/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY // // BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. // IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. // // License can be found in OpenFace-license.txt // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltru�aitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltru�aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltru�aitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltru�aitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// // FaceTrackingVidMulti.cpp : Defines the entry point for the multiple face tracking console application. #include "LandmarkCoreIncludes.h" #include "VisualizationUtils.h" #include "Visualizer.h" #include "SequenceCapture.h" #include #include #include #include #include #include // OpenCV includes #include // Video write #include // Video write #include #include #define INFO_STREAM( stream ) \ std::cout << stream << std::endl #define WARN_STREAM( stream ) \ std::cout << "Warning: " << stream << std::endl #define ERROR_STREAM( stream ) \ std::cout << "Error: " << stream << std::endl static void printErrorAndAbort( const std::string & error ) { std::cout << error << std::endl; abort(); } #define FATAL_STREAM( stream ) \ printErrorAndAbort( std::string( "Fatal error: " ) + stream ) using namespace std; vector get_arguments(int argc, char **argv) { vector arguments; for(int i = 0; i < argc; ++i) { arguments.push_back(string(argv[i])); } return arguments; } void NonOverlapingDetections(const vector& clnf_models, vector >& face_detections) { // Go over the model and eliminate detections that are not informative (there already is a tracker there) for(size_t model = 0; model < clnf_models.size(); ++model) { // See if the detections intersect cv::Rect_ model_rect = clnf_models[model].GetBoundingBox(); for(int detection = face_detections.size()-1; detection >=0; --detection) { double intersection_area = (model_rect & face_detections[detection]).area(); double union_area = model_rect.area() + face_detections[detection].area() - 2 * intersection_area; // If the model is already tracking what we're detecting ignore the detection, this is determined by amount of overlap if( intersection_area/union_area > 0.5) { face_detections.erase(face_detections.begin() + detection); } } } } int main (int argc, char **argv) { vector arguments = get_arguments(argc, argv); // no arguments: output usage if (arguments.size() == 1) { cout << "For command line arguments see:" << endl; cout << " https://github.com/TadasBaltrusaitis/OpenFace/wiki/Command-line-arguments"; return 0; } LandmarkDetector::FaceModelParameters det_params(arguments); // This is so that the model would not try re-initialising itself det_params.reinit_video_every = -1; det_params.curr_face_detector = LandmarkDetector::FaceModelParameters::HOG_SVM_DETECTOR; vector det_parameters; det_parameters.push_back(det_params); // The modules that are being used for tracking vector face_models; vector active_models; int num_faces_max = 15; LandmarkDetector::CLNF face_model(det_parameters[0].model_location); face_model.face_detector_HAAR.load(det_parameters[0].face_detector_location); face_model.face_detector_location = det_parameters[0].face_detector_location; face_models.reserve(num_faces_max); face_models.push_back(face_model); active_models.push_back(false); for (int i = 1; i < num_faces_max; ++i) { face_models.push_back(face_model); active_models.push_back(false); det_parameters.push_back(det_params); } // Load facial feature extractor and AU analyser (make sure it is static, as we don't reidentify faces) FaceAnalysis::FaceAnalyserParameters face_analysis_params(arguments); face_analysis_params.OptimizeForImages(); FaceAnalysis::FaceAnalyser face_analyser(face_analysis_params); if (!face_model.eye_model) { cout << "WARNING: no eye model found" << endl; } if (face_analyser.GetAUClassNames().size() == 0 && face_analyser.GetAUClassNames().size() == 0) { cout << "WARNING: no Action Unit models found" << endl; } // Open a sequence Utilities::SequenceCapture sequence_reader; // A utility for visualizing the results (show just the tracks) Utilities::Visualizer visualizer(arguments); // Tracking FPS for visualization Utilities::FpsTracker fps_tracker; fps_tracker.AddFrame(); int sequence_number = 0; while(true) // this is not a for loop as we might also be reading from a webcam { // The sequence reader chooses what to open based on command line arguments provided if (!sequence_reader.Open(arguments)) break; INFO_STREAM("Device or file opened"); cv::Mat captured_image = sequence_reader.GetNextFrame(); int frame_count = 0; Utilities::RecorderOpenFaceParameters recording_params(arguments, true, sequence_reader.IsWebcam(), sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, sequence_reader.fps); // for some reason not accepted as cli parameter, as we don't need it: disable it anyway recording_params.setOutputAUs(false); recording_params.setOutputHOG(false); recording_params.setOutputAlignedFaces(false); recording_params.setOutputTracked(false); if (!face_model.eye_model) { recording_params.setOutputGaze(false); } Utilities::RecorderOpenFace open_face_rec(sequence_reader.name, recording_params, arguments); if (sequence_reader.IsWebcam()) { INFO_STREAM("WARNING: using a webcam in feature extraction, forcing visualization of tracking to allow quitting the application (press q)"); visualizer.vis_track = true; } if (recording_params.outputAUs()) { INFO_STREAM("WARNING: using a AU detection in multiple face mode, it might not be as accurate and is experimental"); } INFO_STREAM( "Starting tracking"); while(!captured_image.empty()) { // Reading the images cv::Mat_ grayscale_image = sequence_reader.GetGrayFrame(); vector > face_detections; bool all_models_active = true; for(unsigned int model = 0; model < face_models.size(); ++model) { if(!active_models[model]) { all_models_active = false; } } // Get the detections (every 8th frame and when there are free models available for tracking) if(frame_count % 8 == 0 && !all_models_active) { if(det_parameters[0].curr_face_detector == LandmarkDetector::FaceModelParameters::HOG_SVM_DETECTOR) { vector confidences; LandmarkDetector::DetectFacesHOG(face_detections, grayscale_image, face_models[0].face_detector_HOG, confidences); } else { LandmarkDetector::DetectFaces(face_detections, grayscale_image, face_models[0].face_detector_HAAR); } } // Keep only non overlapping detections (also convert to a concurrent vector NonOverlapingDetections(face_models, face_detections); vector > face_detections_used(face_detections.size()); // Go through every model and update the tracking tbb::parallel_for(0, (int)face_models.size(), [&](int model){ //for(unsigned int model = 0; model < clnf_models.size(); ++model) //{ bool detection_success = false; // If the current model has failed more than 4 times in a row, remove it if(face_models[model].failures_in_a_row > 4) { active_models[model] = false; face_models[model].Reset(); } // If the model is inactive reactivate it with new detections if(!active_models[model]) { for(size_t detection_ind = 0; detection_ind < face_detections.size(); ++detection_ind) { // if it was not taken by another tracker take it (if it is false swap it to true and enter detection, this makes it parallel safe) if(face_detections_used[detection_ind].compare_and_swap(true, false) == false) { // Reinitialise the model face_models[model].Reset(); // This ensures that a wider window is used for the initial landmark localisation face_models[model].detection_success = false; detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, face_detections[detection_ind], face_models[model], det_parameters[model]); // This activates the model active_models[model] = true; // break out of the loop as the tracker has been reinitialised break; } } } else { // The actual facial landmark detection / tracking detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, face_models[model], det_parameters[model]); } }); // Keeping track of FPS fps_tracker.AddFrame(); visualizer.SetImage(captured_image, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy); std::stringstream jsonOutput; jsonOutput << "["; int jsonFaceId = 0; // Go through every model and detect eye gaze, record results and visualise the results for(size_t model = 0; model < face_models.size(); ++model) { // Visualising the results if(active_models[model]) { // Estimate head pose and eye gaze cv::Vec6d pose_estimate = LandmarkDetector::GetPose(face_models[model], sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy); cv::Point3f gaze_direction0(0, 0, 0); cv::Point3f gaze_direction1(0, 0, 0); cv::Vec2d gaze_angle(0, 0); // Detect eye gazes if (face_models[model].detection_success && face_model.eye_model) { GazeAnalysis::EstimateGaze(face_models[model], gaze_direction0, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, true); GazeAnalysis::EstimateGaze(face_models[model], gaze_direction1, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, false); gaze_angle = GazeAnalysis::GetGazeAngle(gaze_direction0, gaze_direction1); } // Face analysis step cv::Mat sim_warped_img; cv::Mat_ hog_descriptor; int num_hog_rows = 0, num_hog_cols = 0; // Perform AU detection and HOG feature extraction, as this can be expensive only compute it if needed by output or visualization if (recording_params.outputAlignedFaces() || recording_params.outputHOG() || recording_params.outputAUs() || visualizer.vis_align || visualizer.vis_hog) { face_analyser.PredictStaticAUsAndComputeFeatures(captured_image, face_models[model].detected_landmarks); face_analyser.GetLatestAlignedFace(sim_warped_img); face_analyser.GetLatestHOG(hog_descriptor, num_hog_rows, num_hog_cols); } cv::Vec6d head_pose = LandmarkDetector::GetPose(face_models[model], sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy); // Visualize the features visualizer.SetObservationFaceAlign(sim_warped_img); visualizer.SetObservationHOG(hog_descriptor, num_hog_rows, num_hog_cols); visualizer.SetObservationLandmarks(face_models[model].detected_landmarks, face_models[model].detection_certainty); visualizer.SetObservationPose(head_pose, face_models[model].detection_certainty); visualizer.SetObservationGaze(gaze_direction0, gaze_direction1, LandmarkDetector::CalculateAllEyeLandmarks(face_models[model]), LandmarkDetector::Calculate3DEyeLandmarks(face_models[model], sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy), face_models[model].detection_certainty); visualizer.SetObservationActionUnits(face_analyser.GetCurrentAUsReg(), face_analyser.GetCurrentAUsClass()); if(face_models[model].detection_success && face_model.eye_model) { if(jsonFaceId > 0){ jsonOutput << ","; } jsonFaceId++; jsonOutput << "{\"fid\":"; jsonOutput << model << ", \"confidence\":" << face_models[model].detection_certainty; // gaze_angle_x, gaze_angle_y Eye gaze direction in radians in world coordinates averaged for both eyes and converted into more easy to use format than gaze vectors. If a person is looking left-right this will results in the change of gaze_angle_x and, if a person is looking up-down this will result in change of gaze_angle_y, if a person is looking straight ahead both of the angles will be close to 0 (within measurement error) jsonOutput << ", \"gaze_angle\": [" << gaze_angle[0] << ", " << gaze_angle[1] << "]"; jsonOutput << ", head_pos: [" << head_pose[0] << ", " << head_pose[1] << ", " << head_pose[2] << "]"; jsonOutput << ", head_rot: [" << head_pose[3] << ", " << head_pose[4] << ", " << head_pose[5] << "]"; jsonOutput << "}"; } // Output features open_face_rec.SetObservationHOG(face_models[model].detection_success, hog_descriptor, num_hog_rows, num_hog_cols, 31); // The number of channels in HOG is fixed at the moment, as using FHOG open_face_rec.SetObservationVisualization(visualizer.GetVisImage()); open_face_rec.SetObservationActionUnits(face_analyser.GetCurrentAUsReg(), face_analyser.GetCurrentAUsClass()); open_face_rec.SetObservationLandmarks(face_models[model].detected_landmarks, face_models[model].GetShape(sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy), face_models[model].params_global, face_models[model].params_local, face_models[model].detection_certainty, face_models[model].detection_success); open_face_rec.SetObservationPose(pose_estimate); open_face_rec.SetObservationGaze(gaze_direction0, gaze_direction1, gaze_angle, LandmarkDetector::CalculateAllEyeLandmarks(face_models[model]), LandmarkDetector::Calculate3DEyeLandmarks(face_models[model], sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy)); open_face_rec.SetObservationFaceAlign(sim_warped_img); open_face_rec.SetObservationFaceID(model); open_face_rec.SetObservationTimestamp(sequence_reader.time_stamp); open_face_rec.SetObservationFrameNumber(sequence_reader.GetFrameNumber()); open_face_rec.WriteObservation(); } } visualizer.SetFps(fps_tracker.GetFPS()); jsonOutput << "]"; std::cout << jsonOutput.str() << std::endl; // show visualization and detect key presses char character_press = visualizer.ShowObservation(); // restart the trackers if(character_press == 'r') { for(size_t i=0; i < face_models.size(); ++i) { face_models[i].Reset(); active_models[i] = false; } } // quit the application else if(character_press=='q') { return 0; } // Update the frame count frame_count++; // Grabbing the next frame in the sequence captured_image = sequence_reader.GetNextFrame(); } frame_count = 0; // Reset the model, for the next video for(size_t model=0; model < face_models.size(); ++model) { face_models[model].Reset(); active_models[model] = false; } sequence_number++; } return 0; }