/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS // OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS // BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY. // OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Notwithstanding the license granted herein, Licensee acknowledges that certain components // of the Software may be covered by so-called “open source” software licenses (“Open Source // Components”), which means any software licenses approved as open source licenses by the // Open Source Initiative or any substantially similar licenses, including without limitation any // license that, as a condition of distribution of the software licensed under such license, // requires that the distributor make the software available in source code format. Licensor shall // provide a list of Open Source Components for a particular version of the Software upon // Licensee’s request. Licensee will comply with the applicable terms of such licenses and to // the extent required by the licenses covering Open Source Components, the terms of such // licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the // licenses applicable to Open Source Components prohibit any of the restrictions in this // License Agreement with respect to such Open Source Component, such restrictions will not // apply to such Open Source Component. To the extent the terms of the licenses applicable to // Open Source Components require Licensor to make an offer to provide source code or // related information in connection with the Software, such offer is hereby made. Any request // for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk // Licensee acknowledges receipt of notices for the Open Source Components for the initial // delivery of the Software. // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/calib3d/calib3d.hpp" #include #include "GazeEstimation.h" using namespace std; using namespace FaceAnalysis; // For subpixel accuracy drawing const int gaze_draw_shiftbits = 4; const int gaze_draw_multiplier = 1 << 4; cv::Point3f RaySphereIntersect(cv::Point3f rayOrigin, cv::Point3f rayDir, cv::Point3f sphereOrigin, float sphereRadius){ float dx = rayDir.x; float dy = rayDir.y; float dz = rayDir.z; float x0 = rayOrigin.x; float y0 = rayOrigin.y; float z0 = rayOrigin.z; float cx = sphereOrigin.x; float cy = sphereOrigin.y; float cz = sphereOrigin.z; float r = sphereRadius; float a = dx*dx + dy*dy + dz*dz; float b = 2*dx*(x0-cx) + 2*dy*(y0-cy) + 2*dz*(z0-cz); float c = cx*cx + cy*cy + cz*cz + x0*x0 + y0*y0 + z0*z0 + -2*(cx*x0 + cy*y0 + cz*z0) - r*r; float disc = b*b - 4*a*c; float t = (-b - sqrt(b*b - 4*a*c))/2*a; // This implies that the lines did not intersect, point straight ahead if (b*b - 4 * a*c < 0) return cv::Point3f(0, 0, -1); return rayOrigin + rayDir * t; } cv::Point3f FaceAnalysis::GetPupilPosition(cv::Mat_ eyeLdmks3d){ eyeLdmks3d = eyeLdmks3d.t(); cv::Mat_ irisLdmks3d = eyeLdmks3d.rowRange(0,8); cv::Point3f p (mean(irisLdmks3d.col(0))[0], mean(irisLdmks3d.col(1))[0], mean(irisLdmks3d.col(2))[0]); return p; } void FaceAnalysis::EstimateGaze(const LandmarkDetector::CLNF& clnf_model, cv::Point3f& gaze_absolute, float fx, float fy, float cx, float cy, bool left_eye) { cv::Vec6d headPose = LandmarkDetector::GetPose(clnf_model, fx, fy, cx, cy); cv::Vec3d eulerAngles(headPose(3), headPose(4), headPose(5)); cv::Matx33d rotMat = LandmarkDetector::Euler2RotationMatrix(eulerAngles); int part = -1; for (size_t i = 0; i < clnf_model.hierarchical_models.size(); ++i) { if (left_eye && clnf_model.hierarchical_model_names[i].compare("left_eye_28") == 0) { part = i; } if (!left_eye && clnf_model.hierarchical_model_names[i].compare("right_eye_28") == 0) { part = i; } } if (part == -1) { std::cout << "Couldn't find the eye model, something wrong" << std::endl; } cv::Mat eyeLdmks3d = clnf_model.hierarchical_models[part].GetShape(fx, fy, cx, cy); cv::Point3f pupil = GetPupilPosition(eyeLdmks3d); cv::Point3f rayDir = pupil / norm(pupil); cv::Mat faceLdmks3d = clnf_model.GetShape(fx, fy, cx, cy); faceLdmks3d = faceLdmks3d.t(); cv::Mat offset = (cv::Mat_(3, 1) << 0, -3.50, 0); int eyeIdx = 1; if (left_eye) { eyeIdx = 0; } cv::Mat eyeballCentreMat = (faceLdmks3d.row(36+eyeIdx*6) + faceLdmks3d.row(39+eyeIdx*6))/2.0f + (cv::Mat(rotMat)*offset).t(); cv::Point3f eyeballCentre = cv::Point3f(eyeballCentreMat); cv::Point3f gazeVecAxis = RaySphereIntersect(cv::Point3f(0,0,0), rayDir, eyeballCentre, 12) - eyeballCentre; gaze_absolute = gazeVecAxis / norm(gazeVecAxis); } cv::Vec2d FaceAnalysis::GetGazeAngle(cv::Point3f& gaze_vector_1, cv::Point3f& gaze_vector_2, cv::Vec6d head_pose) { cv::Vec3d eulerAngles(head_pose(3), head_pose(4), head_pose(5)); cv::Matx33d rotMat = LandmarkDetector::Euler2RotationMatrix(eulerAngles); cv::Point3f gaze_point = (gaze_vector_1 + gaze_vector_2) / 2; double gaze_diff = acos(gaze_vector_1.dot(gaze_vector_2)); cv::Vec3d gaze(gaze_point.x, gaze_point.y, gaze_point.z); gaze = rotMat * gaze; double x_angle = atan2(gaze[0], -gaze[2]); double y_angle = atan2(gaze[1], -gaze[2]); return cv::Vec2d(x_angle, y_angle); } void FaceAnalysis::DrawGaze(cv::Mat img, const LandmarkDetector::CLNF& clnf_model, cv::Point3f gazeVecAxisLeft, cv::Point3f gazeVecAxisRight, float fx, float fy, float cx, float cy) { cv::Mat cameraMat = (cv::Mat_(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 0); int part_left = -1; int part_right = -1; for (size_t i = 0; i < clnf_model.hierarchical_models.size(); ++i) { if (clnf_model.hierarchical_model_names[i].compare("left_eye_28") == 0) { part_left = i; } if (clnf_model.hierarchical_model_names[i].compare("right_eye_28") == 0) { part_right = i; } } cv::Mat eyeLdmks3d_left = clnf_model.hierarchical_models[part_left].GetShape(fx, fy, cx, cy); cv::Point3f pupil_left = GetPupilPosition(eyeLdmks3d_left); cv::Mat eyeLdmks3d_right = clnf_model.hierarchical_models[part_right].GetShape(fx, fy, cx, cy); cv::Point3f pupil_right = GetPupilPosition(eyeLdmks3d_right); vector points_left; points_left.push_back(cv::Point3d(pupil_left)); points_left.push_back(cv::Point3d(pupil_left + gazeVecAxisLeft*50.0)); vector points_right; points_right.push_back(cv::Point3d(pupil_right)); points_right.push_back(cv::Point3d(pupil_right + gazeVecAxisRight*50.0)); cv::Mat_ proj_points; cv::Mat_ mesh_0 = (cv::Mat_(2, 3) << points_left[0].x, points_left[0].y, points_left[0].z, points_left[1].x, points_left[1].y, points_left[1].z); LandmarkDetector::Project(proj_points, mesh_0, fx, fy, cx, cy); cv::line(img, cv::Point(cvRound(proj_points.at(0,0) * (double)gaze_draw_multiplier), cvRound(proj_points.at(0, 1) * (double)gaze_draw_multiplier)), cv::Point(cvRound(proj_points.at(1, 0) * (double)gaze_draw_multiplier), cvRound(proj_points.at(1, 1) * (double)gaze_draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, gaze_draw_shiftbits); cv::Mat_ mesh_1 = (cv::Mat_(2, 3) << points_right[0].x, points_right[0].y, points_right[0].z, points_right[1].x, points_right[1].y, points_right[1].z); LandmarkDetector::Project(proj_points, mesh_1, fx, fy, cx, cy); cv::line(img, cv::Point(cvRound(proj_points.at(0, 0) * (double)gaze_draw_multiplier), cvRound(proj_points.at(0, 1) * (double)gaze_draw_multiplier)), cv::Point(cvRound(proj_points.at(1, 0) * (double)gaze_draw_multiplier), cvRound(proj_points.at(1, 1) * (double)gaze_draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, gaze_draw_shiftbits); }