sustaining_gazes/lib/local/FaceAnalyser/src/Face_utils.cpp
Tadas Baltrusaitis 2128589309 A lot of changes:
- New AU recognition models trained on extra datasets - Bosphorus, UNBC, FERA2011
- Cleaner and clearer separation of static and dynamic AU models
- AU training code cleaned up and instructions added
- bug fixes with median feature computation
- AU prediction correction (smoothing and shifting) with post processing
2016-07-22 09:35:50 -04:00

382 lines
No EOL
15 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensees request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include <Face_utils.h>
// OpenCV includes
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc.hpp>
// For FHOG visualisation
#include <dlib/opencv.h>
using namespace std;
namespace FaceAnalysis
{
// Pick only the more stable/rigid points under changes of expression
void extract_rigid_points(cv::Mat_<double>& source_points, cv::Mat_<double>& destination_points)
{
if(source_points.rows == 68)
{
cv::Mat_<double> tmp_source = source_points.clone();
source_points = cv::Mat_<double>();
// Push back the rigid points (some face outline, eyes, and nose)
source_points.push_back(tmp_source.row(1));
source_points.push_back(tmp_source.row(2));
source_points.push_back(tmp_source.row(3));
source_points.push_back(tmp_source.row(4));
source_points.push_back(tmp_source.row(12));
source_points.push_back(tmp_source.row(13));
source_points.push_back(tmp_source.row(14));
source_points.push_back(tmp_source.row(15));
source_points.push_back(tmp_source.row(27));
source_points.push_back(tmp_source.row(28));
source_points.push_back(tmp_source.row(29));
source_points.push_back(tmp_source.row(31));
source_points.push_back(tmp_source.row(32));
source_points.push_back(tmp_source.row(33));
source_points.push_back(tmp_source.row(34));
source_points.push_back(tmp_source.row(35));
source_points.push_back(tmp_source.row(36));
source_points.push_back(tmp_source.row(39));
source_points.push_back(tmp_source.row(40));
source_points.push_back(tmp_source.row(41));
source_points.push_back(tmp_source.row(42));
source_points.push_back(tmp_source.row(45));
source_points.push_back(tmp_source.row(46));
source_points.push_back(tmp_source.row(47));
cv::Mat_<double> tmp_dest = destination_points.clone();
destination_points = cv::Mat_<double>();
// Push back the rigid points
destination_points.push_back(tmp_dest.row(1));
destination_points.push_back(tmp_dest.row(2));
destination_points.push_back(tmp_dest.row(3));
destination_points.push_back(tmp_dest.row(4));
destination_points.push_back(tmp_dest.row(12));
destination_points.push_back(tmp_dest.row(13));
destination_points.push_back(tmp_dest.row(14));
destination_points.push_back(tmp_dest.row(15));
destination_points.push_back(tmp_dest.row(27));
destination_points.push_back(tmp_dest.row(28));
destination_points.push_back(tmp_dest.row(29));
destination_points.push_back(tmp_dest.row(31));
destination_points.push_back(tmp_dest.row(32));
destination_points.push_back(tmp_dest.row(33));
destination_points.push_back(tmp_dest.row(34));
destination_points.push_back(tmp_dest.row(35));
destination_points.push_back(tmp_dest.row(36));
destination_points.push_back(tmp_dest.row(39));
destination_points.push_back(tmp_dest.row(40));
destination_points.push_back(tmp_dest.row(41));
destination_points.push_back(tmp_dest.row(42));
destination_points.push_back(tmp_dest.row(45));
destination_points.push_back(tmp_dest.row(46));
destination_points.push_back(tmp_dest.row(47));
}
}
// Aligning a face to a common reference frame
void AlignFace(cv::Mat& aligned_face, const cv::Mat& frame, const LandmarkDetector::CLNF& clnf_model, bool rigid, double sim_scale, int out_width, int out_height)
{
// Will warp to scaled mean shape
cv::Mat_<double> similarity_normalised_shape = clnf_model.pdm.mean_shape * sim_scale;
// Discard the z component
similarity_normalised_shape = similarity_normalised_shape(cv::Rect(0, 0, 1, 2*similarity_normalised_shape.rows/3)).clone();
cv::Mat_<double> source_landmarks = clnf_model.detected_landmarks.reshape(1, 2).t();
cv::Mat_<double> destination_landmarks = similarity_normalised_shape.reshape(1, 2).t();
// Aligning only the more rigid points
if(rigid)
{
extract_rigid_points(source_landmarks, destination_landmarks);
}
cv::Matx22d scale_rot_matrix = LandmarkDetector::AlignShapesWithScale(source_landmarks, destination_landmarks);
cv::Matx23d warp_matrix;
warp_matrix(0,0) = scale_rot_matrix(0,0);
warp_matrix(0,1) = scale_rot_matrix(0,1);
warp_matrix(1,0) = scale_rot_matrix(1,0);
warp_matrix(1,1) = scale_rot_matrix(1,1);
double tx = clnf_model.params_global[4];
double ty = clnf_model.params_global[5];
cv::Vec2d T(tx, ty);
T = scale_rot_matrix * T;
// Make sure centering is correct
warp_matrix(0,2) = -T(0) + out_width/2;
warp_matrix(1,2) = -T(1) + out_height/2;
cv::warpAffine(frame, aligned_face, warp_matrix, cv::Size(out_width, out_height), cv::INTER_LINEAR);
}
// Aligning a face to a common reference frame
void AlignFaceMask(cv::Mat& aligned_face, const cv::Mat& frame, const LandmarkDetector::CLNF& clnf_model, const cv::Mat_<int>& triangulation, bool rigid, double sim_scale, int out_width, int out_height)
{
// Will warp to scaled mean shape
cv::Mat_<double> similarity_normalised_shape = clnf_model.pdm.mean_shape * sim_scale;
// Discard the z component
similarity_normalised_shape = similarity_normalised_shape(cv::Rect(0, 0, 1, 2*similarity_normalised_shape.rows/3)).clone();
cv::Mat_<double> source_landmarks = clnf_model.detected_landmarks.reshape(1, 2).t();
cv::Mat_<double> destination_landmarks = similarity_normalised_shape.reshape(1, 2).t();
// Aligning only the more rigid points
if(rigid)
{
extract_rigid_points(source_landmarks, destination_landmarks);
}
cv::Matx22d scale_rot_matrix = LandmarkDetector::AlignShapesWithScale(source_landmarks, destination_landmarks);
cv::Matx23d warp_matrix;
warp_matrix(0,0) = scale_rot_matrix(0,0);
warp_matrix(0,1) = scale_rot_matrix(0,1);
warp_matrix(1,0) = scale_rot_matrix(1,0);
warp_matrix(1,1) = scale_rot_matrix(1,1);
double tx = clnf_model.params_global[4];
double ty = clnf_model.params_global[5];
cv::Vec2d T(tx, ty);
T = scale_rot_matrix * T;
// Make sure centering is correct
warp_matrix(0,2) = -T(0) + out_width/2;
warp_matrix(1,2) = -T(1) + out_height/2;
cv::warpAffine(frame, aligned_face, warp_matrix, cv::Size(out_width, out_height), cv::INTER_LINEAR);
// Move the destination landmarks there as well
cv::Matx22d warp_matrix_2d(warp_matrix(0,0), warp_matrix(0,1), warp_matrix(1,0), warp_matrix(1,1));
destination_landmarks = cv::Mat(clnf_model.detected_landmarks.reshape(1, 2).t()) * cv::Mat(warp_matrix_2d).t();
destination_landmarks.col(0) = destination_landmarks.col(0) + warp_matrix(0,2);
destination_landmarks.col(1) = destination_landmarks.col(1) + warp_matrix(1,2);
// Move the eyebrows up to include more of upper face
destination_landmarks.at<double>(0,1) -= 30;
destination_landmarks.at<double>(16,1) -= 30;
destination_landmarks.at<double>(17,1) -= 30;
destination_landmarks.at<double>(18,1) -= 30;
destination_landmarks.at<double>(19,1) -= 30;
destination_landmarks.at<double>(20,1) -= 30;
destination_landmarks.at<double>(21,1) -= 30;
destination_landmarks.at<double>(22,1) -= 30;
destination_landmarks.at<double>(23,1) -= 30;
destination_landmarks.at<double>(24,1) -= 30;
destination_landmarks.at<double>(25,1) -= 30;
destination_landmarks.at<double>(26,1) -= 30;
destination_landmarks = cv::Mat(destination_landmarks.t()).reshape(1, 1).t();
LandmarkDetector::PAW paw(destination_landmarks, triangulation, 0, 0, aligned_face.cols-1, aligned_face.rows-1);
// Mask each of the channels (a bit of a roundabout way, but OpenCV 3.1 in debug mode doesn't seem to be able to handle a more direct way using split and merge)
vector<cv::Mat> aligned_face_channels(aligned_face.channels());
for (int c = 0; c < aligned_face.channels(); ++c)
{
cv::extractChannel(aligned_face, aligned_face_channels[c], c);
}
for(size_t i = 0; i < aligned_face_channels.size(); ++i)
{
cv::multiply(aligned_face_channels[i], paw.pixel_mask, aligned_face_channels[i], 1.0, CV_8U);
}
if(aligned_face.channels() == 3)
{
cv::Mat planes[] = { aligned_face_channels[0], aligned_face_channels[1], aligned_face_channels[2] };
cv::merge(planes, 3, aligned_face);
}
else
{
aligned_face = aligned_face_channels[0];
}
}
void Visualise_FHOG(const cv::Mat_<double>& descriptor, int num_rows, int num_cols, cv::Mat& visualisation)
{
// First convert to dlib format
dlib::array2d<dlib::matrix<float,31,1> > hog(num_rows, num_cols);
cv::MatConstIterator_<double> descriptor_it = descriptor.begin();
for(int y = 0; y < num_cols; ++y)
{
for(int x = 0; x < num_rows; ++x)
{
for(unsigned int o = 0; o < 31; ++o)
{
hog[y][x](o) = *descriptor_it++;
}
}
}
// Draw the FHOG to OpenCV format
auto fhog_vis = dlib::draw_fhog(hog);
visualisation = dlib::toMat(fhog_vis).clone();
}
// Create a row vector Felzenszwalb HOG descriptor from a given image
void Extract_FHOG_descriptor(cv::Mat_<double>& descriptor, const cv::Mat& image, int& num_rows, int& num_cols, int cell_size)
{
dlib::array2d<dlib::matrix<float,31,1> > hog;
if(image.channels() == 1)
{
dlib::cv_image<uchar> dlib_warped_img(image);
dlib::extract_fhog_features(dlib_warped_img, hog, cell_size);
}
else
{
dlib::cv_image<dlib::bgr_pixel> dlib_warped_img(image);
dlib::extract_fhog_features(dlib_warped_img, hog, cell_size);
}
// Convert to a usable format
num_cols = hog.nc();
num_rows = hog.nr();
descriptor = cv::Mat_<double>(1, num_cols * num_rows * 31);
cv::MatIterator_<double> descriptor_it = descriptor.begin();
for(int y = 0; y < num_cols; ++y)
{
for(int x = 0; x < num_rows; ++x)
{
for(unsigned int o = 0; o < 31; ++o)
{
*descriptor_it++ = (double)hog[y][x](o);
}
}
}
}
// Extract summary statistics (mean, stdev, min, max) from each dimension of a descriptor, each row is a descriptor
void ExtractSummaryStatistics(const cv::Mat_<double>& descriptors, cv::Mat_<double>& sum_stats, bool use_mean, bool use_stdev, bool use_max_min)
{
// Using four summary statistics at the moment
// Means, stds, mins, maxs
int num_stats = 0;
if(use_mean)
num_stats++;
if(use_stdev)
num_stats++;
if(use_max_min)
num_stats++;
sum_stats = cv::Mat_<double>(1, descriptors.cols * num_stats, 0.0);
for(int i = 0; i < descriptors.cols; ++i)
{
cv::Scalar mean, stdev;
cv::meanStdDev(descriptors.col(i), mean, stdev);
int add = 0;
if(use_mean)
{
sum_stats.at<double>(0, i*num_stats + add) = mean[0];
add++;
}
if(use_stdev)
{
sum_stats.at<double>(0, i*num_stats + add) = stdev[0];
add++;
}
if(use_max_min)
{
double min, max;
cv::minMaxIdx(descriptors.col(i), &min, &max);
sum_stats.at<double>(0, i*num_stats + add) = max - min;
add++;
}
}
}
void AddDescriptor(cv::Mat_<double>& descriptors, cv::Mat_<double> new_descriptor, int curr_frame, int num_frames_to_keep)
{
if(descriptors.empty())
{
descriptors = cv::Mat_<double>(num_frames_to_keep, new_descriptor.cols, 0.0);
}
int row_to_change = curr_frame % num_frames_to_keep;
new_descriptor.copyTo(descriptors.row(row_to_change));
}
}