2128589309
- New AU recognition models trained on extra datasets - Bosphorus, UNBC, FERA2011 - Cleaner and clearer separation of static and dynamic AU models - AU training code cleaned up and instructions added - bug fixes with median feature computation - AU prediction correction (smoothing and shifting) with post processing
202 lines
No EOL
5.7 KiB
Matlab
202 lines
No EOL
5.7 KiB
Matlab
clear
|
|
|
|
bp4d_loc = 'D:/Datasets/FERA_2015/BP4D/BP4D-training/';
|
|
|
|
out_loc = './out_bp4d/';
|
|
|
|
if(~exist(out_loc, 'dir'))
|
|
mkdir(out_loc);
|
|
end
|
|
|
|
%%
|
|
executable = '"../../x64/Release/FeatureExtraction.exe"';
|
|
|
|
bp4d_dirs = {'F002', 'F004', 'F006', 'F008', 'F010', 'F012', 'F014', 'F016', 'F018', 'F020', 'F022', 'M002', 'M004', 'M006', 'M008', 'M010', 'M012', 'M014', 'M016', 'M018'};
|
|
|
|
%% Before running BP4D convert it to a smaller format and move each person to the same directory
|
|
% This is done so that dynamic models would work on it as otherwise the
|
|
% clips are a bit too short
|
|
|
|
new_bp4d_dirs = {};
|
|
|
|
% This might take some time
|
|
for i = 1:numel(bp4d_dirs)
|
|
dirs = dir([bp4d_loc, '/', bp4d_dirs{i}, '/T*']);
|
|
|
|
tmp_dir = [bp4d_loc, '/../tmp/', bp4d_dirs{i}, '/'];
|
|
new_bp4d_dirs = cat(1, new_bp4d_dirs, tmp_dir);
|
|
|
|
if(~exist(tmp_dir, 'file'))
|
|
mkdir(tmp_dir);
|
|
|
|
% Move all images and resize them
|
|
for d=1:numel(dirs)
|
|
|
|
in_files = dir([bp4d_loc, '/', bp4d_dirs{i}, '/', dirs(d).name, '/*.jpg']);
|
|
|
|
for img_ind=1:numel(in_files)
|
|
|
|
img_file = [bp4d_loc, '/', bp4d_dirs{i}, '/', dirs(d).name, '/', in_files(img_ind).name];
|
|
img = imread(img_file);
|
|
img = imresize(img, 0.5);
|
|
img_out = [tmp_dir, dirs(d).name, '_', in_files(img_ind).name];
|
|
imwrite(img, img_out);
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
%%
|
|
|
|
parfor f1=1:numel(new_bp4d_dirs)
|
|
|
|
command = [executable ' -asvid -no2Dfp -no3Dfp -noMparams -noPose -noGaze '];
|
|
|
|
[f,~,~] = fileparts(new_bp4d_dirs{f1});
|
|
[~,f,~] = fileparts(f);
|
|
output_file = [out_loc f '.au.txt'];
|
|
|
|
command = cat(2, command, [' -fdir "' new_bp4d_dirs{f1} '" -of "' output_file '"']);
|
|
|
|
dos(command);
|
|
|
|
end
|
|
|
|
%%
|
|
addpath('./helpers/');
|
|
|
|
find_BP4D;
|
|
|
|
aus_BP4D = [1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23];
|
|
|
|
[ labels_gt, valid_ids, vid_ids, filenames] = extract_BP4D_labels(BP4D_dir, bp4d_dirs, aus_BP4D);
|
|
labels_gt = cat(1, labels_gt{:});
|
|
|
|
%% Identifying which column IDs correspond to which AU
|
|
tab = readtable([out_loc, bp4d_dirs{1}, '.au.txt']);
|
|
column_names = tab.Properties.VariableNames;
|
|
|
|
% As there are both classes and intensities list and evaluate both of them
|
|
aus_pred_int = [];
|
|
aus_pred_class = [];
|
|
|
|
inds_int_in_file = [];
|
|
inds_class_in_file = [];
|
|
|
|
for c=1:numel(column_names)
|
|
if(strfind(column_names{c}, '_r') > 0)
|
|
aus_pred_int = cat(1, aus_pred_int, int32(str2num(column_names{c}(3:end-2))));
|
|
inds_int_in_file = cat(1, inds_int_in_file, c);
|
|
end
|
|
if(strfind(column_names{c}, '_c') > 0)
|
|
aus_pred_class = cat(1, aus_pred_class, int32(str2num(column_names{c}(3:end-2))));
|
|
inds_class_in_file = cat(1, inds_class_in_file, c);
|
|
end
|
|
end
|
|
|
|
%%
|
|
inds_au_class = zeros(size(aus_BP4D));
|
|
|
|
for ind=1:numel(aus_BP4D)
|
|
if(~isempty(find(aus_pred_class==aus_BP4D(ind), 1)))
|
|
inds_au_class(ind) = find(aus_pred_class==aus_BP4D(ind));
|
|
end
|
|
end
|
|
|
|
preds_all_class = [];
|
|
|
|
for i=1:numel(new_bp4d_dirs)
|
|
|
|
[f,~,~] = fileparts(new_bp4d_dirs{i});
|
|
[~,f,~] = fileparts(f);
|
|
|
|
fname = [out_loc, f, '.au.txt'];
|
|
preds = dlmread(fname, ',', 1, 0);
|
|
|
|
|
|
% Read all of the classification AUs
|
|
preds_class = preds(:, inds_class_in_file);
|
|
|
|
preds_all_class = cat(1, preds_all_class, preds_class);
|
|
end
|
|
|
|
%%
|
|
f = fopen('results/BP4D_valid_res_class.txt', 'w');
|
|
for au = 1:numel(aus_BP4D)
|
|
|
|
if(inds_au_class(au) ~= 0)
|
|
tp = sum(labels_gt(:,au) == 1 & preds_all_class(:, inds_au_class(au)) == 1);
|
|
fp = sum(labels_gt(:,au) == 0 & preds_all_class(:, inds_au_class(au)) == 1);
|
|
fn = sum(labels_gt(:,au) == 1 & preds_all_class(:, inds_au_class(au)) == 0);
|
|
tn = sum(labels_gt(:,au) == 0 & preds_all_class(:, inds_au_class(au)) == 0);
|
|
|
|
precision = tp./(tp+fp);
|
|
recall = tp./(tp+fn);
|
|
|
|
f1 = 2 * precision .* recall ./ (precision + recall);
|
|
|
|
fprintf(f, 'AU%d class, Precision - %.3f, Recall - %.3f, F1 - %.3f\n', aus_BP4D(au), precision, recall, f1);
|
|
end
|
|
|
|
end
|
|
fclose(f);
|
|
|
|
%%
|
|
addpath('./helpers/');
|
|
|
|
find_BP4D;
|
|
|
|
aus_BP4D = [6, 10, 12, 14, 17];
|
|
[ labels_gt, valid_ids, vid_ids, filenames] = extract_BP4D_labels_intensity(BP4D_dir_int, devel_recs, aus_BP4D);
|
|
valid_ids = cat(1, valid_ids{:});
|
|
labels_gt = cat(1, labels_gt{:});
|
|
|
|
%% Identifying which column IDs correspond to which AU
|
|
tab = readtable([out_loc, bp4d_dirs{1}, '.au.txt']);
|
|
column_names = tab.Properties.VariableNames;
|
|
|
|
% As there are both classes and intensities list and evaluate both of them
|
|
aus_pred_int = [];
|
|
inds_int_in_file = [];
|
|
|
|
for c=1:numel(column_names)
|
|
if(strfind(column_names{c}, '_r') > 0)
|
|
aus_pred_int = cat(1, aus_pred_int, int32(str2num(column_names{c}(3:end-2))));
|
|
inds_int_in_file = cat(1, inds_int_in_file, c);
|
|
end
|
|
end
|
|
|
|
%%
|
|
inds_au_int = zeros(size(aus_BP4D));
|
|
|
|
for ind=1:numel(aus_BP4D)
|
|
if(~isempty(find(aus_pred_int==aus_BP4D(ind), 1)))
|
|
inds_au_int(ind) = find(aus_pred_int==aus_BP4D(ind));
|
|
end
|
|
end
|
|
|
|
preds_all_int = [];
|
|
|
|
for i=1:numel(new_bp4d_dirs)
|
|
|
|
[f,~,~] = fileparts(new_bp4d_dirs{i});
|
|
[~,f,~] = fileparts(f);
|
|
|
|
fname = [out_loc, f, '.au.txt'];
|
|
preds = dlmread(fname, ',', 1, 0);
|
|
|
|
% Read all of the intensity AUs
|
|
preds_int = preds(:, inds_int_in_file);
|
|
preds_all_int = cat(1, preds_all_int, preds_int);
|
|
end
|
|
|
|
%%
|
|
f = fopen('results/BP4D_valid_res_int.txt', 'w');
|
|
for au = 1:numel(aus_BP4D)
|
|
[ accuracies, F1s, corrs, ccc, rms, classes ] = evaluate_au_prediction_results( preds_all_int(valid_ids, inds_au_int(au)), labels_gt(valid_ids,au));
|
|
fprintf(f, 'AU%d results - rms %.3f, corr %.3f, ccc - %.3f\n', aus_BP4D(au), rms, corrs, ccc);
|
|
end
|
|
fclose(f); |