2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
2017-07-29 22:19:41 +00:00
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
2016-04-28 19:40:36 +00:00
// all rights reserved.
//
2017-07-29 22:19:41 +00:00
// THIS SOFTWARE IS PROVIDED <20> AS IS<49> FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
2016-04-28 19:40:36 +00:00
//
2017-07-29 22:19:41 +00:00
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called <20> open source<63> software licenses (<28> Open Source
// Components<74> ), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensee<65> s request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
2016-04-28 19:40:36 +00:00
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72> aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72> aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
# ifndef __LANDMARK_DETECTION_VALIDATOR_h_
# define __LANDMARK_DETECTION_VALIDATOR_h_
// OpenCV includes
# include <opencv2/core/core.hpp>
// System includes
# include <vector>
// Local includes
# include "PAW.h"
using namespace std ;
namespace LandmarkDetector
{
//===========================================================================
//
// Checking if landmark detection was successful using an SVR regressor
// Using multiple validators trained add different views
2018-02-14 17:27:04 +00:00
// The regressor outputs 1 for ideal alignment and 0 for worst alignment
2016-04-28 19:40:36 +00:00
//===========================================================================
class DetectionValidator
{
public :
2017-07-29 22:19:41 +00:00
// What type of validator we're using - 0 - linear svr, 1 - feed forward neural net, 2 - convolutional neural net, 3 - new version of convolutional neural net
2016-04-28 19:40:36 +00:00
int validator_type ;
// The orientations of each of the landmark detection validator
vector < cv : : Vec3d > orientations ;
// Piecewise affine warps to the reference shape (per orientation)
vector < PAW > paws ;
//==========================================
// Linear SVR
// SVR biases
vector < double > bs ;
// SVR weights
vector < cv : : Mat_ < double > > ws ;
//==========================================
// Neural Network
// Neural net weights
vector < vector < cv : : Mat_ < double > > > ws_nn ;
// What type of activation or output functions are used
// 0 - sigmoid, 1 - tanh_opt, 2 - ReLU
vector < int > activation_fun ;
vector < int > output_fun ;
//==========================================
// Convolutional Neural Network
// CNN layers for each view
// view -> layer -> input maps -> kernels
vector < vector < vector < vector < cv : : Mat_ < float > > > > > cnn_convolutional_layers ;
// Bit ugly with so much nesting, but oh well
vector < vector < vector < vector < pair < int , cv : : Mat_ < double > > > > > > cnn_convolutional_layers_dft ;
vector < vector < vector < float > > > cnn_convolutional_layers_bias ;
vector < vector < int > > cnn_subsampling_layers ;
2017-07-29 22:19:41 +00:00
vector < vector < cv : : Mat_ < float > > > cnn_fully_connected_layers_weights ;
2016-04-28 19:40:36 +00:00
vector < vector < float > > cnn_fully_connected_layers_bias ;
2017-07-29 22:19:41 +00:00
// OLD CNN: 0 - convolutional, 1 - subsampling, 2 - fully connected
// NEW CNN: 0 - convolutional, 1 - max pooling (2x2 stride 2), 2 - fully connected, 3 - relu, 4 - sigmoid
2016-04-28 19:40:36 +00:00
vector < vector < int > > cnn_layer_types ;
2017-07-29 22:19:41 +00:00
// Extra params for the new CNN
vector < vector < cv : : Mat_ < float > > > cnn_fully_connected_layers_biases ;
2016-04-28 19:40:36 +00:00
//==========================================
// Normalisation for face validation
vector < cv : : Mat_ < double > > mean_images ;
vector < cv : : Mat_ < double > > standard_deviations ;
// Default constructor
DetectionValidator ( ) { ; }
// Copy constructor
DetectionValidator ( const DetectionValidator & other ) ;
// Given an image, orientation and detected landmarks output the result of the appropriate regressor
double Check ( const cv : : Vec3d & orientation , const cv : : Mat_ < uchar > & intensity_img , cv : : Mat_ < double > & detected_landmarks ) ;
// Reading in the model
void Read ( string location ) ;
// Getting the closest view center based on orientation
int GetViewId ( const cv : : Vec3d & orientation ) const ;
private :
// The actual regressor application on the image
// Support Vector Regression (linear kernel)
double CheckSVR ( const cv : : Mat_ < double > & warped_img , int view_id ) ;
// Feed-forward Neural Network
double CheckNN ( const cv : : Mat_ < double > & warped_img , int view_id ) ;
2017-07-30 01:11:16 +00:00
// Convolutional Neural Network
double CheckCNN_tbb ( const cv : : Mat_ < double > & warped_img , int view_id ) ;
2016-04-28 19:40:36 +00:00
// Convolutional Neural Network
double CheckCNN ( const cv : : Mat_ < double > & warped_img , int view_id ) ;
2017-07-29 22:19:41 +00:00
// Convolutional Neural Network
double CheckCNN_old ( const cv : : Mat_ < double > & warped_img , int view_id ) ;
2016-04-28 19:40:36 +00:00
// A normalisation helper
void NormaliseWarpedToVector ( const cv : : Mat_ < double > & warped_img , cv : : Mat_ < double > & feature_vec , int view_id ) ;
} ;
}
# endif