2016-04-28 19:40:36 +00:00
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
2017-05-09 01:36:23 +00:00
|
|
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
2016-04-28 19:40:36 +00:00
|
|
|
|
// all rights reserved.
|
|
|
|
|
//
|
2017-05-09 01:36:23 +00:00
|
|
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
|
|
|
//
|
|
|
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
|
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
|
|
|
//
|
|
|
|
|
// License can be found in OpenFace-license.txt
|
2016-04-28 19:40:36 +00:00
|
|
|
|
//
|
|
|
|
|
// * Any publications arising from the use of this software, including but
|
|
|
|
|
// not limited to academic journal and conference publications, technical
|
|
|
|
|
// reports and manuals, must cite at least one of the following works:
|
|
|
|
|
//
|
|
|
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
|
|
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
|
|
|
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
|
|
|
//
|
|
|
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
|
|
|
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
|
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
|
|
|
//
|
|
|
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
|
|
|
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
|
|
|
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
|
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
|
|
|
//
|
|
|
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
|
|
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
|
|
|
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
|
|
|
//
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
2017-10-23 16:58:35 +00:00
|
|
|
|
#include "Face_utils.h"
|
2016-04-28 19:40:36 +00:00
|
|
|
|
|
|
|
|
|
#include "SVM_dynamic_lin.h"
|
|
|
|
|
|
|
|
|
|
using namespace FaceAnalysis;
|
|
|
|
|
|
|
|
|
|
void SVM_dynamic_lin::Read(std::ifstream& stream, const std::vector<std::string>& au_names)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
if(this->means.empty())
|
|
|
|
|
{
|
2017-10-23 16:58:35 +00:00
|
|
|
|
ReadMatBin(stream, this->means);
|
2016-04-28 19:40:36 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
cv::Mat_<double> m_tmp;
|
2017-10-23 16:58:35 +00:00
|
|
|
|
ReadMatBin(stream, m_tmp);
|
2016-04-28 19:40:36 +00:00
|
|
|
|
if(cv::norm(m_tmp - this->means > 0.00001))
|
|
|
|
|
{
|
2017-10-23 16:58:35 +00:00
|
|
|
|
std::cout << "Something went wrong with the SVM dynamic classifiers" << std::endl;
|
2016-04-28 19:40:36 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cv::Mat_<double> support_vectors_curr;
|
2017-10-23 16:58:35 +00:00
|
|
|
|
ReadMatBin(stream, support_vectors_curr);
|
2016-04-28 19:40:36 +00:00
|
|
|
|
|
|
|
|
|
double bias;
|
|
|
|
|
stream.read((char *)&bias, 8);
|
|
|
|
|
|
|
|
|
|
// Read in positive or negative class
|
|
|
|
|
double pos_class;
|
|
|
|
|
stream.read((char *)&pos_class, 8);
|
|
|
|
|
|
|
|
|
|
double neg_class;
|
|
|
|
|
stream.read((char *)&neg_class, 8);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Add a column vector to the matrix of support vectors (each column is a support vector)
|
|
|
|
|
if(!this->support_vectors.empty())
|
|
|
|
|
{
|
|
|
|
|
cv::transpose(this->support_vectors, this->support_vectors);
|
|
|
|
|
cv::transpose(support_vectors_curr, support_vectors_curr);
|
|
|
|
|
this->support_vectors.push_back(support_vectors_curr);
|
|
|
|
|
cv::transpose(this->support_vectors, this->support_vectors);
|
|
|
|
|
|
|
|
|
|
cv::transpose(this->biases, this->biases);
|
|
|
|
|
this->biases.push_back(cv::Mat_<double>(1, 1, bias));
|
|
|
|
|
cv::transpose(this->biases, this->biases);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
this->support_vectors.push_back(support_vectors_curr);
|
|
|
|
|
this->biases.push_back(cv::Mat_<double>(1, 1, bias));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
this->pos_classes.push_back(pos_class);
|
|
|
|
|
this->neg_classes.push_back(neg_class);
|
|
|
|
|
|
|
|
|
|
for(size_t i=0; i < au_names.size(); ++i)
|
|
|
|
|
{
|
|
|
|
|
this->AU_names.push_back(au_names[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Prediction using the HOG descriptor
|
|
|
|
|
void SVM_dynamic_lin::Predict(std::vector<double>& predictions, std::vector<std::string>& names, const cv::Mat_<double>& fhog_descriptor, const cv::Mat_<double>& geom_params, const cv::Mat_<double>& running_median, const cv::Mat_<double>& running_median_geom)
|
|
|
|
|
{
|
|
|
|
|
if(AU_names.size() > 0)
|
|
|
|
|
{
|
|
|
|
|
cv::Mat_<double> preds;
|
|
|
|
|
if(fhog_descriptor.cols == this->means.cols)
|
|
|
|
|
{
|
|
|
|
|
preds = (fhog_descriptor - this->means - running_median) * this->support_vectors + this->biases;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
cv::Mat_<double> input;
|
|
|
|
|
cv::hconcat(fhog_descriptor, geom_params, input);
|
|
|
|
|
|
|
|
|
|
cv::Mat_<double> run_med;
|
|
|
|
|
cv::hconcat(running_median, running_median_geom, run_med);
|
|
|
|
|
|
|
|
|
|
preds = (input - this->means - run_med) * this->support_vectors + this->biases;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for(int i = 0; i < preds.cols; ++i)
|
|
|
|
|
{
|
|
|
|
|
if(preds.at<double>(i) > 0)
|
|
|
|
|
{
|
|
|
|
|
predictions.push_back(pos_classes[i]);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
predictions.push_back(neg_classes[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
names = this->AU_names;
|
|
|
|
|
}
|
|
|
|
|
}
|