sustaining_gazes/lib/local/FaceAnalyser/src/GazeEstimation.cpp
2016-12-02 14:21:24 -05:00

220 lines
No EOL
9.7 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensees request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include <iostream>
#include "GazeEstimation.h"
using namespace std;
using namespace FaceAnalysis;
// For subpixel accuracy drawing
const int gaze_draw_shiftbits = 4;
const int gaze_draw_multiplier = 1 << 4;
cv::Point3f RaySphereIntersect(cv::Point3f rayOrigin, cv::Point3f rayDir, cv::Point3f sphereOrigin, float sphereRadius){
float dx = rayDir.x;
float dy = rayDir.y;
float dz = rayDir.z;
float x0 = rayOrigin.x;
float y0 = rayOrigin.y;
float z0 = rayOrigin.z;
float cx = sphereOrigin.x;
float cy = sphereOrigin.y;
float cz = sphereOrigin.z;
float r = sphereRadius;
float a = dx*dx + dy*dy + dz*dz;
float b = 2*dx*(x0-cx) + 2*dy*(y0-cy) + 2*dz*(z0-cz);
float c = cx*cx + cy*cy + cz*cz + x0*x0 + y0*y0 + z0*z0 + -2*(cx*x0 + cy*y0 + cz*z0) - r*r;
float disc = b*b - 4*a*c;
float t = (-b - sqrt(b*b - 4*a*c))/2*a;
// This implies that the lines did not intersect, point straight ahead
if (b*b - 4 * a*c < 0)
return cv::Point3f(0, 0, -1);
return rayOrigin + rayDir * t;
}
cv::Point3f FaceAnalysis::GetPupilPosition(cv::Mat_<double> eyeLdmks3d){
eyeLdmks3d = eyeLdmks3d.t();
cv::Mat_<double> irisLdmks3d = eyeLdmks3d.rowRange(0,8);
cv::Point3f p (mean(irisLdmks3d.col(0))[0], mean(irisLdmks3d.col(1))[0], mean(irisLdmks3d.col(2))[0]);
return p;
}
void FaceAnalysis::EstimateGaze(const LandmarkDetector::CLNF& clnf_model, cv::Point3f& gaze_absolute, float fx, float fy, float cx, float cy, bool left_eye)
{
cv::Vec6d headPose = LandmarkDetector::GetPose(clnf_model, fx, fy, cx, cy);
cv::Vec3d eulerAngles(headPose(3), headPose(4), headPose(5));
cv::Matx33d rotMat = LandmarkDetector::Euler2RotationMatrix(eulerAngles);
int part = -1;
for (size_t i = 0; i < clnf_model.hierarchical_models.size(); ++i)
{
if (left_eye && clnf_model.hierarchical_model_names[i].compare("left_eye_28") == 0)
{
part = i;
}
if (!left_eye && clnf_model.hierarchical_model_names[i].compare("right_eye_28") == 0)
{
part = i;
}
}
if (part == -1)
{
std::cout << "Couldn't find the eye model, something wrong" << std::endl;
}
cv::Mat eyeLdmks3d = clnf_model.hierarchical_models[part].GetShape(fx, fy, cx, cy);
cv::Point3f pupil = GetPupilPosition(eyeLdmks3d);
cv::Point3f rayDir = pupil / norm(pupil);
cv::Mat faceLdmks3d = clnf_model.GetShape(fx, fy, cx, cy);
faceLdmks3d = faceLdmks3d.t();
cv::Mat offset = (cv::Mat_<double>(3, 1) << 0, -3.50, 0);
int eyeIdx = 1;
if (left_eye)
{
eyeIdx = 0;
}
cv::Mat eyeballCentreMat = (faceLdmks3d.row(36+eyeIdx*6) + faceLdmks3d.row(39+eyeIdx*6))/2.0f + (cv::Mat(rotMat)*offset).t();
cv::Point3f eyeballCentre = cv::Point3f(eyeballCentreMat);
cv::Point3f gazeVecAxis = RaySphereIntersect(cv::Point3f(0,0,0), rayDir, eyeballCentre, 12) - eyeballCentre;
gaze_absolute = gazeVecAxis / norm(gazeVecAxis);
}
cv::Vec2d FaceAnalysis::GetGazeAngle(cv::Point3f& gaze_vector_1, cv::Point3f& gaze_vector_2, cv::Vec6d head_pose)
{
cv::Vec3d eulerAngles(head_pose(3), head_pose(4), head_pose(5));
cv::Matx33d rotMat = LandmarkDetector::Euler2RotationMatrix(eulerAngles);
cv::Point3f gaze_point = (gaze_vector_1 + gaze_vector_2) / 2;
double gaze_diff = acos(gaze_vector_1.dot(gaze_vector_2));
cv::Vec3d gaze(gaze_point.x, gaze_point.y, gaze_point.z);
gaze = rotMat * gaze;
double x_angle = atan2(gaze[0], -gaze[2]);
double y_angle = atan2(gaze[1], -gaze[2]);
return cv::Vec2d(x_angle, y_angle);
}
void FaceAnalysis::DrawGaze(cv::Mat img, const LandmarkDetector::CLNF& clnf_model, cv::Point3f gazeVecAxisLeft, cv::Point3f gazeVecAxisRight, float fx, float fy, float cx, float cy)
{
cv::Mat cameraMat = (cv::Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 0);
int part_left = -1;
int part_right = -1;
for (size_t i = 0; i < clnf_model.hierarchical_models.size(); ++i)
{
if (clnf_model.hierarchical_model_names[i].compare("left_eye_28") == 0)
{
part_left = i;
}
if (clnf_model.hierarchical_model_names[i].compare("right_eye_28") == 0)
{
part_right = i;
}
}
cv::Mat eyeLdmks3d_left = clnf_model.hierarchical_models[part_left].GetShape(fx, fy, cx, cy);
cv::Point3f pupil_left = GetPupilPosition(eyeLdmks3d_left);
cv::Mat eyeLdmks3d_right = clnf_model.hierarchical_models[part_right].GetShape(fx, fy, cx, cy);
cv::Point3f pupil_right = GetPupilPosition(eyeLdmks3d_right);
vector<cv::Point3d> points_left;
points_left.push_back(cv::Point3d(pupil_left));
points_left.push_back(cv::Point3d(pupil_left + gazeVecAxisLeft*50.0));
vector<cv::Point3d> points_right;
points_right.push_back(cv::Point3d(pupil_right));
points_right.push_back(cv::Point3d(pupil_right + gazeVecAxisRight*50.0));
cv::Mat_<double> proj_points;
cv::Mat_<double> mesh_0 = (cv::Mat_<double>(2, 3) << points_left[0].x, points_left[0].y, points_left[0].z, points_left[1].x, points_left[1].y, points_left[1].z);
LandmarkDetector::Project(proj_points, mesh_0, fx, fy, cx, cy);
cv::line(img, cv::Point(cvRound(proj_points.at<double>(0,0) * (double)gaze_draw_multiplier), cvRound(proj_points.at<double>(0, 1) * (double)gaze_draw_multiplier)),
cv::Point(cvRound(proj_points.at<double>(1, 0) * (double)gaze_draw_multiplier), cvRound(proj_points.at<double>(1, 1) * (double)gaze_draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, gaze_draw_shiftbits);
cv::Mat_<double> mesh_1 = (cv::Mat_<double>(2, 3) << points_right[0].x, points_right[0].y, points_right[0].z, points_right[1].x, points_right[1].y, points_right[1].z);
LandmarkDetector::Project(proj_points, mesh_1, fx, fy, cx, cy);
cv::line(img, cv::Point(cvRound(proj_points.at<double>(0, 0) * (double)gaze_draw_multiplier), cvRound(proj_points.at<double>(0, 1) * (double)gaze_draw_multiplier)),
cv::Point(cvRound(proj_points.at<double>(1, 0) * (double)gaze_draw_multiplier), cvRound(proj_points.at<double>(1, 1) * (double)gaze_draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, gaze_draw_shiftbits);
}