/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, Carnegie Mellon University and University of Cambridge, // all rights reserved. // // ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY // // BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. // IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. // // License can be found in OpenFace-license.txt // // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace: an open source facial behavior analysis toolkit // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency // in IEEE Winter Conference on Applications of Computer Vision, 2016 // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // // Constrained Local Neural Fields for robust facial landmark detection in the wild. // Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. // in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013. // /////////////////////////////////////////////////////////////////////////////// #include "Face_utils.h" #include "SVM_dynamic_lin.h" using namespace FaceAnalysis; void SVM_dynamic_lin::Read(std::ifstream& stream, const std::vector& au_names) { if(this->means.empty()) { ReadMatBin(stream, this->means); } else { cv::Mat_ m_tmp; ReadMatBin(stream, m_tmp); if(cv::norm(m_tmp - this->means > 0.00001)) { std::cout << "Something went wrong with the SVM dynamic classifiers" << std::endl; } } cv::Mat_ support_vectors_curr; ReadMatBin(stream, support_vectors_curr); double bias; stream.read((char *)&bias, 8); // Read in positive or negative class double pos_class; stream.read((char *)&pos_class, 8); double neg_class; stream.read((char *)&neg_class, 8); // Add a column vector to the matrix of support vectors (each column is a support vector) if(!this->support_vectors.empty()) { cv::transpose(this->support_vectors, this->support_vectors); cv::transpose(support_vectors_curr, support_vectors_curr); this->support_vectors.push_back(support_vectors_curr); cv::transpose(this->support_vectors, this->support_vectors); cv::transpose(this->biases, this->biases); this->biases.push_back(cv::Mat_(1, 1, bias)); cv::transpose(this->biases, this->biases); } else { this->support_vectors.push_back(support_vectors_curr); this->biases.push_back(cv::Mat_(1, 1, bias)); } this->pos_classes.push_back(pos_class); this->neg_classes.push_back(neg_class); for(size_t i=0; i < au_names.size(); ++i) { this->AU_names.push_back(au_names[i]); } } // Prediction using the HOG descriptor void SVM_dynamic_lin::Predict(std::vector& predictions, std::vector& names, const cv::Mat_& fhog_descriptor, const cv::Mat_& geom_params, const cv::Mat_& running_median, const cv::Mat_& running_median_geom) { if(AU_names.size() > 0) { cv::Mat_ preds; if(fhog_descriptor.cols == this->means.cols) { preds = (fhog_descriptor - this->means - running_median) * this->support_vectors + this->biases; } else { cv::Mat_ input; cv::hconcat(fhog_descriptor, geom_params, input); cv::Mat_ run_med; cv::hconcat(running_median, running_median_geom, run_med); preds = (input - this->means - run_med) * this->support_vectors + this->biases; } for(int i = 0; i < preds.cols; ++i) { if(preds.at(i) > 0) { predictions.push_back(pos_classes[i]); } else { predictions.push_back(neg_classes[i]); } } names = this->AU_names; } }