2016-04-28 21:40:36 +02:00
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED <20> AS IS<49> FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called <20> open source<63> software licenses (<28> Open Source
// Components<74> ), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensee<65> s request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72> aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72> aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
// FeatureExtraction.cpp : Defines the entry point for the feature extraction console application.
// System includes
# include <fstream>
# include <sstream>
// OpenCV includes
# include <opencv2/videoio/videoio.hpp> // Video write
# include <opencv2/videoio/videoio_c.h> // Video write
# include <opencv2/imgproc.hpp>
# include <opencv2/highgui/highgui.hpp>
// Boost includes
# include <filesystem.hpp>
# include <filesystem/fstream.hpp>
# include <boost/algorithm/string.hpp>
// Local includes
# include "LandmarkCoreIncludes.h"
# include <Face_utils.h>
# include <FaceAnalyser.h>
# include <GazeEstimation.h>
# define INFO_STREAM( stream ) \
std : : cout < < stream < < std : : endl
# define WARN_STREAM( stream ) \
std : : cout < < " Warning: " < < stream < < std : : endl
# define ERROR_STREAM( stream ) \
std : : cout < < " Error: " < < stream < < std : : endl
static void printErrorAndAbort ( const std : : string & error )
{
std : : cout < < error < < std : : endl ;
}
# define FATAL_STREAM( stream ) \
printErrorAndAbort ( std : : string ( " Fatal error: " ) + stream )
using namespace std ;
using namespace boost : : filesystem ;
vector < string > get_arguments ( int argc , char * * argv )
{
vector < string > arguments ;
// First argument is reserved for the name of the executable
for ( int i = 0 ; i < argc ; + + i )
{
arguments . push_back ( string ( argv [ i ] ) ) ;
}
return arguments ;
}
// Useful utility for creating directories for storing the output files
void create_directory_from_file ( string output_path )
{
// Creating the right directory structure
// First get rid of the file
auto p = path ( path ( output_path ) . parent_path ( ) ) ;
if ( ! p . empty ( ) & & ! boost : : filesystem : : exists ( p ) )
{
bool success = boost : : filesystem : : create_directories ( p ) ;
if ( ! success )
{
cout < < " Failed to create a directory... " < < p . string ( ) < < endl ;
}
}
}
void create_directory ( string output_path )
{
// Creating the right directory structure
auto p = path ( output_path ) ;
if ( ! boost : : filesystem : : exists ( p ) )
{
bool success = boost : : filesystem : : create_directories ( p ) ;
if ( ! success )
{
cout < < " Failed to create a directory... " < < p . string ( ) < < endl ;
}
}
}
2016-05-19 17:51:32 +02:00
void get_output_feature_params ( vector < string > & output_similarity_aligned , vector < string > & output_hog_aligned_files , double & similarity_scale ,
2016-07-31 22:31:17 +02:00
int & similarity_size , bool & grayscale , bool & verbose , bool & dynamic , bool & output_2D_landmarks , bool & output_3D_landmarks ,
bool & output_model_params , bool & output_pose , bool & output_AUs , bool & output_gaze , vector < string > & arguments ) ;
2016-04-28 21:40:36 +02:00
2016-05-19 17:51:32 +02:00
void get_image_input_output_params_feats ( vector < vector < string > > & input_image_files , bool & as_video , vector < string > & arguments ) ;
2016-04-28 21:40:36 +02:00
2016-05-19 17:51:32 +02:00
void output_HOG_frame ( std : : ofstream * hog_file , bool good_frame , const cv : : Mat_ < double > & hog_descriptor , int num_rows , int num_cols ) ;
2016-04-28 21:40:36 +02:00
// Some globals for tracking timing information for visualisation
double fps_tracker = - 1.0 ;
int64 t0 = 0 ;
// Visualising the results
void visualise_tracking ( cv : : Mat & captured_image , const LandmarkDetector : : CLNF & face_model , const LandmarkDetector : : FaceModelParameters & det_parameters , cv : : Point3f gazeDirection0 , cv : : Point3f gazeDirection1 , int frame_count , double fx , double fy , double cx , double cy )
{
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
double detection_certainty = face_model . detection_certainty ;
bool detection_success = face_model . detection_success ;
double visualisation_boundary = 0.2 ;
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
if ( detection_certainty < visualisation_boundary )
{
LandmarkDetector : : Draw ( captured_image , face_model ) ;
double vis_certainty = detection_certainty ;
if ( vis_certainty > 1 )
vis_certainty = 1 ;
if ( vis_certainty < - 1 )
vis_certainty = - 1 ;
vis_certainty = ( vis_certainty + 1 ) / ( visualisation_boundary + 1 ) ;
// A rough heuristic for box around the face width
int thickness = ( int ) std : : ceil ( 2.0 * ( ( double ) captured_image . cols ) / 640.0 ) ;
cv : : Vec6d pose_estimate_to_draw = LandmarkDetector : : GetCorrectedPoseWorld ( face_model , fx , fy , cx , cy ) ;
// Draw it in reddish if uncertain, blueish if certain
LandmarkDetector : : DrawBox ( captured_image , pose_estimate_to_draw , cv : : Scalar ( ( 1 - vis_certainty ) * 255.0 , 0 , vis_certainty * 255 ) , thickness , fx , fy , cx , cy ) ;
if ( det_parameters . track_gaze & & detection_success & & face_model . eye_model )
{
FaceAnalysis : : DrawGaze ( captured_image , face_model , gazeDirection0 , gazeDirection1 , fx , fy , cx , cy ) ;
}
}
// Work out the framerate
if ( frame_count % 10 = = 0 )
{
double t1 = cv : : getTickCount ( ) ;
fps_tracker = 10.0 / ( double ( t1 - t0 ) / cv : : getTickFrequency ( ) ) ;
t0 = t1 ;
}
// Write out the framerate on the image before displaying it
char fpsC [ 255 ] ;
std : : sprintf ( fpsC , " %d " , ( int ) fps_tracker ) ;
string fpsSt ( " FPS: " ) ;
fpsSt + = fpsC ;
2016-07-31 19:11:14 +02:00
cv : : putText ( captured_image , fpsSt , cv : : Point ( 10 , 20 ) , CV_FONT_HERSHEY_SIMPLEX , 0.5 , CV_RGB ( 255 , 0 , 0 ) , 1 , CV_AA ) ;
2016-04-28 21:40:36 +02:00
if ( ! det_parameters . quiet_mode )
{
cv : : namedWindow ( " tracking_result " , 1 ) ;
cv : : imshow ( " tracking_result " , captured_image ) ;
}
}
void prepareOutputFile ( std : : ofstream * output_file , bool output_2D_landmarks , bool output_3D_landmarks ,
bool output_model_params , bool output_pose , bool output_AUs , bool output_gaze ,
2016-05-19 17:51:32 +02:00
int num_landmarks , int num_model_modes , vector < string > au_names_class , vector < string > au_names_reg ) ;
// Output all of the information into one file in one go (quite a few parameters, but simplifies the flow)
void outputAllFeatures ( std : : ofstream * output_file , bool output_2D_landmarks , bool output_3D_landmarks ,
bool output_model_params , bool output_pose , bool output_AUs , bool output_gaze ,
const LandmarkDetector : : CLNF & face_model , int frame_count , double time_stamp , bool detection_success ,
cv : : Point3f gazeDirection0 , cv : : Point3f gazeDirection1 , const cv : : Vec6d & pose_estimate , double fx , double fy , double cx , double cy ,
const FaceAnalysis : : FaceAnalyser & face_analyser ) ;
2016-06-03 22:53:27 +02:00
void post_process_output_file ( FaceAnalysis : : FaceAnalyser & face_analyser , string output_file , bool dynamic ) ;
2016-05-19 17:51:32 +02:00
int main ( int argc , char * * argv )
2016-04-28 21:40:36 +02:00
{
2016-05-19 17:51:32 +02:00
vector < string > arguments = get_arguments ( argc , argv ) ;
2016-04-28 21:40:36 +02:00
2016-05-19 17:51:32 +02:00
// Some initial parameters that can be overriden from command line
vector < string > input_files , depth_directories , output_files , tracked_videos_output ;
LandmarkDetector : : FaceModelParameters det_parameters ( arguments ) ;
// Always track gaze in feature extraction
det_parameters . track_gaze = true ;
2016-04-28 21:40:36 +02:00
2016-05-19 17:51:32 +02:00
// Get the input output file parameters
// Indicates that rotation should be with respect to camera or world coordinates
bool use_world_coordinates ;
LandmarkDetector : : get_video_input_output_params ( input_files , depth_directories , output_files , tracked_videos_output , use_world_coordinates , arguments ) ;
2016-04-28 21:40:36 +02:00
2016-05-19 17:51:32 +02:00
bool video_input = true ;
bool verbose = true ;
bool images_as_video = false ;
vector < vector < string > > input_image_files ;
// Adding image support for reading in the files
if ( input_files . empty ( ) )
2016-04-28 21:40:36 +02:00
{
2016-05-19 17:51:32 +02:00
vector < string > d_files ;
vector < string > o_img ;
vector < cv : : Rect_ < double > > bboxes ;
get_image_input_output_params_feats ( input_image_files , images_as_video , arguments ) ;
if ( ! input_image_files . empty ( ) )
2016-04-28 21:40:36 +02:00
{
2016-05-19 17:51:32 +02:00
video_input = false ;
2016-04-28 21:40:36 +02:00
}
2016-05-19 17:51:32 +02:00
2016-04-28 21:40:36 +02:00
}
// Grab camera parameters, if they are not defined (approximate values will be used)
float fx = 0 , fy = 0 , cx = 0 , cy = 0 ;
int d = 0 ;
// Get camera parameters
LandmarkDetector : : get_camera_params ( d , fx , fy , cx , cy , arguments ) ;
// If cx (optical axis centre) is undefined will use the image size/2 as an estimate
bool cx_undefined = false ;
bool fx_undefined = false ;
if ( cx = = 0 | | cy = = 0 )
{
cx_undefined = true ;
}
if ( fx = = 0 | | fy = = 0 )
{
fx_undefined = true ;
}
// The modules that are being used for tracking
LandmarkDetector : : CLNF face_model ( det_parameters . model_location ) ;
vector < string > output_similarity_align ;
vector < string > output_hog_align_files ;
double sim_scale = 0.7 ;
int sim_size = 112 ;
bool grayscale = false ;
bool video_output = false ;
2016-06-03 22:53:27 +02:00
bool dynamic = true ; // Indicates if a dynamic AU model should be used (dynamic is useful if the video is long enough to include neutral expressions)
2016-04-28 21:40:36 +02:00
int num_hog_rows ;
int num_hog_cols ;
// By default output all parameters, but these can be turned off to get smaller files or slightly faster processing times
// use -no2Dfp, -no3Dfp, -noMparams, -noPose, -noAUs, -noGaze to turn them off
bool output_2D_landmarks = true ;
bool output_3D_landmarks = true ;
bool output_model_params = true ;
bool output_pose = true ;
bool output_AUs = true ;
bool output_gaze = true ;
2016-07-31 22:31:17 +02:00
get_output_feature_params ( output_similarity_align , output_hog_align_files , sim_scale , sim_size , grayscale , verbose , dynamic ,
2016-04-28 21:40:36 +02:00
output_2D_landmarks , output_3D_landmarks , output_model_params , output_pose , output_AUs , output_gaze , arguments ) ;
// Used for image masking
string tri_loc ;
if ( boost : : filesystem : : exists ( path ( " model/tris_68_full.txt " ) ) )
{
tri_loc = " model/tris_68_full.txt " ;
}
else
{
path loc = path ( arguments [ 0 ] ) . parent_path ( ) / " model/tris_68_full.txt " ;
tri_loc = loc . string ( ) ;
2016-07-22 15:35:50 +02:00
if ( ! exists ( loc ) )
2016-04-28 21:40:36 +02:00
{
cout < < " Can't find triangulation files, exiting " < < endl ;
2016-07-29 19:04:25 +02:00
return 1 ;
2016-04-28 21:40:36 +02:00
}
}
// Will warp to scaled mean shape
cv : : Mat_ < double > similarity_normalised_shape = face_model . pdm . mean_shape * sim_scale ;
// Discard the z component
similarity_normalised_shape = similarity_normalised_shape ( cv : : Rect ( 0 , 0 , 1 , 2 * similarity_normalised_shape . rows / 3 ) ) . clone ( ) ;
// If multiple video files are tracked, use this to indicate if we are done
bool done = false ;
int f_n = - 1 ;
int curr_img = - 1 ;
string au_loc ;
2016-06-03 22:53:27 +02:00
string au_loc_local ;
if ( dynamic )
{
au_loc_local = " AU_predictors/AU_all_best.txt " ;
}
else
{
au_loc_local = " AU_predictors/AU_all_static.txt " ;
}
if ( boost : : filesystem : : exists ( path ( au_loc_local ) ) )
2016-04-28 21:40:36 +02:00
{
2016-06-03 22:53:27 +02:00
au_loc = au_loc_local ;
2016-04-28 21:40:36 +02:00
}
else
{
2016-06-03 22:53:27 +02:00
path loc = path ( arguments [ 0 ] ) . parent_path ( ) / au_loc_local ;
2016-04-28 21:40:36 +02:00
if ( exists ( loc ) )
{
au_loc = loc . string ( ) ;
}
else
{
cout < < " Can't find AU prediction files, exiting " < < endl ;
2016-07-29 19:04:25 +02:00
return 1 ;
2016-04-28 21:40:36 +02:00
}
}
// Creating a face analyser that will be used for AU extraction
FaceAnalysis : : FaceAnalyser face_analyser ( vector < cv : : Vec3d > ( ) , 0.7 , 112 , 112 , au_loc , tri_loc ) ;
while ( ! done ) // this is not a for loop as we might also be reading from a webcam
{
string current_file ;
cv : : VideoCapture video_capture ;
cv : : Mat captured_image ;
int total_frames = - 1 ;
int reported_completion = 0 ;
double fps_vid_in = - 1.0 ;
if ( video_input )
{
// We might specify multiple video files as arguments
if ( input_files . size ( ) > 0 )
{
f_n + + ;
current_file = input_files [ f_n ] ;
}
else
{
// If we want to write out from webcam
f_n = 0 ;
}
// Do some grabbing
if ( current_file . size ( ) > 0 )
{
INFO_STREAM ( " Attempting to read from file: " < < current_file ) ;
video_capture = cv : : VideoCapture ( current_file ) ;
total_frames = ( int ) video_capture . get ( CV_CAP_PROP_FRAME_COUNT ) ;
fps_vid_in = video_capture . get ( CV_CAP_PROP_FPS ) ;
// Check if fps is nan or less than 0
if ( fps_vid_in ! = fps_vid_in | | fps_vid_in < = 0 )
{
INFO_STREAM ( " FPS of the video file cannot be determined, assuming 30 " ) ;
fps_vid_in = 30 ;
}
}
if ( ! video_capture . isOpened ( ) )
{
FATAL_STREAM ( " Failed to open video source, exiting " ) ;
return 1 ;
}
else
{
INFO_STREAM ( " Device or file opened " ) ;
}
video_capture > > captured_image ;
}
else
{
f_n + + ;
curr_img + + ;
if ( ! input_image_files [ f_n ] . empty ( ) )
{
string curr_img_file = input_image_files [ f_n ] [ curr_img ] ;
captured_image = cv : : imread ( curr_img_file , - 1 ) ;
}
else
{
FATAL_STREAM ( " No .jpg or .png images in a specified drectory, exiting " ) ;
return 1 ;
}
}
// If optical centers are not defined just use center of image
if ( cx_undefined )
{
cx = captured_image . cols / 2.0f ;
cy = captured_image . rows / 2.0f ;
}
// Use a rough guess-timate of focal length
if ( fx_undefined )
{
fx = 500 * ( captured_image . cols / 640.0 ) ;
fy = 500 * ( captured_image . rows / 480.0 ) ;
fx = ( fx + fy ) / 2.0 ;
fy = fx ;
}
// Creating output files
std : : ofstream output_file ;
if ( ! output_files . empty ( ) )
{
output_file . open ( output_files [ f_n ] , ios_base : : out ) ;
prepareOutputFile ( & output_file , output_2D_landmarks , output_3D_landmarks , output_model_params , output_pose , output_AUs , output_gaze , face_model . pdm . NumberOfPoints ( ) , face_model . pdm . NumberOfModes ( ) , face_analyser . GetAUClassNames ( ) , face_analyser . GetAURegNames ( ) ) ;
}
// Saving the HOG features
std : : ofstream hog_output_file ;
if ( ! output_hog_align_files . empty ( ) )
{
hog_output_file . open ( output_hog_align_files [ f_n ] , ios_base : : out | ios_base : : binary ) ;
}
// saving the videos
cv : : VideoWriter writerFace ;
if ( ! tracked_videos_output . empty ( ) )
{
writerFace = cv : : VideoWriter ( tracked_videos_output [ f_n ] , CV_FOURCC ( ' D ' , ' I ' , ' V ' , ' X ' ) , fps_vid_in , captured_image . size ( ) , true ) ;
}
int frame_count = 0 ;
// This is useful for a second pass run (if want AU predictions)
vector < cv : : Vec6d > params_global_video ;
vector < bool > successes_video ;
vector < cv : : Mat_ < double > > params_local_video ;
vector < cv : : Mat_ < double > > detected_landmarks_video ;
// Use for timestamping if using a webcam
int64 t_initial = cv : : getTickCount ( ) ;
bool visualise_hog = verbose ;
// Timestamp in seconds of current processing
double time_stamp = 0 ;
INFO_STREAM ( " Starting tracking " ) ;
while ( ! captured_image . empty ( ) )
{
// Grab the timestamp first
if ( video_input )
{
time_stamp = ( double ) frame_count * ( 1.0 / fps_vid_in ) ;
}
else
{
// if loading images assume 30fps
time_stamp = ( double ) frame_count * ( 1.0 / 30.0 ) ;
}
// Reading the images
cv : : Mat_ < uchar > grayscale_image ;
if ( captured_image . channels ( ) = = 3 )
{
cvtColor ( captured_image , grayscale_image , CV_BGR2GRAY ) ;
}
else
{
grayscale_image = captured_image . clone ( ) ;
}
// The actual facial landmark detection / tracking
bool detection_success ;
if ( video_input | | images_as_video )
{
detection_success = LandmarkDetector : : DetectLandmarksInVideo ( grayscale_image , face_model , det_parameters ) ;
}
else
{
detection_success = LandmarkDetector : : DetectLandmarksInImage ( grayscale_image , face_model , det_parameters ) ;
}
// Gaze tracking, absolute gaze direction
cv : : Point3f gazeDirection0 ( 0 , 0 , - 1 ) ;
cv : : Point3f gazeDirection1 ( 0 , 0 , - 1 ) ;
if ( det_parameters . track_gaze & & detection_success & & face_model . eye_model )
{
FaceAnalysis : : EstimateGaze ( face_model , gazeDirection0 , fx , fy , cx , cy , true ) ;
FaceAnalysis : : EstimateGaze ( face_model , gazeDirection1 , fx , fy , cx , cy , false ) ;
}
// Do face alignment
cv : : Mat sim_warped_img ;
cv : : Mat_ < double > hog_descriptor ;
// But only if needed in output
if ( ! output_similarity_align . empty ( ) | | hog_output_file . is_open ( ) | | output_AUs )
{
face_analyser . AddNextFrame ( captured_image , face_model , time_stamp , false , ! det_parameters . quiet_mode ) ;
face_analyser . GetLatestAlignedFace ( sim_warped_img ) ;
if ( ! det_parameters . quiet_mode )
{
cv : : imshow ( " sim_warp " , sim_warped_img ) ;
}
if ( hog_output_file . is_open ( ) )
{
FaceAnalysis : : Extract_FHOG_descriptor ( hog_descriptor , sim_warped_img , num_hog_rows , num_hog_cols ) ;
if ( visualise_hog & & ! det_parameters . quiet_mode )
{
cv : : Mat_ < double > hog_descriptor_vis ;
FaceAnalysis : : Visualise_FHOG ( hog_descriptor , num_hog_rows , num_hog_cols , hog_descriptor_vis ) ;
cv : : imshow ( " hog " , hog_descriptor_vis ) ;
}
}
}
// Work out the pose of the head from the tracked model
cv : : Vec6d pose_estimate ;
if ( use_world_coordinates )
{
pose_estimate = LandmarkDetector : : GetCorrectedPoseWorld ( face_model , fx , fy , cx , cy ) ;
}
else
{
pose_estimate = LandmarkDetector : : GetCorrectedPoseCamera ( face_model , fx , fy , cx , cy ) ;
}
if ( hog_output_file . is_open ( ) )
{
output_HOG_frame ( & hog_output_file , detection_success , hog_descriptor , num_hog_rows , num_hog_cols ) ;
}
// Write the similarity normalised output
if ( ! output_similarity_align . empty ( ) )
{
if ( sim_warped_img . channels ( ) = = 3 & & grayscale )
{
cvtColor ( sim_warped_img , sim_warped_img , CV_BGR2GRAY ) ;
}
char name [ 100 ] ;
// output the frame number
2016-07-31 16:09:35 +02:00
std : : sprintf ( name , " frame_det_%06d.bmp " , frame_count ) ;
2016-04-28 21:40:36 +02:00
// Construct the output filename
boost : : filesystem : : path slash ( " / " ) ;
std : : string preferredSlash = slash . make_preferred ( ) . string ( ) ;
string out_file = output_similarity_align [ f_n ] + preferredSlash + string ( name ) ;
2016-08-01 16:14:58 +02:00
bool write_success = imwrite ( out_file , sim_warped_img ) ;
if ( ! write_success )
{
cout < < " Could not output similarity aligned image image " < < endl ;
return 1 ;
}
2016-04-28 21:40:36 +02:00
}
// Visualising the tracker
visualise_tracking ( captured_image , face_model , det_parameters , gazeDirection0 , gazeDirection1 , frame_count , fx , fy , cx , cy ) ;
// Output the landmarks, pose, gaze, parameters and AUs
outputAllFeatures ( & output_file , output_2D_landmarks , output_3D_landmarks , output_model_params , output_pose , output_AUs , output_gaze ,
face_model , frame_count , time_stamp , detection_success , gazeDirection0 , gazeDirection1 ,
pose_estimate , fx , fy , cx , cy , face_analyser ) ;
// output the tracked video
if ( ! tracked_videos_output . empty ( ) )
{
writerFace < < captured_image ;
}
if ( video_input )
{
video_capture > > captured_image ;
}
else
{
curr_img + + ;
if ( curr_img < ( int ) input_image_files [ f_n ] . size ( ) )
{
string curr_img_file = input_image_files [ f_n ] [ curr_img ] ;
captured_image = cv : : imread ( curr_img_file , - 1 ) ;
}
else
{
captured_image = cv : : Mat ( ) ;
}
}
// detect key presses
char character_press = cv : : waitKey ( 1 ) ;
// restart the tracker
if ( character_press = = ' r ' )
{
face_model . Reset ( ) ;
}
// quit the application
else if ( character_press = = ' q ' )
{
return ( 0 ) ;
}
// Update the frame count
frame_count + + ;
if ( total_frames ! = - 1 )
{
if ( ( double ) frame_count / ( double ) total_frames > = reported_completion / 10.0 )
{
cout < < reported_completion * 10 < < " % " ;
reported_completion = reported_completion + 1 ;
}
}
}
output_file . close ( ) ;
2016-06-03 22:53:27 +02:00
if ( output_files . size ( ) > 0 & & output_AUs )
2016-04-28 21:40:36 +02:00
{
2016-06-03 22:53:27 +02:00
cout < < " Postprocessing the Action Unit predictions " < < endl ;
post_process_output_file ( face_analyser , output_files [ f_n ] , dynamic ) ;
2016-04-28 21:40:36 +02:00
}
// Reset the models for the next video
face_analyser . Reset ( ) ;
face_model . Reset ( ) ;
frame_count = 0 ;
curr_img = - 1 ;
if ( total_frames ! = - 1 )
{
cout < < endl ;
}
// break out of the loop if done with all the files (or using a webcam)
2016-05-24 22:51:18 +02:00
if ( ( video_input & & f_n = = input_files . size ( ) - 1 ) | | ( ! video_input & & f_n = = input_image_files . size ( ) - 1 ) )
2016-04-28 21:40:36 +02:00
{
done = true ;
}
}
return 0 ;
}
// Allows for post processing of the AU signal
2016-06-03 22:53:27 +02:00
void post_process_output_file ( FaceAnalysis : : FaceAnalyser & face_analyser , string output_file , bool dynamic )
2016-04-28 21:40:36 +02:00
{
vector < double > certainties ;
vector < bool > successes ;
vector < double > timestamps ;
vector < std : : pair < std : : string , vector < double > > > predictions_reg ;
vector < std : : pair < std : : string , vector < double > > > predictions_class ;
// Construct the new values to overwrite the output file with
2016-06-03 22:53:27 +02:00
face_analyser . ExtractAllPredictionsOfflineReg ( predictions_reg , certainties , successes , timestamps , dynamic ) ;
face_analyser . ExtractAllPredictionsOfflineClass ( predictions_class , certainties , successes , timestamps , dynamic ) ;
2016-04-28 21:40:36 +02:00
int num_class = predictions_class . size ( ) ;
int num_reg = predictions_reg . size ( ) ;
// Extract the indices of writing out first
vector < string > au_reg_names = face_analyser . GetAURegNames ( ) ;
std : : sort ( au_reg_names . begin ( ) , au_reg_names . end ( ) ) ;
vector < int > inds_reg ;
// write out ar the correct index
for ( string au_name : au_reg_names )
{
for ( int i = 0 ; i < num_reg ; + + i )
{
if ( au_name . compare ( predictions_reg [ i ] . first ) = = 0 )
{
inds_reg . push_back ( i ) ;
break ;
}
}
}
vector < string > au_class_names = face_analyser . GetAUClassNames ( ) ;
std : : sort ( au_class_names . begin ( ) , au_class_names . end ( ) ) ;
vector < int > inds_class ;
// write out ar the correct index
for ( string au_name : au_class_names )
{
for ( int i = 0 ; i < num_class ; + + i )
{
if ( au_name . compare ( predictions_class [ i ] . first ) = = 0 )
{
inds_class . push_back ( i ) ;
break ;
}
}
}
// Read all of the output file in
vector < string > output_file_contents ;
std : : ifstream infile ( output_file ) ;
string line ;
while ( std : : getline ( infile , line ) )
output_file_contents . push_back ( line ) ;
infile . close ( ) ;
// Read the header and find all _r and _c parts in a file and use their indices
std : : vector < std : : string > tokens ;
boost : : split ( tokens , output_file_contents [ 0 ] , boost : : is_any_of ( " , " ) ) ;
int begin_ind = - 1 ;
for ( int i = 0 ; i < tokens . size ( ) ; + + i )
{
if ( tokens [ i ] . find ( " AU " ) ! = string : : npos & & begin_ind = = - 1 )
{
begin_ind = i ;
break ;
}
}
int end_ind = begin_ind + num_class + num_reg ;
// Now overwrite the whole file
std : : ofstream outfile ( output_file , ios_base : : out ) ;
// Write the header
outfile < < output_file_contents [ 0 ] . c_str ( ) < < endl ;
// Write the contents
for ( int i = 1 ; i < output_file_contents . size ( ) ; + + i )
{
std : : vector < std : : string > tokens ;
boost : : split ( tokens , output_file_contents [ i ] , boost : : is_any_of ( " , " ) ) ;
outfile < < tokens [ 0 ] ;
for ( int t = 1 ; t < tokens . size ( ) ; + + t )
{
if ( t > = begin_ind & & t < end_ind )
{
if ( t - begin_ind < num_reg )
{
2016-08-01 19:39:52 +02:00
outfile < < " , " < < predictions_reg [ inds_reg [ t - begin_ind ] ] . second [ i - 1 ] ;
2016-04-28 21:40:36 +02:00
}
else
{
2016-08-01 19:39:52 +02:00
outfile < < " , " < < predictions_class [ inds_class [ t - begin_ind - num_reg ] ] . second [ i - 1 ] ;
2016-04-28 21:40:36 +02:00
}
}
else
{
2016-08-01 19:39:52 +02:00
outfile < < " , " < < tokens [ t ] ;
2016-04-28 21:40:36 +02:00
}
}
outfile < < endl ;
}
2016-05-19 17:51:32 +02:00
}
void prepareOutputFile ( std : : ofstream * output_file , bool output_2D_landmarks , bool output_3D_landmarks ,
bool output_model_params , bool output_pose , bool output_AUs , bool output_gaze ,
int num_landmarks , int num_model_modes , vector < string > au_names_class , vector < string > au_names_reg )
{
* output_file < < " frame, timestamp, confidence, success " ;
if ( output_gaze )
{
* output_file < < " , gaze_0_x, gaze_0_y, gaze_0_z, gaze_1_x, gaze_1_y, gaze_2_z " ;
}
if ( output_pose )
{
* output_file < < " , pose_Tx, pose_Ty, pose_Tz, pose_Rx, pose_Ry, pose_Rz " ;
}
if ( output_2D_landmarks )
{
for ( int i = 0 ; i < num_landmarks ; + + i )
{
* output_file < < " , x_ " < < i ;
}
for ( int i = 0 ; i < num_landmarks ; + + i )
{
* output_file < < " , y_ " < < i ;
}
}
if ( output_3D_landmarks )
{
for ( int i = 0 ; i < num_landmarks ; + + i )
{
* output_file < < " , X_ " < < i ;
}
for ( int i = 0 ; i < num_landmarks ; + + i )
{
* output_file < < " , Y_ " < < i ;
}
for ( int i = 0 ; i < num_landmarks ; + + i )
{
* output_file < < " , Z_ " < < i ;
}
}
// Outputting model parameters (rigid and non-rigid), the first parameters are the 6 rigid shape parameters, they are followed by the non rigid shape parameters
if ( output_model_params )
{
* output_file < < " , p_scale, p_rx, p_ry, p_rz, p_tx, p_ty " ;
for ( int i = 0 ; i < num_model_modes ; + + i )
{
* output_file < < " , p_ " < < i ;
}
}
if ( output_AUs )
{
std : : sort ( au_names_reg . begin ( ) , au_names_reg . end ( ) ) ;
for ( string reg_name : au_names_reg )
{
* output_file < < " , " < < reg_name < < " _r " ;
}
std : : sort ( au_names_class . begin ( ) , au_names_class . end ( ) ) ;
for ( string class_name : au_names_class )
{
* output_file < < " , " < < class_name < < " _c " ;
}
}
* output_file < < endl ;
}
// Output all of the information into one file in one go (quite a few parameters, but simplifies the flow)
void outputAllFeatures ( std : : ofstream * output_file , bool output_2D_landmarks , bool output_3D_landmarks ,
bool output_model_params , bool output_pose , bool output_AUs , bool output_gaze ,
const LandmarkDetector : : CLNF & face_model , int frame_count , double time_stamp , bool detection_success ,
cv : : Point3f gazeDirection0 , cv : : Point3f gazeDirection1 , const cv : : Vec6d & pose_estimate , double fx , double fy , double cx , double cy ,
const FaceAnalysis : : FaceAnalyser & face_analyser )
{
double confidence = 0.5 * ( 1 - face_model . detection_certainty ) ;
* output_file < < frame_count + 1 < < " , " < < time_stamp < < " , " < < confidence < < " , " < < detection_success ;
// Output the estimated gaze
if ( output_gaze )
{
* output_file < < " , " < < gazeDirection0 . x < < " , " < < gazeDirection0 . y < < " , " < < gazeDirection0 . z
< < " , " < < gazeDirection1 . x < < " , " < < gazeDirection1 . y < < " , " < < gazeDirection1 . z ;
}
// Output the estimated head pose
if ( output_pose )
{
2016-08-01 19:39:52 +02:00
if ( face_model . tracking_initialised )
{
* output_file < < " , " < < pose_estimate [ 0 ] < < " , " < < pose_estimate [ 1 ] < < " , " < < pose_estimate [ 2 ]
< < " , " < < pose_estimate [ 3 ] < < " , " < < pose_estimate [ 4 ] < < " , " < < pose_estimate [ 5 ] ;
}
else
{
* output_file < < " , 0, 0, 0, 0, 0, 0 " ;
}
2016-05-19 17:51:32 +02:00
}
// Output the detected 2D facial landmarks
if ( output_2D_landmarks )
{
for ( int i = 0 ; i < face_model . pdm . NumberOfPoints ( ) * 2 ; + + i )
{
2016-08-01 19:39:52 +02:00
if ( face_model . tracking_initialised )
{
* output_file < < " , " < < face_model . detected_landmarks . at < double > ( i ) ;
}
else
{
* output_file < < " , 0 " ;
}
2016-05-19 17:51:32 +02:00
}
}
// Output the detected 3D facial landmarks
if ( output_3D_landmarks )
{
cv : : Mat_ < double > shape_3D = face_model . GetShape ( fx , fy , cx , cy ) ;
for ( int i = 0 ; i < face_model . pdm . NumberOfPoints ( ) * 3 ; + + i )
{
2016-08-01 19:39:52 +02:00
if ( face_model . tracking_initialised )
{
* output_file < < " , " < < shape_3D . at < double > ( i ) ;
}
else
{
* output_file < < " , 0 " ;
}
2016-05-19 17:51:32 +02:00
}
}
if ( output_model_params )
{
for ( int i = 0 ; i < 6 ; + + i )
{
2016-08-01 19:39:52 +02:00
if ( face_model . tracking_initialised )
{
* output_file < < " , " < < face_model . params_global [ i ] ;
}
else
{
* output_file < < " , 0 " ;
}
2016-05-19 17:51:32 +02:00
}
for ( int i = 0 ; i < face_model . pdm . NumberOfModes ( ) ; + + i )
{
2016-08-01 19:39:52 +02:00
if ( face_model . tracking_initialised )
{
* output_file < < " , " < < face_model . params_local . at < double > ( i , 0 ) ;
}
else
{
* output_file < < " , 0 " ;
}
2016-05-19 17:51:32 +02:00
}
}
if ( output_AUs )
{
auto aus_reg = face_analyser . GetCurrentAUsReg ( ) ;
vector < string > au_reg_names = face_analyser . GetAURegNames ( ) ;
std : : sort ( au_reg_names . begin ( ) , au_reg_names . end ( ) ) ;
// write out ar the correct index
for ( string au_name : au_reg_names )
{
for ( auto au_reg : aus_reg )
{
if ( au_name . compare ( au_reg . first ) = = 0 )
{
* output_file < < " , " < < au_reg . second ;
break ;
}
}
}
if ( aus_reg . size ( ) = = 0 )
{
for ( size_t p = 0 ; p < face_analyser . GetAURegNames ( ) . size ( ) ; + + p )
{
* output_file < < " , 0 " ;
}
}
auto aus_class = face_analyser . GetCurrentAUsClass ( ) ;
vector < string > au_class_names = face_analyser . GetAUClassNames ( ) ;
std : : sort ( au_class_names . begin ( ) , au_class_names . end ( ) ) ;
// write out ar the correct index
for ( string au_name : au_class_names )
{
for ( auto au_class : aus_class )
{
if ( au_name . compare ( au_class . first ) = = 0 )
{
* output_file < < " , " < < au_class . second ;
break ;
}
}
}
if ( aus_class . size ( ) = = 0 )
{
for ( size_t p = 0 ; p < face_analyser . GetAUClassNames ( ) . size ( ) ; + + p )
{
* output_file < < " , 0 " ;
}
}
}
* output_file < < endl ;
}
void get_output_feature_params ( vector < string > & output_similarity_aligned , vector < string > & output_hog_aligned_files , double & similarity_scale ,
2016-07-31 22:31:17 +02:00
int & similarity_size , bool & grayscale , bool & verbose , bool & dynamic ,
2016-05-19 17:51:32 +02:00
bool & output_2D_landmarks , bool & output_3D_landmarks , bool & output_model_params , bool & output_pose , bool & output_AUs , bool & output_gaze ,
vector < string > & arguments )
{
output_similarity_aligned . clear ( ) ;
output_hog_aligned_files . clear ( ) ;
bool * valid = new bool [ arguments . size ( ) ] ;
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
valid [ i ] = true ;
}
string output_root = " " ;
2016-06-03 22:53:27 +02:00
// By default the model is dynamic
dynamic = true ;
2016-08-01 02:55:29 +02:00
string separator = string ( 1 , boost : : filesystem : : path : : preferred_separator ) ;
2016-05-19 17:51:32 +02:00
// First check if there is a root argument (so that videos and outputs could be defined more easilly)
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
if ( arguments [ i ] . compare ( " -root " ) = = 0 )
{
2016-08-01 02:55:29 +02:00
output_root = arguments [ i + 1 ] + separator ;
2016-05-19 17:51:32 +02:00
i + + ;
}
if ( arguments [ i ] . compare ( " -outroot " ) = = 0 )
{
2016-08-01 02:55:29 +02:00
output_root = arguments [ i + 1 ] + separator ;
2016-05-19 17:51:32 +02:00
i + + ;
}
}
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
if ( arguments [ i ] . compare ( " -simalign " ) = = 0 )
{
output_similarity_aligned . push_back ( output_root + arguments [ i + 1 ] ) ;
create_directory ( output_root + arguments [ i + 1 ] ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -hogalign " ) = = 0 )
{
output_hog_aligned_files . push_back ( output_root + arguments [ i + 1 ] ) ;
create_directory_from_file ( output_root + arguments [ i + 1 ] ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -verbose " ) = = 0 )
{
verbose = true ;
}
2016-06-03 22:53:27 +02:00
else if ( arguments [ i ] . compare ( " -au_static " ) = = 0 )
{
dynamic = false ;
}
2016-05-19 17:51:32 +02:00
else if ( arguments [ i ] . compare ( " -g " ) = = 0 )
{
grayscale = true ;
valid [ i ] = false ;
}
else if ( arguments [ i ] . compare ( " -simscale " ) = = 0 )
{
similarity_scale = stod ( arguments [ i + 1 ] ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -simsize " ) = = 0 )
{
similarity_size = stoi ( arguments [ i + 1 ] ) ;
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -no2Dfp " ) = = 0 )
{
output_2D_landmarks = false ;
valid [ i ] = false ;
}
else if ( arguments [ i ] . compare ( " -no3Dfp " ) = = 0 )
{
output_3D_landmarks = false ;
valid [ i ] = false ;
}
else if ( arguments [ i ] . compare ( " -noMparams " ) = = 0 )
{
output_model_params = false ;
valid [ i ] = false ;
}
else if ( arguments [ i ] . compare ( " -noPose " ) = = 0 )
{
output_pose = false ;
valid [ i ] = false ;
}
else if ( arguments [ i ] . compare ( " -noAUs " ) = = 0 )
{
output_AUs = false ;
valid [ i ] = false ;
}
else if ( arguments [ i ] . compare ( " -noGaze " ) = = 0 )
{
output_gaze = false ;
valid [ i ] = false ;
}
}
for ( int i = arguments . size ( ) - 1 ; i > = 0 ; - - i )
{
if ( ! valid [ i ] )
{
arguments . erase ( arguments . begin ( ) + i ) ;
}
}
}
// Can process images via directories creating a separate output file per directory
void get_image_input_output_params_feats ( vector < vector < string > > & input_image_files , bool & as_video , vector < string > & arguments )
{
bool * valid = new bool [ arguments . size ( ) ] ;
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
valid [ i ] = true ;
if ( arguments [ i ] . compare ( " -fdir " ) = = 0 )
{
// parse the -fdir directory by reading in all of the .png and .jpg files in it
path image_directory ( arguments [ i + 1 ] ) ;
try
{
// does the file exist and is it a directory
if ( exists ( image_directory ) & & is_directory ( image_directory ) )
{
vector < path > file_in_directory ;
copy ( directory_iterator ( image_directory ) , directory_iterator ( ) , back_inserter ( file_in_directory ) ) ;
// Sort the images in the directory first
sort ( file_in_directory . begin ( ) , file_in_directory . end ( ) ) ;
vector < string > curr_dir_files ;
for ( vector < path > : : const_iterator file_iterator ( file_in_directory . begin ( ) ) ; file_iterator ! = file_in_directory . end ( ) ; + + file_iterator )
{
// Possible image extension .jpg and .png
if ( file_iterator - > extension ( ) . string ( ) . compare ( " .jpg " ) = = 0 | | file_iterator - > extension ( ) . string ( ) . compare ( " .png " ) = = 0 )
{
curr_dir_files . push_back ( file_iterator - > string ( ) ) ;
}
}
input_image_files . push_back ( curr_dir_files ) ;
}
}
catch ( const filesystem_error & ex )
{
cout < < ex . what ( ) < < ' \n ' ;
}
valid [ i ] = false ;
valid [ i + 1 ] = false ;
i + + ;
}
else if ( arguments [ i ] . compare ( " -asvid " ) = = 0 )
{
as_video = true ;
}
}
// Clear up the argument list
for ( int i = arguments . size ( ) - 1 ; i > = 0 ; - - i )
{
if ( ! valid [ i ] )
{
arguments . erase ( arguments . begin ( ) + i ) ;
}
}
}
void output_HOG_frame ( std : : ofstream * hog_file , bool good_frame , const cv : : Mat_ < double > & hog_descriptor , int num_rows , int num_cols )
{
// Using FHOGs, hence 31 channels
int num_channels = 31 ;
hog_file - > write ( ( char * ) ( & num_cols ) , 4 ) ;
hog_file - > write ( ( char * ) ( & num_rows ) , 4 ) ;
hog_file - > write ( ( char * ) ( & num_channels ) , 4 ) ;
// Not the best way to store a bool, but will be much easier to read it
float good_frame_float ;
if ( good_frame )
good_frame_float = 1 ;
else
good_frame_float = - 1 ;
hog_file - > write ( ( char * ) ( & good_frame_float ) , 4 ) ;
cv : : MatConstIterator_ < double > descriptor_it = hog_descriptor . begin ( ) ;
for ( int y = 0 ; y < num_cols ; + + y )
{
for ( int x = 0 ; x < num_rows ; + + x )
{
for ( unsigned int o = 0 ; o < 31 ; + + o )
{
float hog_data = ( float ) ( * descriptor_it + + ) ;
hog_file - > write ( ( char * ) & hog_data , 4 ) ;
}
}
}
}