2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED <20> AS IS<49> FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called <20> open source<63> software licenses (<28> Open Source
// Components<74> ), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensee<65> s request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72> aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72> aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72> aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
# include "stdafx.h"
# include <LandmarkDetectorModel.h>
// Boost includes
# include <filesystem.hpp>
# include <filesystem/fstream.hpp>
// TBB includes
# include <tbb/tbb.h>
// Local includes
# include <LandmarkDetectorUtils.h>
using namespace LandmarkDetector ;
//=============================================================================
//=============================================================================
// Constructors
// A default constructor
CLNF : : CLNF ( )
{
FaceModelParameters parameters ;
this - > Read ( parameters . model_location ) ;
}
// Constructor from a model file
CLNF : : CLNF ( string fname )
{
this - > Read ( fname ) ;
}
// Copy constructor (makes a deep copy of CLNF)
CLNF : : CLNF ( const CLNF & other ) : pdm ( other . pdm ) , params_local ( other . params_local . clone ( ) ) , params_global ( other . params_global ) , detected_landmarks ( other . detected_landmarks . clone ( ) ) ,
landmark_likelihoods ( other . landmark_likelihoods . clone ( ) ) , patch_experts ( other . patch_experts ) , landmark_validator ( other . landmark_validator ) , face_detector_location ( other . face_detector_location ) ,
hierarchical_mapping ( other . hierarchical_mapping ) , hierarchical_models ( other . hierarchical_models ) , hierarchical_model_names ( other . hierarchical_model_names ) ,
hierarchical_params ( other . hierarchical_params ) , eye_model ( other . eye_model )
{
this - > detection_success = other . detection_success ;
this - > tracking_initialised = other . tracking_initialised ;
this - > detection_certainty = other . detection_certainty ;
this - > model_likelihood = other . model_likelihood ;
this - > failures_in_a_row = other . failures_in_a_row ;
// Load the CascadeClassifier (as it does not have a proper copy constructor)
if ( ! face_detector_location . empty ( ) )
{
this - > face_detector_HAAR . load ( face_detector_location ) ;
}
// Make sure the matrices are allocated properly
this - > triangulations . resize ( other . triangulations . size ( ) ) ;
for ( size_t i = 0 ; i < other . triangulations . size ( ) ; + + i )
{
// Make sure the matrix is copied.
this - > triangulations [ i ] = other . triangulations [ i ] . clone ( ) ;
}
// Make sure the matrices are allocated properly
for ( std : : map < int , cv : : Mat_ < float > > : : const_iterator it = other . kde_resp_precalc . begin ( ) ; it ! = other . kde_resp_precalc . end ( ) ; it + + )
{
// Make sure the matrix is copied.
this - > kde_resp_precalc . insert ( std : : pair < int , cv : : Mat_ < float > > ( it - > first , it - > second . clone ( ) ) ) ;
}
this - > face_detector_HOG = dlib : : get_frontal_face_detector ( ) ;
}
// Assignment operator for lvalues (makes a deep copy of CLNF)
CLNF & CLNF : : operator = ( const CLNF & other )
{
if ( this ! = & other ) // protect against invalid self-assignment
{
pdm = PDM ( other . pdm ) ;
params_local = other . params_local . clone ( ) ;
params_global = other . params_global ;
detected_landmarks = other . detected_landmarks . clone ( ) ;
landmark_likelihoods = other . landmark_likelihoods . clone ( ) ;
patch_experts = Patch_experts ( other . patch_experts ) ;
landmark_validator = DetectionValidator ( other . landmark_validator ) ;
face_detector_location = other . face_detector_location ;
this - > detection_success = other . detection_success ;
this - > tracking_initialised = other . tracking_initialised ;
this - > detection_certainty = other . detection_certainty ;
this - > model_likelihood = other . model_likelihood ;
this - > failures_in_a_row = other . failures_in_a_row ;
this - > eye_model = other . eye_model ;
// Load the CascadeClassifier (as it does not have a proper copy constructor)
if ( ! face_detector_location . empty ( ) )
{
this - > face_detector_HAAR . load ( face_detector_location ) ;
}
// Make sure the matrices are allocated properly
this - > triangulations . resize ( other . triangulations . size ( ) ) ;
for ( size_t i = 0 ; i < other . triangulations . size ( ) ; + + i )
{
// Make sure the matrix is copied.
this - > triangulations [ i ] = other . triangulations [ i ] . clone ( ) ;
}
// Make sure the matrices are allocated properly
for ( std : : map < int , cv : : Mat_ < float > > : : const_iterator it = other . kde_resp_precalc . begin ( ) ; it ! = other . kde_resp_precalc . end ( ) ; it + + )
{
// Make sure the matrix is copied.
this - > kde_resp_precalc . insert ( std : : pair < int , cv : : Mat_ < float > > ( it - > first , it - > second . clone ( ) ) ) ;
}
// Copy over the hierarchical models
this - > hierarchical_mapping = other . hierarchical_mapping ;
this - > hierarchical_models = other . hierarchical_models ;
this - > hierarchical_model_names = other . hierarchical_model_names ;
this - > hierarchical_params = other . hierarchical_params ;
}
face_detector_HOG = dlib : : get_frontal_face_detector ( ) ;
return * this ;
}
// Move constructor
CLNF : : CLNF ( const CLNF & & other )
{
this - > detection_success = other . detection_success ;
this - > tracking_initialised = other . tracking_initialised ;
this - > detection_certainty = other . detection_certainty ;
this - > model_likelihood = other . model_likelihood ;
this - > failures_in_a_row = other . failures_in_a_row ;
pdm = other . pdm ;
params_local = other . params_local ;
params_global = other . params_global ;
detected_landmarks = other . detected_landmarks ;
landmark_likelihoods = other . landmark_likelihoods ;
patch_experts = other . patch_experts ;
landmark_validator = other . landmark_validator ;
face_detector_location = other . face_detector_location ;
face_detector_HAAR = other . face_detector_HAAR ;
triangulations = other . triangulations ;
kde_resp_precalc = other . kde_resp_precalc ;
face_detector_HOG = dlib : : get_frontal_face_detector ( ) ;
// Copy over the hierarchical models
this - > hierarchical_mapping = other . hierarchical_mapping ;
this - > hierarchical_models = other . hierarchical_models ;
this - > hierarchical_model_names = other . hierarchical_model_names ;
this - > hierarchical_params = other . hierarchical_params ;
this - > eye_model = other . eye_model ;
}
// Assignment operator for rvalues
CLNF & CLNF : : operator = ( const CLNF & & other )
{
this - > detection_success = other . detection_success ;
this - > tracking_initialised = other . tracking_initialised ;
this - > detection_certainty = other . detection_certainty ;
this - > model_likelihood = other . model_likelihood ;
this - > failures_in_a_row = other . failures_in_a_row ;
pdm = other . pdm ;
params_local = other . params_local ;
params_global = other . params_global ;
detected_landmarks = other . detected_landmarks ;
landmark_likelihoods = other . landmark_likelihoods ;
patch_experts = other . patch_experts ;
landmark_validator = other . landmark_validator ;
face_detector_location = other . face_detector_location ;
face_detector_HAAR = other . face_detector_HAAR ;
triangulations = other . triangulations ;
kde_resp_precalc = other . kde_resp_precalc ;
face_detector_HOG = dlib : : get_frontal_face_detector ( ) ;
// Copy over the hierarchical models
this - > hierarchical_mapping = other . hierarchical_mapping ;
this - > hierarchical_models = other . hierarchical_models ;
this - > hierarchical_model_names = other . hierarchical_model_names ;
this - > hierarchical_params = other . hierarchical_params ;
this - > eye_model = other . eye_model ;
return * this ;
}
void CLNF : : Read_CLNF ( string clnf_location )
{
// Location of modules
ifstream locations ( clnf_location . c_str ( ) , ios_base : : in ) ;
if ( ! locations . is_open ( ) )
{
cout < < " Couldn't open the CLNF model file aborting " < < endl ;
cout . flush ( ) ;
return ;
}
string line ;
vector < string > intensity_expert_locations ;
vector < string > depth_expert_locations ;
vector < string > ccnf_expert_locations ;
// The other module locations should be defined as relative paths from the main model
boost : : filesystem : : path root = boost : : filesystem : : path ( clnf_location ) . parent_path ( ) ;
// The main file contains the references to other files
while ( ! locations . eof ( ) )
{
getline ( locations , line ) ;
stringstream lineStream ( line ) ;
string module ;
string location ;
// figure out which module is to be read from which file
lineStream > > module ;
getline ( lineStream , location ) ;
if ( location . size ( ) > 0 )
location . erase ( location . begin ( ) ) ; // remove the first space
// remove carriage return at the end for compatibility with unix systems
if ( location . size ( ) > 0 & & location . at ( location . size ( ) - 1 ) = = ' \r ' )
{
location = location . substr ( 0 , location . size ( ) - 1 ) ;
}
// append the lovstion to root location (boost syntax)
location = ( root / location ) . string ( ) ;
if ( module . compare ( " PDM " ) = = 0 )
{
cout < < " Reading the PDM module from: " < < location < < " .... " ;
pdm . Read ( location ) ;
cout < < " Done " < < endl ;
}
else if ( module . compare ( " Triangulations " ) = = 0 )
{
cout < < " Reading the Triangulations module from: " < < location < < " .... " ;
ifstream triangulationFile ( location . c_str ( ) , ios_base : : in ) ;
LandmarkDetector : : SkipComments ( triangulationFile ) ;
int numViews ;
triangulationFile > > numViews ;
// read in the triangulations
triangulations . resize ( numViews ) ;
for ( int i = 0 ; i < numViews ; + + i )
{
LandmarkDetector : : SkipComments ( triangulationFile ) ;
LandmarkDetector : : ReadMat ( triangulationFile , triangulations [ i ] ) ;
}
cout < < " Done " < < endl ;
}
else if ( module . compare ( " PatchesIntensity " ) = = 0 )
{
intensity_expert_locations . push_back ( location ) ;
}
else if ( module . compare ( " PatchesDepth " ) = = 0 )
{
depth_expert_locations . push_back ( location ) ;
}
else if ( module . compare ( " PatchesCCNF " ) = = 0 )
{
ccnf_expert_locations . push_back ( location ) ;
}
}
// Initialise the patch experts
patch_experts . Read ( intensity_expert_locations , depth_expert_locations , ccnf_expert_locations ) ;
// Read in a face detector
face_detector_HOG = dlib : : get_frontal_face_detector ( ) ;
}
void CLNF : : Read ( string main_location )
{
cout < < " Reading the CLNF landmark detector/tracker from: " < < main_location < < endl ;
ifstream locations ( main_location . c_str ( ) , ios_base : : in ) ;
if ( ! locations . is_open ( ) )
{
cout < < " Couldn't open the model file, aborting " < < endl ;
return ;
}
string line ;
// The other module locations should be defined as relative paths from the main model
boost : : filesystem : : path root = boost : : filesystem : : path ( main_location ) . parent_path ( ) ;
// The main file contains the references to other files
while ( ! locations . eof ( ) )
{
getline ( locations , line ) ;
stringstream lineStream ( line ) ;
string module ;
string location ;
// figure out which module is to be read from which file
lineStream > > module ;
lineStream > > location ;
// remove carriage return at the end for compatibility with unix systems
if ( location . size ( ) > 0 & & location . at ( location . size ( ) - 1 ) = = ' \r ' )
{
location = location . substr ( 0 , location . size ( ) - 1 ) ;
}
// append to root
location = ( root / location ) . string ( ) ;
if ( module . compare ( " LandmarkDetector " ) = = 0 )
{
cout < < " Reading the landmark detector module from: " < < location < < endl ;
// The CLNF module includes the PDM and the patch experts
Read_CLNF ( location ) ;
}
else if ( module . compare ( " LandmarkDetector_part " ) = = 0 )
{
string part_name ;
lineStream > > part_name ;
cout < < " Reading part based module.... " < < part_name < < endl ;
vector < pair < int , int > > mappings ;
while ( ! lineStream . eof ( ) )
{
int ind_in_main ;
lineStream > > ind_in_main ;
int ind_in_part ;
lineStream > > ind_in_part ;
mappings . push_back ( pair < int , int > ( ind_in_main , ind_in_part ) ) ;
}
this - > hierarchical_mapping . push_back ( mappings ) ;
CLNF part_model ( location ) ;
this - > hierarchical_models . push_back ( part_model ) ;
this - > hierarchical_model_names . push_back ( part_name ) ;
FaceModelParameters params ;
params . validate_detections = false ;
params . refine_hierarchical = false ;
params . refine_parameters = false ;
if ( part_name . compare ( " left_eye " ) = = 0 | | part_name . compare ( " right_eye " ) = = 0 )
{
vector < int > windows_large ;
windows_large . push_back ( 5 ) ;
windows_large . push_back ( 3 ) ;
vector < int > windows_small ;
windows_small . push_back ( 5 ) ;
windows_small . push_back ( 3 ) ;
params . window_sizes_init = windows_large ;
params . window_sizes_small = windows_small ;
params . window_sizes_current = windows_large ;
params . reg_factor = 0.1 ;
params . sigma = 2 ;
}
else if ( part_name . compare ( " left_eye_28 " ) = = 0 | | part_name . compare ( " right_eye_28 " ) = = 0 )
{
vector < int > windows_large ;
windows_large . push_back ( 3 ) ;
windows_large . push_back ( 5 ) ;
windows_large . push_back ( 9 ) ;
vector < int > windows_small ;
windows_small . push_back ( 3 ) ;
windows_small . push_back ( 5 ) ;
windows_small . push_back ( 9 ) ;
params . window_sizes_init = windows_large ;
params . window_sizes_small = windows_small ;
params . window_sizes_current = windows_large ;
params . reg_factor = 0.5 ;
params . sigma = 1.0 ;
eye_model = true ;
}
else if ( part_name . compare ( " mouth " ) = = 0 )
{
vector < int > windows_large ;
windows_large . push_back ( 7 ) ;
windows_large . push_back ( 7 ) ;
vector < int > windows_small ;
windows_small . push_back ( 7 ) ;
windows_small . push_back ( 7 ) ;
params . window_sizes_init = windows_large ;
params . window_sizes_small = windows_small ;
params . window_sizes_current = windows_large ;
params . reg_factor = 1.0 ;
params . sigma = 2.0 ;
}
else if ( part_name . compare ( " brow " ) = = 0 )
{
vector < int > windows_large ;
windows_large . push_back ( 11 ) ;
windows_large . push_back ( 9 ) ;
vector < int > windows_small ;
windows_small . push_back ( 11 ) ;
windows_small . push_back ( 9 ) ;
params . window_sizes_init = windows_large ;
params . window_sizes_small = windows_small ;
params . window_sizes_current = windows_large ;
params . reg_factor = 10.0 ;
params . sigma = 3.5 ;
}
else if ( part_name . compare ( " inner " ) = = 0 )
{
vector < int > windows_large ;
windows_large . push_back ( 9 ) ;
vector < int > windows_small ;
windows_small . push_back ( 9 ) ;
params . window_sizes_init = windows_large ;
params . window_sizes_small = windows_small ;
params . window_sizes_current = windows_large ;
params . reg_factor = 2.5 ;
params . sigma = 1.75 ;
params . weight_factor = 2.5 ;
}
this - > hierarchical_params . push_back ( params ) ;
cout < < " Done " < < endl ;
}
else if ( module . compare ( " DetectionValidator " ) = = 0 )
{
cout < < " Reading the landmark validation module.... " ;
landmark_validator . Read ( location ) ;
cout < < " Done " < < endl ;
}
}
detected_landmarks . create ( 2 * pdm . NumberOfPoints ( ) , 1 ) ;
detected_landmarks . setTo ( 0 ) ;
detection_success = false ;
tracking_initialised = false ;
model_likelihood = - 10 ; // very low
detection_certainty = 1 ; // very uncertain
// Initialising default values for the rest of the variables
// local parameters (shape)
params_local . create ( pdm . NumberOfModes ( ) , 1 ) ;
params_local . setTo ( 0.0 ) ;
// global parameters (pose) [scale, euler_x, euler_y, euler_z, tx, ty]
params_global = cv : : Vec6d ( 1 , 0 , 0 , 0 , 0 , 0 ) ;
failures_in_a_row = - 1 ;
}
// Resetting the model (for a new video, or complet reinitialisation
void CLNF : : Reset ( )
{
detected_landmarks . setTo ( 0 ) ;
detection_success = false ;
tracking_initialised = false ;
model_likelihood = - 10 ; // very low
detection_certainty = 1 ; // very uncertain
// local parameters (shape)
params_local . setTo ( 0.0 ) ;
// global parameters (pose) [scale, euler_x, euler_y, euler_z, tx, ty]
params_global = cv : : Vec6d ( 1 , 0 , 0 , 0 , 0 , 0 ) ;
failures_in_a_row = - 1 ;
face_template = cv : : Mat_ < uchar > ( ) ;
}
// Resetting the model, choosing the face nearest (x,y)
void CLNF : : Reset ( double x , double y )
{
// First reset the model overall
this - > Reset ( ) ;
// Now in the following frame when face detection takes place this is the point at which it will be preffered
this - > preference_det . x = x ;
this - > preference_det . y = y ;
}
// The main internal landmark detection call (should not be used externally?)
bool CLNF : : DetectLandmarks ( const cv : : Mat_ < uchar > & image , const cv : : Mat_ < float > & depth , FaceModelParameters & params )
{
// Fits from the current estimate of local and global parameters in the model
bool fit_success = Fit ( image , depth , params . window_sizes_current , params ) ;
// Store the landmarks converged on in detected_landmarks
pdm . CalcShape2D ( detected_landmarks , params_local , params_global ) ;
if ( params . refine_hierarchical & & hierarchical_models . size ( ) > 0 )
{
bool parts_used = false ;
// Do the hierarchical models in parallel
tbb : : parallel_for ( 0 , ( int ) hierarchical_models . size ( ) , [ & ] ( int part_model ) {
{
// Only do the synthetic eye models if we're doing gaze
if ( ! ( ( hierarchical_model_names [ part_model ] . compare ( " right_eye_28 " ) = = 0 | |
hierarchical_model_names [ part_model ] . compare ( " left_eye_28 " ) = = 0 )
& & ! params . track_gaze ) )
{
int n_part_points = hierarchical_models [ part_model ] . pdm . NumberOfPoints ( ) ;
vector < pair < int , int > > mappings = this - > hierarchical_mapping [ part_model ] ;
cv : : Mat_ < double > part_model_locs ( n_part_points * 2 , 1 , 0.0 ) ;
// Extract the corresponding landmarks
for ( size_t mapping_ind = 0 ; mapping_ind < mappings . size ( ) ; + + mapping_ind )
{
part_model_locs . at < double > ( mappings [ mapping_ind ] . second ) = detected_landmarks . at < double > ( mappings [ mapping_ind ] . first ) ;
part_model_locs . at < double > ( mappings [ mapping_ind ] . second + n_part_points ) = detected_landmarks . at < double > ( mappings [ mapping_ind ] . first + this - > pdm . NumberOfPoints ( ) ) ;
}
// Fit the part based model PDM
hierarchical_models [ part_model ] . pdm . CalcParams ( hierarchical_models [ part_model ] . params_global , hierarchical_models [ part_model ] . params_local , part_model_locs ) ;
// Only do this if we don't need to upsample
if ( params_global [ 0 ] > 0.9 * hierarchical_models [ part_model ] . patch_experts . patch_scaling [ 0 ] )
{
parts_used = true ;
this - > hierarchical_params [ part_model ] . window_sizes_current = this - > hierarchical_params [ part_model ] . window_sizes_init ;
// Do the actual landmark detection
hierarchical_models [ part_model ] . DetectLandmarks ( image , depth , hierarchical_params [ part_model ] ) ;
}
else
{
hierarchical_models [ part_model ] . pdm . CalcShape2D ( hierarchical_models [ part_model ] . detected_landmarks , hierarchical_models [ part_model ] . params_local , hierarchical_models [ part_model ] . params_global ) ;
}
}
}
} ) ;
// Recompute main model based on the fit part models
if ( parts_used )
{
2016-07-22 13:35:50 +00:00
for ( int part_model = 0 ; part_model < hierarchical_models . size ( ) ; + + part_model )
{
vector < pair < int , int > > mappings = this - > hierarchical_mapping [ part_model ] ;
if ( ! ( ( hierarchical_model_names [ part_model ] . compare ( " right_eye_28 " ) = = 0 | |
hierarchical_model_names [ part_model ] . compare ( " left_eye_28 " ) = = 0 )
& & ! params . track_gaze ) )
{
// Reincorporate the models into main tracker
for ( size_t mapping_ind = 0 ; mapping_ind < mappings . size ( ) ; + + mapping_ind )
{
detected_landmarks . at < double > ( mappings [ mapping_ind ] . first ) = hierarchical_models [ part_model ] . detected_landmarks . at < double > ( mappings [ mapping_ind ] . second ) ;
detected_landmarks . at < double > ( mappings [ mapping_ind ] . first + pdm . NumberOfPoints ( ) ) = hierarchical_models [ part_model ] . detected_landmarks . at < double > ( mappings [ mapping_ind ] . second + hierarchical_models [ part_model ] . pdm . NumberOfPoints ( ) ) ;
}
}
}
2016-04-28 19:40:36 +00:00
pdm . CalcParams ( params_global , params_local , detected_landmarks ) ;
pdm . CalcShape2D ( detected_landmarks , params_local , params_global ) ;
}
2016-07-22 13:35:50 +00:00
2016-04-28 19:40:36 +00:00
}
// Check detection correctness
if ( params . validate_detections & & fit_success )
{
cv : : Vec3d orientation ( params_global [ 1 ] , params_global [ 2 ] , params_global [ 3 ] ) ;
detection_certainty = landmark_validator . Check ( orientation , image , detected_landmarks ) ;
detection_success = detection_certainty < params . validation_boundary ;
}
else
{
detection_success = fit_success ;
if ( fit_success )
{
detection_certainty = - 1 ;
}
else
{
detection_certainty = 1 ;
}
}
return detection_success ;
}
//=============================================================================
bool CLNF : : Fit ( const cv : : Mat_ < uchar > & im , const cv : : Mat_ < float > & depthImg , const std : : vector < int > & window_sizes , const FaceModelParameters & parameters )
{
// Making sure it is a single channel image
assert ( im . channels ( ) = = 1 ) ;
// Placeholder for the landmarks
cv : : Mat_ < double > current_shape ( 2 * pdm . NumberOfPoints ( ) , 1 , 0.0 ) ;
int n = pdm . NumberOfPoints ( ) ;
cv : : Mat_ < float > depth_img_no_background ;
// Background elimination from the depth image
if ( ! depthImg . empty ( ) )
{
bool success = RemoveBackground ( depth_img_no_background , depthImg ) ;
// The attempted background removal can fail leading to tracking failure
if ( ! success )
{
return false ;
}
}
int num_scales = patch_experts . patch_scaling . size ( ) ;
// Storing the patch expert response maps
vector < cv : : Mat_ < float > > patch_expert_responses ( n ) ;
// Converting from image space to patch expert space (normalised for rotation and scale)
cv : : Matx22f sim_ref_to_img ;
cv : : Matx22d sim_img_to_ref ;
FaceModelParameters tmp_parameters = parameters ;
// Optimise the model across a number of areas of interest (usually in descending window size and ascending scale size)
for ( int scale = 0 ; scale < num_scales ; scale + + )
{
int window_size = window_sizes [ scale ] ;
if ( window_size = = 0 | | 0.9 * patch_experts . patch_scaling [ scale ] > params_global [ 0 ] )
continue ;
// The patch expert response computation
if ( scale ! = window_sizes . size ( ) - 1 )
{
patch_experts . Response ( patch_expert_responses , sim_ref_to_img , sim_img_to_ref , im , depth_img_no_background , pdm , params_global , params_local , window_size , scale ) ;
}
else
{
// Do not use depth for the final iteration as it is not as accurate
patch_experts . Response ( patch_expert_responses , sim_ref_to_img , sim_img_to_ref , im , cv : : Mat ( ) , pdm , params_global , params_local , window_size , scale ) ;
}
if ( parameters . refine_parameters = = true )
{
// Adapt the parameters based on scale (wan't to reduce regularisation as scale increases, but increa sigma and tikhonov)
tmp_parameters . reg_factor = parameters . reg_factor - 15 * log ( patch_experts . patch_scaling [ scale ] / 0.25 ) / log ( 2 ) ;
if ( tmp_parameters . reg_factor < = 0 )
tmp_parameters . reg_factor = 0.001 ;
tmp_parameters . sigma = parameters . sigma + 0.25 * log ( patch_experts . patch_scaling [ scale ] / 0.25 ) / log ( 2 ) ;
tmp_parameters . weight_factor = parameters . weight_factor + 2 * parameters . weight_factor * log ( patch_experts . patch_scaling [ scale ] / 0.25 ) / log ( 2 ) ;
}
// Get the current landmark locations
pdm . CalcShape2D ( current_shape , params_local , params_global ) ;
// Get the view used by patch experts
int view_id = patch_experts . GetViewIdx ( params_global , scale ) ;
// the actual optimisation step
this - > NU_RLMS ( params_global , params_local , patch_expert_responses , cv : : Vec6d ( params_global ) , params_local . clone ( ) , current_shape , sim_img_to_ref , sim_ref_to_img , window_size , view_id , true , scale , this - > landmark_likelihoods , tmp_parameters ) ;
// non-rigid optimisation
this - > model_likelihood = this - > NU_RLMS ( params_global , params_local , patch_expert_responses , cv : : Vec6d ( params_global ) , params_local . clone ( ) , current_shape , sim_img_to_ref , sim_ref_to_img , window_size , view_id , false , scale , this - > landmark_likelihoods , tmp_parameters ) ;
// Can't track very small images reliably (less than ~30px across)
if ( params_global [ 0 ] < 0.25 )
{
cout < < " Face too small for landmark detection " < < endl ;
return false ;
}
}
return true ;
}
void CLNF : : NonVectorisedMeanShift_precalc_kde ( cv : : Mat_ < float > & out_mean_shifts , const vector < cv : : Mat_ < float > > & patch_expert_responses , const cv : : Mat_ < float > & dxs , const cv : : Mat_ < float > & dys , int resp_size , float a , int scale , int view_id , map < int , cv : : Mat_ < float > > & kde_resp_precalc )
{
int n = dxs . rows ;
cv : : Mat_ < float > kde_resp ;
float step_size = 0.1 ;
// if this has not been precomputer, precompute it, otherwise use it
if ( kde_resp_precalc . find ( resp_size ) = = kde_resp_precalc . end ( ) )
{
kde_resp = cv : : Mat_ < float > ( ( int ) ( ( resp_size / step_size ) * ( resp_size / step_size ) ) , resp_size * resp_size ) ;
cv : : MatIterator_ < float > kde_it = kde_resp . begin ( ) ;
for ( int x = 0 ; x < resp_size / step_size ; x + + )
{
float dx = x * step_size ;
for ( int y = 0 ; y < resp_size / step_size ; y + + )
{
float dy = y * step_size ;
int ii , jj ;
float v , vx , vy ;
for ( ii = 0 ; ii < resp_size ; ii + + )
{
vx = ( dy - ii ) * ( dy - ii ) ;
for ( jj = 0 ; jj < resp_size ; jj + + )
{
vy = ( dx - jj ) * ( dx - jj ) ;
// the KDE evaluation of that point
v = exp ( a * ( vx + vy ) ) ;
* kde_it + + = v ;
}
}
}
}
kde_resp_precalc [ resp_size ] = kde_resp . clone ( ) ;
}
else
{
// use the precomputed version
kde_resp = kde_resp_precalc . find ( resp_size ) - > second ;
}
// for every point (patch) calculating mean-shift
for ( int i = 0 ; i < n ; i + + )
{
if ( patch_experts . visibilities [ scale ] [ view_id ] . at < int > ( i , 0 ) = = 0 )
{
out_mean_shifts . at < float > ( i , 0 ) = 0 ;
out_mean_shifts . at < float > ( i + n , 0 ) = 0 ;
continue ;
}
// indices of dx, dy
float dx = dxs . at < float > ( i ) ;
float dy = dys . at < float > ( i ) ;
// Ensure that we are within bounds (important for precalculation)
if ( dx < 0 )
dx = 0 ;
if ( dy < 0 )
dy = 0 ;
if ( dx > resp_size - step_size )
dx = resp_size - step_size ;
if ( dy > resp_size - step_size )
dy = resp_size - step_size ;
// Pick the row from precalculated kde that approximates the current dx, dy best
int closest_col = ( int ) ( dy / step_size + 0.5 ) ; // Plus 0.5 is there, as C++ rounds down with int cast
int closest_row = ( int ) ( dx / step_size + 0.5 ) ; // Plus 0.5 is there, as C++ rounds down with int cast
int idx = closest_row * ( ( int ) ( resp_size / step_size + 0.5 ) ) + closest_col ; // Plus 0.5 is there, as C++ rounds down with int cast
cv : : MatIterator_ < float > kde_it = kde_resp . begin ( ) + kde_resp . cols * idx ;
float mx = 0.0 ;
float my = 0.0 ;
float sum = 0.0 ;
// Iterate over the patch responses here
cv : : MatConstIterator_ < float > p = patch_expert_responses [ i ] . begin ( ) ;
for ( int ii = 0 ; ii < resp_size ; ii + + )
{
for ( int jj = 0 ; jj < resp_size ; jj + + )
{
// the KDE evaluation of that point multiplied by the probability at the current, xi, yi
float v = ( * p + + ) * ( * kde_it + + ) ;
sum + = v ;
// mean shift in x and y
mx + = v * jj ;
my + = v * ii ;
}
}
float msx = ( mx / sum - dx ) ;
float msy = ( my / sum - dy ) ;
out_mean_shifts . at < float > ( i , 0 ) = msx ;
out_mean_shifts . at < float > ( i + n , 0 ) = msy ;
}
}
void CLNF : : GetWeightMatrix ( cv : : Mat_ < float > & WeightMatrix , int scale , int view_id , const FaceModelParameters & parameters )
{
int n = pdm . NumberOfPoints ( ) ;
// Is the weight matrix needed at all
if ( parameters . weight_factor > 0 )
{
WeightMatrix = cv : : Mat_ < float > : : zeros ( n * 2 , n * 2 ) ;
for ( int p = 0 ; p < n ; p + + )
{
if ( ! patch_experts . ccnf_expert_intensity . empty ( ) )
{
// for the x dimension
WeightMatrix . at < float > ( p , p ) = WeightMatrix . at < float > ( p , p ) + patch_experts . ccnf_expert_intensity [ scale ] [ view_id ] [ p ] . patch_confidence ;
// for they y dimension
WeightMatrix . at < float > ( p + n , p + n ) = WeightMatrix . at < float > ( p , p ) ;
}
else
{
// Across the modalities add the confidences
for ( size_t pc = 0 ; pc < patch_experts . svr_expert_intensity [ scale ] [ view_id ] [ p ] . svr_patch_experts . size ( ) ; pc + + )
{
// for the x dimension
WeightMatrix . at < float > ( p , p ) = WeightMatrix . at < float > ( p , p ) + patch_experts . svr_expert_intensity [ scale ] [ view_id ] [ p ] . svr_patch_experts . at ( pc ) . confidence ;
}
// for the y dimension
WeightMatrix . at < float > ( p + n , p + n ) = WeightMatrix . at < float > ( p , p ) ;
}
}
WeightMatrix = parameters . weight_factor * WeightMatrix ;
}
else
{
WeightMatrix = cv : : Mat_ < float > : : eye ( n * 2 , n * 2 ) ;
}
}
//=============================================================================
double CLNF : : NU_RLMS ( cv : : Vec6d & final_global , cv : : Mat_ < double > & final_local , const vector < cv : : Mat_ < float > > & patch_expert_responses , const cv : : Vec6d & initial_global , const cv : : Mat_ < double > & initial_local ,
const cv : : Mat_ < double > & base_shape , const cv : : Matx22d & sim_img_to_ref , const cv : : Matx22f & sim_ref_to_img , int resp_size , int view_id , bool rigid , int scale , cv : : Mat_ < double > & landmark_lhoods ,
const FaceModelParameters & parameters )
{
int n = pdm . NumberOfPoints ( ) ;
// Mean, eigenvalues, eigenvectors
cv : : Mat_ < double > M = this - > pdm . mean_shape ;
cv : : Mat_ < double > E = this - > pdm . eigen_values ;
//Mat_<double> V = this->pdm.princ_comp;
int m = pdm . NumberOfModes ( ) ;
cv : : Vec6d current_global ( initial_global ) ;
cv : : Mat_ < float > current_local ;
initial_local . convertTo ( current_local , CV_32F ) ;
cv : : Mat_ < double > current_shape ;
cv : : Mat_ < double > previous_shape ;
// Pre-calculate the regularisation term
cv : : Mat_ < float > regTerm ;
if ( rigid )
{
regTerm = cv : : Mat_ < float > : : zeros ( 6 , 6 ) ;
}
else
{
cv : : Mat_ < double > regularisations = cv : : Mat_ < double > : : zeros ( 1 , 6 + m ) ;
// Setting the regularisation to the inverse of eigenvalues
cv : : Mat ( parameters . reg_factor / E ) . copyTo ( regularisations ( cv : : Rect ( 6 , 0 , m , 1 ) ) ) ;
cv : : Mat_ < double > regTerm_d = cv : : Mat : : diag ( regularisations . t ( ) ) ;
regTerm_d . convertTo ( regTerm , CV_32F ) ;
}
cv : : Mat_ < float > WeightMatrix ;
GetWeightMatrix ( WeightMatrix , scale , view_id , parameters ) ;
cv : : Mat_ < float > dxs , dys ;
// The preallocated memory for the mean shifts
cv : : Mat_ < float > mean_shifts ( 2 * pdm . NumberOfPoints ( ) , 1 , 0.0 ) ;
// Number of iterations
for ( int iter = 0 ; iter < parameters . num_optimisation_iteration ; iter + + )
{
// get the current estimates of x
pdm . CalcShape2D ( current_shape , current_local , current_global ) ;
if ( iter > 0 )
{
// if the shape hasn't changed terminate
if ( norm ( current_shape , previous_shape ) < 0.01 )
{
break ;
}
}
current_shape . copyTo ( previous_shape ) ;
// Jacobian, and transposed weighted jacobian
cv : : Mat_ < float > J , J_w_t ;
// calculate the appropriate Jacobians in 2D, even though the actual behaviour is in 3D, using small angle approximation and oriented shape
if ( rigid )
{
pdm . ComputeRigidJacobian ( current_local , current_global , J , WeightMatrix , J_w_t ) ;
}
else
{
pdm . ComputeJacobian ( current_local , current_global , J , WeightMatrix , J_w_t ) ;
}
// useful for mean shift calculation
float a = - 0.5 / ( parameters . sigma * parameters . sigma ) ;
cv : : Mat_ < double > current_shape_2D = current_shape . reshape ( 1 , 2 ) . t ( ) ;
cv : : Mat_ < double > base_shape_2D = base_shape . reshape ( 1 , 2 ) . t ( ) ;
cv : : Mat_ < float > offsets ;
cv : : Mat ( ( current_shape_2D - base_shape_2D ) * cv : : Mat ( sim_img_to_ref ) . t ( ) ) . convertTo ( offsets , CV_32F ) ;
dxs = offsets . col ( 0 ) + ( resp_size - 1 ) / 2 ;
dys = offsets . col ( 1 ) + ( resp_size - 1 ) / 2 ;
NonVectorisedMeanShift_precalc_kde ( mean_shifts , patch_expert_responses , dxs , dys , resp_size , a , scale , view_id , kde_resp_precalc ) ;
// Now transform the mean shifts to the the image reference frame, as opposed to one of ref shape (object space)
cv : : Mat_ < float > mean_shifts_2D = ( mean_shifts . reshape ( 1 , 2 ) ) . t ( ) ;
mean_shifts_2D = mean_shifts_2D * cv : : Mat ( sim_ref_to_img ) . t ( ) ;
mean_shifts = cv : : Mat ( mean_shifts_2D . t ( ) ) . reshape ( 1 , n * 2 ) ;
// remove non-visible observations
for ( int i = 0 ; i < n ; + + i )
{
// if patch unavailable for current index
if ( patch_experts . visibilities [ scale ] [ view_id ] . at < int > ( i , 0 ) = = 0 )
{
cv : : Mat Jx = J . row ( i ) ;
Jx = cvScalar ( 0 ) ;
cv : : Mat Jy = J . row ( i + n ) ;
Jy = cvScalar ( 0 ) ;
mean_shifts . at < float > ( i , 0 ) = 0.0f ;
mean_shifts . at < float > ( i + n , 0 ) = 0.0f ;
}
}
// projection of the meanshifts onto the jacobians (using the weighted Jacobian, see Baltrusaitis 2013)
cv : : Mat_ < float > J_w_t_m = J_w_t * mean_shifts ;
// Add the regularisation term
if ( ! rigid )
{
J_w_t_m ( cv : : Rect ( 0 , 6 , 1 , m ) ) = J_w_t_m ( cv : : Rect ( 0 , 6 , 1 , m ) ) - regTerm ( cv : : Rect ( 6 , 6 , m , m ) ) * current_local ;
}
// Calculating the Hessian approximation
cv : : Mat_ < float > Hessian = J_w_t * J ;
// Add the Tikhonov regularisation
Hessian = Hessian + regTerm ;
// Solve for the parameter update (from Baltrusaitis 2013 based on eq (36) Saragih 2011)
cv : : Mat_ < float > param_update ;
cv : : solve ( Hessian , J_w_t_m , param_update , CV_CHOLESKY ) ;
// update the reference
pdm . UpdateModelParameters ( param_update , current_local , current_global ) ;
// clamp to the local parameters for valid expressions
pdm . Clamp ( current_local , current_global , parameters ) ;
}
// compute the log likelihood
double loglhood = 0 ;
landmark_lhoods = cv : : Mat_ < double > ( n , 1 , - 1e8 ) ;
for ( int i = 0 ; i < n ; i + + )
{
if ( patch_experts . visibilities [ scale ] [ view_id ] . at < int > ( i , 0 ) = = 0 )
{
continue ;
}
float dx = dxs . at < float > ( i ) ;
float dy = dys . at < float > ( i ) ;
int ii , jj ;
float v , vx , vy , sum = 0.0 ;
// Iterate over the patch responses here
cv : : MatConstIterator_ < float > p = patch_expert_responses [ i ] . begin ( ) ;
for ( ii = 0 ; ii < resp_size ; ii + + )
{
vx = ( dy - ii ) * ( dy - ii ) ;
for ( jj = 0 ; jj < resp_size ; jj + + )
{
vy = ( dx - jj ) * ( dx - jj ) ;
// the probability at the current, xi, yi
v = * p + + ;
// the KDE evaluation of that point
v * = exp ( - 0.5 * ( vx + vy ) / ( parameters . sigma * parameters . sigma ) ) ;
sum + = v ;
}
}
landmark_lhoods . at < double > ( i , 0 ) = ( double ) sum ;
// the offset is there for numerical stability
loglhood + = log ( sum + 1e-8 ) ;
}
loglhood = loglhood / sum ( patch_experts . visibilities [ scale ] [ view_id ] ) [ 0 ] ;
final_global = current_global ;
final_local = current_local ;
return loglhood ;
}
bool CLNF : : RemoveBackground ( cv : : Mat_ < float > & out_depth_image , const cv : : Mat_ < float > & depth_image )
{
// use the current estimate of the face location to determine what is foreground and background
double tx = this - > params_global [ 4 ] ;
double ty = this - > params_global [ 5 ] ;
// if we are too close to the edge fail
if ( tx - 9 < = 0 | | ty - 9 < = 0 | | tx + 9 > = depth_image . cols | | ty + 9 > = depth_image . rows )
{
cout < < " Face estimate is too close to the edge, tracking failed " < < endl ;
return false ;
}
cv : : Mat_ < double > current_shape ;
pdm . CalcShape2D ( current_shape , params_local , params_global ) ;
double min_x , max_x , min_y , max_y ;
int n = this - > pdm . NumberOfPoints ( ) ;
cv : : minMaxLoc ( current_shape ( cv : : Range ( 0 , n ) , cv : : Range ( 0 , 1 ) ) , & min_x , & max_x ) ;
cv : : minMaxLoc ( current_shape ( cv : : Range ( n , n * 2 ) , cv : : Range ( 0 , 1 ) ) , & min_y , & max_y ) ;
// the area of interest: size of face with some scaling ( these scalings are fairly ad-hoc)
double width = 3 * ( max_x - min_x ) ;
double height = 2.5 * ( max_y - min_y ) ;
// getting the region of interest from the depth image,
// so we don't get other objects lying at same depth as head in the image but away from it
cv : : Rect_ < int > roi ( ( int ) ( tx - width / 2 ) , ( int ) ( ty - height / 2 ) , ( int ) width , ( int ) height ) ;
// clamp it if it does not lie fully in the image
if ( roi . x < 0 ) roi . x = 0 ;
if ( roi . y < 0 ) roi . y = 0 ;
if ( roi . width + roi . x > = depth_image . cols ) roi . x = depth_image . cols - roi . width ;
if ( roi . height + roi . y > = depth_image . rows ) roi . y = depth_image . rows - roi . height ;
if ( width > depth_image . cols )
{
roi . x = 0 ; roi . width = depth_image . cols ;
}
if ( height > depth_image . rows )
{
roi . y = 0 ; roi . height = depth_image . rows ;
}
if ( roi . width = = 0 ) roi . width = depth_image . cols ;
if ( roi . height = = 0 ) roi . height = depth_image . rows ;
if ( roi . x > = depth_image . cols ) roi . x = 0 ;
if ( roi . y > = depth_image . rows ) roi . y = 0 ;
// Initialise the mask
cv : : Mat_ < uchar > mask ( depth_image . rows , depth_image . cols , ( uchar ) 0 ) ;
cv : : Mat_ < uchar > valid_pixels = depth_image > 0 ;
// check if there is any depth near the estimate
if ( cv : : sum ( valid_pixels ( cv : : Rect ( ( int ) tx - 8 , ( int ) ty - 8 , 16 , 16 ) ) / 255 ) [ 0 ] > 0 )
{
double Z = cv : : mean ( depth_image ( cv : : Rect ( ( int ) tx - 8 , ( int ) ty - 8 , 16 , 16 ) ) , valid_pixels ( cv : : Rect ( ( int ) tx - 8 , ( int ) ty - 8 , 16 , 16 ) ) ) [ 0 ] ; // Z offset from the surface of the face
// Only operate within region of interest of the depth image
cv : : Mat dRoi = depth_image ( roi ) ;
cv : : Mat mRoi = mask ( roi ) ;
// Filter all pixels further than 20cm away from the current pose depth estimate
cv : : inRange ( dRoi , Z - 200 , Z + 200 , mRoi ) ;
// Convert to be either 0 or 1
mask = mask / 255 ;
cv : : Mat_ < float > maskF ;
mask . convertTo ( maskF , CV_32F ) ;
//Filter the depth image
out_depth_image = depth_image . mul ( maskF ) ;
}
else
{
cout < < " No depth signal found in foreground, tracking failed " < < endl ;
return false ;
}
return true ;
}
// Getting a 3D shape model from the current detected landmarks (in camera space)
cv : : Mat_ < double > CLNF : : GetShape ( double fx , double fy , double cx , double cy ) const
{
int n = this - > detected_landmarks . rows / 2 ;
cv : : Mat_ < double > shape3d ( n * 3 , 1 ) ;
this - > pdm . CalcShape3D ( shape3d , this - > params_local ) ;
// Need to rotate the shape to get the actual 3D representation
// get the rotation matrix from the euler angles
cv : : Matx33d R = LandmarkDetector : : Euler2RotationMatrix ( cv : : Vec3d ( params_global [ 1 ] , params_global [ 2 ] , params_global [ 3 ] ) ) ;
shape3d = shape3d . reshape ( 1 , 3 ) ;
shape3d = shape3d . t ( ) * cv : : Mat ( R ) . t ( ) ;
// from the weak perspective model can determine the average depth of the object
double Zavg = fx / params_global [ 0 ] ;
cv : : Mat_ < double > outShape ( n , 3 , 0.0 ) ;
// this is described in the paper in section 3.4 (equation 10) (of the CLM-Z paper)
for ( int i = 0 ; i < n ; i + + )
{
double Z = Zavg + shape3d . at < double > ( i , 2 ) ;
double X = Z * ( ( this - > detected_landmarks . at < double > ( i ) - cx ) / fx ) ;
double Y = Z * ( ( this - > detected_landmarks . at < double > ( i + n ) - cy ) / fy ) ;
outShape . at < double > ( i , 0 ) = ( double ) X ;
outShape . at < double > ( i , 1 ) = ( double ) Y ;
outShape . at < double > ( i , 2 ) = ( double ) Z ;
}
// The format is 3 rows - n cols
return outShape . t ( ) ;
}
// A utility bounding box function
cv : : Rect_ < double > CLNF : : GetBoundingBox ( ) const
{
cv : : Mat_ < double > xs = this - > detected_landmarks ( cv : : Rect ( 0 , 0 , 1 , this - > detected_landmarks . rows / 2 ) ) ;
cv : : Mat_ < double > ys = this - > detected_landmarks ( cv : : Rect ( 0 , this - > detected_landmarks . rows / 2 , 1 , this - > detected_landmarks . rows / 2 ) ) ;
double min_x , max_x ;
double min_y , max_y ;
cv : : minMaxLoc ( xs , & min_x , & max_x ) ;
cv : : minMaxLoc ( ys , & min_y , & max_y ) ;
// See if the detections intersect
cv : : Rect_ < double > model_rect ( min_x , min_y , max_x - min_x , max_y - min_y ) ;
return model_rect ;
}
// Legacy function not used at the moment
void CLNF : : NonVectorisedMeanShift ( cv : : Mat_ < double > & out_mean_shifts , const vector < cv : : Mat_ < float > > & patch_expert_responses , const cv : : Mat_ < double > & dxs , const cv : : Mat_ < double > & dys , int resp_size , double a , int scale , int view_id )
{
int n = dxs . rows ;
for ( int i = 0 ; i < n ; i + + )
{
if ( patch_experts . visibilities [ scale ] [ view_id ] . at < int > ( i , 0 ) = = 0 | | sum ( patch_expert_responses [ i ] ) [ 0 ] = = 0 )
{
out_mean_shifts . at < double > ( i , 0 ) = 0 ;
out_mean_shifts . at < double > ( i + n , 0 ) = 0 ;
continue ;
}
// indices of dx, dy
double dx = dxs . at < double > ( i ) ;
double dy = dys . at < double > ( i ) ;
int ii , jj ;
double v , vx , vy , mx = 0.0 , my = 0.0 , sum = 0.0 ;
// Iterate over the patch responses here
cv : : MatConstIterator_ < float > p = patch_expert_responses [ i ] . begin ( ) ;
for ( ii = 0 ; ii < resp_size ; ii + + )
{
vx = ( dy - ii ) * ( dy - ii ) ;
for ( jj = 0 ; jj < resp_size ; jj + + )
{
vy = ( dx - jj ) * ( dx - jj ) ;
// the probability at the current, xi, yi
v = * p + + ;
// the KDE evaluation of that point
double kd = exp ( a * ( vx + vy ) ) ;
v * = kd ;
sum + = v ;
// mean shift in x and y
mx + = v * jj ;
my + = v * ii ;
}
}
// setting the actual mean shift update
double msx = ( mx / sum - dx ) ;
double msy = ( my / sum - dy ) ;
out_mean_shifts . at < double > ( i , 0 ) = msx ;
out_mean_shifts . at < double > ( i + n , 0 ) = msy ;
}
}