Speeding up fancy face validation.

This commit is contained in:
Tadas Baltrusaitis 2017-07-29 21:11:16 -04:00
parent 8cc98be724
commit 7513cf7964
5 changed files with 329 additions and 3 deletions

View file

@ -162,6 +162,9 @@ private:
// Feed-forward Neural Network
double CheckNN(const cv::Mat_<double>& warped_img, int view_id);
// Convolutional Neural Network
double CheckCNN_tbb(const cv::Mat_<double>& warped_img, int view_id);
// Convolutional Neural Network
double CheckCNN(const cv::Mat_<double>& warped_img, int view_id);

View file

@ -124,6 +124,7 @@ public:
// Keeping track of how many frames the tracker has failed in so far when tracking in videos
// This is useful for knowing when to initialise and reinitialise tracking
int failures_in_a_row;
int success_in_a_row;
// A template of a face that last succeeded with tracking (useful for large motions in video)
cv::Mat_<uchar> face_template;

View file

@ -64,6 +64,9 @@
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc.hpp>
// TBB includes
#include <tbb/tbb.h>
// System includes
#include <fstream>
@ -481,7 +484,9 @@ double DetectionValidator::Check(const cv::Vec3d& orientation, const cv::Mat_<uc
}
else if (validator_type == 3)
{
dec = CheckCNN(warped, id);
// On some machines the non-TBB version may be faster
//dec = CheckCNN(warped, id);
dec = CheckCNN_tbb(warped, id);
}
return dec;
}
@ -789,6 +794,293 @@ double DetectionValidator::CheckCNN_old(const cv::Mat_<double>& warped_img, int
return dec;
}
// Convolutional Neural Network
double DetectionValidator::CheckCNN_tbb(const cv::Mat_<double>& warped_img, int view_id)
{
cv::Mat_<double> feature_vec;
NormaliseWarpedToVector(warped_img, feature_vec, view_id);
// Create a normalised image from the crop vector
cv::Mat_<float> img(warped_img.size(), 0.0);
img = img.t();
cv::Mat mask = paws[view_id].pixel_mask.t();
cv::MatIterator_<uchar> mask_it = mask.begin<uchar>();
cv::MatIterator_<double> feature_it = feature_vec.begin();
cv::MatIterator_<float> img_it = img.begin();
int wInt = img.cols;
int hInt = img.rows;
for (int i = 0; i < wInt; ++i)
{
for (int j = 0; j < hInt; ++j, ++mask_it, ++img_it)
{
// if is within mask
if (*mask_it)
{
// assign the feature to image if it is within the mask
*img_it = (float)*feature_it++;
}
}
}
img = img.t();
int cnn_layer = 0;
int fully_connected_layer = 0;
vector<cv::Mat_<float> > input_maps;
input_maps.push_back(img);
vector<cv::Mat_<float> > outputs;
for (size_t layer = 0; layer < cnn_layer_types[view_id].size(); ++layer)
{
// Determine layer type
int layer_type = cnn_layer_types[view_id][layer];
// Convolutional layer
if (layer_type == 0)
{
outputs.clear();
// Pre-allocate the output feature maps
outputs.resize(cnn_convolutional_layers[view_id][cnn_layer][0].size());
for (size_t in = 0; in < input_maps.size(); ++in)
{
cv::Mat_<float> input_image = input_maps[in];
// Useful precomputed data placeholders for quick correlation (convolution)
cv::Mat_<double> input_image_dft;
cv::Mat integral_image;
cv::Mat integral_image_sq;
// To adapt for TBB, perform the first convolution in a non TBB way so that dft, and integral images are computed
cv::Mat_<float> kernel = cnn_convolutional_layers[view_id][cnn_layer][in][0];
// The convolution (with precomputation)
cv::Mat_<float> output;
if (cnn_convolutional_layers_dft[view_id][cnn_layer][in][0].second.empty()) // This will only be needed during the first pass
{
std::map<int, cv::Mat_<double> > precomputed_dft;
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
cnn_convolutional_layers_dft[view_id][cnn_layer][in][0].first = precomputed_dft.begin()->first;
cnn_convolutional_layers_dft[view_id][cnn_layer][in][0].second = precomputed_dft.begin()->second;
}
else
{
std::map<int, cv::Mat_<double> > precomputed_dft;
precomputed_dft[cnn_convolutional_layers_dft[view_id][cnn_layer][in][0].first] = cnn_convolutional_layers_dft[view_id][cnn_layer][in][0].second;
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
}
// Combining the maps
if (in == 0)
{
outputs[0] = output;
}
else
{
outputs[0] = outputs[0] + output;
}
if(cnn_convolutional_layers[view_id][cnn_layer][0].size() > 20)
{
// TBB pass for the remaining kernels, empirically helps with layers with more kernels
tbb::parallel_for(1, (int)cnn_convolutional_layers[view_id][cnn_layer][in].size(), [&](int k) {
{
cv::Mat_<float> kernel = cnn_convolutional_layers[view_id][cnn_layer][in][k];
// The convolution (with precomputation)
cv::Mat_<float> output;
if (cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second.empty()) // This will only be needed during the first pass
{
std::map<int, cv::Mat_<double> > precomputed_dft;
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].first = precomputed_dft.begin()->first;
cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second = precomputed_dft.begin()->second;
}
else
{
std::map<int, cv::Mat_<double> > precomputed_dft;
precomputed_dft[cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].first] = cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second;
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
}
// Combining the maps
if (in == 0)
{
outputs[k] = output;
}
else
{
outputs[k] = outputs[k] + output;
}
}
});
}
else
{
for (size_t k = 1; k < cnn_convolutional_layers[view_id][cnn_layer][in].size(); ++k)
{
cv::Mat_<float> kernel = cnn_convolutional_layers[view_id][cnn_layer][in][k];
// The convolution (with precomputation)
cv::Mat_<float> output;
if (cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second.empty()) // This will only be needed during the first pass
{
std::map<int, cv::Mat_<double> > precomputed_dft;
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].first = precomputed_dft.begin()->first;
cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second = precomputed_dft.begin()->second;
}
else
{
std::map<int, cv::Mat_<double> > precomputed_dft;
precomputed_dft[cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].first] = cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second;
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
}
// Combining the maps
if (in == 0)
{
outputs[k] = output;
}
else
{
outputs[k] = outputs[k] + output;
}
}
}
}
for (size_t k = 0; k < cnn_convolutional_layers[view_id][cnn_layer][0].size(); ++k)
{
outputs[k] = outputs[k] + cnn_convolutional_layers_bias[view_id][cnn_layer][k];
}
cnn_layer++;
}
if (layer_type == 1)
{
vector<cv::Mat_<float>> outputs_sub;
// Iterate over pool height and width, all the stride is 2x2 and no padding is used
int stride_x = 2;
int stride_y = 2;
int pool_x = 2;
int pool_y = 2;
for (size_t in = 0; in < input_maps.size(); ++in)
{
int out_x = input_maps[in].cols / stride_x;
int out_y = input_maps[in].rows / stride_y;
cv::Mat_<float> sub_out(out_y, out_x, 0.0);
cv::Mat_<float> in_map = input_maps[in];
for (int x = 0; x < input_maps[in].cols; x += stride_x)
{
for (int y = 0; y < input_maps[in].rows; y += stride_y)
{
float curr_max = -FLT_MAX;
for (int x_in = x; x_in < x + pool_x; ++x_in)
{
for (int y_in = y; y_in < y + pool_y; ++y_in)
{
float curr_val = in_map.at<float>(y_in, x_in);
if (curr_val > curr_max)
{
curr_max = curr_val;
}
}
}
int x_in_out = x / stride_x;
int y_in_out = y / stride_y;
sub_out.at<float>(y_in_out, x_in_out) = curr_max;
}
}
outputs_sub.push_back(sub_out);
}
outputs = outputs_sub;
}
if (layer_type == 2)
{
// Concatenate all the maps
cv::Mat_<float> input_concat = input_maps[0].t();
input_concat = input_concat.reshape(0, 1);
for (size_t in = 1; in < input_maps.size(); ++in)
{
cv::Mat_<float> add = input_maps[in].t();
add = add.reshape(0, 1);
cv::hconcat(input_concat, add, input_concat);
}
input_concat = input_concat * cnn_fully_connected_layers_weights[view_id][fully_connected_layer];
input_concat = input_concat + cnn_fully_connected_layers_biases[view_id][fully_connected_layer].t();
outputs.clear();
outputs.push_back(input_concat);
fully_connected_layer++;
}
if (layer_type == 3) // ReLU
{
outputs.clear();
for (size_t k = 0; k < input_maps.size(); ++k)
{
// Apply the ReLU
cv::threshold(input_maps[k], input_maps[k], 0, 0, cv::THRESH_TOZERO);
outputs.push_back(input_maps[k]);
}
}
if (layer_type == 4)
{
outputs.clear();
for (size_t k = 0; k < input_maps.size(); ++k)
{
// Apply the sigmoid
cv::exp(-input_maps[k], input_maps[k]);
input_maps[k] = 1.0 / (1.0 + input_maps[k]);
outputs.push_back(input_maps[k]);
}
}
// Set the outputs of this layer to inputs of the next
input_maps = outputs;
}
// First turn to the 0-3 range
double max_val = 0;
cv::Point max_loc;
cv::minMaxLoc(outputs[0].t(), 0, &max_val, 0, &max_loc);
int max_idx = max_loc.y;
double max = 3;
double min = 0;
double bins = (double)outputs[0].cols;
// Unquantizing the softmax layer to continuous value
double step_size = (max - min) / bins; // This should be saved somewhere
double unquantized = min + step_size / 2.0 + max_idx * step_size;
// Turn it to -1, 1 range
double dec = (unquantized - 1.5) / 1.5;
return dec;
}
// Convolutional Neural Network
double DetectionValidator::CheckCNN(const cv::Mat_<double>& warped_img, int view_id)
{
@ -849,6 +1141,7 @@ double DetectionValidator::CheckCNN(const cv::Mat_<double>& warped_img, int view
cv::Mat integral_image;
cv::Mat integral_image_sq;
// TODO can TBB-ify this
for (size_t k = 0; k < cnn_convolutional_layers[view_id][cnn_layer][in].size(); ++k)
{
cv::Mat_<float> kernel = cnn_convolutional_layers[view_id][cnn_layer][in][k];

View file

@ -288,16 +288,36 @@ bool LandmarkDetector::DetectLandmarksInVideo(const cv::Mat_<uchar> &grayscale_i
CorrectGlobalParametersVideo(grayscale_image, clnf_model, params);
}
// If we are performing face validation, do it every 3 frames due to performance
bool reset_to_true = false;
double old_certainty = 0;
if (params.validate_detections == true && clnf_model.success_in_a_row % 3 != 0)
{
params.validate_detections = false;
reset_to_true = true;
old_certainty = clnf_model.detection_certainty;
}
bool track_success = clnf_model.DetectLandmarks(grayscale_image, depth_image, params);
if (reset_to_true)
{
params.validate_detections = true;
clnf_model.detection_certainty = old_certainty;
}
if(!track_success)
{
// Make a record that tracking failed
clnf_model.failures_in_a_row++;
clnf_model.success_in_a_row = 0;
}
else
{
// indicate that tracking is a success
clnf_model.failures_in_a_row = -1;
clnf_model.success_in_a_row++;
UpdateTemplate(grayscale_image, clnf_model);
}
}
@ -377,7 +397,8 @@ bool LandmarkDetector::DetectLandmarksInVideo(const cv::Mat_<uchar> &grayscale_i
}
else
{
clnf_model.failures_in_a_row = -1;
clnf_model.failures_in_a_row = -1;
clnf_model.success_in_a_row++;
UpdateTemplate(grayscale_image, clnf_model);
return true;
}
@ -388,12 +409,14 @@ bool LandmarkDetector::DetectLandmarksInVideo(const cv::Mat_<uchar> &grayscale_i
if(!clnf_model.tracking_initialised)
{
clnf_model.failures_in_a_row++;
clnf_model.success_in_a_row = 0;
}
// un-initialise the tracking
if( clnf_model.failures_in_a_row > 100)
{
clnf_model.tracking_initialised = false;
clnf_model.success_in_a_row = 0;
}
return clnf_model.detection_success;

View file

@ -76,7 +76,8 @@ CLNF::CLNF(const CLNF& other): pdm(other.pdm), params_local(other.params_local.c
this->detection_certainty = other.detection_certainty;
this->model_likelihood = other.model_likelihood;
this->failures_in_a_row = other.failures_in_a_row;
this->success_in_a_row = other.success_in_a_row;
// Load the CascadeClassifier (as it does not have a proper copy constructor)
if(!face_detector_location.empty())
{
@ -121,6 +122,7 @@ CLNF & CLNF::operator= (const CLNF& other)
this->detection_certainty = other.detection_certainty;
this->model_likelihood = other.model_likelihood;
this->failures_in_a_row = other.failures_in_a_row;
this->success_in_a_row = other.success_in_a_row;
this->eye_model = other.eye_model;
@ -164,6 +166,7 @@ CLNF::CLNF(const CLNF&& other)
this->detection_certainty = other.detection_certainty;
this->model_likelihood = other.model_likelihood;
this->failures_in_a_row = other.failures_in_a_row;
this->success_in_a_row = other.success_in_a_row;
pdm = other.pdm;
params_local = other.params_local;
@ -199,6 +202,7 @@ CLNF & CLNF::operator= (const CLNF&& other)
this->detection_certainty = other.detection_certainty;
this->model_likelihood = other.model_likelihood;
this->failures_in_a_row = other.failures_in_a_row;
this->success_in_a_row = other.success_in_a_row;
pdm = other.pdm;
params_local = other.params_local;
@ -527,6 +531,7 @@ void CLNF::Read(string main_location)
params_global = cv::Vec6d(1, 0, 0, 0, 0, 0);
failures_in_a_row = -1;
success_in_a_row = 0;
}
@ -547,6 +552,7 @@ void CLNF::Reset()
params_global = cv::Vec6d(1, 0, 0, 0, 0, 0);
failures_in_a_row = -1;
success_in_a_row = 0;
face_template = cv::Mat_<uchar>();
}