sustaining_gazes/exe/FaceLandmarkVidMulti/FaceLandmarkVidMulti.cpp

435 lines
16 KiB
C++
Raw Blame History

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
// FaceTrackingVidMulti.cpp : Defines the entry point for the multiple face tracking console application.
#include "LandmarkCoreIncludes.h"
#include "VisualizationUtils.h"
#include "Visualizer.h"
#include "SequenceCapture.h"
#include <RecorderOpenFace.h>
#include <RecorderOpenFaceParameters.h>
#include <GazeEstimation.h>
#include <FaceAnalyser.h>
#include <fstream>
#include <sstream>
// OpenCV includes
#include <opencv2/videoio/videoio.hpp> // Video write
#include <opencv2/videoio/videoio_c.h> // Video write
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#define INFO_STREAM( stream ) \
std::cout << stream << std::endl
#define WARN_STREAM( stream ) \
std::cout << "Warning: " << stream << std::endl
#define ERROR_STREAM( stream ) \
std::cout << "Error: " << stream << std::endl
static void printErrorAndAbort( const std::string & error )
{
std::cout << error << std::endl;
abort();
}
#define FATAL_STREAM( stream ) \
printErrorAndAbort( std::string( "Fatal error: " ) + stream )
using namespace std;
vector<string> get_arguments(int argc, char **argv)
{
vector<string> arguments;
for(int i = 0; i < argc; ++i)
{
arguments.push_back(string(argv[i]));
}
return arguments;
}
void NonOverlapingDetections(const vector<LandmarkDetector::CLNF>& clnf_models, vector<cv::Rect_<double> >& face_detections)
{
// Go over the model and eliminate detections that are not informative (there already is a tracker there)
for(size_t model = 0; model < clnf_models.size(); ++model)
{
// See if the detections intersect
cv::Rect_<double> model_rect = clnf_models[model].GetBoundingBox();
for(int detection = face_detections.size()-1; detection >=0; --detection)
{
double intersection_area = (model_rect & face_detections[detection]).area();
double union_area = model_rect.area() + face_detections[detection].area() - 2 * intersection_area;
// If the model is already tracking what we're detecting ignore the detection, this is determined by amount of overlap
if( intersection_area/union_area > 0.5)
{
face_detections.erase(face_detections.begin() + detection);
}
}
}
}
int main (int argc, char **argv)
{
vector<string> arguments = get_arguments(argc, argv);
// no arguments: output usage
if (arguments.size() == 1)
{
cout << "For command line arguments see:" << endl;
cout << " https://github.com/TadasBaltrusaitis/OpenFace/wiki/Command-line-arguments";
return 0;
}
LandmarkDetector::FaceModelParameters det_params(arguments);
// This is so that the model would not try re-initialising itself
det_params.reinit_video_every = -1;
det_params.curr_face_detector = LandmarkDetector::FaceModelParameters::HOG_SVM_DETECTOR;
vector<LandmarkDetector::FaceModelParameters> det_parameters;
det_parameters.push_back(det_params);
// The modules that are being used for tracking
vector<LandmarkDetector::CLNF> face_models;
vector<bool> active_models;
int num_faces_max = 15;
LandmarkDetector::CLNF face_model(det_parameters[0].model_location);
face_model.face_detector_HAAR.load(det_parameters[0].face_detector_location);
face_model.face_detector_location = det_parameters[0].face_detector_location;
face_models.reserve(num_faces_max);
face_models.push_back(face_model);
active_models.push_back(false);
for (int i = 1; i < num_faces_max; ++i)
{
face_models.push_back(face_model);
active_models.push_back(false);
det_parameters.push_back(det_params);
}
// Load facial feature extractor and AU analyser (make sure it is static, as we don't reidentify faces)
FaceAnalysis::FaceAnalyserParameters face_analysis_params(arguments);
face_analysis_params.OptimizeForImages();
FaceAnalysis::FaceAnalyser face_analyser(face_analysis_params);
if (!face_model.eye_model)
{
cout << "WARNING: no eye model found" << endl;
}
if (face_analyser.GetAUClassNames().size() == 0 && face_analyser.GetAUClassNames().size() == 0)
{
cout << "WARNING: no Action Unit models found" << endl;
}
// Open a sequence
Utilities::SequenceCapture sequence_reader;
// A utility for visualizing the results (show just the tracks)
Utilities::Visualizer visualizer(arguments);
// Tracking FPS for visualization
Utilities::FpsTracker fps_tracker;
fps_tracker.AddFrame();
int sequence_number = 0;
while(true) // this is not a for loop as we might also be reading from a webcam
{
// The sequence reader chooses what to open based on command line arguments provided
if (!sequence_reader.Open(arguments))
break;
INFO_STREAM("Device or file opened");
cv::Mat captured_image = sequence_reader.GetNextFrame();
int frame_count = 0;
Utilities::RecorderOpenFaceParameters recording_params(arguments, true, sequence_reader.IsWebcam(),
sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, sequence_reader.fps);
// for some reason not accepted as cli parameter, as we don't need it: disable it anyway
recording_params.setOutputAUs(false);
recording_params.setOutputHOG(false);
recording_params.setOutputAlignedFaces(false);
recording_params.setOutputTracked(false);
if (!face_model.eye_model)
{
recording_params.setOutputGaze(false);
}
Utilities::RecorderOpenFace open_face_rec(sequence_reader.name, recording_params, arguments);
if (sequence_reader.IsWebcam())
{
INFO_STREAM("WARNING: using a webcam in feature extraction, forcing visualization of tracking to allow quitting the application (press q)");
visualizer.vis_track = true;
}
if (recording_params.outputAUs())
{
INFO_STREAM("WARNING: using a AU detection in multiple face mode, it might not be as accurate and is experimental");
}
INFO_STREAM( "Starting tracking");
while(!captured_image.empty())
{
// Reading the images
cv::Mat_<uchar> grayscale_image = sequence_reader.GetGrayFrame();
vector<cv::Rect_<double> > face_detections;
bool all_models_active = true;
for(unsigned int model = 0; model < face_models.size(); ++model)
{
if(!active_models[model])
{
all_models_active = false;
}
}
// Get the detections (every 8th frame and when there are free models available for tracking)
if(frame_count % 8 == 0 && !all_models_active)
{
if(det_parameters[0].curr_face_detector == LandmarkDetector::FaceModelParameters::HOG_SVM_DETECTOR)
{
vector<double> confidences;
LandmarkDetector::DetectFacesHOG(face_detections, grayscale_image, face_models[0].face_detector_HOG, confidences);
}
else
{
LandmarkDetector::DetectFaces(face_detections, grayscale_image, face_models[0].face_detector_HAAR);
}
}
// Keep only non overlapping detections (also convert to a concurrent vector
NonOverlapingDetections(face_models, face_detections);
vector<tbb::atomic<bool> > face_detections_used(face_detections.size());
// Go through every model and update the tracking
tbb::parallel_for(0, (int)face_models.size(), [&](int model){
//for(unsigned int model = 0; model < clnf_models.size(); ++model)
//{
bool detection_success = false;
// If the current model has failed more than 4 times in a row, remove it
if(face_models[model].failures_in_a_row > 4)
{
active_models[model] = false;
face_models[model].Reset();
}
// If the model is inactive reactivate it with new detections
if(!active_models[model])
{
for(size_t detection_ind = 0; detection_ind < face_detections.size(); ++detection_ind)
{
// if it was not taken by another tracker take it (if it is false swap it to true and enter detection, this makes it parallel safe)
if(face_detections_used[detection_ind].compare_and_swap(true, false) == false)
{
// Reinitialise the model
face_models[model].Reset();
// This ensures that a wider window is used for the initial landmark localisation
face_models[model].detection_success = false;
detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, face_detections[detection_ind], face_models[model], det_parameters[model]);
// This activates the model
active_models[model] = true;
// break out of the loop as the tracker has been reinitialised
break;
}
}
}
else
{
// The actual facial landmark detection / tracking
detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, face_models[model], det_parameters[model]);
}
});
// Keeping track of FPS
fps_tracker.AddFrame();
visualizer.SetImage(captured_image, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy);
std::stringstream jsonOutput;
jsonOutput << "[";
int jsonFaceId = 0;
// Go through every model and detect eye gaze, record results and visualise the results
for(size_t model = 0; model < face_models.size(); ++model)
{
// Visualising the results
if(active_models[model])
{
// Estimate head pose and eye gaze
cv::Vec6d pose_estimate = LandmarkDetector::GetPose(face_models[model], sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy);
cv::Point3f gaze_direction0(0, 0, 0); cv::Point3f gaze_direction1(0, 0, 0); cv::Vec2d gaze_angle(0, 0);
// Detect eye gazes
if (face_models[model].detection_success && face_model.eye_model)
{
GazeAnalysis::EstimateGaze(face_models[model], gaze_direction0, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, true);
GazeAnalysis::EstimateGaze(face_models[model], gaze_direction1, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, false);
gaze_angle = GazeAnalysis::GetGazeAngle(gaze_direction0, gaze_direction1);
}
// Face analysis step
cv::Mat sim_warped_img;
cv::Mat_<double> hog_descriptor; int num_hog_rows = 0, num_hog_cols = 0;
// Perform AU detection and HOG feature extraction, as this can be expensive only compute it if needed by output or visualization
if (recording_params.outputAlignedFaces() || recording_params.outputHOG() || recording_params.outputAUs() || visualizer.vis_align || visualizer.vis_hog)
{
face_analyser.PredictStaticAUsAndComputeFeatures(captured_image, face_models[model].detected_landmarks);
face_analyser.GetLatestAlignedFace(sim_warped_img);
face_analyser.GetLatestHOG(hog_descriptor, num_hog_rows, num_hog_cols);
}
cv::Vec6d head_pose = LandmarkDetector::GetPose(face_models[model], sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy);
// Visualize the features
visualizer.SetObservationFaceAlign(sim_warped_img);
visualizer.SetObservationHOG(hog_descriptor, num_hog_rows, num_hog_cols);
visualizer.SetObservationLandmarks(face_models[model].detected_landmarks, face_models[model].detection_certainty);
visualizer.SetObservationPose(head_pose, face_models[model].detection_certainty);
visualizer.SetObservationGaze(gaze_direction0, gaze_direction1, LandmarkDetector::CalculateAllEyeLandmarks(face_models[model]), LandmarkDetector::Calculate3DEyeLandmarks(face_models[model], sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy), face_models[model].detection_certainty);
visualizer.SetObservationActionUnits(face_analyser.GetCurrentAUsReg(), face_analyser.GetCurrentAUsClass());
if(face_models[model].detection_success && face_model.eye_model) {
if(jsonFaceId > 0){
jsonOutput << ",";
}
jsonFaceId++;
jsonOutput << "{\"fid\":";
jsonOutput << model << ", \"confidence\":" << face_models[model].detection_certainty;
// gaze_angle_x, gaze_angle_y Eye gaze direction in radians in world coordinates averaged for both eyes and converted into more easy to use format than gaze vectors. If a person is looking left-right this will results in the change of gaze_angle_x and, if a person is looking up-down this will result in change of gaze_angle_y, if a person is looking straight ahead both of the angles will be close to 0 (within measurement error)
jsonOutput << ", \"gaze_angle\": [" << gaze_angle[0] << ", " << gaze_angle[1] << "]";
jsonOutput << ", head_pos: [" << head_pose[0] << ", " << head_pose[1] << ", " << head_pose[2] << "]";
jsonOutput << ", head_rot: [" << head_pose[3] << ", " << head_pose[4] << ", " << head_pose[5] << "]";
jsonOutput << "}";
}
// Output features
open_face_rec.SetObservationHOG(face_models[model].detection_success, hog_descriptor, num_hog_rows, num_hog_cols, 31); // The number of channels in HOG is fixed at the moment, as using FHOG
open_face_rec.SetObservationVisualization(visualizer.GetVisImage());
open_face_rec.SetObservationActionUnits(face_analyser.GetCurrentAUsReg(), face_analyser.GetCurrentAUsClass());
open_face_rec.SetObservationLandmarks(face_models[model].detected_landmarks, face_models[model].GetShape(sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy),
face_models[model].params_global, face_models[model].params_local, face_models[model].detection_certainty, face_models[model].detection_success);
open_face_rec.SetObservationPose(pose_estimate);
open_face_rec.SetObservationGaze(gaze_direction0, gaze_direction1, gaze_angle, LandmarkDetector::CalculateAllEyeLandmarks(face_models[model]), LandmarkDetector::Calculate3DEyeLandmarks(face_models[model], sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy));
open_face_rec.SetObservationFaceAlign(sim_warped_img);
open_face_rec.SetObservationFaceID(model);
open_face_rec.SetObservationTimestamp(sequence_reader.time_stamp);
open_face_rec.SetObservationFrameNumber(sequence_reader.GetFrameNumber());
open_face_rec.WriteObservation();
}
}
visualizer.SetFps(fps_tracker.GetFPS());
jsonOutput << "]";
std::cout << jsonOutput.str() << std::endl;
// show visualization and detect key presses
char character_press = visualizer.ShowObservation();
// restart the trackers
if(character_press == 'r')
{
for(size_t i=0; i < face_models.size(); ++i)
{
face_models[i].Reset();
active_models[i] = false;
}
}
// quit the application
else if(character_press=='q')
{
return 0;
}
// Update the frame count
frame_count++;
// Grabbing the next frame in the sequence
captured_image = sequence_reader.GetNextFrame();
}
frame_count = 0;
// Reset the model, for the next video
for(size_t model=0; model < face_models.size(); ++model)
{
face_models[model].Reset();
active_models[model] = false;
}
sequence_number++;
}
return 0;
}