2016-04-28 19:40:36 +00:00
/***********************************************************************
* Software License Agreement ( BSD License )
*
* Copyright 2008 - 2009 Marius Muja ( mariusm @ cs . ubc . ca ) . All rights reserved .
* Copyright 2008 - 2009 David G . Lowe ( lowe @ cs . ubc . ca ) . All rights reserved .
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions
* are met :
*
* 1. Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* 2. Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in the
* documentation and / or other materials provided with the distribution .
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ` ` AS IS ' ' AND ANY EXPRESS OR
* IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED .
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT , INDIRECT ,
* INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES ( INCLUDING , BUT
* NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE ,
* DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT
* ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/***********************************************************************
* Author : Vincent Rabaud
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# ifndef OPENCV_FLANN_LSH_TABLE_H_
# define OPENCV_FLANN_LSH_TABLE_H_
# include <algorithm>
# include <iostream>
# include <iomanip>
# include <limits.h>
// TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP
# ifdef __GXX_EXPERIMENTAL_CXX0X__
# define USE_UNORDERED_MAP 1
# else
# define USE_UNORDERED_MAP 0
# endif
# if USE_UNORDERED_MAP
# include <unordered_map>
# else
# include <map>
# endif
# include <math.h>
# include <stddef.h>
# include "dynamic_bitset.h"
# include "matrix.h"
namespace cvflann
{
namespace lsh
{
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** What is stored in an LSH bucket
*/
typedef uint32_t FeatureIndex ;
/** The id from which we can get a bucket back in an LSH table
*/
typedef unsigned int BucketKey ;
/** A bucket in an LSH table
*/
typedef std : : vector < FeatureIndex > Bucket ;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** POD for stats about an LSH table
*/
struct LshStats
{
std : : vector < unsigned int > bucket_sizes_ ;
size_t n_buckets_ ;
size_t bucket_size_mean_ ;
size_t bucket_size_median_ ;
size_t bucket_size_min_ ;
size_t bucket_size_max_ ;
size_t bucket_size_std_dev ;
/** Each contained vector contains three value: beginning/end for interval, number of elements in the bin
*/
std : : vector < std : : vector < unsigned int > > size_histogram_ ;
} ;
/** Overload the << operator for LshStats
* @ param out the streams
* @ param stats the stats to display
* @ return the streams
*/
inline std : : ostream & operator < < ( std : : ostream & out , const LshStats & stats )
{
int w = 20 ;
out < < " Lsh Table Stats: \n " < < std : : setw ( w ) < < std : : setiosflags ( std : : ios : : right ) < < " N buckets : "
< < stats . n_buckets_ < < " \n " < < std : : setw ( w ) < < std : : setiosflags ( std : : ios : : right ) < < " mean size : "
< < std : : setiosflags ( std : : ios : : left ) < < stats . bucket_size_mean_ < < " \n " < < std : : setw ( w )
< < std : : setiosflags ( std : : ios : : right ) < < " median size : " < < stats . bucket_size_median_ < < " \n " < < std : : setw ( w )
< < std : : setiosflags ( std : : ios : : right ) < < " min size : " < < std : : setiosflags ( std : : ios : : left )
< < stats . bucket_size_min_ < < " \n " < < std : : setw ( w ) < < std : : setiosflags ( std : : ios : : right ) < < " max size : "
< < std : : setiosflags ( std : : ios : : left ) < < stats . bucket_size_max_ ;
// Display the histogram
out < < std : : endl < < std : : setw ( w ) < < std : : setiosflags ( std : : ios : : right ) < < " histogram : "
< < std : : setiosflags ( std : : ios : : left ) ;
for ( std : : vector < std : : vector < unsigned int > > : : const_iterator iterator = stats . size_histogram_ . begin ( ) , end =
stats . size_histogram_ . end ( ) ; iterator ! = end ; + + iterator ) out < < ( * iterator ) [ 0 ] < < " - " < < ( * iterator ) [ 1 ] < < " : " < < ( * iterator ) [ 2 ] < < " , " ;
return out ;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Lsh hash table. As its key is a sub-feature, and as usually
* the size of it is pretty small , we keep it as a continuous memory array .
* The value is an index in the corpus of features ( we keep it as an unsigned
* int for pure memory reasons , it could be a size_t )
*/
template < typename ElementType >
class LshTable
{
public :
/** A container of all the feature indices. Optimized for space
*/
# if USE_UNORDERED_MAP
typedef std : : unordered_map < BucketKey , Bucket > BucketsSpace ;
# else
typedef std : : map < BucketKey , Bucket > BucketsSpace ;
# endif
/** A container of all the feature indices. Optimized for speed
*/
typedef std : : vector < Bucket > BucketsSpeed ;
/** Default constructor
*/
LshTable ( )
{
2018-02-01 20:10:10 +00:00
key_size_ = 0 ;
feature_size_ = 0 ;
speed_level_ = kArray ;
2016-04-28 19:40:36 +00:00
}
/** Default constructor
* Create the mask and allocate the memory
* @ param feature_size is the size of the feature ( considered as a ElementType [ ] )
* @ param key_size is the number of bits that are turned on in the feature
*/
LshTable ( unsigned int feature_size , unsigned int key_size )
{
2018-02-01 20:10:10 +00:00
feature_size_ = feature_size ;
2016-04-28 19:40:36 +00:00
( void ) key_size ;
std : : cerr < < " LSH is not implemented for that type " < < std : : endl ;
assert ( 0 ) ;
}
/** Add a feature to the table
* @ param value the value to store for that feature
* @ param feature the feature itself
*/
void add ( unsigned int value , const ElementType * feature )
{
// Add the value to the corresponding bucket
BucketKey key = ( lsh : : BucketKey ) getKey ( feature ) ;
switch ( speed_level_ ) {
case kArray :
// That means we get the buckets from an array
buckets_speed_ [ key ] . push_back ( value ) ;
break ;
case kBitsetHash :
// That means we can check the bitset for the presence of a key
key_bitset_ . set ( key ) ;
buckets_space_ [ key ] . push_back ( value ) ;
break ;
case kHash :
{
// That means we have to check for the hash table for the presence of a key
buckets_space_ [ key ] . push_back ( value ) ;
break ;
}
}
}
/** Add a set of features to the table
* @ param dataset the values to store
*/
void add ( Matrix < ElementType > dataset )
{
# if USE_UNORDERED_MAP
buckets_space_ . rehash ( ( buckets_space_ . size ( ) + dataset . rows ) * 1.2 ) ;
# endif
// Add the features to the table
for ( unsigned int i = 0 ; i < dataset . rows ; + + i ) add ( i , dataset [ i ] ) ;
// Now that the table is full, optimize it for speed/space
optimize ( ) ;
}
/** Get a bucket given the key
* @ param key
* @ return
*/
inline const Bucket * getBucketFromKey ( BucketKey key ) const
{
// Generate other buckets
switch ( speed_level_ ) {
case kArray :
// That means we get the buckets from an array
return & buckets_speed_ [ key ] ;
break ;
case kBitsetHash :
// That means we can check the bitset for the presence of a key
if ( key_bitset_ . test ( key ) ) return & buckets_space_ . find ( key ) - > second ;
else return 0 ;
break ;
case kHash :
{
// That means we have to check for the hash table for the presence of a key
BucketsSpace : : const_iterator bucket_it , bucket_end = buckets_space_ . end ( ) ;
bucket_it = buckets_space_ . find ( key ) ;
// Stop here if that bucket does not exist
if ( bucket_it = = bucket_end ) return 0 ;
else return & bucket_it - > second ;
break ;
}
}
return 0 ;
}
/** Compute the sub-signature of a feature
*/
size_t getKey ( const ElementType * /*feature*/ ) const
{
std : : cerr < < " LSH is not implemented for that type " < < std : : endl ;
assert ( 0 ) ;
return 1 ;
}
/** Get statistics about the table
* @ return
*/
LshStats getStats ( ) const ;
private :
/** defines the speed fo the implementation
* kArray uses a vector for storing data
* kBitsetHash uses a hash map but checks for the validity of a key with a bitset
* kHash uses a hash map only
*/
enum SpeedLevel
{
kArray , kBitsetHash , kHash
} ;
/** Initialize some variables
*/
void initialize ( size_t key_size )
{
const size_t key_size_lower_bound = 1 ;
//a value (size_t(1) << key_size) must fit the size_t type so key_size has to be strictly less than size of size_t
2018-02-01 20:10:10 +00:00
const size_t key_size_upper_bound = ( std : : min ) ( sizeof ( BucketKey ) * CHAR_BIT + 1 , sizeof ( size_t ) * CHAR_BIT ) ;
2016-04-28 19:40:36 +00:00
if ( key_size < key_size_lower_bound | | key_size > = key_size_upper_bound )
{
CV_Error ( cv : : Error : : StsBadArg , cv : : format ( " Invalid key_size (=%d). Valid values for your system are %d <= key_size < %d. " , ( int ) key_size , ( int ) key_size_lower_bound , ( int ) key_size_upper_bound ) ) ;
}
speed_level_ = kHash ;
key_size_ = ( unsigned ) key_size ;
}
/** Optimize the table for speed/space
*/
void optimize ( )
{
// If we are already using the fast storage, no need to do anything
if ( speed_level_ = = kArray ) return ;
// Use an array if it will be more than half full
if ( buckets_space_ . size ( ) > ( ( size_t ( 1 ) < < key_size_ ) / 2 ) ) {
speed_level_ = kArray ;
// Fill the array version of it
buckets_speed_ . resize ( size_t ( 1 ) < < key_size_ ) ;
for ( BucketsSpace : : const_iterator key_bucket = buckets_space_ . begin ( ) ; key_bucket ! = buckets_space_ . end ( ) ; + + key_bucket ) buckets_speed_ [ key_bucket - > first ] = key_bucket - > second ;
// Empty the hash table
buckets_space_ . clear ( ) ;
return ;
}
// If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two
// for the vector) or less than 512MB (key_size_ <= 30)
if ( ( ( std : : max ( buckets_space_ . size ( ) , buckets_speed_ . size ( ) ) * CHAR_BIT * 3 * sizeof ( BucketKey ) ) / 10
> = ( size_t ( 1 ) < < key_size_ ) ) | | ( key_size_ < = 32 ) ) {
speed_level_ = kBitsetHash ;
key_bitset_ . resize ( size_t ( 1 ) < < key_size_ ) ;
key_bitset_ . reset ( ) ;
// Try with the BucketsSpace
for ( BucketsSpace : : const_iterator key_bucket = buckets_space_ . begin ( ) ; key_bucket ! = buckets_space_ . end ( ) ; + + key_bucket ) key_bitset_ . set ( key_bucket - > first ) ;
}
else {
speed_level_ = kHash ;
key_bitset_ . clear ( ) ;
}
}
/** The vector of all the buckets if they are held for speed
*/
BucketsSpeed buckets_speed_ ;
/** The hash table of all the buckets in case we cannot use the speed version
*/
BucketsSpace buckets_space_ ;
/** What is used to store the data */
SpeedLevel speed_level_ ;
/** If the subkey is small enough, it will keep track of which subkeys are set through that bitset
* That is just a speedup so that we don ' t look in the hash table ( which can be mush slower that checking a bitset )
*/
DynamicBitset key_bitset_ ;
/** The size of the sub-signature in bits
*/
unsigned int key_size_ ;
2018-02-01 20:10:10 +00:00
unsigned int feature_size_ ;
2016-04-28 19:40:36 +00:00
// Members only used for the unsigned char specialization
/** The mask to apply to a feature to get the hash key
* Only used in the unsigned char case
*/
std : : vector < size_t > mask_ ;
} ;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Specialization for unsigned char
template < >
inline LshTable < unsigned char > : : LshTable ( unsigned int feature_size , unsigned int subsignature_size )
{
2018-02-01 20:10:10 +00:00
feature_size_ = feature_size ;
2016-04-28 19:40:36 +00:00
initialize ( subsignature_size ) ;
// Allocate the mask
2018-02-01 20:10:10 +00:00
mask_ = std : : vector < size_t > ( ( feature_size * sizeof ( char ) + sizeof ( size_t ) - 1 ) / sizeof ( size_t ) , 0 ) ;
2016-04-28 19:40:36 +00:00
// A bit brutal but fast to code
2018-02-01 20:10:10 +00:00
std : : vector < int > indices ( feature_size * CHAR_BIT ) ;
for ( size_t i = 0 ; i < feature_size * CHAR_BIT ; + + i ) indices [ i ] = ( int ) i ;
# ifndef OPENCV_FLANN_USE_STD_RAND
cv : : randShuffle ( indices ) ;
# else
2016-04-28 19:40:36 +00:00
std : : random_shuffle ( indices . begin ( ) , indices . end ( ) ) ;
2018-02-01 20:10:10 +00:00
# endif
2016-04-28 19:40:36 +00:00
// Generate a random set of order of subsignature_size_ bits
for ( unsigned int i = 0 ; i < key_size_ ; + + i ) {
size_t index = indices [ i ] ;
// Set that bit in the mask
size_t divisor = CHAR_BIT * sizeof ( size_t ) ;
size_t idx = index / divisor ; //pick the right size_t index
mask_ [ idx ] | = size_t ( 1 ) < < ( index % divisor ) ; //use modulo to find the bit offset
}
// Set to 1 if you want to display the mask for debug
#if 0
{
size_t bcount = 0 ;
BOOST_FOREACH ( size_t mask_block , mask_ ) {
out < < std : : setw ( sizeof ( size_t ) * CHAR_BIT / 4 ) < < std : : setfill ( ' 0 ' ) < < std : : hex < < mask_block
< < std : : endl ;
bcount + = __builtin_popcountll ( mask_block ) ;
}
out < < " bit count : " < < std : : dec < < bcount < < std : : endl ;
out < < " mask size : " < < mask_ . size ( ) < < std : : endl ;
return out ;
}
# endif
}
/** Return the Subsignature of a feature
* @ param feature the feature to analyze
*/
template < >
inline size_t LshTable < unsigned char > : : getKey ( const unsigned char * feature ) const
{
// no need to check if T is dividable by sizeof(size_t) like in the Hamming
// distance computation as we have a mask
2018-02-01 20:10:10 +00:00
// FIXIT: This is bad assumption, because we reading tail bytes after of the allocated features buffer
2016-04-28 19:40:36 +00:00
const size_t * feature_block_ptr = reinterpret_cast < const size_t * > ( ( const void * ) feature ) ;
// Figure out the subsignature of the feature
// Given the feature ABCDEF, and the mask 001011, the output will be
// 000CEF
size_t subsignature = 0 ;
size_t bit_index = 1 ;
2018-02-01 20:10:10 +00:00
for ( unsigned i = 0 ; i < feature_size_ ; i + = sizeof ( size_t ) ) {
2016-04-28 19:40:36 +00:00
// get the mask and signature blocks
2018-02-01 20:10:10 +00:00
size_t feature_block ;
if ( i < = feature_size_ - sizeof ( size_t ) )
{
feature_block = * feature_block_ptr ;
}
else
{
size_t tmp = 0 ;
memcpy ( & tmp , feature_block_ptr , feature_size_ - i ) ; // preserve bytes order
feature_block = tmp ;
}
size_t mask_block = mask_ [ i / sizeof ( size_t ) ] ;
2016-04-28 19:40:36 +00:00
while ( mask_block ) {
// Get the lowest set bit in the mask block
size_t lowest_bit = mask_block & ( - ( ptrdiff_t ) mask_block ) ;
// Add it to the current subsignature if necessary
subsignature + = ( feature_block & lowest_bit ) ? bit_index : 0 ;
// Reset the bit in the mask block
mask_block ^ = lowest_bit ;
// increment the bit index for the subsignature
bit_index < < = 1 ;
}
// Check the next feature block
+ + feature_block_ptr ;
}
return subsignature ;
}
template < >
inline LshStats LshTable < unsigned char > : : getStats ( ) const
{
LshStats stats ;
stats . bucket_size_mean_ = 0 ;
if ( ( buckets_speed_ . empty ( ) ) & & ( buckets_space_ . empty ( ) ) ) {
stats . n_buckets_ = 0 ;
stats . bucket_size_median_ = 0 ;
stats . bucket_size_min_ = 0 ;
stats . bucket_size_max_ = 0 ;
return stats ;
}
if ( ! buckets_speed_ . empty ( ) ) {
for ( BucketsSpeed : : const_iterator pbucket = buckets_speed_ . begin ( ) ; pbucket ! = buckets_speed_ . end ( ) ; + + pbucket ) {
stats . bucket_sizes_ . push_back ( ( lsh : : FeatureIndex ) pbucket - > size ( ) ) ;
stats . bucket_size_mean_ + = pbucket - > size ( ) ;
}
stats . bucket_size_mean_ / = buckets_speed_ . size ( ) ;
stats . n_buckets_ = buckets_speed_ . size ( ) ;
}
else {
for ( BucketsSpace : : const_iterator x = buckets_space_ . begin ( ) ; x ! = buckets_space_ . end ( ) ; + + x ) {
stats . bucket_sizes_ . push_back ( ( lsh : : FeatureIndex ) x - > second . size ( ) ) ;
stats . bucket_size_mean_ + = x - > second . size ( ) ;
}
stats . bucket_size_mean_ / = buckets_space_ . size ( ) ;
stats . n_buckets_ = buckets_space_ . size ( ) ;
}
std : : sort ( stats . bucket_sizes_ . begin ( ) , stats . bucket_sizes_ . end ( ) ) ;
// BOOST_FOREACH(int size, stats.bucket_sizes_)
// std::cout << size << " ";
// std::cout << std::endl;
stats . bucket_size_median_ = stats . bucket_sizes_ [ stats . bucket_sizes_ . size ( ) / 2 ] ;
stats . bucket_size_min_ = stats . bucket_sizes_ . front ( ) ;
stats . bucket_size_max_ = stats . bucket_sizes_ . back ( ) ;
// TODO compute mean and std
/*float mean, stddev;
stats . bucket_size_mean_ = mean ;
stats . bucket_size_std_dev = stddev ; */
// Include a histogram of the buckets
unsigned int bin_start = 0 ;
unsigned int bin_end = 20 ;
bool is_new_bin = true ;
for ( std : : vector < unsigned int > : : iterator iterator = stats . bucket_sizes_ . begin ( ) , end = stats . bucket_sizes_ . end ( ) ; iterator
! = end ; )
if ( * iterator < bin_end ) {
if ( is_new_bin ) {
stats . size_histogram_ . push_back ( std : : vector < unsigned int > ( 3 , 0 ) ) ;
stats . size_histogram_ . back ( ) [ 0 ] = bin_start ;
stats . size_histogram_ . back ( ) [ 1 ] = bin_end - 1 ;
is_new_bin = false ;
}
+ + stats . size_histogram_ . back ( ) [ 2 ] ;
+ + iterator ;
}
else {
bin_start + = 20 ;
bin_end + = 20 ;
is_new_bin = true ;
}
return stats ;
}
// End the two namespaces
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
# endif /* OPENCV_FLANN_LSH_TABLE_H_ */