2128589309
- New AU recognition models trained on extra datasets - Bosphorus, UNBC, FERA2011 - Cleaner and clearer separation of static and dynamic AU models - AU training code cleaned up and instructions added - bug fixes with median feature computation - AU prediction correction (smoothing and shifting) with post processing
190 lines
4.7 KiB
Matlab
190 lines
4.7 KiB
Matlab
% Perform static model prediction using images
|
|
|
|
clear
|
|
|
|
addpath('./helpers');
|
|
|
|
find_Bosphorus;
|
|
out_loc = './out_bosph/';
|
|
|
|
if(~exist(out_loc, 'dir'))
|
|
mkdir(out_loc);
|
|
end
|
|
|
|
%%
|
|
executable = '"../../x64/Release/FaceLandmarkImg.exe"';
|
|
|
|
bosph_dirs = dir([Bosphorus_dir, '/BosphorusDB/BosphorusDB/bs*']);
|
|
|
|
%%
|
|
parfor f1=1:numel(bosph_dirs)
|
|
|
|
command = executable;
|
|
|
|
input_dir = [Bosphorus_dir, '/BosphorusDB/BosphorusDB/', bosph_dirs(f1).name];
|
|
command = cat(2, command, [' -fdir "' input_dir '" -ofdir "' out_loc '"']);
|
|
command = cat(2, command, ' -multi_view 1 -wild -q');
|
|
|
|
dos(command);
|
|
|
|
end
|
|
|
|
%%
|
|
|
|
aus_Bosph = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 45];
|
|
|
|
[ labels_gt, valid_ids, filenames] = extract_Bosphorus_labels(Bosphorus_dir, all_recs, aus_Bosph);
|
|
|
|
%% Read the predicted values
|
|
|
|
% First read the first file to get the ids and line numbers
|
|
% au occurences
|
|
fid = fopen([out_loc, filenames{1}, '_det_0.pts']);
|
|
data = fgetl(fid);
|
|
|
|
ind = 0;
|
|
beg_ind = -1;
|
|
end_ind = -1;
|
|
aus_det = [];
|
|
aus_det_id = [];
|
|
|
|
while ischar(data)
|
|
if(~isempty(findstr(data, 'au occurences:')))
|
|
num_occurences = str2num(data(numel('au occurences:')+1:end));
|
|
% Skip ahead two lines
|
|
data = fgetl(fid);
|
|
data = fgetl(fid);
|
|
ind = ind + 2;
|
|
beg_ind = ind;
|
|
end
|
|
|
|
if(beg_ind ~= -1 && end_ind == -1)
|
|
if(~isempty(findstr(data, '}')))
|
|
end_ind = ind;
|
|
else
|
|
d = strsplit(data, ' ');
|
|
aus_det = cat(1, aus_det, str2num(d{1}(3:end)));
|
|
aus_det_id = cat(1, aus_det_id, ind - beg_ind + 1);
|
|
end
|
|
end
|
|
|
|
data = fgetl(fid);
|
|
ind = ind + 1;
|
|
end
|
|
fclose(fid);
|
|
|
|
%%
|
|
labels_pred = zeros(size(labels_gt));
|
|
for i=1:numel(filenames)
|
|
|
|
% Will need to read the relevant AUs only
|
|
if(exist([out_loc, filenames{i}, '_det_0.pts'], 'file'))
|
|
fid = fopen([out_loc, filenames{i}, '_det_0.pts']);
|
|
for k=1:beg_ind
|
|
data = fgetl(fid);
|
|
end
|
|
|
|
for k=1:num_occurences
|
|
data = fgetl(fid);
|
|
if(sum(aus_Bosph == aus_det(k))>0)
|
|
d = strsplit(data, ' ');
|
|
labels_pred(i, aus_Bosph == aus_det(k)) = str2num(d{2});
|
|
end
|
|
end
|
|
|
|
fclose(fid);
|
|
end
|
|
end
|
|
|
|
%%
|
|
f = fopen('results/Bosphorus_res_class.txt', 'w');
|
|
labels_gt_bin = labels_gt;
|
|
labels_gt_bin(labels_gt_bin > 1) = 1;
|
|
for au = 1:numel(aus_Bosph)
|
|
|
|
tp = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 1);
|
|
fp = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 1);
|
|
fn = sum(labels_gt_bin(:,au) == 1 & labels_pred(:, au) == 0);
|
|
tn = sum(labels_gt_bin(:,au) == 0 & labels_pred(:, au) == 0);
|
|
|
|
precision = tp./(tp+fp);
|
|
recall = tp./(tp+fn);
|
|
|
|
f1 = 2 * precision .* recall ./ (precision + recall);
|
|
|
|
fprintf(f, 'AU%d class, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_Bosph(au), precision, recall, f1);
|
|
|
|
end
|
|
fclose(f);
|
|
|
|
%% Read the predicted values for intensities
|
|
|
|
% First read the first file to get the ids and line numbers
|
|
% au occurences
|
|
fid = fopen([out_loc, filenames{1}, '_det_0.pts']);
|
|
data = fgetl(fid);
|
|
|
|
ind = 0;
|
|
beg_ind = -1;
|
|
end_ind = -1;
|
|
aus_det = [];
|
|
aus_det_id = [];
|
|
|
|
while ischar(data)
|
|
if(~isempty(findstr(data, 'au intensities:')))
|
|
num_occurences = str2num(data(numel('au intensities:')+1:end));
|
|
% Skip ahead two lines
|
|
data = fgetl(fid);
|
|
data = fgetl(fid);
|
|
ind = ind + 2;
|
|
beg_ind = ind;
|
|
end
|
|
|
|
if(beg_ind ~= -1 && end_ind == -1)
|
|
if(~isempty(findstr(data, '}')))
|
|
end_ind = ind;
|
|
else
|
|
d = strsplit(data, ' ');
|
|
aus_det = cat(1, aus_det, str2num(d{1}(3:end)));
|
|
aus_det_id = cat(1, aus_det_id, ind - beg_ind + 1);
|
|
end
|
|
end
|
|
|
|
data = fgetl(fid);
|
|
ind = ind + 1;
|
|
end
|
|
fclose(fid);
|
|
|
|
%%
|
|
labels_pred = zeros(size(labels_gt));
|
|
for i=1:numel(filenames)
|
|
|
|
% Will need to read the relevant AUs only
|
|
if(exist([out_loc, filenames{i}, '_det_0.pts'], 'file'))
|
|
fid = fopen([out_loc, filenames{i}, '_det_0.pts']);
|
|
for k=1:beg_ind
|
|
data = fgetl(fid);
|
|
end
|
|
|
|
for k=1:num_occurences
|
|
data = fgetl(fid);
|
|
if(sum(aus_Bosph == aus_det(k))>0)
|
|
d = strsplit(data, ' ');
|
|
labels_pred(i, aus_Bosph == aus_det(k)) = str2num(d{2});
|
|
end
|
|
end
|
|
|
|
fclose(fid);
|
|
end
|
|
end
|
|
|
|
%%
|
|
f = fopen('results/Bosphorus_res_int.txt', 'w');
|
|
for au = 1:numel(aus_Bosph)
|
|
|
|
[ ~, ~, corrs, ccc, rms, ~ ] = evaluate_regression_results( labels_pred(:, au), labels_gt(:, au));
|
|
|
|
fprintf(f, 'AU%d intensity, Corr - %.3f, RMS - %.3f, CCC - %.3f\n', aus_Bosph(au), corrs, rms, ccc);
|
|
|
|
end
|
|
fclose(f);
|