2016-04-28 19:40:36 +00:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
2018-02-01 20:10:10 +00:00
|
|
|
#ifndef OPENCV_TRACKING_HPP
|
|
|
|
#define OPENCV_TRACKING_HPP
|
2016-04-28 19:40:36 +00:00
|
|
|
|
|
|
|
#include "opencv2/core.hpp"
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
//! @addtogroup video_track
|
|
|
|
//! @{
|
|
|
|
|
|
|
|
enum { OPTFLOW_USE_INITIAL_FLOW = 4,
|
|
|
|
OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
|
|
|
|
OPTFLOW_FARNEBACK_GAUSSIAN = 256
|
|
|
|
};
|
|
|
|
|
|
|
|
/** @brief Finds an object center, size, and orientation.
|
|
|
|
|
|
|
|
@param probImage Back projection of the object histogram. See calcBackProject.
|
|
|
|
@param window Initial search window.
|
|
|
|
@param criteria Stop criteria for the underlying meanShift.
|
|
|
|
returns
|
|
|
|
(in old interfaces) Number of iterations CAMSHIFT took to converge
|
|
|
|
The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
|
|
|
|
object center using meanShift and then adjusts the window size and finds the optimal rotation. The
|
|
|
|
function returns the rotated rectangle structure that includes the object position, size, and
|
|
|
|
orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
|
|
|
|
|
|
|
|
See the OpenCV sample camshiftdemo.c that tracks colored objects.
|
|
|
|
|
|
|
|
@note
|
|
|
|
- (Python) A sample explaining the camshift tracking algorithm can be found at
|
|
|
|
opencv_source_code/samples/python/camshift.py
|
|
|
|
*/
|
|
|
|
CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
|
|
|
|
TermCriteria criteria );
|
2018-02-01 20:10:10 +00:00
|
|
|
/** @example camshiftdemo.cpp
|
|
|
|
An example using the mean-shift tracking algorithm
|
|
|
|
*/
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @brief Finds an object on a back projection image.
|
|
|
|
|
|
|
|
@param probImage Back projection of the object histogram. See calcBackProject for details.
|
|
|
|
@param window Initial search window.
|
|
|
|
@param criteria Stop criteria for the iterative search algorithm.
|
|
|
|
returns
|
|
|
|
: Number of iterations CAMSHIFT took to converge.
|
|
|
|
The function implements the iterative object search algorithm. It takes the input back projection of
|
|
|
|
an object and the initial position. The mass center in window of the back projection image is
|
|
|
|
computed and the search window center shifts to the mass center. The procedure is repeated until the
|
|
|
|
specified number of iterations criteria.maxCount is done or until the window center shifts by less
|
|
|
|
than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
|
|
|
|
window size or orientation do not change during the search. You can simply pass the output of
|
|
|
|
calcBackProject to this function. But better results can be obtained if you pre-filter the back
|
|
|
|
projection and remove the noise. For example, you can do this by retrieving connected components
|
|
|
|
with findContours , throwing away contours with small area ( contourArea ), and rendering the
|
|
|
|
remaining contours with drawContours.
|
|
|
|
|
|
|
|
*/
|
|
|
|
CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
|
|
|
|
|
|
|
|
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
|
|
|
|
|
|
|
|
@param img 8-bit input image.
|
|
|
|
@param pyramid output pyramid.
|
|
|
|
@param winSize window size of optical flow algorithm. Must be not less than winSize argument of
|
|
|
|
calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
|
|
|
|
@param maxLevel 0-based maximal pyramid level number.
|
|
|
|
@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
|
|
|
|
constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
|
|
|
|
@param pyrBorder the border mode for pyramid layers.
|
|
|
|
@param derivBorder the border mode for gradients.
|
|
|
|
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
|
|
|
|
to force data copying.
|
|
|
|
@return number of levels in constructed pyramid. Can be less than maxLevel.
|
|
|
|
*/
|
|
|
|
CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
|
|
|
|
Size winSize, int maxLevel, bool withDerivatives = true,
|
|
|
|
int pyrBorder = BORDER_REFLECT_101,
|
|
|
|
int derivBorder = BORDER_CONSTANT,
|
|
|
|
bool tryReuseInputImage = true );
|
|
|
|
|
2018-02-01 20:10:10 +00:00
|
|
|
/** @example lkdemo.cpp
|
|
|
|
An example using the Lucas-Kanade optical flow algorithm
|
|
|
|
*/
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
|
|
|
|
pyramids.
|
|
|
|
|
|
|
|
@param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
|
|
|
|
@param nextImg second input image or pyramid of the same size and the same type as prevImg.
|
|
|
|
@param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
|
|
|
|
single-precision floating-point numbers.
|
|
|
|
@param nextPts output vector of 2D points (with single-precision floating-point coordinates)
|
|
|
|
containing the calculated new positions of input features in the second image; when
|
|
|
|
OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
|
|
|
|
@param status output status vector (of unsigned chars); each element of the vector is set to 1 if
|
|
|
|
the flow for the corresponding features has been found, otherwise, it is set to 0.
|
|
|
|
@param err output vector of errors; each element of the vector is set to an error for the
|
|
|
|
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
|
|
|
|
found then the error is not defined (use the status parameter to find such cases).
|
|
|
|
@param winSize size of the search window at each pyramid level.
|
|
|
|
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
|
|
|
|
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
|
|
|
|
algorithm will use as many levels as pyramids have but no more than maxLevel.
|
|
|
|
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
|
|
|
|
(after the specified maximum number of iterations criteria.maxCount or when the search window
|
|
|
|
moves by less than criteria.epsilon.
|
|
|
|
@param flags operation flags:
|
|
|
|
- **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
|
|
|
|
not set, then prevPts is copied to nextPts and is considered the initial estimate.
|
|
|
|
- **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
|
|
|
|
minEigThreshold description); if the flag is not set, then L1 distance between patches
|
|
|
|
around the original and a moved point, divided by number of pixels in a window, is used as a
|
|
|
|
error measure.
|
|
|
|
@param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
|
|
|
|
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
|
|
|
|
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
|
|
|
|
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
|
|
|
|
performance boost.
|
|
|
|
|
|
|
|
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
|
|
|
|
@cite Bouguet00 . The function is parallelized with the TBB library.
|
|
|
|
|
|
|
|
@note
|
|
|
|
|
|
|
|
- An example using the Lucas-Kanade optical flow algorithm can be found at
|
|
|
|
opencv_source_code/samples/cpp/lkdemo.cpp
|
|
|
|
- (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
|
|
|
|
opencv_source_code/samples/python/lk_track.py
|
|
|
|
- (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
|
|
|
|
opencv_source_code/samples/python/lk_homography.py
|
|
|
|
*/
|
|
|
|
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
|
|
|
InputArray prevPts, InputOutputArray nextPts,
|
|
|
|
OutputArray status, OutputArray err,
|
|
|
|
Size winSize = Size(21,21), int maxLevel = 3,
|
|
|
|
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
|
|
|
int flags = 0, double minEigThreshold = 1e-4 );
|
|
|
|
|
|
|
|
/** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
|
|
|
|
|
|
|
|
@param prev first 8-bit single-channel input image.
|
|
|
|
@param next second input image of the same size and the same type as prev.
|
|
|
|
@param flow computed flow image that has the same size as prev and type CV_32FC2.
|
|
|
|
@param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
|
|
|
|
pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
|
|
|
|
one.
|
|
|
|
@param levels number of pyramid layers including the initial image; levels=1 means that no extra
|
|
|
|
layers are created and only the original images are used.
|
|
|
|
@param winsize averaging window size; larger values increase the algorithm robustness to image
|
|
|
|
noise and give more chances for fast motion detection, but yield more blurred motion field.
|
|
|
|
@param iterations number of iterations the algorithm does at each pyramid level.
|
|
|
|
@param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
|
|
|
|
larger values mean that the image will be approximated with smoother surfaces, yielding more
|
|
|
|
robust algorithm and more blurred motion field, typically poly_n =5 or 7.
|
|
|
|
@param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
|
|
|
|
basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
|
|
|
|
good value would be poly_sigma=1.5.
|
|
|
|
@param flags operation flags that can be a combination of the following:
|
|
|
|
- **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
|
|
|
|
- **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
|
|
|
|
filter instead of a box filter of the same size for optical flow estimation; usually, this
|
|
|
|
option gives z more accurate flow than with a box filter, at the cost of lower speed;
|
|
|
|
normally, winsize for a Gaussian window should be set to a larger value to achieve the same
|
|
|
|
level of robustness.
|
|
|
|
|
|
|
|
The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
|
|
|
|
|
|
|
|
\f[\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\f]
|
|
|
|
|
|
|
|
@note
|
|
|
|
|
|
|
|
- An example using the optical flow algorithm described by Gunnar Farneback can be found at
|
|
|
|
opencv_source_code/samples/cpp/fback.cpp
|
|
|
|
- (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
|
|
|
|
found at opencv_source_code/samples/python/opt_flow.py
|
|
|
|
*/
|
|
|
|
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
|
|
|
|
double pyr_scale, int levels, int winsize,
|
|
|
|
int iterations, int poly_n, double poly_sigma,
|
|
|
|
int flags );
|
|
|
|
|
|
|
|
/** @brief Computes an optimal affine transformation between two 2D point sets.
|
|
|
|
|
|
|
|
@param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
|
|
|
|
@param dst Second input 2D point set of the same size and the same type as A, or another image.
|
|
|
|
@param fullAffine If true, the function finds an optimal affine transformation with no additional
|
|
|
|
restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
|
2018-02-01 20:10:10 +00:00
|
|
|
limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
|
2016-04-28 19:40:36 +00:00
|
|
|
|
|
|
|
The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
|
|
|
|
approximates best the affine transformation between:
|
|
|
|
|
|
|
|
* Two point sets
|
|
|
|
* Two raster images. In this case, the function first finds some features in the src image and
|
|
|
|
finds the corresponding features in dst image. After that, the problem is reduced to the first
|
|
|
|
case.
|
|
|
|
In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
|
|
|
|
2x1 vector *b* so that:
|
|
|
|
|
|
|
|
\f[[A^*|b^*] = arg \min _{[A|b]} \sum _i \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b \| ^2\f]
|
|
|
|
where src[i] and dst[i] are the i-th points in src and dst, respectively
|
|
|
|
\f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
|
|
|
|
\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ -a_{12} & a_{11} & b_2 \end{bmatrix}\f]
|
|
|
|
when fullAffine=false.
|
|
|
|
|
|
|
|
@sa
|
2018-02-01 20:10:10 +00:00
|
|
|
estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
|
2016-04-28 19:40:36 +00:00
|
|
|
*/
|
|
|
|
CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
|
|
|
|
|
|
|
|
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
MOTION_TRANSLATION = 0,
|
|
|
|
MOTION_EUCLIDEAN = 1,
|
|
|
|
MOTION_AFFINE = 2,
|
|
|
|
MOTION_HOMOGRAPHY = 3
|
|
|
|
};
|
|
|
|
|
2018-02-01 20:10:10 +00:00
|
|
|
/** @example image_alignment.cpp
|
|
|
|
An example using the image alignment ECC algorithm
|
|
|
|
*/
|
|
|
|
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
|
|
|
|
|
|
|
|
@param templateImage single-channel template image; CV_8U or CV_32F array.
|
|
|
|
@param inputImage single-channel input image which should be warped with the final warpMatrix in
|
|
|
|
order to provide an image similar to templateImage, same type as temlateImage.
|
|
|
|
@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
|
|
|
|
@param motionType parameter, specifying the type of motion:
|
|
|
|
- **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
|
|
|
|
the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
|
|
|
|
estimated.
|
|
|
|
- **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
|
|
|
|
parameters are estimated; warpMatrix is \f$2\times 3\f$.
|
|
|
|
- **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
|
|
|
|
warpMatrix is \f$2\times 3\f$.
|
|
|
|
- **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
|
|
|
|
estimated;\`warpMatrix\` is \f$3\times 3\f$.
|
|
|
|
@param criteria parameter, specifying the termination criteria of the ECC algorithm;
|
|
|
|
criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
|
|
|
|
iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
|
|
|
|
Default values are shown in the declaration above.
|
|
|
|
@param inputMask An optional mask to indicate valid values of inputImage.
|
|
|
|
|
|
|
|
The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
|
|
|
|
(@cite EP08), that is
|
|
|
|
|
|
|
|
\f[\texttt{warpMatrix} = \texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
|
|
|
|
|
|
|
|
where
|
|
|
|
|
|
|
|
\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
|
|
|
|
|
|
|
|
(the equation holds with homogeneous coordinates for homography). It returns the final enhanced
|
|
|
|
correlation coefficient, that is the correlation coefficient between the template image and the
|
|
|
|
final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
|
|
|
|
row is ignored.
|
|
|
|
|
|
|
|
Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
|
|
|
|
area-based alignment that builds on intensity similarities. In essence, the function updates the
|
|
|
|
initial transformation that roughly aligns the images. If this information is missing, the identity
|
2018-02-01 20:10:10 +00:00
|
|
|
warp (unity matrix) is used as an initialization. Note that if images undergo strong
|
2016-04-28 19:40:36 +00:00
|
|
|
displacements/rotations, an initial transformation that roughly aligns the images is necessary
|
|
|
|
(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
|
|
|
|
content approximately). Use inverse warping in the second image to take an image close to the first
|
|
|
|
one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
|
|
|
|
sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
|
|
|
|
an exception if algorithm does not converges.
|
|
|
|
|
|
|
|
@sa
|
2018-02-01 20:10:10 +00:00
|
|
|
estimateAffine2D, estimateAffinePartial2D, findHomography
|
2016-04-28 19:40:36 +00:00
|
|
|
*/
|
|
|
|
CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
|
|
|
|
InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
|
|
|
|
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001),
|
|
|
|
InputArray inputMask = noArray());
|
|
|
|
|
2018-02-01 20:10:10 +00:00
|
|
|
/** @example kalman.cpp
|
|
|
|
An example using the standard Kalman filter
|
|
|
|
*/
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @brief Kalman filter class.
|
|
|
|
|
|
|
|
The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
|
|
|
|
@cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
|
2018-02-01 20:10:10 +00:00
|
|
|
an extended Kalman filter functionality.
|
|
|
|
@note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
|
|
|
|
with cvReleaseKalman(&kalmanFilter)
|
2016-04-28 19:40:36 +00:00
|
|
|
*/
|
|
|
|
class CV_EXPORTS_W KalmanFilter
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_WRAP KalmanFilter();
|
|
|
|
/** @overload
|
|
|
|
@param dynamParams Dimensionality of the state.
|
|
|
|
@param measureParams Dimensionality of the measurement.
|
|
|
|
@param controlParams Dimensionality of the control vector.
|
|
|
|
@param type Type of the created matrices that should be CV_32F or CV_64F.
|
|
|
|
*/
|
|
|
|
CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
|
|
|
|
|
|
|
/** @brief Re-initializes Kalman filter. The previous content is destroyed.
|
|
|
|
|
|
|
|
@param dynamParams Dimensionality of the state.
|
|
|
|
@param measureParams Dimensionality of the measurement.
|
|
|
|
@param controlParams Dimensionality of the control vector.
|
|
|
|
@param type Type of the created matrices that should be CV_32F or CV_64F.
|
|
|
|
*/
|
|
|
|
void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
|
|
|
|
|
|
|
/** @brief Computes a predicted state.
|
|
|
|
|
|
|
|
@param control The optional input control
|
|
|
|
*/
|
|
|
|
CV_WRAP const Mat& predict( const Mat& control = Mat() );
|
|
|
|
|
|
|
|
/** @brief Updates the predicted state from the measurement.
|
|
|
|
|
|
|
|
@param measurement The measured system parameters
|
|
|
|
*/
|
|
|
|
CV_WRAP const Mat& correct( const Mat& measurement );
|
|
|
|
|
|
|
|
CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
|
|
|
|
CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
|
|
|
CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A)
|
|
|
|
CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
|
|
|
|
CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H)
|
|
|
|
CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q)
|
|
|
|
CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
|
|
|
|
CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
|
|
|
|
CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
|
|
|
|
CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
|
|
|
|
|
|
|
|
// temporary matrices
|
|
|
|
Mat temp1;
|
|
|
|
Mat temp2;
|
|
|
|
Mat temp3;
|
|
|
|
Mat temp4;
|
|
|
|
Mat temp5;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
/** @brief Calculates an optical flow.
|
|
|
|
|
|
|
|
@param I0 first 8-bit single-channel input image.
|
|
|
|
@param I1 second input image of the same size and the same type as prev.
|
|
|
|
@param flow computed flow image that has the same size as prev and type CV_32FC2.
|
|
|
|
*/
|
|
|
|
CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
|
|
|
|
/** @brief Releases all inner buffers.
|
|
|
|
*/
|
|
|
|
CV_WRAP virtual void collectGarbage() = 0;
|
|
|
|
};
|
|
|
|
|
2018-02-01 20:10:10 +00:00
|
|
|
/** @brief Base interface for sparse optical flow algorithms.
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
/** @brief Calculates a sparse optical flow.
|
|
|
|
|
|
|
|
@param prevImg First input image.
|
|
|
|
@param nextImg Second input image of the same size and the same type as prevImg.
|
|
|
|
@param prevPts Vector of 2D points for which the flow needs to be found.
|
|
|
|
@param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
|
|
|
|
@param status Output status vector. Each element of the vector is set to 1 if the
|
|
|
|
flow for the corresponding features has been found. Otherwise, it is set to 0.
|
|
|
|
@param err Optional output vector that contains error response for each point (inverse confidence).
|
|
|
|
*/
|
|
|
|
CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
|
|
|
|
InputArray prevPts, InputOutputArray nextPts,
|
|
|
|
OutputArray status,
|
|
|
|
OutputArray err = cv::noArray()) = 0;
|
|
|
|
};
|
|
|
|
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @brief "Dual TV L1" Optical Flow Algorithm.
|
|
|
|
|
|
|
|
The class implements the "Dual TV L1" optical flow algorithm described in @cite Zach2007 and
|
|
|
|
@cite Javier2012 .
|
|
|
|
Here are important members of the class that control the algorithm, which you can set after
|
|
|
|
constructing the class instance:
|
|
|
|
|
|
|
|
- member double tau
|
|
|
|
Time step of the numerical scheme.
|
|
|
|
|
|
|
|
- member double lambda
|
|
|
|
Weight parameter for the data term, attachment parameter. This is the most relevant
|
|
|
|
parameter, which determines the smoothness of the output. The smaller this parameter is,
|
|
|
|
the smoother the solutions we obtain. It depends on the range of motions of the images, so
|
|
|
|
its value should be adapted to each image sequence.
|
|
|
|
|
|
|
|
- member double theta
|
|
|
|
Weight parameter for (u - v)\^2, tightness parameter. It serves as a link between the
|
|
|
|
attachment and the regularization terms. In theory, it should have a small value in order
|
|
|
|
to maintain both parts in correspondence. The method is stable for a large range of values
|
|
|
|
of this parameter.
|
|
|
|
|
|
|
|
- member int nscales
|
|
|
|
Number of scales used to create the pyramid of images.
|
|
|
|
|
|
|
|
- member int warps
|
|
|
|
Number of warpings per scale. Represents the number of times that I1(x+u0) and grad(
|
|
|
|
I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the
|
|
|
|
method. It also affects the running time, so it is a compromise between speed and
|
|
|
|
accuracy.
|
|
|
|
|
|
|
|
- member double epsilon
|
|
|
|
Stopping criterion threshold used in the numerical scheme, which is a trade-off between
|
|
|
|
precision and running time. A small value will yield more accurate solutions at the
|
|
|
|
expense of a slower convergence.
|
|
|
|
|
|
|
|
- member int iterations
|
|
|
|
Stopping criterion iterations number used in the numerical scheme.
|
|
|
|
|
|
|
|
C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
|
|
|
Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS_W DualTVL1OpticalFlow : public DenseOpticalFlow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
//! @brief Time step of the numerical scheme
|
|
|
|
/** @see setTau */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual double getTau() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getTau @see getTau */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setTau(double val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Weight parameter for the data term, attachment parameter
|
|
|
|
/** @see setLambda */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual double getLambda() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getLambda @see getLambda */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setLambda(double val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Weight parameter for (u - v)^2, tightness parameter
|
|
|
|
/** @see setTheta */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual double getTheta() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getTheta @see getTheta */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setTheta(double val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief coefficient for additional illumination variation term
|
|
|
|
/** @see setGamma */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual double getGamma() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getGamma @see getGamma */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setGamma(double val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Number of scales used to create the pyramid of images
|
|
|
|
/** @see setScalesNumber */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual int getScalesNumber() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getScalesNumber @see getScalesNumber */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setScalesNumber(int val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Number of warpings per scale
|
|
|
|
/** @see setWarpingsNumber */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual int getWarpingsNumber() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getWarpingsNumber @see getWarpingsNumber */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setWarpingsNumber(int val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time
|
|
|
|
/** @see setEpsilon */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual double getEpsilon() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getEpsilon @see getEpsilon */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setEpsilon(double val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Inner iterations (between outlier filtering) used in the numerical scheme
|
|
|
|
/** @see setInnerIterations */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual int getInnerIterations() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getInnerIterations @see getInnerIterations */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setInnerIterations(int val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Outer iterations (number of inner loops) used in the numerical scheme
|
|
|
|
/** @see setOuterIterations */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual int getOuterIterations() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getOuterIterations @see getOuterIterations */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setOuterIterations(int val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Use initial flow
|
|
|
|
/** @see setUseInitialFlow */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual bool getUseInitialFlow() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getUseInitialFlow @see getUseInitialFlow */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setUseInitialFlow(bool val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Step between scales (<1)
|
|
|
|
/** @see setScaleStep */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual double getScaleStep() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getScaleStep @see getScaleStep */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setScaleStep(double val) = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @brief Median filter kernel size (1 = no filter) (3 or 5)
|
|
|
|
/** @see setMedianFiltering */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual int getMedianFiltering() const = 0;
|
2016-04-28 19:40:36 +00:00
|
|
|
/** @copybrief getMedianFiltering @see getMedianFiltering */
|
2018-02-01 20:10:10 +00:00
|
|
|
CV_WRAP virtual void setMedianFiltering(int val) = 0;
|
|
|
|
|
|
|
|
/** @brief Creates instance of cv::DualTVL1OpticalFlow*/
|
|
|
|
CV_WRAP static Ptr<DualTVL1OpticalFlow> create(
|
|
|
|
double tau = 0.25,
|
|
|
|
double lambda = 0.15,
|
|
|
|
double theta = 0.3,
|
|
|
|
int nscales = 5,
|
|
|
|
int warps = 5,
|
|
|
|
double epsilon = 0.01,
|
|
|
|
int innnerIterations = 30,
|
|
|
|
int outerIterations = 10,
|
|
|
|
double scaleStep = 0.8,
|
|
|
|
double gamma = 0.0,
|
|
|
|
int medianFiltering = 5,
|
|
|
|
bool useInitialFlow = false);
|
2016-04-28 19:40:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/** @brief Creates instance of cv::DenseOpticalFlow
|
|
|
|
*/
|
|
|
|
CV_EXPORTS_W Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1();
|
|
|
|
|
2018-02-01 20:10:10 +00:00
|
|
|
/** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_WRAP virtual int getNumLevels() const = 0;
|
|
|
|
CV_WRAP virtual void setNumLevels(int numLevels) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual double getPyrScale() const = 0;
|
|
|
|
CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual bool getFastPyramids() const = 0;
|
|
|
|
CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual int getWinSize() const = 0;
|
|
|
|
CV_WRAP virtual void setWinSize(int winSize) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual int getNumIters() const = 0;
|
|
|
|
CV_WRAP virtual void setNumIters(int numIters) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual int getPolyN() const = 0;
|
|
|
|
CV_WRAP virtual void setPolyN(int polyN) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual double getPolySigma() const = 0;
|
|
|
|
CV_WRAP virtual void setPolySigma(double polySigma) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual int getFlags() const = 0;
|
|
|
|
CV_WRAP virtual void setFlags(int flags) = 0;
|
|
|
|
|
|
|
|
CV_WRAP static Ptr<FarnebackOpticalFlow> create(
|
|
|
|
int numLevels = 5,
|
|
|
|
double pyrScale = 0.5,
|
|
|
|
bool fastPyramids = false,
|
|
|
|
int winSize = 13,
|
|
|
|
int numIters = 10,
|
|
|
|
int polyN = 5,
|
|
|
|
double polySigma = 1.1,
|
|
|
|
int flags = 0);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/** @brief Class used for calculating a sparse optical flow.
|
|
|
|
|
|
|
|
The class can calculate an optical flow for a sparse feature set using the
|
|
|
|
iterative Lucas-Kanade method with pyramids.
|
|
|
|
|
|
|
|
@sa calcOpticalFlowPyrLK
|
|
|
|
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_WRAP virtual Size getWinSize() const = 0;
|
|
|
|
CV_WRAP virtual void setWinSize(Size winSize) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual int getMaxLevel() const = 0;
|
|
|
|
CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
|
|
|
|
CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual int getFlags() const = 0;
|
|
|
|
CV_WRAP virtual void setFlags(int flags) = 0;
|
|
|
|
|
|
|
|
CV_WRAP virtual double getMinEigThreshold() const = 0;
|
|
|
|
CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0;
|
|
|
|
|
|
|
|
CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create(
|
|
|
|
Size winSize = Size(21, 21),
|
|
|
|
int maxLevel = 3, TermCriteria crit =
|
|
|
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
|
|
|
int flags = 0,
|
|
|
|
double minEigThreshold = 1e-4);
|
|
|
|
};
|
|
|
|
|
2016-04-28 19:40:36 +00:00
|
|
|
//! @} video_track
|
|
|
|
|
|
|
|
} // cv
|
|
|
|
|
|
|
|
#endif
|