample code and the output:
Reading data from a file storage.
---------------------------------
To read the previously written XML or YAML file, do the following:
To read the previously written XML, YAML or JSON file, do the following:
-# Open the file storage using FileStorage::FileStorage constructor or FileStorage::open method.
In the current implementation the whole file is parsed and the whole representation of file
storage is built in memory as a hierarchy of file nodes (see FileNode)
@ -292,8 +301,8 @@ A complete example using the FileStorage interface
class CV_EXPORTS FileNode;
class CV_EXPORTS FileNodeIterator;
/** @brief XML/YAML file storage class that encapsulates all the information necessary for writing or reading
data to/from a file.
/** @brief XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or
reading data to/from a file.
*/
class CV_EXPORTS_W FileStorage
{
@ -309,7 +318,11 @@ public:
FORMAT_MASK = (7<<3), //!< mask for format flags
FORMAT_AUTO = 0, //!< flag, auto format
FORMAT_XML = (1<<3), //!< flag, XML format
FORMAT_YAML = (2<<3) //!< flag, YAML format
FORMAT_YAML = (2<<3), //!< flag, YAML format
FORMAT_JSON = (3<<3), //!< flag, JSON format
BASE64 = 64, //!< flag, write rawdata in Base64 by default. (consider using WRITE_BASE64)
WRITE_BASE64 = BASE64 | WRITE, //!< flag, enable both WRITE and BASE64
};
enum
{
@ -327,16 +340,9 @@ public:
CV_WRAP FileStorage();
/** @overload
@param source Name of the file to open or the text string to read the data from. Extension of the
file (.xml or .yml/.yaml) determines its format (XML or YAML respectively). Also you can append .gz
to work with compressed files, for example myHugeMatrix.xml.gz. If both FileStorage::WRITE and
FileStorage::MEMORY flags are specified, source is used just to specify the output file format (e.g.
mydata.xml, .yml etc.).
@param flags Mode of operation. See FileStorage::Mode
@param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and
you should use 8-bit encoding instead of it.
@copydoc open()
*/
CV_WRAP FileStorage(const String& source, int flags, const String& encoding=String());
CV_WRAP FileStorage(const String& filename, int flags, const String& encoding=String());
/** @overload */
FileStorage(CvFileStorage* fs, bool owning=true);
@ -349,10 +355,12 @@ public:
See description of parameters in FileStorage::FileStorage. The method calls FileStorage::release
before opening the file.
@param filename Name of the file to open or the text string to read the data from.
Extension of the file (.xml or .yml/.yaml) determines its format (XML or YAML respectively).
Also you can append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both
Extension of the file (.xml, .yml/.yaml or .json) determines its format (XML, YAML or JSON
respectively). Also you can append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both
FileStorage::WRITE and FileStorage::MEMORY flags are specified, source is used just to specify
the output file format (e.g. mydata.xml, .yml etc.).
the output file format (e.g. mydata.xml, .yml etc.). A file name can also contain parameters.
You can use this format, "*?base64" (e.g. "file.json?base64" (case sensitive)), as an alternative to
FileStorage::BASE64 flag.
@param flags Mode of operation. One of FileStorage::Mode
@param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and
you should use 8-bit encoding instead of it.
@ -398,7 +406,7 @@ public:
FileNode operator[](const String& nodename) const;
/** @overload */
CV_WRAP FileNode operator[](const char* nodename) const;
CV_WRAP_AS(getNode) FileNode operator[](const char* nodename) const;
/** @brief Returns the obsolete C FileStorage structure.
@returns Pointer to the underlying C FileStorage structure
@ -425,12 +433,38 @@ public:
*/
void writeObj( const String& name, const void* obj );
/**
* @brief Simplified writing API to use with bindings.
* @param name Name of the written object
* @param val Value of the written object
*/
CV_WRAP void write(const String& name, double val);
/// @overload
CV_WRAP void write(const String& name, const String& val);
/// @overload
CV_WRAP void write(const String& name, InputArray val);
/** @brief Writes a comment.
The function writes a comment into file storage. The comments are skipped when the storage is read.
@param comment The written comment, single-line or multi-line
@param append If true, the function tries to put the comment at the end of current line.
Else if the comment is multi-line, or if it does not fit at the end of the current
line, the comment starts a new line.
*/
CV_WRAP void writeComment(const String& comment, bool append = false);
/** @brief Returns the normalized object name for the specified name of a file.
@param filename Name of a file
@returns The normalized object name.
*/
static String getDefaultObjectName(const String& filename);
/** @brief Returns the current format.
* @returns The current format, see FileStorage::Mode
*/
CV_WRAP int getFormat() const;
Ptr<CvFileStorage> fs; //!< the underlying C FileStorage structure
String elname; //!< the currently written element
std::vector<char> structs; //!< the stack of written structures
@ -443,7 +477,7 @@ template<> CV_EXPORTS void DefaultDeleter<CvFileStorage>::operator ()(CvFileStor
The node is used to store each and every element of the file storage opened for reading. When
XML/YAML file is read, it is first parsed and stored in the memory as a hierarchical collection of
nodes. Each node can be a leaf that is contain a single number or a string, or be a collection of
nodes. Each node can be a "leaf" that is contain a single number or a string, or be a collection of
other nodes. There can be named collections (mappings) where each element has a name and it is
accessed by a name, and ordered collections (sequences) where elements do not have names but rather
accessed by index. Type of the file node can be determined using FileNode::type method.
@ -499,12 +533,12 @@ public:
/** @overload
@param nodename Name of an element in the mapping node.
*/
CV_WRAP FileNode operator[](const char* nodename) const;
CV_WRAP_AS(getNode) FileNode operator[](const char* nodename) const;
/** @overload
@param i Index of an element in the sequence node.
*/
CV_WRAP FileNode operator[](int i) const;
CV_WRAP_AS(at) FileNode operator[](int i) const;
/** @brief Returns type of the node.
@returns Type of the node. See FileNode::Type
@ -539,9 +573,7 @@ public:
operator double() const;
//! returns the node content as text string
operator String() const;
#ifndef OPENCV_NOSTL
operator std::string() const;
#endif
//! returns pointer to the underlying file node
CvFileNode* operator *();
@ -566,6 +598,13 @@ public:
//! reads the registered object and returns pointer to it
void* readObj() const;
//! Simplified reading API to use with bindings.
CV_WRAP double real() const;
//! Simplified reading API to use with bindings.
CV_WRAP String string() const;
//! Simplified reading API to use with bindings.
CV_WRAP Mat mat() const;
// do not use wrapper pointer classes for better efficiency
const CvFileStorage* fs;
const CvFileNode* node;
@ -659,8 +698,10 @@ CV_EXPORTS void write( FileStorage& fs, const String& name, double value );
CV_EXPORTS void write( FileStorage& fs, const String& name, const String& value );
CV_EXPORTS void write( FileStorage& fs, const String& name, const Mat& value );
CV_EXPORTS void write( FileStorage& fs, const String& name, const SparseMat& value );
#ifdef CV__LEGACY_PERSISTENCE
CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<KeyPoint>& value);
CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<DMatch>& value);
#endif
CV_EXPORTS void writeScalar( FileStorage& fs, int value );
CV_EXPORTS void writeScalar( FileStorage& fs, float value );
@ -676,10 +717,15 @@ CV_EXPORTS void read(const FileNode& node, int& value, int default_value);
CV_EXPORTS void read(const FileNode& node, float& value, float default_value);
CV_EXPORTS void read(const FileNode& node, double& value, double default_value);
CV_EXPORTS void read(const FileNode& node, String& value, const String& default_value);
CV_EXPORTS void read(const FileNode& node, std::string& value, const std::string& default_value);
CV_EXPORTS void read(const FileNode& node, Mat& mat, const Mat& default_mat = Mat() );
CV_EXPORTS void read(const FileNode& node, SparseMat& mat, const SparseMat& default_mat = SparseMat() );
#ifdef CV__LEGACY_PERSISTENCE
CV_EXPORTS void read(const FileNode& node, std::vector<KeyPoint>& keypoints);
CV_EXPORTS void read(const FileNode& node, std::vector<DMatch>& matches);
#endif
CV_EXPORTS void read(const FileNode& node, KeyPoint& value, const KeyPoint& default_value);
CV_EXPORTS void read(const FileNode& node, DMatch& value, const DMatch& default_value);
template<typename _Tp> static inline void read(const FileNode& node, Point_<_Tp>& value, const Point_<_Tp>& default_value)
{
@ -773,7 +819,7 @@ namespace internal
VecWriterProxy( FileStorage* _fs ) : fs(_fs) {}
void operator()(const std::vector<_Tp>& vec) const
{
int _fmt = DataType<_Tp>::fmt;
int _fmt = traits::SafeFmt<_Tp>::fmt;
char fmt[] = { (char)((_fmt >> 8) + '1'), (char)_fmt, '\0' };
fs->writeRaw(fmt, !vec.empty() ? (uchar*)&vec[0] : 0, vec.size() * sizeof(_Tp));
}
@ -804,8 +850,10 @@ namespace internal
{
size_t remaining = it->remaining;
size_t cn = DataType<_Tp>::channels;
int _fmt = DataType<_Tp>::fmt;
int _fmt = traits::SafeFmt<_Tp>::fmt;
CV_Assert((_fmt >> 8) < 9);
char fmt[] = { (char)((_fmt >> 8)+'1'), (char)_fmt, '\0' };
CV_Assert((remaining % cn) == 0);
size_t remaining1 = remaining / cn;
count = count < remaining1 ? count : remaining1;
vec.resize(count);
@ -916,11 +964,10 @@ void write(FileStorage& fs, const Range& r )
template<typename _Tp> static inline
void write( FileStorage& fs, const std::vector<_Tp>& vec )
{
cv::internal::VecWriterProxy<_Tp, DataType<_Tp>::fmt != 0> w(&fs);
cv::internal::VecWriterProxy<_Tp, traits::SafeFmt<_Tp>::fmt != 0> w(&fs);
w(vec);
}
template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Point_<_Tp>& pt )
{
@ -977,13 +1024,65 @@ void write(FileStorage& fs, const String& name, const Range& r )
write(fs, r);
}
static inline
void write(FileStorage& fs, const String& name, const KeyPoint& kpt)
{
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, kpt.pt.x);
write(fs, kpt.pt.y);
write(fs, kpt.size);
write(fs, kpt.angle);
write(fs, kpt.response);
write(fs, kpt.octave);
write(fs, kpt.class_id);
}
static inline
void write(FileStorage& fs, const String& name, const DMatch& m)
{
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
write(fs, m.queryIdx);
write(fs, m.trainIdx);
write(fs, m.imgIdx);
write(fs, m.distance);
}
template<typename _Tp> static inline
void write( FileStorage& fs, const String& name, const std::vector<_Tp>& vec )
{
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0));
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+(traits::SafeFmt<_Tp>::fmt != 0 ? FileNode::FLOW : 0));
write(fs, vec);
}
template<typename _Tp> static inline
void write( FileStorage& fs, const String& name, const std::vector< std::vector<_Tp> >& vec )
{
cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ);
for(size_t i = 0; i < vec.size(); i++)
{
cv::internal::WriteStructContext ws_(fs, name, FileNode::SEQ+(traits::SafeFmt<_Tp>::fmt != 0 ? FileNode::FLOW : 0));
write(fs, vec[i]);
}
}
#ifdef CV__LEGACY_PERSISTENCE
// This code is not needed anymore, but it is preserved here to keep source compatibility
// Implementation is similar to templates instantiations
static inline void write(FileStorage& fs, const KeyPoint& kpt) { write(fs, String(), kpt); }
static inline void write(FileStorage& fs, const DMatch& m) { write(fs, String(), m); }
static inline void write(FileStorage& fs, const std::vector<KeyPoint>& vec)
{
cv::internal::VecWriterProxy<KeyPoint, 0> w(&fs);
w(vec);
}
static inline void write(FileStorage& fs, const std::vector<DMatch>& vec)
{
cv::internal::VecWriterProxy<DMatch, 0> w(&fs);
w(vec);
}
#endif
//! @} FileStorage
//! @relates cv::FileNode
@ -1032,7 +1131,7 @@ void read(const FileNode& node, short& value, short default_value)
template<typename _Tp> static inline
void read( FileNodeIterator& it, std::vector<_Tp>& vec, size_t maxCount = (size_t)INT_MAX )
{
cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it);
cv::internal::VecReaderProxy<_Tp, traits::SafeFmt<_Tp>::fmt != 0> r(&it);
r(vec, maxCount);
}
@ -1048,6 +1147,24 @@ void read( const FileNode& node, std::vector<_Tp>& vec, const std::vector<_Tp>&
}
}
static inline
void read( const FileNode& node, std::vector<KeyPoint>& vec, const std::vector<KeyPoint>& default_value )
{
if(!node.node)
vec = default_value;
else
read(node, vec);
}
static inline
void read( const FileNode& node, std::vector<DMatch>& vec, const std::vector<DMatch>& default_value )
{
if(!node.node)
vec = default_value;
else
read(node, vec);
}
//! @} FileNode
//! @relates cv::FileStorage
@ -1103,7 +1220,7 @@ FileNodeIterator& operator >> (FileNodeIterator& it, _Tp& value)
template<typename _Tp> static inline
FileNodeIterator& operator >> (FileNodeIterator& it, std::vector<_Tp>& vec)
{
cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it);
cv::internal::VecReaderProxy<_Tp, traits::SafeFmt<_Tp>::fmt != 0> r(&it);
r(vec, (size_t)INT_MAX);
return it;
}
@ -1130,6 +1247,39 @@ void operator >> (const FileNode& n, std::vector<_Tp>& vec)
it >> vec;
}
/** @brief Reads KeyPoint from a file storage.
*/
//It needs special handling because it contains two types of fields, int & float.
static inline
void operator >> (const FileNode& n, KeyPoint& kpt)
{
FileNodeIterator it = n.begin();
it >> kpt.pt.x >> kpt.pt.y >> kpt.size >> kpt.angle >> kpt.response >> kpt.octave >> kpt.class_id;
}
#ifdef CV__LEGACY_PERSISTENCE
static inline
void operator >> (const FileNode& n, std::vector<KeyPoint>& vec)
{
read(n, vec);
}
static inline
void operator >> (const FileNode& n, std::vector<DMatch>& vec)
{
read(n, vec);
}
#endif
/** @brief Reads DMatch from a file storage.
*/
//It needs special handling because it contains two types of fields, int & float.
static inline
void operator >> (const FileNode& n, DMatch& m)
{
FileNodeIterator it = n.begin();
it >> m.queryIdx >> m.trainIdx >> m.imgIdx >> m.distance;
}
//! @} FileNode
//! @relates cv::FileNodeIterator
@ -1181,6 +1331,9 @@ inline FileNode::operator int() const { int value; read(*this, value, 0);
inline FileNode::operator float() const { float value; read(*this, value, 0.f); return value; }
inline FileNode::operator double() const { double value; read(*this, value, 0.); return value; }
inline FileNode::operator String() const { String value; read(*this, value, value); return value; }
inline double FileNode::real() const { return double(*this); }
inline String FileNode::string() const { return String(*this); }
inline Mat FileNode::mat() const { Mat value; read(*this, value, value); return value; }
inline FileNodeIterator FileNode::begin() const { return FileNodeIterator(fs, node); }
inline FileNodeIterator FileNode::end() const { return FileNodeIterator(fs, node, size()); }
inline void FileNode::readRaw( const String& fmt, uchar* vec, size_t len ) const { begin().readRaw( fmt, vec, len ); }
@ -1190,6 +1343,17 @@ inline String::String(const FileNode& fn): cstr_(0), len_(0) { read(fn, *this, *
//! @endcond
CV_EXPORTS void cvStartWriteRawData_Base64(::CvFileStorage * fs, const char* name, int len, const char* dt);
CV_EXPORTS void cvWriteRawData_Base64(::CvFileStorage * fs, const void* _data, int len);
CV_EXPORTS void cvEndWriteRawData_Base64(::CvFileStorage * fs);
CV_EXPORTS void cvWriteMat_Base64(::CvFileStorage* fs, const char* name, const ::CvMat* mat);
CV_EXPORTS void cvWriteMatND_Base64(::CvFileStorage* fs, const char* name, const ::CvMatND* mat);
} // cv
#endif // __OPENCV_CORE_PERSISTENCE_HPP__
#endif // OPENCV_CORE_PERSISTENCE_HPP

View file

@ -39,8 +39,8 @@
//
//M*/
#ifndef __OPENCV_CORE_PTR_INL_HPP__
#define __OPENCV_CORE_PTR_INL_HPP__
#ifndef OPENCV_CORE_PTR_INL_HPP
#define OPENCV_CORE_PTR_INL_HPP
#include <algorithm>
@ -264,6 +264,9 @@ Ptr<T>::Ptr(Ptr&& o) : owner(o.owner), stored(o.stored)
template<typename T>
Ptr<T>& Ptr<T>::operator = (Ptr<T>&& o)
{
if (this == &o)
return *this;
release();
owner = o.owner;
stored = o.stored;
@ -358,8 +361,19 @@ Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5&
return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10));
}
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10, typename A11>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10, const A11& a11)
{
return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11));
}
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10, typename A11, typename A12>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10, const A11& a11, const A12& a12)
{
return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12));
}
} // namespace cv
//! @endcond
#endif // __OPENCV_CORE_PTR_INL_HPP__
#endif // OPENCV_CORE_PTR_INL_HPP

View file

@ -42,8 +42,8 @@
//
//M*/
#ifndef __OPENCV_CORE_SATURATE_HPP__
#define __OPENCV_CORE_SATURATE_HPP__
#ifndef OPENCV_CORE_SATURATE_HPP
#define OPENCV_CORE_SATURATE_HPP
#include "opencv2/core/cvdef.h"
#include "opencv2/core/fast_math.hpp"
@ -58,8 +58,8 @@ namespace cv
/** @brief Template function for accurate conversion from one primitive type to another.
The functions saturate_cast resemble the standard C++ cast operations, such as static_cast\<T\>()
and others. They perform an efficient and accurate conversion from one primitive type to another
The function saturate_cast resembles the standard C++ cast operations, such as static_cast\<T\>()
and others. It perform an efficient and accurate conversion from one primitive type to another
(see the introduction chapter). saturate in the name means that when the input value v is out of the
range of the target type, the result is not formed just by taking low bits of the input, but instead
the value is clipped. For example:
@ -136,15 +136,30 @@ template<> inline short saturate_cast<short>(double v) { int iv = cvRound(
template<> inline short saturate_cast<short>(int64 v) { return (short)((uint64)((int64)v - SHRT_MIN) <= (uint64)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
template<> inline short saturate_cast<short>(uint64 v) { return (short)std::min(v, (uint64)SHRT_MAX); }
template<> inline int saturate_cast<int>(unsigned v) { return (int)std::min(v, (unsigned)INT_MAX); }
template<> inline int saturate_cast<int>(int64 v) { return (int)((uint64)(v - INT_MIN) <= (uint64)UINT_MAX ? v : v > 0 ? INT_MAX : INT_MIN); }
template<> inline int saturate_cast<int>(uint64 v) { return (int)std::min(v, (uint64)INT_MAX); }
template<> inline int saturate_cast<int>(float v) { return cvRound(v); }
template<> inline int saturate_cast<int>(double v) { return cvRound(v); }
template<> inline unsigned saturate_cast<unsigned>(schar v) { return (unsigned)std::max(v, (schar)0); }
template<> inline unsigned saturate_cast<unsigned>(short v) { return (unsigned)std::max(v, (short)0); }
template<> inline unsigned saturate_cast<unsigned>(int v) { return (unsigned)std::max(v, (int)0); }
template<> inline unsigned saturate_cast<unsigned>(int64 v) { return (unsigned)((uint64)v <= (uint64)UINT_MAX ? v : v > 0 ? UINT_MAX : 0); }
template<> inline unsigned saturate_cast<unsigned>(uint64 v) { return (unsigned)std::min(v, (uint64)UINT_MAX); }
// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc.
template<> inline unsigned saturate_cast<unsigned>(float v) { return cvRound(v); }
template<> inline unsigned saturate_cast<unsigned>(double v) { return cvRound(v); }
template<> inline unsigned saturate_cast<unsigned>(float v) { return static_cast<unsigned>(cvRound(v)); }
template<> inline unsigned saturate_cast<unsigned>(double v) { return static_cast<unsigned>(cvRound(v)); }
template<> inline uint64 saturate_cast<uint64>(schar v) { return (uint64)std::max(v, (schar)0); }
template<> inline uint64 saturate_cast<uint64>(short v) { return (uint64)std::max(v, (short)0); }
template<> inline uint64 saturate_cast<uint64>(int v) { return (uint64)std::max(v, (int)0); }
template<> inline uint64 saturate_cast<uint64>(int64 v) { return (uint64)std::max(v, (int64)0); }
template<> inline int64 saturate_cast<int64>(uint64 v) { return (int64)std::min(v, (uint64)LLONG_MAX); }
//! @}
} // cv
#endif // __OPENCV_CORE_SATURATE_HPP__
#endif // OPENCV_CORE_SATURATE_HPP

View file

@ -0,0 +1,526 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This file is based on files from package issued with the following license:
/*============================================================================
This C header file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3c, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#pragma once
#ifndef softfloat_h
#define softfloat_h 1
#include "cvdef.h"
// int32_t / uint32_t
#if defined(_MSC_VER) && _MSC_VER < 1600 /* MSVS 2010 */
namespace cv {
typedef signed int int32_t;
typedef unsigned int uint32_t;
}
#elif defined(_MSC_VER) || __cplusplus >= 201103L
#include <cstdint>
#else
#include <stdint.h>
#endif
namespace cv
{
/** @addtogroup core_utils_softfloat
[SoftFloat](http://www.jhauser.us/arithmetic/SoftFloat.html) is a software implementation
of floating-point calculations according to IEEE 754 standard.
All calculations are done in integers, that's why they are machine-independent and bit-exact.
This library can be useful in accuracy-critical parts like look-up tables generation, tests, etc.
OpenCV contains a subset of SoftFloat partially rewritten to C++.
### Types
There are two basic types: @ref softfloat and @ref softdouble.
These types are binary compatible with float and double types respectively
and support conversions to/from them.
Other types from original SoftFloat library like fp16 or fp128 were thrown away
as well as quiet/signaling NaN support, on-the-fly rounding mode switch
and exception flags (though exceptions can be implemented in the future).
### Operations
Both types support the following:
- Construction from signed and unsigned 32-bit and 64 integers,
float/double or raw binary representation
- Conversions betweeen each other, to float or double and to int
using @ref cvRound, @ref cvTrunc, @ref cvFloor, @ref cvCeil or a bunch of
saturate_cast functions
- Add, subtract, multiply, divide, remainder, square root, FMA with absolute precision
- Comparison operations
- Explicit sign, exponent and significand manipulation through get/set methods,
number state indicators (isInf, isNan, isSubnormal)
- Type-specific constants like eps, minimum/maximum value, best pi approximation, etc.
- min(), max(), abs(), exp(), log() and pow() functions
*/
//! @{
struct softfloat;
struct softdouble;
struct CV_EXPORTS softfloat
{
public:
/** @brief Default constructor */
softfloat() { v = 0; }
/** @brief Copy constructor */
softfloat( const softfloat& c) { v = c.v; }
/** @brief Assign constructor */
softfloat& operator=( const softfloat& c )
{
if(&c != this) v = c.v;
return *this;
}
/** @brief Construct from raw
Builds new value from raw binary representation
*/
static const softfloat fromRaw( const uint32_t a ) { softfloat x; x.v = a; return x; }
/** @brief Construct from integer */
explicit softfloat( const uint32_t );
explicit softfloat( const uint64_t );
explicit softfloat( const int32_t );
explicit softfloat( const int64_t );
#ifdef CV_INT32_T_IS_LONG_INT
// for platforms with int32_t = long int
explicit softfloat( const int a ) { *this = softfloat(static_cast<int32_t>(a)); }
#endif
/** @brief Construct from float */
explicit softfloat( const float a ) { Cv32suf s; s.f = a; v = s.u; }
/** @brief Type casts */
operator softdouble() const;
operator float() const { Cv32suf s; s.u = v; return s.f; }
/** @brief Basic arithmetics */
softfloat operator + (const softfloat&) const;
softfloat operator - (const softfloat&) const;
softfloat operator * (const softfloat&) const;
softfloat operator / (const softfloat&) const;
softfloat operator - () const { softfloat x; x.v = v ^ (1U << 31); return x; }
/** @brief Remainder operator
A quote from original SoftFloat manual:
> The IEEE Standard remainder operation computes the value
> a - n * b, where n is the integer closest to a / b.
> If a / b is exactly halfway between two integers, n is the even integer
> closest to a / b. The IEEE Standards remainder operation is always exact and so requires no rounding.
> Depending on the relative magnitudes of the operands, the remainder functions
> can take considerably longer to execute than the other SoftFloat functions.
> This is an inherent characteristic of the remainder operation itself and is not a flaw
> in the SoftFloat implementation.
*/
softfloat operator % (const softfloat&) const;
softfloat& operator += (const softfloat& a) { *this = *this + a; return *this; }
softfloat& operator -= (const softfloat& a) { *this = *this - a; return *this; }
softfloat& operator *= (const softfloat& a) { *this = *this * a; return *this; }
softfloat& operator /= (const softfloat& a) { *this = *this / a; return *this; }
softfloat& operator %= (const softfloat& a) { *this = *this % a; return *this; }
/** @brief Comparison operations
- Any operation with NaN produces false
+ The only exception is when x is NaN: x != y for any y.
- Positive and negative zeros are equal
*/
bool operator == ( const softfloat& ) const;
bool operator != ( const softfloat& ) const;
bool operator > ( const softfloat& ) const;
bool operator >= ( const softfloat& ) const;
bool operator < ( const softfloat& ) const;
bool operator <= ( const softfloat& ) const;
/** @brief NaN state indicator */
inline bool isNaN() const { return (v & 0x7fffffff) > 0x7f800000; }
/** @brief Inf state indicator */
inline bool isInf() const { return (v & 0x7fffffff) == 0x7f800000; }
/** @brief Subnormal number indicator */
inline bool isSubnormal() const { return ((v >> 23) & 0xFF) == 0; }
/** @brief Get sign bit */
inline bool getSign() const { return (v >> 31) != 0; }
/** @brief Construct a copy with new sign bit */
inline softfloat setSign(bool sign) const { softfloat x; x.v = (v & ((1U << 31) - 1)) | ((uint32_t)sign << 31); return x; }
/** @brief Get 0-based exponent */
inline int getExp() const { return ((v >> 23) & 0xFF) - 127; }
/** @brief Construct a copy with new 0-based exponent */
inline softfloat setExp(int e) const { softfloat x; x.v = (v & 0x807fffff) | (((e + 127) & 0xFF) << 23 ); return x; }
/** @brief Get a fraction part
Returns a number 1 <= x < 2 with the same significand
*/
inline softfloat getFrac() const
{
uint_fast32_t vv = (v & 0x007fffff) | (127 << 23);
return softfloat::fromRaw(vv);
}
/** @brief Construct a copy with provided significand
Constructs a copy of a number with significand taken from parameter
*/
inline softfloat setFrac(const softfloat& s) const
{
softfloat x;
x.v = (v & 0xff800000) | (s.v & 0x007fffff);
return x;
}
/** @brief Zero constant */
static softfloat zero() { return softfloat::fromRaw( 0 ); }
/** @brief Positive infinity constant */
static softfloat inf() { return softfloat::fromRaw( 0xFF << 23 ); }
/** @brief Default NaN constant */
static softfloat nan() { return softfloat::fromRaw( 0x7fffffff ); }
/** @brief One constant */
static softfloat one() { return softfloat::fromRaw( 127 << 23 ); }
/** @brief Smallest normalized value */
static softfloat min() { return softfloat::fromRaw( 0x01 << 23 ); }
/** @brief Difference between 1 and next representable value */
static softfloat eps() { return softfloat::fromRaw( (127 - 23) << 23 ); }
/** @brief Biggest finite value */
static softfloat max() { return softfloat::fromRaw( (0xFF << 23) - 1 ); }
/** @brief Correct pi approximation */
static softfloat pi() { return softfloat::fromRaw( 0x40490fdb ); }
uint32_t v;
};
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
struct CV_EXPORTS softdouble
{
public:
/** @brief Default constructor */
softdouble() : v(0) { }
/** @brief Copy constructor */
softdouble( const softdouble& c) { v = c.v; }
/** @brief Assign constructor */
softdouble& operator=( const softdouble& c )
{
if(&c != this) v = c.v;
return *this;
}
/** @brief Construct from raw
Builds new value from raw binary representation
*/
static softdouble fromRaw( const uint64_t a ) { softdouble x; x.v = a; return x; }
/** @brief Construct from integer */
explicit softdouble( const uint32_t );
explicit softdouble( const uint64_t );
explicit softdouble( const int32_t );
explicit softdouble( const int64_t );
#ifdef CV_INT32_T_IS_LONG_INT
// for platforms with int32_t = long int
explicit softdouble( const int a ) { *this = softdouble(static_cast<int32_t>(a)); }
#endif
/** @brief Construct from double */
explicit softdouble( const double a ) { Cv64suf s; s.f = a; v = s.u; }
/** @brief Type casts */
operator softfloat() const;
operator double() const { Cv64suf s; s.u = v; return s.f; }
/** @brief Basic arithmetics */
softdouble operator + (const softdouble&) const;
softdouble operator - (const softdouble&) const;
softdouble operator * (const softdouble&) const;
softdouble operator / (const softdouble&) const;
softdouble operator - () const { softdouble x; x.v = v ^ (1ULL << 63); return x; }
/** @brief Remainder operator
A quote from original SoftFloat manual:
> The IEEE Standard remainder operation computes the value
> a - n * b, where n is the integer closest to a / b.
> If a / b is exactly halfway between two integers, n is the even integer
> closest to a / b. The IEEE Standards remainder operation is always exact and so requires no rounding.
> Depending on the relative magnitudes of the operands, the remainder functions
> can take considerably longer to execute than the other SoftFloat functions.
> This is an inherent characteristic of the remainder operation itself and is not a flaw
> in the SoftFloat implementation.
*/
softdouble operator % (const softdouble&) const;
softdouble& operator += (const softdouble& a) { *this = *this + a; return *this; }
softdouble& operator -= (const softdouble& a) { *this = *this - a; return *this; }
softdouble& operator *= (const softdouble& a) { *this = *this * a; return *this; }
softdouble& operator /= (const softdouble& a) { *this = *this / a; return *this; }
softdouble& operator %= (const softdouble& a) { *this = *this % a; return *this; }
/** @brief Comparison operations
- Any operation with NaN produces false
+ The only exception is when x is NaN: x != y for any y.
- Positive and negative zeros are equal
*/
bool operator == ( const softdouble& ) const;
bool operator != ( const softdouble& ) const;
bool operator > ( const softdouble& ) const;
bool operator >= ( const softdouble& ) const;
bool operator < ( const softdouble& ) const;
bool operator <= ( const softdouble& ) const;
/** @brief NaN state indicator */
inline bool isNaN() const { return (v & 0x7fffffffffffffff) > 0x7ff0000000000000; }
/** @brief Inf state indicator */
inline bool isInf() const { return (v & 0x7fffffffffffffff) == 0x7ff0000000000000; }
/** @brief Subnormal number indicator */
inline bool isSubnormal() const { return ((v >> 52) & 0x7FF) == 0; }
/** @brief Get sign bit */
inline bool getSign() const { return (v >> 63) != 0; }
/** @brief Construct a copy with new sign bit */
softdouble setSign(bool sign) const { softdouble x; x.v = (v & ((1ULL << 63) - 1)) | ((uint_fast64_t)(sign) << 63); return x; }
/** @brief Get 0-based exponent */
inline int getExp() const { return ((v >> 52) & 0x7FF) - 1023; }
/** @brief Construct a copy with new 0-based exponent */
inline softdouble setExp(int e) const
{
softdouble x;
x.v = (v & 0x800FFFFFFFFFFFFF) | ((uint_fast64_t)((e + 1023) & 0x7FF) << 52);
return x;
}
/** @brief Get a fraction part
Returns a number 1 <= x < 2 with the same significand
*/
inline softdouble getFrac() const
{
uint_fast64_t vv = (v & 0x000FFFFFFFFFFFFF) | ((uint_fast64_t)(1023) << 52);
return softdouble::fromRaw(vv);
}
/** @brief Construct a copy with provided significand
Constructs a copy of a number with significand taken from parameter
*/
inline softdouble setFrac(const softdouble& s) const
{
softdouble x;
x.v = (v & 0xFFF0000000000000) | (s.v & 0x000FFFFFFFFFFFFF);
return x;
}
/** @brief Zero constant */
static softdouble zero() { return softdouble::fromRaw( 0 ); }
/** @brief Positive infinity constant */
static softdouble inf() { return softdouble::fromRaw( (uint_fast64_t)(0x7FF) << 52 ); }
/** @brief Default NaN constant */
static softdouble nan() { return softdouble::fromRaw( CV_BIG_INT(0x7FFFFFFFFFFFFFFF) ); }
/** @brief One constant */
static softdouble one() { return softdouble::fromRaw( (uint_fast64_t)( 1023) << 52 ); }
/** @brief Smallest normalized value */
static softdouble min() { return softdouble::fromRaw( (uint_fast64_t)( 0x01) << 52 ); }
/** @brief Difference between 1 and next representable value */
static softdouble eps() { return softdouble::fromRaw( (uint_fast64_t)( 1023 - 52 ) << 52 ); }
/** @brief Biggest finite value */
static softdouble max() { return softdouble::fromRaw( ((uint_fast64_t)(0x7FF) << 52) - 1 ); }
/** @brief Correct pi approximation */
static softdouble pi() { return softdouble::fromRaw( CV_BIG_INT(0x400921FB54442D18) ); }
uint64_t v;
};
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
/** @brief Fused Multiplication and Addition
Computes (a*b)+c with single rounding
*/
CV_EXPORTS softfloat mulAdd( const softfloat& a, const softfloat& b, const softfloat & c);
CV_EXPORTS softdouble mulAdd( const softdouble& a, const softdouble& b, const softdouble& c);
/** @brief Square root */
CV_EXPORTS softfloat sqrt( const softfloat& a );
CV_EXPORTS softdouble sqrt( const softdouble& a );
}
/*----------------------------------------------------------------------------
| Ported from OpenCV and added for usability
*----------------------------------------------------------------------------*/
/** @brief Truncates number to integer with minimum magnitude */
CV_EXPORTS int cvTrunc(const cv::softfloat& a);
CV_EXPORTS int cvTrunc(const cv::softdouble& a);
/** @brief Rounds a number to nearest even integer */
CV_EXPORTS int cvRound(const cv::softfloat& a);
CV_EXPORTS int cvRound(const cv::softdouble& a);
/** @brief Rounds a number to nearest even long long integer */
CV_EXPORTS int64_t cvRound64(const cv::softdouble& a);
/** @brief Rounds a number down to integer */
CV_EXPORTS int cvFloor(const cv::softfloat& a);
CV_EXPORTS int cvFloor(const cv::softdouble& a);
/** @brief Rounds number up to integer */
CV_EXPORTS int cvCeil(const cv::softfloat& a);
CV_EXPORTS int cvCeil(const cv::softdouble& a);
namespace cv
{
/** @brief Saturate casts */
template<typename _Tp> static inline _Tp saturate_cast(softfloat a) { return _Tp(a); }
template<typename _Tp> static inline _Tp saturate_cast(softdouble a) { return _Tp(a); }
template<> inline uchar saturate_cast<uchar>(softfloat a) { return (uchar)std::max(std::min(cvRound(a), (int)UCHAR_MAX), 0); }
template<> inline uchar saturate_cast<uchar>(softdouble a) { return (uchar)std::max(std::min(cvRound(a), (int)UCHAR_MAX), 0); }
template<> inline schar saturate_cast<schar>(softfloat a) { return (schar)std::min(std::max(cvRound(a), (int)SCHAR_MIN), (int)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(softdouble a) { return (schar)std::min(std::max(cvRound(a), (int)SCHAR_MIN), (int)SCHAR_MAX); }
template<> inline ushort saturate_cast<ushort>(softfloat a) { return (ushort)std::max(std::min(cvRound(a), (int)USHRT_MAX), 0); }
template<> inline ushort saturate_cast<ushort>(softdouble a) { return (ushort)std::max(std::min(cvRound(a), (int)USHRT_MAX), 0); }
template<> inline short saturate_cast<short>(softfloat a) { return (short)std::min(std::max(cvRound(a), (int)SHRT_MIN), (int)SHRT_MAX); }
template<> inline short saturate_cast<short>(softdouble a) { return (short)std::min(std::max(cvRound(a), (int)SHRT_MIN), (int)SHRT_MAX); }
template<> inline int saturate_cast<int>(softfloat a) { return cvRound(a); }
template<> inline int saturate_cast<int>(softdouble a) { return cvRound(a); }
template<> inline int64_t saturate_cast<int64_t>(softfloat a) { return cvRound(a); }
template<> inline int64_t saturate_cast<int64_t>(softdouble a) { return cvRound64(a); }
/** @brief Saturate cast to unsigned integer and unsigned long long integer
We intentionally do not clip negative numbers, to make -1 become 0xffffffff etc.
*/
template<> inline unsigned saturate_cast<unsigned>(softfloat a) { return cvRound(a); }
template<> inline unsigned saturate_cast<unsigned>(softdouble a) { return cvRound(a); }
template<> inline uint64_t saturate_cast<uint64_t>(softfloat a) { return cvRound(a); }
template<> inline uint64_t saturate_cast<uint64_t>(softdouble a) { return cvRound64(a); }
/** @brief Min and Max functions */
inline softfloat min(const softfloat& a, const softfloat& b) { return (a > b) ? b : a; }
inline softdouble min(const softdouble& a, const softdouble& b) { return (a > b) ? b : a; }
inline softfloat max(const softfloat& a, const softfloat& b) { return (a > b) ? a : b; }
inline softdouble max(const softdouble& a, const softdouble& b) { return (a > b) ? a : b; }
/** @brief Absolute value */
inline softfloat abs( softfloat a) { softfloat x; x.v = a.v & ((1U << 31) - 1); return x; }
inline softdouble abs( softdouble a) { softdouble x; x.v = a.v & ((1ULL << 63) - 1); return x; }
/** @brief Exponent
Special cases:
- exp(NaN) is NaN
- exp(-Inf) == 0
- exp(+Inf) == +Inf
*/
CV_EXPORTS softfloat exp( const softfloat& a);
CV_EXPORTS softdouble exp( const softdouble& a);
/** @brief Natural logarithm
Special cases:
- log(NaN), log(x < 0) are NaN
- log(0) == -Inf
*/
CV_EXPORTS softfloat log( const softfloat& a );
CV_EXPORTS softdouble log( const softdouble& a );
/** @brief Raising to the power
Special cases:
- x**NaN is NaN for any x
- ( |x| == 1 )**Inf is NaN
- ( |x| > 1 )**+Inf or ( |x| < 1 )**-Inf is +Inf
- ( |x| > 1 )**-Inf or ( |x| < 1 )**+Inf is 0
- x ** 0 == 1 for any x
- x ** 1 == 1 for any x
- NaN ** y is NaN for any other y
- Inf**(y < 0) == 0
- Inf ** y is +Inf for any other y
- (x < 0)**y is NaN for any other y if x can't be correctly rounded to integer
- 0 ** 0 == 1
- 0 ** (y < 0) is +Inf
- 0 ** (y > 0) is 0
*/
CV_EXPORTS softfloat pow( const softfloat& a, const softfloat& b);
CV_EXPORTS softdouble pow( const softdouble& a, const softdouble& b);
/** @brief Cube root
Special cases:
- cbrt(NaN) is NaN
- cbrt(+/-Inf) is +/-Inf
*/
CV_EXPORTS softfloat cbrt( const softfloat& a );
/** @brief Sine
Special cases:
- sin(Inf) or sin(NaN) is NaN
- sin(x) == x when sin(x) is close to zero
*/
CV_EXPORTS softdouble sin( const softdouble& a );
/** @brief Cosine
*
Special cases:
- cos(Inf) or cos(NaN) is NaN
- cos(x) == +/- 1 when cos(x) is close to +/- 1
*/
CV_EXPORTS softdouble cos( const softdouble& a );
}
//! @}
#endif

View file

@ -39,8 +39,8 @@
//
//M*/
#ifndef __OPENCV_CORE_SSE_UTILS_HPP__
#define __OPENCV_CORE_SSE_UTILS_HPP__
#ifndef OPENCV_CORE_SSE_UTILS_HPP
#define OPENCV_CORE_SSE_UTILS_HPP
#ifndef __cplusplus
# error sse_utils.hpp header must be compiled as C++
@ -649,4 +649,4 @@ inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m12
//! @}
#endif //__OPENCV_CORE_SSE_UTILS_HPP__
#endif //OPENCV_CORE_SSE_UTILS_HPP

View file

@ -41,19 +41,23 @@
//
//M*/
#ifndef __OPENCV_CORE_TRAITS_HPP__
#define __OPENCV_CORE_TRAITS_HPP__
#ifndef OPENCV_CORE_TRAITS_HPP
#define OPENCV_CORE_TRAITS_HPP
#include "opencv2/core/cvdef.h"
namespace cv
{
//#define OPENCV_TRAITS_ENABLE_DEPRECATED
//! @addtogroup core_basic
//! @{
/** @brief Template "trait" class for OpenCV primitive data types.
@note Deprecated. This is replaced by "single purpose" traits: traits::Type and traits::Depth
A primitive OpenCV data type is one of unsigned char, bool, signed char, unsigned short, signed
short, int, float, double, or a tuple of values of one of these types, where all the values in the
tuple have the same type. Any primitive type from the list can be defined by an identifier in the
@ -102,10 +106,13 @@ So, such traits are used to tell OpenCV which data type you are working with, ev
not native to OpenCV. For example, the matrix B initialization above is compiled because OpenCV
defines the proper specialized template class DataType\<complex\<_Tp\> \> . This mechanism is also
useful (and used in OpenCV this way) for generic algorithms implementations.
@note Default values were dropped to stop confusing developers about using of unsupported types (see #7599)
*/
template<typename _Tp> class DataType
{
public:
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
typedef _Tp value_type;
typedef value_type work_type;
typedef value_type channel_type;
@ -116,6 +123,7 @@ public:
fmt = 0,
type = CV_MAKETYPE(depth, channels)
};
#endif
};
template<> class DataType<bool>
@ -270,11 +278,14 @@ public:
};
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
template<int _depth> class TypeDepth
{
#ifdef OPENCV_TRAITS_ENABLE_LEGACY_DEFAULTS
enum { depth = CV_USRTYPE1 };
typedef void value_type;
#endif
};
template<> class TypeDepth<CV_8U>
@ -319,8 +330,68 @@ template<> class TypeDepth<CV_64F>
typedef double value_type;
};
#endif
//! @}
namespace traits {
namespace internal {
#define CV_CREATE_MEMBER_CHECK(X) \
template<typename T> class CheckMember_##X { \
struct Fallback { int X; }; \
struct Derived : T, Fallback { }; \
template<typename U, U> struct Check; \
typedef char CV_NO[1]; \
typedef char CV_YES[2]; \
template<typename U> static CV_NO & func(Check<int Fallback::*, &U::X> *); \
template<typename U> static CV_YES & func(...); \
public: \
typedef CheckMember_##X type; \
enum { value = sizeof(func<Derived>(0)) == sizeof(CV_YES) }; \
};
CV_CREATE_MEMBER_CHECK(fmt)
CV_CREATE_MEMBER_CHECK(type)
} // namespace internal
template<typename T>
struct Depth
{ enum { value = DataType<T>::depth }; };
template<typename T>
struct Type
{ enum { value = DataType<T>::type }; };
/** Similar to traits::Type<T> but has value = -1 in case of unknown type (instead of compiler error) */
template<typename T, bool available = internal::CheckMember_type< DataType<T> >::value >
struct SafeType {};
template<typename T>
struct SafeType<T, false>
{ enum { value = -1 }; };
template<typename T>
struct SafeType<T, true>
{ enum { value = Type<T>::value }; };
template<typename T, bool available = internal::CheckMember_fmt< DataType<T> >::value >
struct SafeFmt {};
template<typename T>
struct SafeFmt<T, false>
{ enum { fmt = 0 }; };
template<typename T>
struct SafeFmt<T, true>
{ enum { fmt = DataType<T>::fmt }; };
} // namespace
} // cv
#endif // __OPENCV_CORE_TRAITS_HPP__
#endif // OPENCV_CORE_TRAITS_HPP

View file

@ -41,8 +41,8 @@
//
//M*/
#ifndef __OPENCV_CORE_TYPES_HPP__
#define __OPENCV_CORE_TYPES_HPP__
#ifndef OPENCV_CORE_TYPES_HPP
#define OPENCV_CORE_TYPES_HPP
#ifndef __cplusplus
# error types.hpp header must be compiled as C++
@ -51,6 +51,7 @@
#include <climits>
#include <cfloat>
#include <vector>
#include <limits>
#include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp"
@ -97,14 +98,23 @@ public:
typedef _Tp channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = 2,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels) };
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<typename _Tp>
struct Depth< Complex<_Tp> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp>
struct Type< Complex<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 2) }; };
} // namespace
//////////////////////////////// Point_ ////////////////////////////////
@ -176,6 +186,7 @@ public:
};
typedef Point_<int> Point2i;
typedef Point_<int64> Point2l;
typedef Point_<float> Point2f;
typedef Point_<double> Point2d;
typedef Point2i Point;
@ -188,15 +199,23 @@ public:
typedef _Tp channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = 2,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<typename _Tp>
struct Depth< Point_<_Tp> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp>
struct Type< Point_<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 2) }; };
} // namespace
//////////////////////////////// Point3_ ////////////////////////////////
@ -231,7 +250,11 @@ public:
//! conversion to another data type
template<typename _Tp2> operator Point3_<_Tp2>() const;
//! conversion to cv::Vec<>
#if OPENCV_ABI_COMPATIBILITY > 300
template<typename _Tp2> operator Vec<_Tp2, 3>() const;
#else
operator Vec<_Tp, 3>() const;
#endif
//! dot product
_Tp dot(const Point3_& pt) const;
@ -255,16 +278,23 @@ public:
typedef _Tp channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = 3,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<typename _Tp>
struct Depth< Point3_<_Tp> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp>
struct Type< Point3_<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 3) }; };
} // namespace
//////////////////////////////// Size_ ////////////////////////////////
@ -295,6 +325,8 @@ public:
Size_& operator = (const Size_& sz);
//! the area (width*height)
_Tp area() const;
//! true if empty
bool empty() const;
//! conversion of another data type.
template<typename _Tp2> operator Size_<_Tp2>() const;
@ -303,6 +335,7 @@ public:
};
typedef Size_<int> Size2i;
typedef Size_<int64> Size2l;
typedef Size_<float> Size2f;
typedef Size_<double> Size2d;
typedef Size2i Size;
@ -315,16 +348,23 @@ public:
typedef _Tp channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = 2,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<typename _Tp>
struct Depth< Size_<_Tp> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp>
struct Type< Size_<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 2) }; };
} // namespace
//////////////////////////////// Rect_ ////////////////////////////////
@ -393,6 +433,8 @@ public:
Size_<_Tp> size() const;
//! area (width*height) of the rectangle
_Tp area() const;
//! true if empty
bool empty() const;
//! conversion to another data type
template<typename _Tp2> operator Rect_<_Tp2>() const;
@ -416,16 +458,23 @@ public:
typedef _Tp channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = 4,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<typename _Tp>
struct Depth< Rect_<_Tp> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp>
struct Type< Rect_<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 4) }; };
} // namespace
///////////////////////////// RotatedRect /////////////////////////////
@ -473,11 +522,13 @@ public:
RotatedRect(const Point2f& point1, const Point2f& point2, const Point2f& point3);
/** returns 4 vertices of the rectangle
@param pts The points array for storing rectangle vertices.
@param pts The points array for storing rectangle vertices. The order is bottomLeft, topLeft, topRight, bottomRight.
*/
void points(Point2f pts[]) const;
//! returns the minimal up-right rectangle containing the rotated rectangle
//! returns the minimal up-right integer rectangle containing the rotated rectangle
Rect boundingRect() const;
//! returns the minimal (exact) floating point rectangle containing the rotated rectangle, not intended for use with images
Rect_<float> boundingRect2f() const;
Point2f center; //< the rectangle mass center
Size2f size; //< width and height of the rectangle
@ -492,15 +543,23 @@ public:
typedef float channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = (int)sizeof(value_type)/sizeof(channel_type), // 5
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<>
struct Depth< RotatedRect > { enum { value = Depth<float>::value }; };
template<>
struct Type< RotatedRect > { enum { value = CV_MAKETYPE(Depth<float>::value, (int)sizeof(RotatedRect)/sizeof(float)) }; };
} // namespace
//////////////////////////////// Range /////////////////////////////////
@ -548,22 +607,30 @@ public:
typedef int channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = 2,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<>
struct Depth< Range > { enum { value = Depth<int>::value }; };
template<>
struct Type< Range > { enum { value = CV_MAKETYPE(Depth<int>::value, 2) }; };
} // namespace
//////////////////////////////// Scalar_ ///////////////////////////////
/** @brief Template class for a 4-element vector derived from Vec.
Being derived from Vec\<_Tp, 4\> , Scalar_ and Scalar can be used just as typical 4-element
Being derived from Vec\<_Tp, 4\> , Scalar\_ and Scalar can be used just as typical 4-element
vectors. In addition, they can be converted to/from CvScalar . The type Scalar is widely used in
OpenCV to pass pixel values.
*/
@ -604,15 +671,23 @@ public:
typedef _Tp channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = 4,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<typename _Tp>
struct Depth< Scalar_<_Tp> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp>
struct Type< Scalar_<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 4) }; };
} // namespace
/////////////////////////////// KeyPoint ////////////////////////////////
@ -699,6 +774,7 @@ public:
CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to)
};
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
template<> class DataType<KeyPoint>
{
public:
@ -715,7 +791,7 @@ public:
typedef Vec<channel_type, channels> vec_type;
};
#endif
//////////////////////////////// DMatch /////////////////////////////////
@ -742,6 +818,7 @@ public:
bool operator<(const DMatch &m) const;
};
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
template<> class DataType<DMatch>
{
public:
@ -758,7 +835,7 @@ public:
typedef Vec<channel_type, channels> vec_type;
};
#endif
///////////////////////////// TermCriteria //////////////////////////////
@ -872,15 +949,24 @@ public:
typedef double channel_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = (int)(sizeof(value_type)/sizeof(channel_type)), // 24
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<>
struct Depth< Moments > { enum { value = Depth<double>::value }; };
template<>
struct Type< Moments > { enum { value = CV_MAKETYPE(Depth<double>::value, (int)(sizeof(Moments)/sizeof(double))) }; };
} // namespace
//! @} imgproc_shape
//! @cond IGNORED
@ -1031,7 +1117,8 @@ Complex<_Tp> operator / (const Complex<_Tp>& a, const Complex<_Tp>& b)
template<typename _Tp> static inline
Complex<_Tp>& operator /= (Complex<_Tp>& a, const Complex<_Tp>& b)
{
return (a = a / b);
a = a / b;
return a;
}
template<typename _Tp> static inline
@ -1326,11 +1413,19 @@ Point3_<_Tp>::operator Point3_<_Tp2>() const
return Point3_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y), saturate_cast<_Tp2>(z));
}
#if OPENCV_ABI_COMPATIBILITY > 300
template<typename _Tp> template<typename _Tp2> inline
Point3_<_Tp>::operator Vec<_Tp2, 3>() const
{
return Vec<_Tp2, 3>(x, y, z);
}
#else
template<typename _Tp> inline
Point3_<_Tp>::operator Vec<_Tp, 3>() const
{
return Vec<_Tp, 3>(x, y, z);
}
#endif
template<typename _Tp> inline
Point3_<_Tp>& Point3_<_Tp>::operator = (const Point3_& pt)
@ -1575,9 +1670,19 @@ Size_<_Tp>& Size_<_Tp>::operator = (const Size_<_Tp>& sz)
template<typename _Tp> inline
_Tp Size_<_Tp>::area() const
{
return width * height;
const _Tp result = width * height;
CV_DbgAssert(!std::numeric_limits<_Tp>::is_integer
|| width == 0 || result / width == height); // make sure the result fits in the return value
return result;
}
template<typename _Tp> inline
bool Size_<_Tp>::empty() const
{
return width <= 0 || height <= 0;
}
template<typename _Tp> static inline
Size_<_Tp>& operator *= (Size_<_Tp>& a, _Tp b)
{
@ -1714,7 +1819,16 @@ Size_<_Tp> Rect_<_Tp>::size() const
template<typename _Tp> inline
_Tp Rect_<_Tp>::area() const
{
return width * height;
const _Tp result = width * height;
CV_DbgAssert(!std::numeric_limits<_Tp>::is_integer
|| width == 0 || result / width == height); // make sure the result fits in the return value
return result;
}
template<typename _Tp> inline
bool Rect_<_Tp>::empty() const
{
return width <= 0 || height <= 0;
}
template<typename _Tp> template<typename _Tp2> inline
@ -1779,12 +1893,17 @@ Rect_<_Tp>& operator &= ( Rect_<_Tp>& a, const Rect_<_Tp>& b )
template<typename _Tp> static inline
Rect_<_Tp>& operator |= ( Rect_<_Tp>& a, const Rect_<_Tp>& b )
{
_Tp x1 = std::min(a.x, b.x);
_Tp y1 = std::min(a.y, b.y);
a.width = std::max(a.x + a.width, b.x + b.width) - x1;
a.height = std::max(a.y + a.height, b.y + b.height) - y1;
a.x = x1;
a.y = y1;
if (a.empty()) {
a = b;
}
else if (!b.empty()) {
_Tp x1 = std::min(a.x, b.x);
_Tp y1 = std::min(a.y, b.y);
a.width = std::max(a.x + a.width, b.x + b.width) - x1;
a.height = std::max(a.y + a.height, b.y + b.height) - y1;
a.x = x1;
a.y = y1;
}
return a;
}
@ -1832,7 +1951,26 @@ Rect_<_Tp> operator | (const Rect_<_Tp>& a, const Rect_<_Tp>& b)
return c |= b;
}
/**
* @brief measure dissimilarity between two sample sets
*
* computes the complement of the Jaccard Index as described in <https://en.wikipedia.org/wiki/Jaccard_index>.
* For rectangles this reduces to computing the intersection over the union.
*/
template<typename _Tp> static inline
double jaccardDistance(const Rect_<_Tp>& a, const Rect_<_Tp>& b) {
_Tp Aa = a.area();
_Tp Ab = b.area();
if ((Aa + Ab) <= std::numeric_limits<_Tp>::epsilon()) {
// jaccard_index = 1 -> distance = 0
return 0.0;
}
double Aab = (a & b).area();
// distance = 1 - jaccard_index
return 1.0 - Aab / (Aa + Ab - Aab);
}
////////////////////////////// RotatedRect //////////////////////////////
@ -2225,4 +2363,4 @@ TermCriteria::TermCriteria(int _type, int _maxCount, double _epsilon)
} // cv
#endif //__OPENCV_CORE_TYPES_HPP__
#endif //OPENCV_CORE_TYPES_HPP

View file

@ -41,12 +41,12 @@
//
//M*/
#ifndef __OPENCV_CORE_TYPES_H__
#define __OPENCV_CORE_TYPES_H__
#ifndef OPENCV_CORE_TYPES_H
#define OPENCV_CORE_TYPES_H
#ifdef HAVE_IPL
# ifndef __IPL_H__
# if defined WIN32 || defined _WIN32
# if defined _WIN32
# include <ipl.h>
# else
# include <ipl/ipl.h>
@ -65,7 +65,7 @@
#include <float.h>
#endif // SKIP_INCLUDES
#if defined WIN32 || defined _WIN32
#if defined _WIN32
# define CV_CDECL __cdecl
# define CV_STDCALL __stdcall
#else
@ -130,24 +130,24 @@ enum {
CV_BadImageSize= -10, /**< image size is invalid */
CV_BadOffset= -11, /**< offset is invalid */
CV_BadDataPtr= -12, /**/
CV_BadStep= -13, /**/
CV_BadStep= -13, /**< image step is wrong, this may happen for a non-continuous matrix */
CV_BadModelOrChSeq= -14, /**/
CV_BadNumChannels= -15, /**/
CV_BadNumChannels= -15, /**< bad number of channels, for example, some functions accept only single channel matrices */
CV_BadNumChannel1U= -16, /**/
CV_BadDepth= -17, /**/
CV_BadDepth= -17, /**< input image depth is not supported by the function */
CV_BadAlphaChannel= -18, /**/
CV_BadOrder= -19, /**/
CV_BadOrigin= -20, /**/
CV_BadAlign= -21, /**/
CV_BadOrder= -19, /**< number of dimensions is out of range */
CV_BadOrigin= -20, /**< incorrect input origin */
CV_BadAlign= -21, /**< incorrect input align */
CV_BadCallBack= -22, /**/
CV_BadTileSize= -23, /**/
CV_BadCOI= -24, /**/
CV_BadROISize= -25, /**/
CV_BadCOI= -24, /**< input COI is not supported */
CV_BadROISize= -25, /**< incorrect input roi */
CV_MaskIsTiled= -26, /**/
CV_StsNullPtr= -27, /**< null pointer */
CV_StsVecLengthErr= -28, /**< incorrect vector length */
CV_StsFilterStructContentErr= -29, /**< incorr. filter structure content */
CV_StsKernelStructContentErr= -30, /**< incorr. transform kernel content */
CV_StsFilterStructContentErr= -29, /**< incorrect filter structure content */
CV_StsKernelStructContentErr= -30, /**< incorrect transform kernel content */
CV_StsFilterOffsetErr= -31, /**< incorrect filter offset value */
CV_StsBadSize= -201, /**< the input/output structure size is incorrect */
CV_StsDivByZero= -202, /**< division by zero */
@ -163,14 +163,14 @@ enum {
CV_StsParseError= -212, /**< invalid syntax/structure of the parsed file */
CV_StsNotImplemented= -213, /**< the requested function/feature is not implemented */
CV_StsBadMemBlock= -214, /**< an allocated block has been corrupted */
CV_StsAssert= -215, /**< assertion failed */
CV_GpuNotSupported= -216,
CV_GpuApiCallError= -217,
CV_OpenGlNotSupported= -218,
CV_OpenGlApiCallError= -219,
CV_OpenCLApiCallError= -220,
CV_StsAssert= -215, /**< assertion failed */
CV_GpuNotSupported= -216, /**< no CUDA support */
CV_GpuApiCallError= -217, /**< GPU API call error */
CV_OpenGlNotSupported= -218, /**< no OpenGL support */
CV_OpenGlApiCallError= -219, /**< OpenGL API call error */
CV_OpenCLApiCallError= -220, /**< OpenCL API call error */
CV_OpenCLDoubleNotSupported= -221,
CV_OpenCLInitError= -222,
CV_OpenCLInitError= -222, /**< OpenCL initialization error */
CV_OpenCLNoAMDBlasFft= -223
};
@ -1669,6 +1669,9 @@ typedef struct CvFileStorage CvFileStorage;
#define CV_STORAGE_FORMAT_AUTO 0
#define CV_STORAGE_FORMAT_XML 8
#define CV_STORAGE_FORMAT_YAML 16
#define CV_STORAGE_FORMAT_JSON 24
#define CV_STORAGE_BASE64 64
#define CV_STORAGE_WRITE_BASE64 (CV_STORAGE_BASE64 | CV_STORAGE_WRITE)
/** @brief List of attributes. :
@ -1829,6 +1832,6 @@ CvModuleInfo;
/** @} */
#endif /*__OPENCV_CORE_TYPES_H__*/
#endif /*OPENCV_CORE_TYPES_H*/
/* End of file. */

View file

@ -42,14 +42,23 @@
//
//M*/
#ifndef __OPENCV_CORE_UTILITY_H__
#define __OPENCV_CORE_UTILITY_H__
#ifndef OPENCV_CORE_UTILITY_H
#define OPENCV_CORE_UTILITY_H
#ifndef __cplusplus
# error utility.hpp header must be compiled as C++
#endif
#if defined(check)
# warning Detected Apple 'check' macro definition, it can cause build conflicts. Please, include this header before any Apple headers.
#endif
#include "opencv2/core.hpp"
#include <ostream>
#ifdef CV_CXX11
#include <functional>
#endif
namespace cv
{
@ -57,8 +66,8 @@ namespace cv
#ifdef CV_COLLECT_IMPL_DATA
CV_EXPORTS void setImpl(int flags); // set implementation flags and reset storage arrays
CV_EXPORTS void addImpl(int flag, const char* func = 0); // add implementation and function name to storage arrays
// Get stored implementation flags and fucntions names arrays
// Each implementation entry correspond to function name entry, so you can find which implementation was executed in which fucntion
// Get stored implementation flags and functions names arrays
// Each implementation entry correspond to function name entry, so you can find which implementation was executed in which function
CV_EXPORTS int getImpl(std::vector<int> &impl, std::vector<String> &funName);
CV_EXPORTS bool useCollection(); // return implementation collection state
@ -98,7 +107,7 @@ CV_EXPORTS void setUseCollection(bool flag); // set implementation collection st
\code
void my_func(const cv::Mat& m)
{
cv::AutoBuffer<float> buf; // create automatic buffer containing 1000 floats
cv::AutoBuffer<float> buf(1000); // create automatic buffer containing 1000 floats
buf.allocate(m.rows); // if m.rows <= 1000, the pre-allocated buffer is used,
// otherwise the buffer of "m.rows" floats will be allocated
@ -133,9 +142,9 @@ public:
void resize(size_t _size);
//! returns the current buffer size
size_t size() const;
//! returns pointer to the real buffer, stack-allocated or head-allocated
//! returns pointer to the real buffer, stack-allocated or heap-allocated
operator _Tp* ();
//! returns read-only pointer to the real buffer, stack-allocated or head-allocated
//! returns read-only pointer to the real buffer, stack-allocated or heap-allocated
operator const _Tp* () const;
protected:
@ -143,7 +152,7 @@ protected:
_Tp* ptr;
//! size of the real buffer
size_t sz;
//! pre-allocated buffer. At least 1 element to confirm C++ standard reqirements
//! pre-allocated buffer. At least 1 element to confirm C++ standard requirements
_Tp buf[(fixed_size > 0) ? fixed_size : 1];
};
@ -189,15 +198,15 @@ If threads == 0, OpenCV will disable threading optimizations and run all it's fu
sequentially. Passing threads \< 0 will reset threads number to system default. This function must
be called outside of parallel region.
OpenCV will try to run it's functions with specified threads number, but some behaviour differs from
OpenCV will try to run its functions with specified threads number, but some behaviour differs from
framework:
- `TBB` User-defined parallel constructions will run with the same threads number, if
another does not specified. If late on user creates own scheduler, OpenCV will be use it.
- `OpenMP` No special defined behaviour.
- `Concurrency` If threads == 1, OpenCV will disable threading optimizations and run it's
- `TBB` - User-defined parallel constructions will run with the same threads number, if
another is not specified. If later on user creates his own scheduler, OpenCV will use it.
- `OpenMP` - No special defined behaviour.
- `Concurrency` - If threads == 1, OpenCV will disable threading optimizations and run its
functions sequentially.
- `GCD` Supports only values \<= 0.
- `C=` No special defined behaviour.
- `GCD` - Supports only values \<= 0.
- `C=` - No special defined behaviour.
@param nthreads Number of threads used by OpenCV.
@sa getNumThreads, getThreadNum
*/
@ -208,13 +217,13 @@ CV_EXPORTS_W void setNumThreads(int nthreads);
Always returns 1 if OpenCV is built without threading support.
The exact meaning of return value depends on the threading framework used by OpenCV library:
- `TBB` The number of threads, that OpenCV will try to use for parallel regions. If there is
- `TBB` - The number of threads, that OpenCV will try to use for parallel regions. If there is
any tbb::thread_scheduler_init in user code conflicting with OpenCV, then function returns
default number of threads used by TBB library.
- `OpenMP` An upper bound on the number of threads that could be used to form a new team.
- `Concurrency` The number of threads, that OpenCV will try to use for parallel regions.
- `GCD` Unsupported; returns the GCD thread pool limit (512) for compatibility.
- `C=` The number of threads, that OpenCV will try to use for parallel regions, if before
- `OpenMP` - An upper bound on the number of threads that could be used to form a new team.
- `Concurrency` - The number of threads, that OpenCV will try to use for parallel regions.
- `GCD` - Unsupported; returns the GCD thread pool limit (512) for compatibility.
- `C=` - The number of threads, that OpenCV will try to use for parallel regions, if before
called setNumThreads with threads \> 0, otherwise returns the number of logical CPUs,
available for the process.
@sa setNumThreads, getThreadNum
@ -224,13 +233,13 @@ CV_EXPORTS_W int getNumThreads();
/** @brief Returns the index of the currently executed thread within the current parallel region. Always
returns 0 if called outside of parallel region.
The exact meaning of return value depends on the threading framework used by OpenCV library:
- `TBB` Unsupported with current 4.1 TBB release. May be will be supported in future.
- `OpenMP` The thread number, within the current team, of the calling thread.
- `Concurrency` An ID for the virtual processor that the current context is executing on (0
The exact meaning of the return value depends on the threading framework used by OpenCV library:
- `TBB` - Unsupported with current 4.1 TBB release. Maybe will be supported in future.
- `OpenMP` - The thread number, within the current team, of the calling thread.
- `Concurrency` - An ID for the virtual processor that the current context is executing on (0
for master thread and unique number for others, but not necessary 1,2,3,...).
- `GCD` System calling thread's ID. Never returns 0 inside parallel region.
- `C=` The index of the current parallel task.
- `GCD` - System calling thread's ID. Never returns 0 inside parallel region.
- `C=` - The index of the current parallel task.
@sa setNumThreads, getNumThreads
*/
CV_EXPORTS_W int getThreadNum();
@ -247,7 +256,8 @@ CV_EXPORTS_W const String& getBuildInformation();
The function returns the number of ticks after the certain event (for example, when the machine was
turned on). It can be used to initialize RNG or to measure a function execution time by reading the
tick count before and after the function call. See also the tick frequency.
tick count before and after the function call.
@sa getTickFrequency, TickMeter
*/
CV_EXPORTS_W int64 getTickCount();
@ -260,9 +270,139 @@ execution time in seconds:
// do something ...
t = ((double)getTickCount() - t)/getTickFrequency();
@endcode
@sa getTickCount, TickMeter
*/
CV_EXPORTS_W double getTickFrequency();
/** @brief a Class to measure passing time.
The class computes passing time by counting the number of ticks per second. That is, the following code computes the
execution time in seconds:
@code
TickMeter tm;
tm.start();
// do something ...
tm.stop();
std::cout << tm.getTimeSec();
@endcode
It is also possible to compute the average time over multiple runs:
@code
TickMeter tm;
for (int i = 0; i < 100; i++)
{
tm.start();
// do something ...
tm.stop();
}
double average_time = tm.getTimeSec() / tm.getCounter();
std::cout << "Average time in second per iteration is: " << average_time << std::endl;
@endcode
@sa getTickCount, getTickFrequency
*/
class CV_EXPORTS_W TickMeter
{
public:
//! the default constructor
CV_WRAP TickMeter()
{
reset();
}
/**
starts counting ticks.
*/
CV_WRAP void start()
{
startTime = cv::getTickCount();
}
/**
stops counting ticks.
*/
CV_WRAP void stop()
{
int64 time = cv::getTickCount();
if (startTime == 0)
return;
++counter;
sumTime += (time - startTime);
startTime = 0;
}
/**
returns counted ticks.
*/
CV_WRAP int64 getTimeTicks() const
{
return sumTime;
}
/**
returns passed time in microseconds.
*/
CV_WRAP double getTimeMicro() const
{
return getTimeMilli()*1e3;
}
/**
returns passed time in milliseconds.
*/
CV_WRAP double getTimeMilli() const
{
return getTimeSec()*1e3;
}
/**
returns passed time in seconds.
*/
CV_WRAP double getTimeSec() const
{
return (double)getTimeTicks() / getTickFrequency();
}
/**
returns internal counter value.
*/
CV_WRAP int64 getCounter() const
{
return counter;
}
/**
resets internal values.
*/
CV_WRAP void reset()
{
startTime = 0;
sumTime = 0;
counter = 0;
}
private:
int64 counter;
int64 sumTime;
int64 startTime;
};
/** @brief output operator
@code
TickMeter tm;
tm.start();
// do something ...
tm.stop();
std::cout << tm;
@endcode
*/
static inline
std::ostream& operator << (std::ostream& out, const TickMeter& tm)
{
return out << tm.getTimeSec() << "sec";
}
/** @brief Returns the number of CPU ticks.
The function returns the current number of CPU ticks on some architectures (such as x86, x64,
@ -301,12 +441,13 @@ The function returns the aligned pointer of the same type as the input pointer:
*/
template<typename _Tp> static inline _Tp* alignPtr(_Tp* ptr, int n=(int)sizeof(_Tp))
{
CV_DbgAssert((n & (n - 1)) == 0); // n is a power of 2
return (_Tp*)(((size_t)ptr + n-1) & -n);
}
/** @brief Aligns a buffer size to the specified number of bytes.
The function returns the minimum number that is greater or equal to sz and is divisible by n :
The function returns the minimum number that is greater than or equal to sz and is divisible by n :
\f[\texttt{(sz + n-1) & -n}\f]
@param sz Buffer size to align.
@param n Alignment size that must be a power of two.
@ -317,6 +458,23 @@ static inline size_t alignSize(size_t sz, int n)
return (sz + n-1) & -n;
}
/** @brief Integer division with result round up.
Use this function instead of `ceil((float)a / b)` expressions.
@sa alignSize
*/
static inline int divUp(int a, unsigned int b)
{
CV_DbgAssert(a >= 0);
return (a + b - 1) / b;
}
/** @overload */
static inline size_t divUp(size_t a, unsigned int b)
{
return (a + b - 1) / b;
}
/** @brief Enables or disables the optimized code.
The function can be used to dynamically turn on and off optimized code (code that uses SSE2, AVX,
@ -338,7 +496,7 @@ The function returns true if the optimized code is enabled. Otherwise, it return
*/
CV_EXPORTS_W bool useOptimized();
static inline size_t getElemSize(int type) { return CV_ELEM_SIZE(type); }
static inline size_t getElemSize(int type) { return (size_t)CV_ELEM_SIZE(type); }
/////////////////////////////// Parallel Primitives //////////////////////////////////
@ -355,15 +513,37 @@ public:
*/
CV_EXPORTS void parallel_for_(const Range& range, const ParallelLoopBody& body, double nstripes=-1.);
#ifdef CV_CXX11
class ParallelLoopBodyLambdaWrapper : public ParallelLoopBody
{
private:
std::function<void(const Range&)> m_functor;
public:
ParallelLoopBodyLambdaWrapper(std::function<void(const Range&)> functor) :
m_functor(functor)
{ }
virtual void operator() (const cv::Range& range) const
{
m_functor(range);
}
};
inline void parallel_for_(const Range& range, std::function<void(const Range&)> functor, double nstripes=-1.)
{
parallel_for_(range, ParallelLoopBodyLambdaWrapper(functor), nstripes);
}
#endif
/////////////////////////////// forEach method of cv::Mat ////////////////////////////
template<typename _Tp, typename Functor> inline
void Mat::forEach_impl(const Functor& operation) {
if (false) {
operation(*reinterpret_cast<_Tp*>(0), reinterpret_cast<int*>(NULL));
// If your compiler fail in this line.
operation(*reinterpret_cast<_Tp*>(0), reinterpret_cast<int*>(0));
// If your compiler fails in this line.
// Please check that your functor signature is
// (_Tp&, const int*) <- multidimential
// or (_Tp&, void*) <- in case of you don't need current idx.
// (_Tp&, const int*) <- multi-dimensional
// or (_Tp&, void*) <- in case you don't need current idx.
}
CV_Assert(this->total() / this->size[this->dims - 1] <= INT_MAX);
@ -373,8 +553,8 @@ void Mat::forEach_impl(const Functor& operation) {
{
public:
PixelOperationWrapper(Mat_<_Tp>* const frame, const Functor& _operation)
: mat(frame), op(_operation) {};
virtual ~PixelOperationWrapper(){};
: mat(frame), op(_operation) {}
virtual ~PixelOperationWrapper(){}
// ! Overloaded virtual operator
// convert range call to row call.
virtual void operator()(const Range &range) const {
@ -385,7 +565,7 @@ void Mat::forEach_impl(const Functor& operation) {
this->rowCall2(row, COLS);
}
} else {
std::vector<int> idx(COLS); /// idx is modified in this->rowCall
std::vector<int> idx(DIMS); /// idx is modified in this->rowCall
idx[DIMS - 2] = range.start - 1;
for (int line_num = range.start; line_num < range.end; ++line_num) {
@ -403,7 +583,7 @@ void Mat::forEach_impl(const Functor& operation) {
this->rowCall(&idx[0], COLS, DIMS);
}
}
};
}
private:
Mat_<_Tp>* const mat;
const Functor op;
@ -440,12 +620,12 @@ void Mat::forEach_impl(const Functor& operation) {
op(*pixel++, static_cast<const int*>(idx));
idx[1]++;
}
};
}
PixelOperationWrapper& operator=(const PixelOperationWrapper &) {
CV_Assert(false);
// We can not remove this implementation because Visual Studio warning C4822.
return *this;
};
}
};
parallel_for_(cv::Range(0, LINES), PixelOperationWrapper(reinterpret_cast<Mat_<_Tp>*>(this), operation));
@ -505,6 +685,9 @@ public:
virtual void deleteDataInstance(void* pData) const = 0;
int key_;
public:
void cleanup(); //! Release created TLS data container objects. It is similar to release() call, but it keeps TLS container valid.
};
// Main TLS data class
@ -514,22 +697,25 @@ class TLSData : protected TLSDataContainer
public:
inline TLSData() {}
inline ~TLSData() { release(); } // Release key and delete associated data
inline T* get() const { return (T*)getData(); } // Get data assosiated with key
inline T* get() const { return (T*)getData(); } // Get data associated with key
inline T& getRef() const { T* ptr = (T*)getData(); CV_Assert(ptr); return *ptr; } // Get data associated with key
// Get data from all threads
// Get data from all threads
inline void gather(std::vector<T*> &data) const
{
std::vector<void*> &dataVoid = reinterpret_cast<std::vector<void*>&>(data);
gatherData(dataVoid);
}
inline void cleanup() { TLSDataContainer::cleanup(); }
private:
virtual void* createDataInstance() const {return new T;} // Wrapper to allocate data by template
virtual void deleteDataInstance(void* pData) const {delete (T*)pData;} // Wrapper to release data by template
// Disable TLS copy operations
TLSData(TLSData &) {};
TLSData& operator =(const TLSData &) {return *this;};
TLSData(TLSData &) {}
TLSData& operator =(const TLSData &) {return *this;}
};
/** @brief Designed for command line parsing
@ -565,7 +751,7 @@ The sample below demonstrates how to use CommandLineParser:
### Keys syntax
The keys parameter is a string containing several blocks, each one is enclosed in curley braces and
The keys parameter is a string containing several blocks, each one is enclosed in curly braces and
describes one argument. Each argument contains three parts separated by the `|` symbol:
-# argument names is a space-separated list of option synonyms (to mark argument as positional, prefix it with the `@` symbol)
@ -636,7 +822,7 @@ public:
This method returns the path to the executable from the command line (`argv[0]`).
For example, if the application has been started with such command:
For example, if the application has been started with such a command:
@code{.sh}
$ ./bin/my-executable
@endcode
@ -723,7 +909,7 @@ public:
/** @brief Check for parsing errors
Returns true if error occured while accessing the parameters (bad conversion, missing arguments,
Returns true if error occurred while accessing the parameters (bad conversion, missing arguments,
etc.). Call @ref printErrors to print error messages list.
*/
bool check() const;
@ -742,7 +928,7 @@ public:
*/
void printMessage() const;
/** @brief Print list of errors occured
/** @brief Print list of errors occurred
@sa check
*/
@ -813,10 +999,10 @@ AutoBuffer<_Tp, fixed_size>::allocate(size_t _size)
return;
}
deallocate();
sz = _size;
if(_size > fixed_size)
{
ptr = new _Tp[_size];
sz = _size;
}
}
@ -867,7 +1053,6 @@ template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::operator const _Tp* () const
{ return ptr; }
#ifndef OPENCV_NOSTL
template<> inline std::string CommandLineParser::get<std::string>(int index, bool space_delete) const
{
return get<String>(index, space_delete);
@ -876,14 +1061,179 @@ template<> inline std::string CommandLineParser::get<std::string>(const String&
{
return get<String>(name, space_delete);
}
#endif // OPENCV_NOSTL
//! @endcond
// Basic Node class for tree building
template<class OBJECT>
class CV_EXPORTS Node
{
public:
Node()
{
m_pParent = 0;
}
Node(OBJECT& payload) : m_payload(payload)
{
m_pParent = 0;
}
~Node()
{
removeChilds();
if (m_pParent)
{
int idx = m_pParent->findChild(this);
if (idx >= 0)
m_pParent->m_childs.erase(m_pParent->m_childs.begin() + idx);
}
}
Node<OBJECT>* findChild(OBJECT& payload) const
{
for(size_t i = 0; i < this->m_childs.size(); i++)
{
if(this->m_childs[i]->m_payload == payload)
return this->m_childs[i];
}
return NULL;
}
int findChild(Node<OBJECT> *pNode) const
{
for (size_t i = 0; i < this->m_childs.size(); i++)
{
if(this->m_childs[i] == pNode)
return (int)i;
}
return -1;
}
void addChild(Node<OBJECT> *pNode)
{
if(!pNode)
return;
CV_Assert(pNode->m_pParent == 0);
pNode->m_pParent = this;
this->m_childs.push_back(pNode);
}
void removeChilds()
{
for(size_t i = 0; i < m_childs.size(); i++)
{
m_childs[i]->m_pParent = 0; // avoid excessive parent vector trimming
delete m_childs[i];
}
m_childs.clear();
}
int getDepth()
{
int count = 0;
Node *pParent = m_pParent;
while(pParent) count++, pParent = pParent->m_pParent;
return count;
}
public:
OBJECT m_payload;
Node<OBJECT>* m_pParent;
std::vector<Node<OBJECT>*> m_childs;
};
// Instrumentation external interface
namespace instr
{
#if !defined OPENCV_ABI_CHECK
enum TYPE
{
TYPE_GENERAL = 0, // OpenCV API function, e.g. exported function
TYPE_MARKER, // Information marker
TYPE_WRAPPER, // Wrapper function for implementation
TYPE_FUN, // Simple function call
};
enum IMPL
{
IMPL_PLAIN = 0,
IMPL_IPP,
IMPL_OPENCL,
};
struct NodeDataTls
{
NodeDataTls()
{
m_ticksTotal = 0;
}
uint64 m_ticksTotal;
};
class CV_EXPORTS NodeData
{
public:
NodeData(const char* funName = 0, const char* fileName = NULL, int lineNum = 0, void* retAddress = NULL, bool alwaysExpand = false, cv::instr::TYPE instrType = TYPE_GENERAL, cv::instr::IMPL implType = IMPL_PLAIN);
NodeData(NodeData &ref);
~NodeData();
NodeData& operator=(const NodeData&);
cv::String m_funName;
cv::instr::TYPE m_instrType;
cv::instr::IMPL m_implType;
const char* m_fileName;
int m_lineNum;
void* m_retAddress;
bool m_alwaysExpand;
bool m_funError;
volatile int m_counter;
volatile uint64 m_ticksTotal;
TLSData<NodeDataTls> m_tls;
int m_threads;
// No synchronization
double getTotalMs() const { return ((double)m_ticksTotal / cv::getTickFrequency()) * 1000; }
double getMeanMs() const { return (((double)m_ticksTotal/m_counter) / cv::getTickFrequency()) * 1000; }
};
bool operator==(const NodeData& lhs, const NodeData& rhs);
typedef Node<NodeData> InstrNode;
CV_EXPORTS InstrNode* getTrace();
#endif // !defined OPENCV_ABI_CHECK
CV_EXPORTS bool useInstrumentation();
CV_EXPORTS void setUseInstrumentation(bool flag);
CV_EXPORTS void resetTrace();
enum FLAGS
{
FLAGS_NONE = 0,
FLAGS_MAPPING = 0x01,
FLAGS_EXPAND_SAME_NAMES = 0x02,
};
CV_EXPORTS void setFlags(FLAGS modeFlags);
static inline void setFlags(int modeFlags) { setFlags((FLAGS)modeFlags); }
CV_EXPORTS FLAGS getFlags();
}
namespace utils {
CV_EXPORTS int getThreadID();
} // namespace
} //namespace cv
#ifndef DISABLE_OPENCV_24_COMPATIBILITY
#include "opencv2/core/core_c.h"
#endif
#endif //__OPENCV_CORE_UTILITY_H__
#endif //OPENCV_CORE_UTILITY_H

View file

@ -0,0 +1,71 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_UTILS_FILESYSTEM_HPP
#define OPENCV_UTILS_FILESYSTEM_HPP
namespace cv { namespace utils { namespace fs {
CV_EXPORTS bool exists(const cv::String& path);
CV_EXPORTS bool isDirectory(const cv::String& path);
CV_EXPORTS void remove_all(const cv::String& path);
CV_EXPORTS cv::String getcwd();
/** Join path components */
CV_EXPORTS cv::String join(const cv::String& base, const cv::String& path);
/**
* Generate a list of all files that match the globbing pattern.
*
* Result entries are prefixed by base directory path.
*
* @param directory base directory
* @param pattern filter pattern (based on '*'/'?' symbols). Use empty string to disable filtering and return all results
* @param[out] result result of globing.
* @param recursive scan nested directories too
* @param includeDirectories include directories into results list
*/
CV_EXPORTS void glob(const cv::String& directory, const cv::String& pattern,
CV_OUT std::vector<cv::String>& result,
bool recursive = false, bool includeDirectories = false);
/**
* Generate a list of all files that match the globbing pattern.
*
* @param directory base directory
* @param pattern filter pattern (based on '*'/'?' symbols). Use empty string to disable filtering and return all results
* @param[out] result globbing result with relative paths from base directory
* @param recursive scan nested directories too
* @param includeDirectories include directories into results list
*/
CV_EXPORTS void glob_relative(const cv::String& directory, const cv::String& pattern,
CV_OUT std::vector<cv::String>& result,
bool recursive = false, bool includeDirectories = false);
CV_EXPORTS bool createDirectory(const cv::String& path);
CV_EXPORTS bool createDirectories(const cv::String& path);
#ifdef __OPENCV_BUILD
// TODO
//CV_EXPORTS cv::String getTempDirectory();
/**
* @brief Returns directory to store OpenCV cache files
* Create sub-directory in common OpenCV cache directory if it doesn't exist.
* @param sub_directory_name name of sub-directory. NULL or "" value asks to return root cache directory.
* @param configuration_name optional name of configuration parameter name which overrides default behavior.
* @return Path to cache directory. Returns empty string if cache directories support is not available. Returns "disabled" if cache disabled by user.
*/
CV_EXPORTS cv::String getCacheDirectory(const char* sub_directory_name, const char* configuration_name = NULL);
#endif
}}} // namespace
#endif // OPENCV_UTILS_FILESYSTEM_HPP

View file

@ -0,0 +1,22 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_LOGGER_DEFINES_HPP
#define OPENCV_LOGGER_DEFINES_HPP
//! @addtogroup core_logging
//! @{
// Supported logging levels and their semantic
#define CV_LOG_LEVEL_SILENT 0 //!< for using in setLogLevel() call
#define CV_LOG_LEVEL_FATAL 1 //!< Fatal (critical) error (unrecoverable internal error)
#define CV_LOG_LEVEL_ERROR 2 //!< Error message
#define CV_LOG_LEVEL_WARN 3 //!< Warning message
#define CV_LOG_LEVEL_INFO 4 //!< Info message
#define CV_LOG_LEVEL_DEBUG 5 //!< Debug message. Disabled in the "Release" build.
#define CV_LOG_LEVEL_VERBOSE 6 //!< Verbose (trace) messages. Requires verbosity level. Disabled in the "Release" build.
//! @}
#endif // OPENCV_LOGGER_DEFINES_HPP

View file

@ -0,0 +1,87 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_LOGGER_HPP
#define OPENCV_LOGGER_HPP
#include <iostream>
#include <sstream>
#include <limits.h> // INT_MAX
#include "logger.defines.hpp"
//! @addtogroup core_logging
// This section describes OpenCV logging utilities.
//
//! @{
namespace cv {
namespace utils {
namespace logging {
//! Supported logging levels and their semantic
enum LogLevel {
LOG_LEVEL_SILENT = 0, //!< for using in setLogVevel() call
LOG_LEVEL_FATAL = 1, //!< Fatal (critical) error (unrecoverable internal error)
LOG_LEVEL_ERROR = 2, //!< Error message
LOG_LEVEL_WARNING = 3, //!< Warning message
LOG_LEVEL_INFO = 4, //!< Info message
LOG_LEVEL_DEBUG = 5, //!< Debug message. Disabled in the "Release" build.
LOG_LEVEL_VERBOSE = 6, //!< Verbose (trace) messages. Requires verbosity level. Disabled in the "Release" build.
#ifndef CV_DOXYGEN
ENUM_LOG_LEVEL_FORCE_INT = INT_MAX
#endif
};
/** Set global logging level
@return previous logging level
*/
CV_EXPORTS LogLevel setLogLevel(LogLevel logLevel);
/** Get global logging level */
CV_EXPORTS LogLevel getLogLevel();
namespace internal {
/** Write log message */
CV_EXPORTS void writeLogMessage(LogLevel logLevel, const char* message);
} // namespace
/**
* \def CV_LOG_STRIP_LEVEL
*
* Define CV_LOG_STRIP_LEVEL=CV_LOG_LEVEL_[DEBUG|INFO|WARN|ERROR|FATAL|DISABLED] to compile out anything at that and before that logging level
*/
#ifndef CV_LOG_STRIP_LEVEL
# if defined NDEBUG
# define CV_LOG_STRIP_LEVEL CV_LOG_LEVEL_DEBUG
# else
# define CV_LOG_STRIP_LEVEL CV_LOG_LEVEL_VERBOSE
# endif
#endif
#define CV_LOG_FATAL(tag, ...) for(;;) { if (cv::utils::logging::getLogLevel() < cv::utils::logging::LOG_LEVEL_FATAL) break; std::stringstream ss; ss << __VA_ARGS__; cv::utils::logging::internal::writeLogMessage(cv::utils::logging::LOG_LEVEL_FATAL, ss.str().c_str()); break; }
#define CV_LOG_ERROR(tag, ...) for(;;) { if (cv::utils::logging::getLogLevel() < cv::utils::logging::LOG_LEVEL_ERROR) break; std::stringstream ss; ss << __VA_ARGS__; cv::utils::logging::internal::writeLogMessage(cv::utils::logging::LOG_LEVEL_ERROR, ss.str().c_str()); break; }
#define CV_LOG_WARNING(tag, ...) for(;;) { if (cv::utils::logging::getLogLevel() < cv::utils::logging::LOG_LEVEL_WARNING) break; std::stringstream ss; ss << __VA_ARGS__; cv::utils::logging::internal::writeLogMessage(cv::utils::logging::LOG_LEVEL_WARNING, ss.str().c_str()); break; }
#if CV_LOG_STRIP_LEVEL <= CV_LOG_LEVEL_INFO
#define CV_LOG_INFO(tag, ...)
#else
#define CV_LOG_INFO(tag, ...) for(;;) { if (cv::utils::logging::getLogLevel() < cv::utils::logging::LOG_LEVEL_INFO) break; std::stringstream ss; ss << __VA_ARGS__; cv::utils::logging::internal::writeLogMessage(cv::utils::logging::LOG_LEVEL_INFO, ss.str().c_str()); break; }
#endif
#if CV_LOG_STRIP_LEVEL <= CV_LOG_LEVEL_DEBUG
#define CV_LOG_DEBUG(tag, ...)
#else
#define CV_LOG_DEBUG(tag, ...) for(;;) { if (cv::utils::logging::getLogLevel() < cv::utils::logging::LOG_LEVEL_DEBUG) break; std::stringstream ss; ss << __VA_ARGS__; cv::utils::logging::internal::writeLogMessage(cv::utils::logging::LOG_LEVEL_DEBUG, ss.str().c_str()); break; }
#endif
#if CV_LOG_STRIP_LEVEL <= CV_LOG_LEVEL_VERBOSE
#define CV_LOG_VERBOSE(tag, v, ...)
#else
#define CV_LOG_VERBOSE(tag, v, ...) for(;;) { if (cv::utils::logging::getLogLevel() < cv::utils::logging::LOG_LEVEL_VERBOSE) break; std::stringstream ss; ss << "[VERB" << v << ":" << cv::utils::getThreadID() << "] " << __VA_ARGS__; cv::utils::logging::internal::writeLogMessage(cv::utils::logging::LOG_LEVEL_VERBOSE, ss.str().c_str()); break; }
#endif
}}} // namespace
//! @}
#endif // OPENCV_LOGGER_HPP

View file

@ -0,0 +1,250 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_TRACE_HPP
#define OPENCV_TRACE_HPP
#include <opencv2/core/cvdef.h>
//! @addtogroup core_logging
// This section describes OpenCV tracing utilities.
//
//! @{
namespace cv {
namespace utils {
namespace trace {
//! Macro to trace function
#define CV_TRACE_FUNCTION()
#define CV_TRACE_FUNCTION_SKIP_NESTED()
//! Trace code scope.
//! @note Dynamic names are not supported in this macro (on stack or heap). Use string literals here only, like "initialize".
#define CV_TRACE_REGION(name_as_static_string_literal)
//! mark completed of the current opened region and create new one
//! @note Dynamic names are not supported in this macro (on stack or heap). Use string literals here only, like "step1".
#define CV_TRACE_REGION_NEXT(name_as_static_string_literal)
//! Macro to trace argument value
#define CV_TRACE_ARG(arg_id)
//! Macro to trace argument value (expanded version)
#define CV_TRACE_ARG_VALUE(arg_id, arg_name, value)
//! @cond IGNORED
#define CV_TRACE_NS cv::utils::trace
namespace details {
#ifndef __OPENCV_TRACE
# if defined __OPENCV_BUILD && !defined __OPENCV_TESTS && !defined __OPENCV_APPS
# define __OPENCV_TRACE 1
# else
# define __OPENCV_TRACE 0
# endif
#endif
#ifndef CV_TRACE_FILENAME
# define CV_TRACE_FILENAME __FILE__
#endif
#ifndef CV__TRACE_FUNCTION
# if defined _MSC_VER
# define CV__TRACE_FUNCTION __FUNCSIG__
# elif defined __GNUC__
# define CV__TRACE_FUNCTION __PRETTY_FUNCTION__
# else
# define CV__TRACE_FUNCTION "<unknown>"
# endif
#endif
//! Thread-local instance (usually allocated on stack)
class CV_EXPORTS Region
{
public:
struct LocationExtraData;
struct LocationStaticStorage
{
LocationExtraData** ppExtra; //< implementation specific data
const char* name; //< region name (function name or other custom name)
const char* filename; //< source code filename
int line; //< source code line
int flags; //< flags (implementation code path: Plain, IPP, OpenCL)
};
Region(const LocationStaticStorage& location);
inline ~Region()
{
if (implFlags != 0)
destroy();
CV_DbgAssert(implFlags == 0);
CV_DbgAssert(pImpl == NULL);
}
class Impl;
Impl* pImpl; // NULL if current region is not active
int implFlags; // see RegionFlag, 0 if region is ignored
bool isActive() const { return pImpl != NULL; }
void destroy();
private:
Region(const Region&); // disabled
Region& operator= (const Region&); // disabled
};
//! Specify region flags
enum RegionLocationFlag {
REGION_FLAG_FUNCTION = (1 << 0), //< region is function (=1) / nested named region (=0)
REGION_FLAG_APP_CODE = (1 << 1), //< region is Application code (=1) / OpenCV library code (=0)
REGION_FLAG_SKIP_NESTED = (1 << 2), //< avoid processing of nested regions
REGION_FLAG_IMPL_IPP = (1 << 16), //< region is part of IPP code path
REGION_FLAG_IMPL_OPENCL = (2 << 16), //< region is part of OpenCL code path
REGION_FLAG_IMPL_OPENVX = (3 << 16), //< region is part of OpenVX code path
REGION_FLAG_IMPL_MASK = (15 << 16),
REGION_FLAG_REGION_FORCE = (1 << 30),
REGION_FLAG_REGION_NEXT = (1 << 31), //< close previous region (see #CV_TRACE_REGION_NEXT macro)
ENUM_REGION_FLAG_FORCE_INT = INT_MAX
};
struct CV_EXPORTS TraceArg {
public:
struct ExtraData;
ExtraData** ppExtra;
const char* name;
int flags;
};
/** @brief Add meta information to current region (function)
* See CV_TRACE_ARG macro
* @param arg argument information structure (global static cache)
* @param value argument value (can by dynamic string literal in case of string, static allocation is not required)
*/
CV_EXPORTS void traceArg(const TraceArg& arg, const char* value);
//! @overload
CV_EXPORTS void traceArg(const TraceArg& arg, int value);
//! @overload
CV_EXPORTS void traceArg(const TraceArg& arg, int64 value);
//! @overload
CV_EXPORTS void traceArg(const TraceArg& arg, double value);
#define CV__TRACE_LOCATION_VARNAME(loc_id) CVAUX_CONCAT(CVAUX_CONCAT(__cv_trace_location_, loc_id), __LINE__)
#define CV__TRACE_LOCATION_EXTRA_VARNAME(loc_id) CVAUX_CONCAT(CVAUX_CONCAT(__cv_trace_location_extra_, loc_id) , __LINE__)
#define CV__TRACE_DEFINE_LOCATION_(loc_id, name, flags) \
static CV_TRACE_NS::details::Region::LocationExtraData* CV__TRACE_LOCATION_EXTRA_VARNAME(loc_id) = 0; \
static const CV_TRACE_NS::details::Region::LocationStaticStorage \
CV__TRACE_LOCATION_VARNAME(loc_id) = { &(CV__TRACE_LOCATION_EXTRA_VARNAME(loc_id)), name, CV_TRACE_FILENAME, __LINE__, flags};
#define CV__TRACE_DEFINE_LOCATION_FN(name, flags) CV__TRACE_DEFINE_LOCATION_(fn, name, (flags | CV_TRACE_NS::details::REGION_FLAG_FUNCTION))
#define CV__TRACE_OPENCV_FUNCTION() \
CV__TRACE_DEFINE_LOCATION_FN(CV__TRACE_FUNCTION, 0); \
const CV_TRACE_NS::details::Region __region_fn(CV__TRACE_LOCATION_VARNAME(fn));
#define CV__TRACE_OPENCV_FUNCTION_NAME(name) \
CV__TRACE_DEFINE_LOCATION_FN(name, 0); \
const CV_TRACE_NS::details::Region __region_fn(CV__TRACE_LOCATION_VARNAME(fn));
#define CV__TRACE_APP_FUNCTION() \
CV__TRACE_DEFINE_LOCATION_FN(CV__TRACE_FUNCTION, CV_TRACE_NS::details::REGION_FLAG_APP_CODE); \
const CV_TRACE_NS::details::Region __region_fn(CV__TRACE_LOCATION_VARNAME(fn));
#define CV__TRACE_APP_FUNCTION_NAME(name) \
CV__TRACE_DEFINE_LOCATION_FN(name, CV_TRACE_NS::details::REGION_FLAG_APP_CODE); \
const CV_TRACE_NS::details::Region __region_fn(CV__TRACE_LOCATION_VARNAME(fn));
#define CV__TRACE_OPENCV_FUNCTION_SKIP_NESTED() \
CV__TRACE_DEFINE_LOCATION_FN(CV__TRACE_FUNCTION, CV_TRACE_NS::details::REGION_FLAG_SKIP_NESTED); \
const CV_TRACE_NS::details::Region __region_fn(CV__TRACE_LOCATION_VARNAME(fn));
#define CV__TRACE_OPENCV_FUNCTION_NAME_SKIP_NESTED(name) \
CV__TRACE_DEFINE_LOCATION_FN(name, CV_TRACE_NS::details::REGION_FLAG_SKIP_NESTED); \
const CV_TRACE_NS::details::Region __region_fn(CV__TRACE_LOCATION_VARNAME(fn));
#define CV__TRACE_APP_FUNCTION_SKIP_NESTED() \
CV__TRACE_DEFINE_LOCATION_FN(CV__TRACE_FUNCTION, CV_TRACE_NS::details::REGION_FLAG_SKIP_NESTED | CV_TRACE_NS::details::REGION_FLAG_APP_CODE); \
const CV_TRACE_NS::details::Region __region_fn(CV__TRACE_LOCATION_VARNAME(fn));
#define CV__TRACE_REGION_(name_as_static_string_literal, flags) \
CV__TRACE_DEFINE_LOCATION_(region, name_as_static_string_literal, flags); \
CV_TRACE_NS::details::Region CVAUX_CONCAT(__region_, __LINE__)(CV__TRACE_LOCATION_VARNAME(region));
#define CV__TRACE_REGION(name_as_static_string_literal) CV__TRACE_REGION_(name_as_static_string_literal, 0)
#define CV__TRACE_REGION_NEXT(name_as_static_string_literal) CV__TRACE_REGION_(name_as_static_string_literal, CV_TRACE_NS::details::REGION_FLAG_REGION_NEXT)
#define CV__TRACE_ARG_VARNAME(arg_id) CVAUX_CONCAT(__cv_trace_arg_ ## arg_id, __LINE__)
#define CV__TRACE_ARG_EXTRA_VARNAME(arg_id) CVAUX_CONCAT(__cv_trace_arg_extra_ ## arg_id, __LINE__)
#define CV__TRACE_DEFINE_ARG_(arg_id, name, flags) \
static CV_TRACE_NS::details::TraceArg::ExtraData* CV__TRACE_ARG_EXTRA_VARNAME(arg_id) = 0; \
static const CV_TRACE_NS::details::TraceArg \
CV__TRACE_ARG_VARNAME(arg_id) = { &(CV__TRACE_ARG_EXTRA_VARNAME(arg_id)), name, flags };
#define CV__TRACE_ARG_VALUE(arg_id, arg_name, value) \
CV__TRACE_DEFINE_ARG_(arg_id, arg_name, 0); \
CV_TRACE_NS::details::traceArg((CV__TRACE_ARG_VARNAME(arg_id)), value);
#define CV__TRACE_ARG(arg_id) CV_TRACE_ARG_VALUE(arg_id, #arg_id, (arg_id))
} // namespace
#ifndef OPENCV_DISABLE_TRACE
#undef CV_TRACE_FUNCTION
#undef CV_TRACE_FUNCTION_SKIP_NESTED
#if __OPENCV_TRACE
#define CV_TRACE_FUNCTION CV__TRACE_OPENCV_FUNCTION
#define CV_TRACE_FUNCTION_SKIP_NESTED CV__TRACE_OPENCV_FUNCTION_SKIP_NESTED
#else
#define CV_TRACE_FUNCTION CV__TRACE_APP_FUNCTION
#define CV_TRACE_FUNCTION_SKIP_NESTED CV__TRACE_APP_FUNCTION_SKIP_NESTED
#endif
#undef CV_TRACE_REGION
#define CV_TRACE_REGION CV__TRACE_REGION
#undef CV_TRACE_REGION_NEXT
#define CV_TRACE_REGION_NEXT CV__TRACE_REGION_NEXT
#undef CV_TRACE_ARG_VALUE
#define CV_TRACE_ARG_VALUE(arg_id, arg_name, value) \
if (__region_fn.isActive()) \
{ \
CV__TRACE_ARG_VALUE(arg_id, arg_name, value); \
}
#undef CV_TRACE_ARG
#define CV_TRACE_ARG CV__TRACE_ARG
#endif // OPENCV_DISABLE_TRACE
#ifdef OPENCV_TRACE_VERBOSE
#define CV_TRACE_FUNCTION_VERBOSE CV_TRACE_FUNCTION
#define CV_TRACE_REGION_VERBOSE CV_TRACE_REGION
#define CV_TRACE_REGION_NEXT_VERBOSE CV_TRACE_REGION_NEXT
#define CV_TRACE_ARG_VALUE_VERBOSE CV_TRACE_ARG_VALUE
#define CV_TRACE_ARG_VERBOSE CV_TRACE_ARG
#else
#define CV_TRACE_FUNCTION_VERBOSE(...)
#define CV_TRACE_REGION_VERBOSE(...)
#define CV_TRACE_REGION_NEXT_VERBOSE(...)
#define CV_TRACE_ARG_VALUE_VERBOSE(...)
#define CV_TRACE_ARG_VERBOSE(...)
#endif
//! @endcond
}}} // namespace
//! @}
#endif // OPENCV_TRACE_HPP

View file

@ -5,8 +5,8 @@
// Copyright (C) 2015, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_CORE_VA_INTEL_HPP__
#define __OPENCV_CORE_VA_INTEL_HPP__
#ifndef OPENCV_CORE_VA_INTEL_HPP
#define OPENCV_CORE_VA_INTEL_HPP
#ifndef __cplusplus
# error va_intel.hpp header must be compiled as C++
@ -74,4 +74,4 @@ CV_EXPORTS void convertFromVASurface(VADisplay display, VASurfaceID surface, Siz
}} // namespace cv::va_intel
#endif /* __OPENCV_CORE_VA_INTEL_HPP__ */
#endif /* OPENCV_CORE_VA_INTEL_HPP */

View file

@ -47,18 +47,18 @@
Usefull to test in user programs
*/
#ifndef __OPENCV_VERSION_HPP__
#define __OPENCV_VERSION_HPP__
#ifndef OPENCV_VERSION_HPP
#define OPENCV_VERSION_HPP
#define CV_VERSION_MAJOR 3
#define CV_VERSION_MINOR 1
#define CV_VERSION_MINOR 4
#define CV_VERSION_REVISION 0
#define CV_VERSION_STATUS ""
#define CVAUX_STR_EXP(__A) #__A
#define CVAUX_STR(__A) CVAUX_STR_EXP(__A)
#define CVAUX_STRW_EXP(__A) L#__A
#define CVAUX_STRW_EXP(__A) L ## #__A
#define CVAUX_STRW(__A) CVAUX_STRW_EXP(__A)
#define CV_VERSION CVAUX_STR(CV_VERSION_MAJOR) "." CVAUX_STR(CV_VERSION_MINOR) "." CVAUX_STR(CV_VERSION_REVISION) CV_VERSION_STATUS

File diff suppressed because it is too large Load diff

View file

@ -39,8 +39,8 @@
/////////////////////////////////////////////////////////////////////////////////
//M*/
#ifndef __OPENCV_CORE_WIMAGE_HPP__
#define __OPENCV_CORE_WIMAGE_HPP__
#ifndef OPENCV_CORE_WIMAGE_HPP
#define OPENCV_CORE_WIMAGE_HPP
#include "opencv2/core/core_c.h"

View file

@ -1,6 +1,15 @@
#ifndef OPENCV_CVCONFIG_H_INCLUDED
#define OPENCV_CVCONFIG_H_INCLUDED
/* OpenCV compiled as static or dynamic libs */
#define BUILD_SHARED_LIBS
/* OpenCV intrinsics optimized code */
#define CV_ENABLE_INTRINSICS
/* OpenCV additional optimized code */
/* #undef CV_DISABLE_OPTIMIZATION */
/* Compile for 'real' NVIDIA GPU architectures */
#define CUDA_ARCH_BIN ""
@ -26,10 +35,10 @@
/* #undef HAVE_CARBON */
/* AMD's Basic Linear Algebra Subprograms Library*/
#define HAVE_CLAMDBLAS
/* #undef HAVE_CLAMDBLAS */
/* AMD's OpenCL Fast Fourier Transform Library*/
#define HAVE_CLAMDFFT
/* #undef HAVE_CLAMDFFT */
/* Clp support */
/* #undef HAVE_CLP */
@ -71,12 +80,6 @@
/* FFMpeg video library */
#define HAVE_FFMPEG
/* ffmpeg's libswscale */
#define HAVE_FFMPEG_SWSCALE
/* ffmpeg in Gentoo */
#define HAVE_GENTOO_FFMPEG
/* Geospatial Data Abstraction Library */
/* #undef HAVE_GDAL */
@ -89,15 +92,19 @@
/* GTK+ 2.x toolkit */
/* #undef HAVE_GTK */
/* Halide support */
/* #undef HAVE_HALIDE */
/* Define to 1 if you have the <inttypes.h> header file. */
/* #undef HAVE_INTTYPES_H */
#define HAVE_INTTYPES_H 1
/* Intel Perceptual Computing SDK library */
/* #undef HAVE_INTELPERC */
/* Intel Integrated Performance Primitives */
#define HAVE_IPP
#define HAVE_IPP_ICV_ONLY
#define HAVE_IPP_ICV
#define HAVE_IPP_IW
/* Intel IPP Async */
/* #undef HAVE_IPP_A */
@ -111,6 +118,9 @@
/* libpng/png.h needs to be included */
/* #undef HAVE_LIBPNG_PNG_H */
/* GDCM DICOM codec */
/* #undef HAVE_GDCM */
/* V4L/V4L2 capturing support via libv4l */
/* #undef HAVE_LIBV4L */
@ -120,6 +130,9 @@
/* NVidia Video Decoding API*/
/* #undef HAVE_NVCUVID */
/* NVidia Video Encoding API*/
/* #undef HAVE_NVCUVENC */
/* OpenCL Support */
#define HAVE_OPENCL
/* #undef HAVE_OPENCL_STATIC */
@ -141,7 +154,7 @@
#define HAVE_PNG
/* Posix threads (pthreads) */
/* #undef HAVE_PTHREADS */
/* #undef HAVE_PTHREAD */
/* parallel_for with pthreads */
/* #undef HAVE_PTHREADS_PF */
@ -194,3 +207,42 @@
/* Intel VA-API/OpenCL */
/* #undef HAVE_VA_INTEL */
/* Intel Media SDK */
/* #undef HAVE_MFX */
/* Lapack */
/* #undef HAVE_LAPACK */
/* Library was compiled with functions instrumentation */
/* #undef ENABLE_INSTRUMENTATION */
/* OpenVX */
/* #undef HAVE_OPENVX */
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_AVFOUNDATION) || \
/*defined(HAVE_OPENNI) || too specialized */ \
defined(HAVE_FFMPEG) || \
defined(HAVE_MSMF)
#define HAVE_VIDEO_INPUT
#endif
#if /*defined(HAVE_XINE) || */\
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(HAVE_MSMF)
#define HAVE_VIDEO_OUTPUT
#endif
/* OpenCV trace utilities */
#define OPENCV_TRACE
#endif // OPENCV_CVCONFIG_H_INCLUDED

View file

@ -10,8 +10,7 @@
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
@ -40,19 +39,26 @@
//
//M*/
#ifndef __OPENCV_ALL_HPP__
#define __OPENCV_ALL_HPP__
#ifndef OPENCV_DNN_HPP
#define OPENCV_DNN_HPP
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/video.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/objdetect.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/ml.hpp"
// This is an umbrealla header to include into you project.
// We are free to change headers layout in dnn subfolder, so please include
// this header for future compatibility
#endif
/** @defgroup dnn Deep Neural Network module
@{
This module contains:
- API for new layers creation, layers are building bricks of neural networks;
- set of built-in most-useful Layers;
- API to constuct and modify comprehensive neural networks from layers;
- functionality for loading serialized networks models from differnet frameworks.
Functionality of this module is designed only for forward pass computations (i. e. network testing).
A network training is in principle not supported.
@}
*/
#include <opencv2/dnn/dnn.hpp>
#endif /* OPENCV_DNN_HPP */

View file

@ -0,0 +1,583 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_ALL_LAYERS_HPP
#define OPENCV_DNN_DNN_ALL_LAYERS_HPP
#include <opencv2/dnn.hpp>
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
//! @addtogroup dnn
//! @{
/** @defgroup dnnLayerList Partial List of Implemented Layers
@{
This subsection of dnn module contains information about bult-in layers and their descriptions.
Classes listed here, in fact, provides C++ API for creating intances of bult-in layers.
In addition to this way of layers instantiation, there is a more common factory API (see @ref dnnLayerFactory), it allows to create layers dynamically (by name) and register new ones.
You can use both API, but factory API is less convinient for native C++ programming and basically designed for use inside importers (see @ref readNetFromCaffe(), @ref readNetFromTorch(), @ref readNetFromTensorflow()).
Bult-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers.
In partuclar, the following layers and Caffe importer were tested to reproduce <a href="http://caffe.berkeleyvision.org/tutorial/layers.html">Caffe</a> functionality:
- Convolution
- Deconvolution
- Pooling
- InnerProduct
- TanH, ReLU, Sigmoid, BNLL, Power, AbsVal
- Softmax
- Reshape, Flatten, Slice, Split
- LRN
- MVN
- Dropout (since it does nothing on forward pass -))
*/
class CV_EXPORTS BlankLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams &params);
};
//! LSTM recurrent layer
class CV_EXPORTS LSTMLayer : public Layer
{
public:
/** Creates instance of LSTM layer */
static Ptr<LSTMLayer> create(const LayerParams& params);
/** @deprecated Use LayerParams::blobs instead.
@brief Set trained weights for LSTM layer.
LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights.
Let @f$x_t@f$ be current input, @f$h_t@f$ be current output, @f$c_t@f$ be current state.
Than current output and current cell state is computed as follows:
@f{eqnarray*}{
h_t &= o_t \odot tanh(c_t), \\
c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\
@f}
where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned wights.
Gates are computed as follows:
@f{eqnarray*}{
i_t &= sigmoid&(W_{xi} x_t + W_{hi} h_{t-1} + b_i), \\
f_t &= sigmoid&(W_{xf} x_t + W_{hf} h_{t-1} + b_f), \\
o_t &= sigmoid&(W_{xo} x_t + W_{ho} h_{t-1} + b_o), \\
g_t &= tanh &(W_{xg} x_t + W_{hg} h_{t-1} + b_g), \\
@f}
where @f$W_{x?}@f$, @f$W_{h?}@f$ and @f$b_{?}@f$ are learned weights represented as matrices:
@f$W_{x?} \in R^{N_h \times N_x}@f$, @f$W_{h?} \in R^{N_h \times N_h}@f$, @f$b_? \in R^{N_h}@f$.
For simplicity and performance purposes we use @f$ W_x = [W_{xi}; W_{xf}; W_{xo}, W_{xg}] @f$
(i.e. @f$W_x@f$ is vertical contacentaion of @f$ W_{x?} @f$), @f$ W_x \in R^{4N_h \times N_x} @f$.
The same for @f$ W_h = [W_{hi}; W_{hf}; W_{ho}, W_{hg}], W_h \in R^{4N_h \times N_h} @f$
and for @f$ b = [b_i; b_f, b_o, b_g]@f$, @f$b \in R^{4N_h} @f$.
@param Wh is matrix defining how previous output is transformed to internal gates (i.e. according to abovemtioned notation is @f$ W_h @f$)
@param Wx is matrix defining how current input is transformed to internal gates (i.e. according to abovemtioned notation is @f$ W_x @f$)
@param b is bias vector (i.e. according to abovemtioned notation is @f$ b @f$)
*/
CV_DEPRECATED virtual void setWeights(const Mat &Wh, const Mat &Wx, const Mat &b) = 0;
/** @brief Specifies shape of output blob which will be [[`T`], `N`] + @p outTailShape.
* @details If this parameter is empty or unset then @p outTailShape = [`Wh`.size(0)] will be used,
* where `Wh` is parameter from setWeights().
*/
virtual void setOutShape(const MatShape &outTailShape = MatShape()) = 0;
/** @deprecated Use flag `produce_cell_output` in LayerParams.
* @brief Specifies either interpet first dimension of input blob as timestamp dimenion either as sample.
*
* If flag is set to true then shape of input blob will be interpeted as [`T`, `N`, `[data dims]`] where `T` specifies number of timpestamps, `N` is number of independent streams.
* In this case each forward() call will iterate through `T` timestamps and update layer's state `T` times.
*
* If flag is set to false then shape of input blob will be interpeted as [`N`, `[data dims]`].
* In this case each forward() call will make one iteration and produce one timestamp with shape [`N`, `[out dims]`].
*/
CV_DEPRECATED virtual void setUseTimstampsDim(bool use = true) = 0;
/** @deprecated Use flag `use_timestamp_dim` in LayerParams.
* @brief If this flag is set to true then layer will produce @f$ c_t @f$ as second output.
* @details Shape of the second output is the same as first output.
*/
CV_DEPRECATED virtual void setProduceCellOutput(bool produce = false) = 0;
/* In common case it use single input with @f$x_t@f$ values to compute output(s) @f$h_t@f$ (and @f$c_t@f$).
* @param input should contain packed values @f$x_t@f$
* @param output contains computed outputs: @f$h_t@f$ (and @f$c_t@f$ if setProduceCellOutput() flag was set to true).
*
* If setUseTimstampsDim() is set to true then @p input[0] should has at least two dimensions with the following shape: [`T`, `N`, `[data dims]`],
* where `T` specifies number of timpestamps, `N` is number of independent streams (i.e. @f$ x_{t_0 + t}^{stream} @f$ is stored inside @p input[0][t, stream, ...]).
*
* If setUseTimstampsDim() is set to fase then @p input[0] should contain single timestamp, its shape should has form [`N`, `[data dims]`] with at least one dimension.
* (i.e. @f$ x_{t}^{stream} @f$ is stored inside @p input[0][stream, ...]).
*/
int inputNameToIndex(String inputName);
int outputNameToIndex(String outputName);
};
/** @brief Classical recurrent layer
Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$.
- input: should contain packed input @f$x_t@f$.
- output: should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true).
input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively.
output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix.
If setProduceHiddenOutput() is set to true then @p output[1] will contain a Mat with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix.
*/
class CV_EXPORTS RNNLayer : public Layer
{
public:
/** Creates instance of RNNLayer */
static Ptr<RNNLayer> create(const LayerParams& params);
/** Setups learned weights.
Recurrent-layer behavior on each step is defined by current input @f$ x_t @f$, previous state @f$ h_t @f$ and learned weights as follows:
@f{eqnarray*}{
h_t &= tanh&(W_{hh} h_{t-1} + W_{xh} x_t + b_h), \\
o_t &= tanh&(W_{ho} h_t + b_o),
@f}
@param Wxh is @f$ W_{xh} @f$ matrix
@param bh is @f$ b_{h} @f$ vector
@param Whh is @f$ W_{hh} @f$ matrix
@param Who is @f$ W_{xo} @f$ matrix
@param bo is @f$ b_{o} @f$ vector
*/
virtual void setWeights(const Mat &Wxh, const Mat &bh, const Mat &Whh, const Mat &Who, const Mat &bo) = 0;
/** @brief If this flag is set to true then layer will produce @f$ h_t @f$ as second output.
* @details Shape of the second output is the same as first output.
*/
virtual void setProduceHiddenOutput(bool produce = false) = 0;
};
class CV_EXPORTS BaseConvolutionLayer : public Layer
{
public:
Size kernel, stride, pad, dilation, adjustPad;
String padMode;
int numOutput;
};
class CV_EXPORTS ConvolutionLayer : public BaseConvolutionLayer
{
public:
static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
};
class CV_EXPORTS DeconvolutionLayer : public BaseConvolutionLayer
{
public:
static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
};
class CV_EXPORTS LRNLayer : public Layer
{
public:
int type;
int size;
float alpha, beta, bias;
bool normBySize;
static Ptr<LRNLayer> create(const LayerParams& params);
};
class CV_EXPORTS PoolingLayer : public Layer
{
public:
int type;
Size kernel, stride, pad;
bool globalPooling;
bool computeMaxIdx;
String padMode;
bool ceilMode;
// ROIPooling parameters.
Size pooledSize;
float spatialScale;
// PSROIPooling parameters.
int psRoiOutChannels;
static Ptr<PoolingLayer> create(const LayerParams& params);
};
class CV_EXPORTS SoftmaxLayer : public Layer
{
public:
bool logSoftMax;
static Ptr<SoftmaxLayer> create(const LayerParams& params);
};
class CV_EXPORTS InnerProductLayer : public Layer
{
public:
int axis;
static Ptr<InnerProductLayer> create(const LayerParams& params);
};
class CV_EXPORTS MVNLayer : public Layer
{
public:
float eps;
bool normVariance, acrossChannels;
static Ptr<MVNLayer> create(const LayerParams& params);
};
/* Reshaping */
class CV_EXPORTS ReshapeLayer : public Layer
{
public:
MatShape newShapeDesc;
Range newShapeRange;
static Ptr<ReshapeLayer> create(const LayerParams& params);
};
class CV_EXPORTS FlattenLayer : public Layer
{
public:
static Ptr<FlattenLayer> create(const LayerParams &params);
};
class CV_EXPORTS ConcatLayer : public Layer
{
public:
int axis;
/**
* @brief Add zero padding in case of concatenation of blobs with different
* spatial sizes.
*
* Details: https://github.com/torch/nn/blob/master/doc/containers.md#depthconcat
*/
bool padding;
static Ptr<ConcatLayer> create(const LayerParams &params);
};
class CV_EXPORTS SplitLayer : public Layer
{
public:
int outputsCount; //!< Number of copies that will be produced (is ignored when negative).
static Ptr<SplitLayer> create(const LayerParams &params);
};
/**
* Slice layer has several modes:
* 1. Caffe mode
* @param[in] axis Axis of split operation
* @param[in] slice_point Array of split points
*
* Number of output blobs equals to number of split points plus one. The
* first blob is a slice on input from 0 to @p slice_point[0] - 1 by @p axis,
* the second output blob is a slice of input from @p slice_point[0] to
* @p slice_point[1] - 1 by @p axis and the last output blob is a slice of
* input from @p slice_point[-1] up to the end of @p axis size.
*
* 2. TensorFlow mode
* @param begin Vector of start indices
* @param size Vector of sizes
*
* More convinient numpy-like slice. One and only output blob
* is a slice `input[begin[0]:begin[0]+size[0], begin[1]:begin[1]+size[1], ...]`
*
* 3. Torch mode
* @param axis Axis of split operation
*
* Split input blob on the equal parts by @p axis.
*/
class CV_EXPORTS SliceLayer : public Layer
{
public:
/**
* @brief Vector of slice ranges.
*
* The first dimension equals number of output blobs.
* Inner vector has slice ranges for the first number of input dimensions.
*/
std::vector<std::vector<Range> > sliceRanges;
int axis;
static Ptr<SliceLayer> create(const LayerParams &params);
};
class CV_EXPORTS PermuteLayer : public Layer
{
public:
static Ptr<PermuteLayer> create(const LayerParams& params);
};
/**
* @brief Adds extra values for specific axes.
* @param paddings Vector of paddings in format
* @code
* [ pad_before, pad_after, // [0]th dimension
* pad_before, pad_after, // [1]st dimension
* ...
* pad_before, pad_after ] // [n]th dimension
* @endcode
* that represents number of padded values at every dimension
* starting from the first one. The rest of dimensions won't
* be padded.
* @param value Value to be padded. Defaults to zero.
* @param type Padding type: 'constant', 'reflect'
* @param input_dims Torch's parameter. If @p input_dims is not equal to the
* actual input dimensionality then the `[0]th` dimension
* is considered as a batch dimension and @p paddings are shifted
* to a one dimension. Defaults to `-1` that means padding
* corresponding to @p paddings.
*/
class CV_EXPORTS PaddingLayer : public Layer
{
public:
static Ptr<PaddingLayer> create(const LayerParams& params);
};
/* Activations */
class CV_EXPORTS ActivationLayer : public Layer
{
public:
virtual void forwardSlice(const float* src, float* dst, int len,
size_t outPlaneSize, int cn0, int cn1) const = 0;
};
class CV_EXPORTS ReLULayer : public ActivationLayer
{
public:
float negativeSlope;
static Ptr<ReLULayer> create(const LayerParams &params);
};
class CV_EXPORTS ReLU6Layer : public ActivationLayer
{
public:
static Ptr<ReLU6Layer> create(const LayerParams &params);
};
class CV_EXPORTS ChannelsPReLULayer : public ActivationLayer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
class CV_EXPORTS ELULayer : public ActivationLayer
{
public:
static Ptr<ELULayer> create(const LayerParams &params);
};
class CV_EXPORTS TanHLayer : public ActivationLayer
{
public:
static Ptr<TanHLayer> create(const LayerParams &params);
};
class CV_EXPORTS SigmoidLayer : public ActivationLayer
{
public:
static Ptr<SigmoidLayer> create(const LayerParams &params);
};
class CV_EXPORTS BNLLLayer : public ActivationLayer
{
public:
static Ptr<BNLLLayer> create(const LayerParams &params);
};
class CV_EXPORTS AbsLayer : public ActivationLayer
{
public:
static Ptr<AbsLayer> create(const LayerParams &params);
};
class CV_EXPORTS PowerLayer : public ActivationLayer
{
public:
float power, scale, shift;
static Ptr<PowerLayer> create(const LayerParams &params);
};
/* Layers used in semantic segmentation */
class CV_EXPORTS CropLayer : public Layer
{
public:
int startAxis;
std::vector<int> offset;
static Ptr<CropLayer> create(const LayerParams &params);
};
class CV_EXPORTS EltwiseLayer : public Layer
{
public:
static Ptr<EltwiseLayer> create(const LayerParams &params);
};
class CV_EXPORTS BatchNormLayer : public Layer
{
public:
bool hasWeights, hasBias;
float epsilon;
virtual void getScaleShift(Mat& scale, Mat& shift) const = 0;
static Ptr<BatchNormLayer> create(const LayerParams &params);
};
class CV_EXPORTS MaxUnpoolLayer : public Layer
{
public:
Size poolKernel;
Size poolPad;
Size poolStride;
static Ptr<MaxUnpoolLayer> create(const LayerParams &params);
};
class CV_EXPORTS ScaleLayer : public Layer
{
public:
bool hasBias;
static Ptr<ScaleLayer> create(const LayerParams& params);
};
class CV_EXPORTS ShiftLayer : public Layer
{
public:
static Ptr<ShiftLayer> create(const LayerParams& params);
};
class CV_EXPORTS PriorBoxLayer : public Layer
{
public:
static Ptr<PriorBoxLayer> create(const LayerParams& params);
};
class CV_EXPORTS ReorgLayer : public Layer
{
public:
static Ptr<ReorgLayer> create(const LayerParams& params);
};
class CV_EXPORTS RegionLayer : public Layer
{
public:
static Ptr<RegionLayer> create(const LayerParams& params);
};
class CV_EXPORTS DetectionOutputLayer : public Layer
{
public:
static Ptr<DetectionOutputLayer> create(const LayerParams& params);
};
/**
* @brief \f$ L_p \f$ - normalization layer.
* @param p Normalization factor. The most common `p = 1` for \f$ L_1 \f$ -
* normalization or `p = 2` for \f$ L_2 \f$ - normalization or a custom one.
* @param eps Parameter \f$ \epsilon \f$ to prevent a division by zero.
* @param across_spatial If true, normalize an input across all non-batch dimensions.
* Otherwise normalize an every channel separately.
*
* Across spatial:
* @f[
* norm = \sqrt[p]{\epsilon + \sum_{x, y, c} |src(x, y, c)|^p } \\
* dst(x, y, c) = \frac{ src(x, y, c) }{norm}
* @f]
*
* Channel wise normalization:
* @f[
* norm(c) = \sqrt[p]{\epsilon + \sum_{x, y} |src(x, y, c)|^p } \\
* dst(x, y, c) = \frac{ src(x, y, c) }{norm(c)}
* @f]
*
* Where `x, y` - spatial cooridnates, `c` - channel.
*
* An every sample in the batch is normalized separately. Optionally,
* output is scaled by the trained parameters.
*/
class NormalizeBBoxLayer : public Layer
{
public:
float pnorm, epsilon;
bool acrossSpatial;
static Ptr<NormalizeBBoxLayer> create(const LayerParams& params);
};
/**
* @brief Resize input 4-dimensional blob by nearest neghbor strategy.
*
* Layer is used to support TensorFlow's resize_nearest_neighbor op.
*/
class CV_EXPORTS ResizeNearestNeighborLayer : public Layer
{
public:
static Ptr<ResizeNearestNeighborLayer> create(const LayerParams& params);
};
class CV_EXPORTS ProposalLayer : public Layer
{
public:
static Ptr<ProposalLayer> create(const LayerParams& params);
};
//! @}
//! @}
CV__DNN_EXPERIMENTAL_NS_END
}
}
#endif

View file

@ -0,0 +1,152 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/core.hpp>
#include <map>
#include <ostream>
#include <opencv2/dnn/dnn.hpp>
#ifndef OPENCV_DNN_DNN_DICT_HPP
#define OPENCV_DNN_DNN_DICT_HPP
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
//! @addtogroup dnn
//! @{
/** @brief This struct stores the scalar value (or array) of one of the following type: double, cv::String or int64.
* @todo Maybe int64 is useless because double type exactly stores at least 2^52 integers.
*/
struct CV_EXPORTS_W DictValue
{
DictValue(const DictValue &r);
DictValue(int64 i = 0) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = i; } //!< Constructs integer scalar
CV_WRAP DictValue(int i) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = i; } //!< Constructs integer scalar
DictValue(unsigned p) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = p; } //!< Constructs integer scalar
CV_WRAP DictValue(double p) : type(Param::REAL), pd(new AutoBuffer<double,1>) { (*pd)[0] = p; } //!< Constructs floating point scalar
CV_WRAP DictValue(const String &s) : type(Param::STRING), ps(new AutoBuffer<String,1>) { (*ps)[0] = s; } //!< Constructs string scalar
DictValue(const char *s) : type(Param::STRING), ps(new AutoBuffer<String,1>) { (*ps)[0] = s; } //!< @overload
template<typename TypeIter>
static DictValue arrayInt(TypeIter begin, int size); //!< Constructs integer array
template<typename TypeIter>
static DictValue arrayReal(TypeIter begin, int size); //!< Constructs floating point array
template<typename TypeIter>
static DictValue arrayString(TypeIter begin, int size); //!< Constructs array of strings
template<typename T>
T get(int idx = -1) const; //!< Tries to convert array element with specified index to requested type and returns its.
int size() const;
CV_WRAP bool isInt() const;
CV_WRAP bool isString() const;
CV_WRAP bool isReal() const;
CV_WRAP int getIntValue(int idx = -1) const;
CV_WRAP double getRealValue(int idx = -1) const;
CV_WRAP String getStringValue(int idx = -1) const;
DictValue &operator=(const DictValue &r);
friend std::ostream &operator<<(std::ostream &stream, const DictValue &dictv);
~DictValue();
private:
int type;
union
{
AutoBuffer<int64, 1> *pi;
AutoBuffer<double, 1> *pd;
AutoBuffer<String, 1> *ps;
void *pv;
};
DictValue(int _type, void *_p) : type(_type), pv(_p) {}
void release();
};
/** @brief This class implements name-value dictionary, values are instances of DictValue. */
class CV_EXPORTS Dict
{
typedef std::map<String, DictValue> _Dict;
_Dict dict;
public:
//! Checks a presence of the @p key in the dictionary.
bool has(const String &key) const;
//! If the @p key in the dictionary then returns pointer to its value, else returns NULL.
DictValue *ptr(const String &key);
/** @overload */
const DictValue *ptr(const String &key) const;
//! If the @p key in the dictionary then returns its value, else an error will be generated.
const DictValue &get(const String &key) const;
/** @overload */
template <typename T>
T get(const String &key) const;
//! If the @p key in the dictionary then returns its value, else returns @p defaultValue.
template <typename T>
T get(const String &key, const T &defaultValue) const;
//! Sets new @p value for the @p key, or adds new key-value pair into the dictionary.
template<typename T>
const T &set(const String &key, const T &value);
friend std::ostream &operator<<(std::ostream &stream, const Dict &dict);
};
//! @}
CV__DNN_EXPERIMENTAL_NS_END
}
}
#endif

View file

@ -0,0 +1,757 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_HPP
#define OPENCV_DNN_DNN_HPP
#include <vector>
#include <opencv2/core.hpp>
#if !defined CV_DOXYGEN && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS
#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_v3 {
#define CV__DNN_EXPERIMENTAL_NS_END }
namespace cv { namespace dnn { namespace experimental_dnn_v3 { } using namespace experimental_dnn_v3; }}
#else
#define CV__DNN_EXPERIMENTAL_NS_BEGIN
#define CV__DNN_EXPERIMENTAL_NS_END
#endif
#include <opencv2/dnn/dict.hpp>
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
//! @addtogroup dnn
//! @{
typedef std::vector<int> MatShape;
/**
* @brief Enum of computation backends supported by layers.
*/
enum Backend
{
DNN_BACKEND_DEFAULT,
DNN_BACKEND_HALIDE
};
/**
* @brief Enum of target devices for computations.
*/
enum Target
{
DNN_TARGET_CPU,
DNN_TARGET_OPENCL
};
/** @brief This class provides all data needed to initialize layer.
*
* It includes dictionary with scalar params (which can be readed by using Dict interface),
* blob params #blobs and optional meta information: #name and #type of layer instance.
*/
class CV_EXPORTS LayerParams : public Dict
{
public:
//TODO: Add ability to name blob params
std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.
String name; //!< Name of the layer instance (optional, can be used internal purposes).
String type; //!< Type name which was used for creating layer by layer factory (optional).
};
/**
* @brief Derivatives of this class encapsulates functions of certain backends.
*/
class BackendNode
{
public:
BackendNode(int backendId);
virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.
int backendId; //!< Backend identifier.
};
/**
* @brief Derivatives of this class wraps cv::Mat for different backends and targets.
*/
class BackendWrapper
{
public:
BackendWrapper(int backendId, int targetId);
/**
* @brief Wrap cv::Mat for specific backend and target.
* @param[in] targetId Target identifier.
* @param[in] m cv::Mat for wrapping.
*
* Make CPU->GPU data transfer if it's require for the target.
*/
BackendWrapper(int targetId, const cv::Mat& m);
/**
* @brief Make wrapper for reused cv::Mat.
* @param[in] base Wrapper of cv::Mat that will be reused.
* @param[in] shape Specific shape.
*
* Initialize wrapper from another one. It'll wrap the same host CPU
* memory and mustn't allocate memory on device(i.e. GPU). It might
* has different shape. Use in case of CPU memory reusing for reuse
* associented memory on device too.
*/
BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);
virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.
/**
* @brief Transfer data to CPU host memory.
*/
virtual void copyToHost() = 0;
/**
* @brief Indicate that an actual data is on CPU.
*/
virtual void setHostDirty() = 0;
int backendId; //!< Backend identifier.
int targetId; //!< Target identifier.
};
class CV_EXPORTS ActivationLayer;
class CV_EXPORTS BatchNormLayer;
class CV_EXPORTS ScaleLayer;
/** @brief This interface class allows to build new Layers - are building blocks of networks.
*
* Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
* Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
*/
class CV_EXPORTS_W Layer : public Algorithm
{
public:
//! List of learned parameters must be stored here to allow read them by using Net::getParam().
CV_PROP_RW std::vector<Mat> blobs;
/** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
* @param[in] input vector of already allocated input blobs
* @param[out] output vector of already allocated output blobs
*
* If this method is called after network has allocated all memory for input and output blobs
* and before inferencing.
*/
virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);
/** @brief Given the @p input blobs, computes the output @p blobs.
* @param[in] input the input blobs.
* @param[out] output allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs
*/
virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals) = 0;
/** @brief Given the @p input blobs, computes the output @p blobs.
* @param[in] inputs the input blobs.
* @param[out] outputs allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs
*/
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) = 0;
/** @brief Given the @p input blobs, computes the output @p blobs.
* @param[in] inputs the input blobs.
* @param[out] outputs allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs
*/
void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
/** @brief @overload */
CV_WRAP void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);
/** @brief @overload */
CV_WRAP std::vector<Mat> finalize(const std::vector<Mat> &inputs);
/** @brief Allocates layer and computes output. */
CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
CV_IN_OUT std::vector<Mat> &internals);
/** @brief Returns index of input blob into the input array.
* @param inputName label of input blob
*
* Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
* This method maps label of input blob to its index into input vector.
*/
virtual int inputNameToIndex(String inputName);
/** @brief Returns index of output blob in output array.
* @see inputNameToIndex()
*/
virtual int outputNameToIndex(String outputName);
/**
* @brief Ask layer if it support specific backend for doing computations.
* @param[in] backendId computation backend identifier.
* @see Backend
*/
virtual bool supportBackend(int backendId);
/**
* @brief Returns Halide backend node.
* @param[in] inputs Input Halide buffers.
* @see BackendNode, BackendWrapper
*
* Input buffers should be exactly the same that will be used in forward invocations.
* Despite we can use Halide::ImageParam based on input shape only,
* it helps prevent some memory management issues (if something wrong,
* Halide tests will be failed).
*/
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);
/**
* @brief Automatic Halide scheduling based on layer hyper-parameters.
* @param[in] node Backend node with Halide functions.
* @param[in] inputs Blobs that will be used in forward invocations.
* @param[in] outputs Blobs that will be used in forward invocations.
* @param[in] targetId Target identifier
* @see BackendNode, Target
*
* Layer don't use own Halide::Func members because we can have applied
* layers fusing. In this way the fused function should be scheduled.
*/
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
const std::vector<Mat*> &inputs,
const std::vector<Mat> &outputs,
int targetId) const;
/**
* @brief Implement layers fusing.
* @param[in] node Backend node of bottom layer.
* @see BackendNode
*
* Actual for graph-based backends. If layer attached successfully,
* returns non-empty cv::Ptr to node of the same backend.
* Fuse only over the last function.
*/
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);
/**
* @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.
* @param[in] layer The subsequent activation layer.
*
* Returns true if the activation layer has been attached successfully.
*/
virtual bool setActivation(const Ptr<ActivationLayer>& layer);
/**
* @brief Tries to attach to the layer the subsequent batch normalization layer, i.e. do the layer fusion in a partial case.
* @param[in] layer The subsequent batch normalization layer.
*
* Returns true if the batch normalization layer has been attached successfully.
*/
virtual bool setBatchNorm(const Ptr<BatchNormLayer>& layer);
/**
* @brief Tries to attach to the layer the subsequent scaling layer, i.e. do the layer fusion in a partial case.
* @param[in] layer The subsequent scaling layer.
*
* Returns true if the scaling layer has been attached successfully.
*/
virtual bool setScale(const Ptr<ScaleLayer>& layer);
/**
* @brief "Deattaches" all the layers, attached to particular layer.
*/
virtual void unsetAttached();
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const;
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const {(void)inputs; (void)outputs; return 0;}
CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
CV_PROP int preferableTarget; //!< prefer target for layer forwarding
Layer();
explicit Layer(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
void setParamsFrom(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
virtual ~Layer();
};
/** @brief This class allows to create and manipulate comprehensive artificial neural networks.
*
* Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
* and edges specify relationships between layers inputs and outputs.
*
* Each network layer has unique integer id and unique string name inside its network.
* LayerId can store either layer name or layer id.
*
* This class supports reference counting of its instances, i. e. copies point to the same instance.
*/
class CV_EXPORTS_W_SIMPLE Net
{
public:
CV_WRAP Net(); //!< Default constructor.
CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
/** Returns true if there are no layers in the network. */
CV_WRAP bool empty() const;
/** @brief Adds new layer to the net.
* @param name unique name of the adding layer.
* @param type typename of the adding layer (type must be registered in LayerRegister).
* @param params parameters which will be used to initialize the creating layer.
* @returns unique identifier of created layer, or -1 if a failure will happen.
*/
int addLayer(const String &name, const String &type, LayerParams &params);
/** @brief Adds new layer and connects its first input to the first output of previously added layer.
* @see addLayer()
*/
int addLayerToPrev(const String &name, const String &type, LayerParams &params);
/** @brief Converts string name of the layer to the integer identifier.
* @returns id of the layer, or -1 if the layer wasn't found.
*/
CV_WRAP int getLayerId(const String &layer);
CV_WRAP std::vector<String> getLayerNames() const;
/** @brief Container for strings and integers. */
typedef DictValue LayerId;
/** @brief Returns pointer to layer with specified id or name which the network use. */
CV_WRAP Ptr<Layer> getLayer(LayerId layerId);
/** @brief Returns pointers to input layers of specific layer. */
std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP
/** @brief Delete layer for the network (not implemented yet) */
CV_WRAP void deleteLayer(LayerId layer);
/** @brief Connects output of the first layer to input of the second layer.
* @param outPin descriptor of the first layer output.
* @param inpPin descriptor of the second layer input.
*
* Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
* - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
* If this part is empty then the network input pseudo layer will be used;
* - the second optional part of the template <DFN>input_number</DFN>
* is either number of the layer input, either label one.
* If this part is omitted then the first layer input will be used.
*
* @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
*/
CV_WRAP void connect(String outPin, String inpPin);
/** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
* @param outLayerId identifier of the first layer
* @param inpLayerId identifier of the second layer
* @param outNum number of the first layer output
* @param inpNum number of the second layer input
*/
void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
/** @brief Sets outputs names of the network input pseudo layer.
*
* Each net always has special own the network input pseudo layer with id=0.
* This layer stores the user blobs only and don't make any computations.
* In fact, this layer provides the only way to pass user data into the network.
* As any other layer, this layer can label its outputs and this function provides an easy way to do this.
*/
CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputName name for layer which output is needed to get
* @return blob for first output of specified layer.
* @details By default runs forward pass for the whole network.
*/
CV_WRAP Mat forward(const String& outputName = String());
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputBlobs contains all output blobs for specified layer.
* @param outputName name for layer which output is needed to get
* @details If @p outputName is empty, runs forward pass for the whole network.
*/
CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String());
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains blobs for first outputs of specified layers.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
const std::vector<String>& outBlobNames);
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
const std::vector<String>& outBlobNames);
/**
* @brief Compile Halide layers.
* @param[in] scheduler Path to YAML file with scheduling directives.
* @see setPreferableBackend
*
* Schedule layers that support Halide backend. Then compile them for
* specific target. For layers that not represented in scheduling file
* or if no manual scheduling used at all, automatic scheduling will be applied.
*/
CV_WRAP void setHalideScheduler(const String& scheduler);
/**
* @brief Ask network to use specific computation backend where it supported.
* @param[in] backendId backend identifier.
* @see Backend
*/
CV_WRAP void setPreferableBackend(int backendId);
/**
* @brief Ask network to make computations on specific target device.
* @param[in] targetId target identifier.
* @see Target
*/
CV_WRAP void setPreferableTarget(int targetId);
/** @brief Sets the new value for the layer output blob
* @param name descriptor of the updating layer output blob.
* @param blob new blob.
* @see connect(String, String) to know format of the descriptor.
* @note If updating blob is not empty then @p blob must have the same shape,
* because network reshaping is not implemented yet.
*/
CV_WRAP void setInput(InputArray blob, const String& name = "");
/** @brief Sets the new value for the learned param of the layer.
* @param layer name or id of the layer.
* @param numParam index of the layer parameter in the Layer::blobs array.
* @param blob the new value.
* @see Layer::blobs
* @note If shape of the new blob differs from the previous shape,
* then the following forward pass may fail.
*/
CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob);
/** @brief Returns parameter blob of the layer.
* @param layer name or id of the layer.
* @param numParam index of the layer parameter in the Layer::blobs array.
* @see Layer::blobs
*/
CV_WRAP Mat getParam(LayerId layer, int numParam = 0);
/** @brief Returns indexes of layers with unconnected outputs.
*/
CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
/** @brief Returns input and output shapes for all layers in loaded model;
* preliminary inferencing isn't necessary.
* @param netInputShapes shapes for all input blobs in net input layer.
* @param layersIds output parameter for layer IDs.
* @param inLayersShapes output parameter for input layers shapes;
* order is the same as in layersIds
* @param outLayersShapes output parameter for output layers shapes;
* order is the same as in layersIds
*/
CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
CV_OUT std::vector<int>& layersIds,
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
/** @overload */
CV_WRAP void getLayersShapes(const MatShape& netInputShape,
CV_OUT std::vector<int>& layersIds,
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
/** @brief Returns input and output shapes for layer with specified
* id in loaded model; preliminary inferencing isn't necessary.
* @param netInputShape shape input blob in net input layer.
* @param layerId id for layer.
* @param inLayerShapes output parameter for input layers shapes;
* order is the same as in layersIds
* @param outLayerShapes output parameter for output layers shapes;
* order is the same as in layersIds
*/
void getLayerShapes(const MatShape& netInputShape,
const int layerId,
CV_OUT std::vector<MatShape>& inLayerShapes,
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
/** @overload */
void getLayerShapes(const std::vector<MatShape>& netInputShapes,
const int layerId,
CV_OUT std::vector<MatShape>& inLayerShapes,
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
/** @brief Computes FLOP for whole loaded model with specified input shapes.
* @param netInputShapes vector of shapes for all net inputs.
* @returns computed FLOP.
*/
CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
/** @overload */
CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
/** @overload */
CV_WRAP int64 getFLOPS(const int layerId,
const std::vector<MatShape>& netInputShapes) const;
/** @overload */
CV_WRAP int64 getFLOPS(const int layerId,
const MatShape& netInputShape) const;
/** @brief Returns list of types for layer used in model.
* @param layersTypes output parameter for returning types.
*/
CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;
/** @brief Returns count of layers of specified type.
* @param layerType type.
* @returns count of layers
*/
CV_WRAP int getLayersCount(const String& layerType) const;
/** @brief Computes bytes number which are requered to store
* all weights and intermediate blobs for model.
* @param netInputShapes vector of shapes for all net inputs.
* @param weights output parameter to store resulting bytes for weights.
* @param blobs output parameter to store resulting bytes for intermediate blobs.
*/
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
/** @overload */
CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
/** @overload */
CV_WRAP void getMemoryConsumption(const int layerId,
const std::vector<MatShape>& netInputShapes,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
/** @overload */
CV_WRAP void getMemoryConsumption(const int layerId,
const MatShape& netInputShape,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
/** @brief Computes bytes number which are requered to store
* all weights and intermediate blobs for each layer.
* @param netInputShapes vector of shapes for all net inputs.
* @param layerIds output vector to save layer IDs.
* @param weights output parameter to store resulting bytes for weights.
* @param blobs output parameter to store resulting bytes for intermediate blobs.
*/
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
CV_OUT std::vector<int>& layerIds,
CV_OUT std::vector<size_t>& weights,
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
/** @overload */
void getMemoryConsumption(const MatShape& netInputShape,
CV_OUT std::vector<int>& layerIds,
CV_OUT std::vector<size_t>& weights,
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
/** @brief Enables or disables layer fusion in the network.
* @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
*/
CV_WRAP void enableFusion(bool fusion);
/** @brief Returns overall time for inference and timings (in ticks) for layers.
* Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
* in this case zero ticks count will be return for that skipped layers.
* @param timings vector for tick timings for all layers.
* @return overall ticks for model inference.
*/
CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);
private:
struct Impl;
Ptr<Impl> impl;
};
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
* @param cfgFile path to the .cfg file with text description of the network architecture.
* @param darknetModel path to the .weights file with learned network.
* @returns Network object that ready to do forward, throw an exception in failure cases.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
/** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
* @param prototxt path to the .prototxt file with text description of the network architecture.
* @param caffeModel path to the .caffemodel file with learned network.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
/** @brief Reads a network model stored in Caffe model in memory.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
* @param bufferProto buffer containing the content of the .prototxt file
* @param lenProto length of bufferProto
* @param bufferModel buffer containing the content of the .caffemodel file
* @param lenModel length of bufferModel
* @returns Net object.
*/
CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
const char *bufferModel = NULL, size_t lenModel = 0);
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
* @param model path to the .pb file with binary protobuf description of the network architecture
* @param config path to the .pbtxt file that contains text graph definition in protobuf format.
* Resulting Net object is built by text graph using weights from a binary one that
* let us make it more flexible.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
* @param bufferModel buffer containing the content of the pb file
* @param lenModel length of bufferModel
* @param bufferConfig buffer containing the content of the pbtxt file
* @param lenConfig length of bufferConfig
*/
CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
const char *bufferConfig = NULL, size_t lenConfig = 0);
/**
* @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
* @param model path to the file, dumped from Torch by using torch.save() function.
* @param isBinary specifies whether the network was serialized in ascii mode or binary.
* @returns Net object.
*
* @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
* which has various bit-length on different systems.
*
* The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
* with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
*
* List of supported layers (i.e. object instances derived from Torch nn.Module class):
* - nn.Sequential
* - nn.Parallel
* - nn.Concat
* - nn.Linear
* - nn.SpatialConvolution
* - nn.SpatialMaxPooling, nn.SpatialAveragePooling
* - nn.ReLU, nn.TanH, nn.Sigmoid
* - nn.Reshape
* - nn.SoftMax, nn.LogSoftMax
*
* Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
*/
CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true);
/** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
* @warning This function has the same limitations as readNetFromTorch().
*/
CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
* @param image input image (with 1-, 3- or 4-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p image values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @param crop flag which indicates whether image will be cropped after resize or not
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponing
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
* swap Blue and Red channels.
* @param images input images (all with 1-, 3- or 4-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p images values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @param crop flag which indicates whether image will be cropped after resize or not
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponing
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W Mat blobFromImages(const std::vector<Mat>& images, double scalefactor=1.0,
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
/** @brief Convert all weights of Caffe network to half precision floating point.
* @param src Path to origin model from Caffe framework contains single
* precision floating point weights (usually has `.caffemodel` extension).
* @param dst Path to destination model with updated weights.
* @param layersTypes Set of layers types which parameters will be converted.
* By default, converts only Convolutional and Fully-Connected layers'
* weights.
*
* @note Shrinked model has no origin float32 weights so it can't be used
* in origin Caffe framework anymore. However the structure of data
* is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
* So the resulting model may be used there.
*/
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst,
const std::vector<String>& layersTypes = std::vector<String>());
/** @brief Performs non maximum suppression given boxes and corresponding scores.
* @param bboxes a set of bounding boxes to apply NMS.
* @param scores a set of corresponding confidences.
* @param score_threshold a threshold used to filter boxes by score.
* @param nms_threshold a threshold used in non maximum suppression.
* @param indices the kept indices of bboxes after NMS.
* @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
* @param top_k if `>0`, keep at most @p top_k picked indices.
*/
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
const float score_threshold, const float nms_threshold,
CV_OUT std::vector<int>& indices,
const float eta = 1.f, const int top_k = 0);
//! @}
CV__DNN_EXPERIMENTAL_NS_END
}
}
#include <opencv2/dnn/layer.hpp>
#include <opencv2/dnn/dnn.inl.hpp>
#endif /* OPENCV_DNN_DNN_HPP */

View file

@ -0,0 +1,373 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_INL_HPP
#define OPENCV_DNN_DNN_INL_HPP
#include <opencv2/dnn.hpp>
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
template<typename TypeIter>
DictValue DictValue::arrayInt(TypeIter begin, int size)
{
DictValue res(Param::INT, new AutoBuffer<int64, 1>(size));
for (int j = 0; j < size; begin++, j++)
(*res.pi)[j] = *begin;
return res;
}
template<typename TypeIter>
DictValue DictValue::arrayReal(TypeIter begin, int size)
{
DictValue res(Param::REAL, new AutoBuffer<double, 1>(size));
for (int j = 0; j < size; begin++, j++)
(*res.pd)[j] = *begin;
return res;
}
template<typename TypeIter>
DictValue DictValue::arrayString(TypeIter begin, int size)
{
DictValue res(Param::STRING, new AutoBuffer<String, 1>(size));
for (int j = 0; j < size; begin++, j++)
(*res.ps)[j] = *begin;
return res;
}
template<>
inline DictValue DictValue::get<DictValue>(int idx) const
{
CV_Assert(idx == -1);
return *this;
}
template<>
inline int64 DictValue::get<int64>(int idx) const
{
CV_Assert((idx == -1 && size() == 1) || (idx >= 0 && idx < size()));
idx = (idx == -1) ? 0 : idx;
if (type == Param::INT)
{
return (*pi)[idx];
}
else if (type == Param::REAL)
{
double doubleValue = (*pd)[idx];
double fracpart, intpart;
fracpart = std::modf(doubleValue, &intpart);
CV_Assert(fracpart == 0.0);
return (int64)doubleValue;
}
else
{
CV_Assert(isInt() || isReal());
return 0;
}
}
template<>
inline int DictValue::get<int>(int idx) const
{
return (int)get<int64>(idx);
}
inline int DictValue::getIntValue(int idx) const
{
return (int)get<int64>(idx);
}
template<>
inline unsigned DictValue::get<unsigned>(int idx) const
{
return (unsigned)get<int64>(idx);
}
template<>
inline bool DictValue::get<bool>(int idx) const
{
return (get<int64>(idx) != 0);
}
template<>
inline double DictValue::get<double>(int idx) const
{
CV_Assert((idx == -1 && size() == 1) || (idx >= 0 && idx < size()));
idx = (idx == -1) ? 0 : idx;
if (type == Param::REAL)
{
return (*pd)[idx];
}
else if (type == Param::INT)
{
return (double)(*pi)[idx];
}
else
{
CV_Assert(isReal() || isInt());
return 0;
}
}
inline double DictValue::getRealValue(int idx) const
{
return get<double>(idx);
}
template<>
inline float DictValue::get<float>(int idx) const
{
return (float)get<double>(idx);
}
template<>
inline String DictValue::get<String>(int idx) const
{
CV_Assert(isString());
CV_Assert((idx == -1 && ps->size() == 1) || (idx >= 0 && idx < (int)ps->size()));
return (*ps)[(idx == -1) ? 0 : idx];
}
inline String DictValue::getStringValue(int idx) const
{
return get<String>(idx);
}
inline void DictValue::release()
{
switch (type)
{
case Param::INT:
delete pi;
break;
case Param::STRING:
delete ps;
break;
case Param::REAL:
delete pd;
break;
}
}
inline DictValue::~DictValue()
{
release();
}
inline DictValue & DictValue::operator=(const DictValue &r)
{
if (&r == this)
return *this;
if (r.type == Param::INT)
{
AutoBuffer<int64, 1> *tmp = new AutoBuffer<int64, 1>(*r.pi);
release();
pi = tmp;
}
else if (r.type == Param::STRING)
{
AutoBuffer<String, 1> *tmp = new AutoBuffer<String, 1>(*r.ps);
release();
ps = tmp;
}
else if (r.type == Param::REAL)
{
AutoBuffer<double, 1> *tmp = new AutoBuffer<double, 1>(*r.pd);
release();
pd = tmp;
}
type = r.type;
return *this;
}
inline DictValue::DictValue(const DictValue &r)
{
type = r.type;
if (r.type == Param::INT)
pi = new AutoBuffer<int64, 1>(*r.pi);
else if (r.type == Param::STRING)
ps = new AutoBuffer<String, 1>(*r.ps);
else if (r.type == Param::REAL)
pd = new AutoBuffer<double, 1>(*r.pd);
}
inline bool DictValue::isString() const
{
return (type == Param::STRING);
}
inline bool DictValue::isInt() const
{
return (type == Param::INT);
}
inline bool DictValue::isReal() const
{
return (type == Param::REAL || type == Param::INT);
}
inline int DictValue::size() const
{
switch (type)
{
case Param::INT:
return (int)pi->size();
break;
case Param::STRING:
return (int)ps->size();
break;
case Param::REAL:
return (int)pd->size();
break;
default:
CV_Error(Error::StsInternal, "");
return -1;
}
}
inline std::ostream &operator<<(std::ostream &stream, const DictValue &dictv)
{
int i;
if (dictv.isInt())
{
for (i = 0; i < dictv.size() - 1; i++)
stream << dictv.get<int64>(i) << ", ";
stream << dictv.get<int64>(i);
}
else if (dictv.isReal())
{
for (i = 0; i < dictv.size() - 1; i++)
stream << dictv.get<double>(i) << ", ";
stream << dictv.get<double>(i);
}
else if (dictv.isString())
{
for (i = 0; i < dictv.size() - 1; i++)
stream << "\"" << dictv.get<String>(i) << "\", ";
stream << dictv.get<String>(i);
}
return stream;
}
/////////////////////////////////////////////////////////////////
inline bool Dict::has(const String &key) const
{
return dict.count(key) != 0;
}
inline DictValue *Dict::ptr(const String &key)
{
_Dict::iterator i = dict.find(key);
return (i == dict.end()) ? NULL : &i->second;
}
inline const DictValue *Dict::ptr(const String &key) const
{
_Dict::const_iterator i = dict.find(key);
return (i == dict.end()) ? NULL : &i->second;
}
inline const DictValue &Dict::get(const String &key) const
{
_Dict::const_iterator i = dict.find(key);
if (i == dict.end())
CV_Error(Error::StsObjectNotFound, "Required argument \"" + key + "\" not found into dictionary");
return i->second;
}
template <typename T>
inline T Dict::get(const String &key) const
{
return this->get(key).get<T>();
}
template <typename T>
inline T Dict::get(const String &key, const T &defaultValue) const
{
_Dict::const_iterator i = dict.find(key);
if (i != dict.end())
return i->second.get<T>();
else
return defaultValue;
}
template<typename T>
inline const T &Dict::set(const String &key, const T &value)
{
_Dict::iterator i = dict.find(key);
if (i != dict.end())
i->second = DictValue(value);
else
dict.insert(std::make_pair(key, DictValue(value)));
return value;
}
inline std::ostream &operator<<(std::ostream &stream, const Dict &dict)
{
Dict::_Dict::const_iterator it;
for (it = dict.dict.begin(); it != dict.dict.end(); it++)
stream << it->first << " : " << it->second << "\n";
return stream;
}
CV__DNN_EXPERIMENTAL_NS_END
}
}
#endif

View file

@ -0,0 +1,78 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
#ifndef OPENCV_DNN_LAYER_DETAILS_HPP
#define OPENCV_DNN_LAYER_DETAILS_HPP
#include <opencv2/dnn/layer.hpp>
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
/** @brief Registers layer constructor in runtime.
* @param type string, containing type name of the layer.
* @param constuctorFunc pointer to the function of type LayerRegister::Constuctor, which creates the layer.
* @details This macros must be placed inside the function code.
*/
#define CV_DNN_REGISTER_LAYER_FUNC(type, constuctorFunc) \
cv::dnn::LayerFactory::registerLayer(#type, constuctorFunc);
/** @brief Registers layer class in runtime.
* @param type string, containing type name of the layer.
* @param class C++ class, derived from Layer.
* @details This macros must be placed inside the function code.
*/
#define CV_DNN_REGISTER_LAYER_CLASS(type, class) \
cv::dnn::LayerFactory::registerLayer(#type, cv::dnn::details::_layerDynamicRegisterer<class>);
/** @brief Registers layer constructor on module load time.
* @param type string, containing type name of the layer.
* @param constuctorFunc pointer to the function of type LayerRegister::Constuctor, which creates the layer.
* @details This macros must be placed outside the function code.
*/
#define CV_DNN_REGISTER_LAYER_FUNC_STATIC(type, constuctorFunc) \
static cv::dnn::details::_LayerStaticRegisterer __LayerStaticRegisterer_##type(#type, constuctorFunc);
/** @brief Registers layer class on module load time.
* @param type string, containing type name of the layer.
* @param class C++ class, derived from Layer.
* @details This macros must be placed outside the function code.
*/
#define CV_DNN_REGISTER_LAYER_CLASS_STATIC(type, class) \
Ptr<Layer> __LayerStaticRegisterer_func_##type(LayerParams &params) \
{ return Ptr<Layer>(new class(params)); } \
static cv::dnn::details::_LayerStaticRegisterer __LayerStaticRegisterer_##type(#type, __LayerStaticRegisterer_func_##type);
namespace details {
template<typename LayerClass>
Ptr<Layer> _layerDynamicRegisterer(LayerParams &params)
{
return Ptr<Layer>(LayerClass::create(params));
}
//allows automatically register created layer on module load time
class _LayerStaticRegisterer
{
String type;
public:
_LayerStaticRegisterer(const String &layerType, LayerFactory::Constuctor layerConstuctor)
{
this->type = layerType;
LayerFactory::registerLayer(layerType, layerConstuctor);
}
~_LayerStaticRegisterer()
{
LayerFactory::unregisterLayer(type);
}
};
} // namespace
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace
#endif

View file

@ -0,0 +1,85 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_LAYER_HPP
#define OPENCV_DNN_LAYER_HPP
#include <opencv2/dnn.hpp>
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
//! @addtogroup dnn
//! @{
//!
//! @defgroup dnnLayerFactory Utilities for New Layers Registration
//! @{
/** @brief %Layer factory allows to create instances of registered layers. */
class CV_EXPORTS LayerFactory
{
public:
//! Each Layer class must provide this function to the factory
typedef Ptr<Layer>(*Constuctor)(LayerParams &params);
//! Registers the layer class with typename @p type and specified @p constructor. Thread-safe.
static void registerLayer(const String &type, Constuctor constructor);
//! Unregisters registered layer with specified type name. Thread-safe.
static void unregisterLayer(const String &type);
/** @brief Creates instance of registered layer.
* @param type type name of creating layer.
* @param params parameters which will be used for layer initialization.
* @note Thread-safe.
*/
static Ptr<Layer> createLayerInstance(const String &type, LayerParams& params);
private:
LayerFactory();
};
//! @}
//! @}
CV__DNN_EXPERIMENTAL_NS_END
}
}
#endif

View file

@ -0,0 +1,206 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_SHAPE_UTILS_HPP
#define OPENCV_DNN_DNN_SHAPE_UTILS_HPP
#include <opencv2/core.hpp>
#include <opencv2/core/types_c.h>
#include <ostream>
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
//Useful shortcut
inline std::ostream &operator<< (std::ostream &s, cv::Range &r)
{
return s << "[" << r.start << ", " << r.end << ")";
}
//Slicing
struct _Range : public cv::Range
{
_Range(const Range &r) : cv::Range(r) {}
_Range(int start_, int size_ = 1) : cv::Range(start_, start_ + size_) {}
};
static inline Mat slice(const Mat &m, const _Range &r0)
{
Range ranges[CV_MAX_DIM];
for (int i = 1; i < m.dims; i++)
ranges[i] = Range::all();
ranges[0] = r0;
return m(&ranges[0]);
}
static inline Mat slice(const Mat &m, const _Range &r0, const _Range &r1)
{
CV_Assert(m.dims >= 2);
Range ranges[CV_MAX_DIM];
for (int i = 2; i < m.dims; i++)
ranges[i] = Range::all();
ranges[0] = r0;
ranges[1] = r1;
return m(&ranges[0]);
}
static inline Mat slice(const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2)
{
CV_Assert(m.dims >= 3);
Range ranges[CV_MAX_DIM];
for (int i = 3; i < m.dims; i++)
ranges[i] = Range::all();
ranges[0] = r0;
ranges[1] = r1;
ranges[2] = r2;
return m(&ranges[0]);
}
static inline Mat slice(const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2, const _Range &r3)
{
CV_Assert(m.dims >= 4);
Range ranges[CV_MAX_DIM];
for (int i = 4; i < m.dims; i++)
ranges[i] = Range::all();
ranges[0] = r0;
ranges[1] = r1;
ranges[2] = r2;
ranges[3] = r3;
return m(&ranges[0]);
}
static inline Mat getPlane(const Mat &m, int n, int cn)
{
CV_Assert(m.dims > 2);
int sz[CV_MAX_DIM];
for(int i = 2; i < m.dims; i++)
{
sz[i-2] = m.size.p[i];
}
return Mat(m.dims - 2, sz, m.type(), (void*)m.ptr<float>(n, cn));
}
static inline MatShape shape(const int* dims, const int n = 4)
{
MatShape shape;
shape.assign(dims, dims + n);
return shape;
}
static inline MatShape shape(const Mat& mat)
{
return shape(mat.size.p, mat.dims);
}
static inline MatShape shape(const UMat& mat)
{
return shape(mat.size.p, mat.dims);
}
namespace {inline bool is_neg(int i) { return i < 0; }}
static inline MatShape shape(int a0, int a1=-1, int a2=-1, int a3=-1)
{
int dims[] = {a0, a1, a2, a3};
MatShape s = shape(dims);
s.erase(std::remove_if(s.begin(), s.end(), is_neg), s.end());
return s;
}
static inline int total(const MatShape& shape, int start = -1, int end = -1)
{
if (start == -1) start = 0;
if (end == -1) end = (int)shape.size();
if (shape.empty())
return 0;
int elems = 1;
CV_Assert(start <= (int)shape.size() && end <= (int)shape.size() &&
start <= end);
for(int i = start; i < end; i++)
{
elems *= shape[i];
}
return elems;
}
static inline MatShape concat(const MatShape& a, const MatShape& b)
{
MatShape c = a;
c.insert(c.end(), b.begin(), b.end());
return c;
}
inline void print(const MatShape& shape, const String& name = "")
{
printf("%s: [", name.c_str());
size_t i, n = shape.size();
for( i = 0; i < n; i++ )
printf(" %d", shape[i]);
printf(" ]\n");
}
inline int clamp(int ax, int dims)
{
return ax < 0 ? ax + dims : ax;
}
inline int clamp(int ax, const MatShape& shape)
{
return clamp(ax, (int)shape.size());
}
inline Range clamp(const Range& r, int axisSize)
{
Range clamped(std::max(r.start, 0),
r.end > 0 ? std::min(r.end, axisSize) : axisSize + r.end + 1);
CV_Assert(clamped.start < clamped.end, clamped.end <= axisSize);
return clamped;
}
CV__DNN_EXPERIMENTAL_NS_END
}
}
#endif

View file

@ -40,11 +40,15 @@
//
//M*/
#ifndef __OPENCV_FEATURES_2D_HPP__
#define __OPENCV_FEATURES_2D_HPP__
#ifndef OPENCV_FEATURES_2D_HPP
#define OPENCV_FEATURES_2D_HPP
#include "opencv2/opencv_modules.hpp"
#include "opencv2/core.hpp"
#ifdef HAVE_OPENCV_FLANN
#include "opencv2/flann/miniflann.hpp"
#endif
/**
@defgroup features2d 2D Features Framework
@ -117,6 +121,10 @@ public:
* Remove duplicated keypoints.
*/
static void removeDuplicated( std::vector<KeyPoint>& keypoints );
/*
* Remove duplicated keypoints and sort the remaining keypoints
*/
static void removeDuplicatedSorted( std::vector<KeyPoint>& keypoints );
/*
* Retain the specified number of the best keypoints (according to the response)
@ -153,8 +161,8 @@ public:
@param masks Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].
*/
virtual void detect( InputArrayOfArrays images,
std::vector<std::vector<KeyPoint> >& keypoints,
CV_WRAP virtual void detect( InputArrayOfArrays images,
CV_OUT std::vector<std::vector<KeyPoint> >& keypoints,
InputArrayOfArrays masks=noArray() );
/** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
@ -182,8 +190,8 @@ public:
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.
*/
virtual void compute( InputArrayOfArrays images,
std::vector<std::vector<KeyPoint> >& keypoints,
CV_WRAP virtual void compute( InputArrayOfArrays images,
CV_OUT CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints,
OutputArrayOfArrays descriptors );
/** Detects keypoints and computes the descriptors */
@ -196,8 +204,21 @@ public:
CV_WRAP virtual int descriptorType() const;
CV_WRAP virtual int defaultNorm() const;
CV_WRAP void write( const String& fileName ) const;
CV_WRAP void read( const String& fileName );
virtual void write( FileStorage&) const;
// see corresponding cv::Algorithm method
CV_WRAP virtual void read( const FileNode&);
//! Return true if detector object is empty
CV_WRAP virtual bool empty() const;
CV_WRAP virtual String getDefaultName() const;
// see corresponding cv::Algorithm method
CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); }
};
/** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
@ -242,6 +263,24 @@ public:
@param indexChange index remapping of the bits. */
CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList,
float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>());
/** @brief The BRISK constructor for a custom pattern, detection threshold and octaves
@param thresh AGAST detection threshold score.
@param octaves detection octaves. Use 0 to do single scale.
@param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
keypoint scale 1).
@param numberList defines the number of sampling points on the sampling circle. Must be the same
size as radiusList..
@param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
scale 1).
@param dMin threshold for the long pairings used for orientation determination (in pixels for
keypoint scale 1).
@param indexChange index remapping of the bits. */
CV_WRAP static Ptr<BRISK> create(int thresh, int octaves, const std::vector<float> &radiusList,
const std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
const std::vector<int>& indexChange=std::vector<int>());
CV_WRAP virtual String getDefaultName() const;
};
/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
@ -315,6 +354,7 @@ public:
CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0;
CV_WRAP virtual int getFastThreshold() const = 0;
CV_WRAP virtual String getDefaultName() const;
};
/** @brief Maximally stable extremal region extractor
@ -355,13 +395,13 @@ public:
/** @brief Detect %MSER regions
@param image input image (8UC1, 8UC3 or 8UC4)
@param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3)
@param msers resulting list of point sets
@param bboxes resulting bounding boxes
*/
CV_WRAP virtual void detectRegions( InputArray image,
CV_OUT std::vector<std::vector<Point> >& msers,
std::vector<Rect>& bboxes ) = 0;
CV_OUT std::vector<Rect>& bboxes ) = 0;
CV_WRAP virtual void setDelta(int delta) = 0;
CV_WRAP virtual int getDelta() const = 0;
@ -374,6 +414,7 @@ public:
CV_WRAP virtual void setPass2Only(bool f) = 0;
CV_WRAP virtual bool getPass2Only() const = 0;
CV_WRAP virtual String getDefaultName() const;
};
/** @overload */
@ -429,6 +470,7 @@ public:
CV_WRAP virtual void setType(int type) = 0;
CV_WRAP virtual int getType() const = 0;
CV_WRAP virtual String getDefaultName() const;
};
/** @overload */
@ -483,6 +525,7 @@ public:
CV_WRAP virtual void setType(int type) = 0;
CV_WRAP virtual int getType() const = 0;
CV_WRAP virtual String getDefaultName() const;
};
/** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. :
@ -492,6 +535,8 @@ class CV_EXPORTS_W GFTTDetector : public Feature2D
public:
CV_WRAP static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
CV_WRAP static Ptr<GFTTDetector> create( int maxCorners, double qualityLevel, double minDistance,
int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04 );
CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
CV_WRAP virtual int getMaxFeatures() const = 0;
@ -509,6 +554,7 @@ public:
CV_WRAP virtual void setK(double k) = 0;
CV_WRAP virtual double getK() const = 0;
CV_WRAP virtual String getDefaultName() const;
};
/** @brief Class for extracting blobs from an image. :
@ -575,6 +621,7 @@ public:
CV_WRAP static Ptr<SimpleBlobDetector>
create(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());
CV_WRAP virtual String getDefaultName() const;
};
//! @} features2d_main
@ -631,15 +678,25 @@ public:
CV_WRAP virtual void setDiffusivity(int diff) = 0;
CV_WRAP virtual int getDiffusivity() const = 0;
CV_WRAP virtual String getDefaultName() const;
};
/** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13 . :
/** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13.
@note AKAZE descriptors can only be used with KAZE or AKAZE keypoints. Try to avoid using *extract*
and *detect* instead of *operator()* due to performance reasons. .. [ANB13] Fast Explicit Diffusion
for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien
Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
*/
@details AKAZE descriptors can only be used with KAZE or AKAZE keypoints. This class is thread-safe.
@note When you need descriptors use Feature2D::detectAndCompute, which
provides better performance. When using Feature2D::detect followed by
Feature2D::compute scale space pyramid is computed twice.
@note AKAZE implements T-API. When image is passed as UMat some parts of the algorithm
will use OpenCL.
@note [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear
Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In
British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
*/
class CV_EXPORTS_W AKAZE : public Feature2D
{
public:
@ -689,6 +746,7 @@ public:
CV_WRAP virtual void setDiffusivity(int diff) = 0;
CV_WRAP virtual int getDiffusivity() const = 0;
CV_WRAP virtual String getDefaultName() const;
};
//! @} features2d_main
@ -728,7 +786,7 @@ struct CV_EXPORTS SL2
* Euclidean distance functor
*/
template<class T>
struct CV_EXPORTS L2
struct L2
{
enum { normType = NORM_L2 };
typedef T ValueType;
@ -744,7 +802,7 @@ struct CV_EXPORTS L2
* Manhattan distance (city block distance) functor
*/
template<class T>
struct CV_EXPORTS L1
struct L1
{
enum { normType = NORM_L1 };
typedef T ValueType;
@ -771,6 +829,15 @@ an image set.
class CV_EXPORTS_W DescriptorMatcher : public Algorithm
{
public:
enum
{
FLANNBASED = 1,
BRUTEFORCE = 2,
BRUTEFORCE_L1 = 3,
BRUTEFORCE_HAMMING = 4,
BRUTEFORCE_HAMMINGLUT = 5,
BRUTEFORCE_SL2 = 6
};
virtual ~DescriptorMatcher();
/** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
@ -868,8 +935,8 @@ public:
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
*/
void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
InputArray mask=noArray(), bool compactResult=false ) const;
/** @overload
@ -906,11 +973,24 @@ public:
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.
*/
void radiusMatch( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
InputArrayOfArrays masks=noArray(), bool compactResult=false );
CV_WRAP void write( const String& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
write(fs);
}
CV_WRAP void read( const String& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
read(fs.root());
}
// Reads matcher object from a file node
virtual void read( const FileNode& );
// see corresponding cv::Algorithm method
CV_WRAP virtual void read( const FileNode& );
// Writes matcher object to a file storage
virtual void write( FileStorage& ) const;
@ -920,7 +1000,7 @@ public:
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
object copy with the current parameters but with empty train data.
*/
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
CV_WRAP virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
/** @brief Creates a descriptor matcher of a given type with the default parameters (using default
constructor).
@ -934,6 +1014,13 @@ public:
- `FlannBased`
*/
CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType );
CV_WRAP static Ptr<DescriptorMatcher> create( int matcherType );
// see corresponding cv::Algorithm method
CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); }
protected:
/**
* Class to work with descriptors from several images as with one merged matrix.
@ -990,8 +1077,17 @@ sets.
class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
{
public:
/** @brief Brute-force matcher constructor.
/** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
*
*
*/
CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
virtual ~BFMatcher() {}
virtual bool isMaskSupported() const { return true; }
/** @brief Brute-force matcher create method.
@param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
@ -1003,10 +1099,7 @@ public:
pairs. Such technique usually produces best results with minimal number of outliers when there are
enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
*/
CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
virtual ~BFMatcher() {}
virtual bool isMaskSupported() const { return true; }
CV_WRAP static Ptr<BFMatcher> create( int normType=NORM_L2, bool crossCheck=false ) ;
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
@ -1019,10 +1112,11 @@ protected:
bool crossCheck;
};
#if defined(HAVE_OPENCV_FLANN) || defined(CV_DOXYGEN)
/** @brief Flann-based descriptor matcher.
This matcher trains flann::Index_ on a train descriptor collection and calls its nearest search
This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search
methods to find the best matches. So, this matcher may be faster when matching a large train
collection than the brute force matcher. FlannBasedMatcher does not support masking permissible
matches of descriptor sets because flann::Index does not support this. :
@ -1044,6 +1138,8 @@ public:
virtual void train();
virtual bool isMaskSupported() const;
CV_WRAP static Ptr<FlannBasedMatcher> create();
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
static void convertToDMatches( const DescriptorCollection& descriptors,
@ -1063,6 +1159,8 @@ protected:
int addedDescCount;
};
#endif
//! @} features2d_match
/****************************************************************************************\

View file

@ -40,8 +40,8 @@
//
//M*/
#ifndef _OPENCV_FLANN_HPP_
#define _OPENCV_FLANN_HPP_
#ifndef OPENCV_FLANN_HPP
#define OPENCV_FLANN_HPP
#include "opencv2/core.hpp"
#include "opencv2/flann/miniflann.hpp"
@ -59,7 +59,7 @@ can be found in @cite Muja2009 .
namespace cvflann
{
CV_EXPORTS flann_distance_t flann_distance_type();
FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
}
@ -230,7 +230,7 @@ public:
::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
private:
::cvflann::Index<Distance>* nnIndex;
@ -338,164 +338,134 @@ int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& di
* @deprecated Use GenericIndex class instead
*/
template <typename T>
class
#ifndef _MSC_VER
FLANN_DEPRECATED
#endif
Index_ {
class Index_
{
public:
typedef typename L2<T>::ElementType ElementType;
typedef typename L2<T>::ResultType DistanceType;
typedef typename L2<T>::ElementType ElementType;
typedef typename L2<T>::ResultType DistanceType;
Index_(const Mat& features, const ::cvflann::IndexParams& params);
~Index_();
void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& params);
void save(String filename)
{
if (nnIndex_L1) nnIndex_L1->save(filename);
if (nnIndex_L2) nnIndex_L2->save(filename);
}
int veclen() const
CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
{
if (nnIndex_L1) return nnIndex_L1->veclen();
if (nnIndex_L2) return nnIndex_L2->veclen();
}
printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
int size() const
CV_Assert(dataset.type() == CvType<ElementType>::type());
CV_Assert(dataset.isContinuous());
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
nnIndex_L1 = NULL;
nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
}
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
nnIndex_L2 = NULL;
}
else {
printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
"For other distance types you must use cv::flann::GenericIndex<Distance>\n");
CV_Assert(0);
}
if (nnIndex_L1) nnIndex_L1->buildIndex();
if (nnIndex_L2) nnIndex_L2->buildIndex();
}
CV_DEPRECATED ~Index_()
{
if (nnIndex_L1) return nnIndex_L1->size();
if (nnIndex_L2) return nnIndex_L2->size();
}
if (nnIndex_L1) delete nnIndex_L1;
if (nnIndex_L2) delete nnIndex_L2;
}
::cvflann::IndexParams getParameters()
{
if (nnIndex_L1) return nnIndex_L1->getParameters();
if (nnIndex_L2) return nnIndex_L2->getParameters();
CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
}
if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
}
CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(queries.type() == CvType<ElementType>::type());
CV_Assert(queries.isContinuous());
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
{
if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
}
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
}
CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(query.type() == CvType<ElementType>::type());
CV_Assert(query.isContinuous());
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
CV_DEPRECATED void save(String filename)
{
if (nnIndex_L1) nnIndex_L1->save(filename);
if (nnIndex_L2) nnIndex_L2->save(filename);
}
CV_DEPRECATED int veclen() const
{
if (nnIndex_L1) return nnIndex_L1->veclen();
if (nnIndex_L2) return nnIndex_L2->veclen();
}
CV_DEPRECATED int size() const
{
if (nnIndex_L1) return nnIndex_L1->size();
if (nnIndex_L2) return nnIndex_L2->size();
}
CV_DEPRECATED ::cvflann::IndexParams getParameters()
{
if (nnIndex_L1) return nnIndex_L1->getParameters();
if (nnIndex_L2) return nnIndex_L2->getParameters();
}
CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
{
if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
}
private:
// providing backwards compatibility for L2 and L1 distances (most common)
::cvflann::Index< L2<ElementType> >* nnIndex_L2;
::cvflann::Index< L1<ElementType> >* nnIndex_L1;
// providing backwards compatibility for L2 and L1 distances (most common)
::cvflann::Index< L2<ElementType> >* nnIndex_L2;
::cvflann::Index< L1<ElementType> >* nnIndex_L1;
};
#ifdef _MSC_VER
template <typename T>
class FLANN_DEPRECATED Index_;
#endif
//! @cond IGNORED
template <typename T>
Index_<T>::Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
{
printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
CV_Assert(dataset.type() == CvType<ElementType>::type());
CV_Assert(dataset.isContinuous());
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
nnIndex_L1 = NULL;
nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
}
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
nnIndex_L2 = NULL;
}
else {
printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
"For other distance types you must use cv::flann::GenericIndex<Distance>\n");
CV_Assert(0);
}
if (nnIndex_L1) nnIndex_L1->buildIndex();
if (nnIndex_L2) nnIndex_L2->buildIndex();
}
template <typename T>
Index_<T>::~Index_()
{
if (nnIndex_L1) delete nnIndex_L1;
if (nnIndex_L2) delete nnIndex_L2;
}
template <typename T>
void Index_<T>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
}
template <typename T>
void Index_<T>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(queries.type() == CvType<ElementType>::type());
CV_Assert(queries.isContinuous());
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
}
template <typename T>
int Index_<T>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
template <typename T>
int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(query.type() == CvType<ElementType>::type());
CV_Assert(query.isContinuous());
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
//! @endcond
/** @brief Clusters features using hierarchical k-means algorithm.
@ -535,7 +505,7 @@ int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::K
/** @deprecated
*/
template <typename ELEM_TYPE, typename DIST_TYPE>
FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
{
printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
"cv::flann::hierarchicalClustering<Distance> instead\n");

Some files were not shown because too many files have changed in this diff Show more