stable-diffusion-finetune/ldm/data/simple.py
Justin f1293f9795
Finetuning (#11)
* simple datasets

* add conversion script

* finish fine tune example

* update readme

* update readme
2022-09-16 14:01:18 +01:00

101 lines
No EOL
3.6 KiB
Python

import numpy as np
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
from datasets import load_dataset
class FolderData(Dataset):
def __init__(self, root_dir, caption_file, image_transforms, ext="jpg") -> None:
self.root_dir = Path(root_dir)
with open(caption_file, "rt") as f:
captions = json.load(f)
self.captions = captions
self.paths = list(self.root_dir.rglob(f"*.{ext}"))
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
# assert all(['full/' + str(x.name) in self.captions for x in self.paths])
def __len__(self):
return len(self.captions.keys())
def __getitem__(self, index):
chosen = list(self.captions.keys())[index]
im = Image.open(self.root_dir/chosen)
im = self.process_im(im)
caption = self.captions[chosen]
if caption is None:
caption = "old book illustration"
return {"jpg": im, "txt": caption}
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
def hf_dataset(
name,
image_transforms=[],
image_column="image",
text_column="text",
split='train',
image_key='image',
caption_key='txt',
):
"""Make huggingface dataset with appropriate list of transforms applied
"""
ds = load_dataset(name, split=split)
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
tform = transforms.Compose(image_transforms)
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
def pre_process(examples):
processed = {}
processed[image_key] = [tform(im) for im in examples[image_column]]
processed[caption_key] = examples[text_column]
return processed
ds.set_transform(pre_process)
return ds
class TextOnly(Dataset):
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
"""Returns only captions with dummy images"""
self.output_size = output_size
self.image_key = image_key
self.caption_key = caption_key
if isinstance(captions, Path):
self.captions = self._load_caption_file(captions)
else:
self.captions = captions
if n_gpus > 1:
# hack to make sure that all the captions appear on each gpu
repeated = [n_gpus*[x] for x in self.captions]
self.captions = []
[self.captions.extend(x) for x in repeated]
def __len__(self):
return len(self.captions)
def __getitem__(self, index):
dummy_im = torch.zeros(3, self.output_size, self.output_size)
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
def _load_caption_file(self, filename):
with open(filename, 'rt') as f:
captions = f.readlines()
return [x.strip('\n') for x in captions]