Finetuning (#11)

* simple datasets

* add conversion script

* finish fine tune example

* update readme

* update readme
This commit is contained in:
Justin 2022-09-16 14:01:18 +01:00 committed by GitHub
parent 704f564366
commit f1293f9795
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
11 changed files with 942 additions and 15 deletions

1
.gitignore vendored
View file

@ -1,6 +1,5 @@
logs/
dump/
im-examples/
outputs/
flagged/
*.egg-info

View file

@ -1,13 +1,33 @@
# Experiments with Stable Diffusion
This repository extends and adds to the [original training repo](https://github.com/pesser/stable-diffusion) for Stable Diffusion.
Currently it adds:
- [Fine tuning](#fine-tuning)
- [Image variations](#image-variations)
- [Conversion to Huggingface Diffusers](scripts/convert_sd_to_diffusers.py)
## Fine tuning
Makes it easy to fine tune Stable Diffusion on your own dataset. For example generating new Pokemon from text:
![](assets/pokemontage.jpg)
> Girl with a pearl earring, Cute Obama creature, Donald Trump, Boris Johnson, Totoro, Hello Kitty
For a step by step guide see the [Lambda Labs examples repo](https://github.com/LambdaLabsML/examples).
## Image variations
[![](assets/img-vars.jpg)](https://twitter.com/Buntworthy/status/1561703483316781057)
![](assets/im-vars-thin.jpg)
Try it out in colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JqNbI_kDq_Gth2MIYdsphgNgyGIJxBgB?usp=sharing)
[![Open Demo](https://img.shields.io/badge/%CE%BB-Open%20Demo-blueviolet)](https://47725.gradio.app/)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JqNbI_kDq_Gth2MIYdsphgNgyGIJxBgB?usp=sharing)
[![Open in Spaces](https://img.shields.io/badge/%F0%9F%A4%97-Open%20in%20Spaces-orange)]()
_TODO describe in more detail_
For more details on the Image Variation model see the [model card](https://huggingface.co/lambdalabs/stable-diffusion-image-conditioned).
- Get access to a Linux machine with a decent NVIDIA GPU (e.g. on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud))
- Clone this repo

BIN
assets/pokemontage.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

View file

@ -0,0 +1,133 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "image"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
scale_factor: 0.18215
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
params:
batch_size: 4
num_workers: 4
num_val_workers: 0 # Avoid a weird val dataloader issue
train:
target: ldm.data.simple.hf_dataset
params:
name: lambdalabs/pokemon-blip-captions
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 512
- target: torchvision.transforms.RandomHorizontalFlip
validation:
target: ldm.data.simple.TextOnly
params:
captions:
- "A pokemon with green eyes, large wings, and a hat"
- "A cute bunny rabbit"
- "Yoda"
- "An epic landscape photo of a mountain"
output_size: 512
n_gpus: 2 # small hack to sure we see all our samples
lightning:
find_unused_parameters: False
modelcheckpoint:
params:
every_n_train_steps: 2000
save_top_k: -1
monitor: null
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 2000
max_images: 4
increase_log_steps: False
log_first_step: True
log_all_val: True
log_images_kwargs:
use_ema_scope: True
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
unconditional_guidance_scale: 3.0
unconditional_guidance_label: [""]
trainer:
benchmark: True
num_sanity_val_steps: 0
accumulate_grad_batches: 1

101
ldm/data/simple.py Normal file
View file

@ -0,0 +1,101 @@
import numpy as np
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
from datasets import load_dataset
class FolderData(Dataset):
def __init__(self, root_dir, caption_file, image_transforms, ext="jpg") -> None:
self.root_dir = Path(root_dir)
with open(caption_file, "rt") as f:
captions = json.load(f)
self.captions = captions
self.paths = list(self.root_dir.rglob(f"*.{ext}"))
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
# assert all(['full/' + str(x.name) in self.captions for x in self.paths])
def __len__(self):
return len(self.captions.keys())
def __getitem__(self, index):
chosen = list(self.captions.keys())[index]
im = Image.open(self.root_dir/chosen)
im = self.process_im(im)
caption = self.captions[chosen]
if caption is None:
caption = "old book illustration"
return {"jpg": im, "txt": caption}
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
def hf_dataset(
name,
image_transforms=[],
image_column="image",
text_column="text",
split='train',
image_key='image',
caption_key='txt',
):
"""Make huggingface dataset with appropriate list of transforms applied
"""
ds = load_dataset(name, split=split)
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
tform = transforms.Compose(image_transforms)
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
def pre_process(examples):
processed = {}
processed[image_key] = [tform(im) for im in examples[image_column]]
processed[caption_key] = examples[text_column]
return processed
ds.set_transform(pre_process)
return ds
class TextOnly(Dataset):
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
"""Returns only captions with dummy images"""
self.output_size = output_size
self.image_key = image_key
self.caption_key = caption_key
if isinstance(captions, Path):
self.captions = self._load_caption_file(captions)
else:
self.captions = captions
if n_gpus > 1:
# hack to make sure that all the captions appear on each gpu
repeated = [n_gpus*[x] for x in self.captions]
self.captions = []
[self.captions.extend(x) for x in repeated]
def __len__(self):
return len(self.captions)
def __getitem__(self, index):
dummy_im = torch.zeros(3, self.output_size, self.output_size)
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
def _load_caption_file(self, filename):
with open(filename, 'rt') as f:
captions = f.readlines()
return [x.strip('\n') for x in captions]

View file

@ -159,7 +159,8 @@ class DDIMSampler(object):
unconditional_conditioning=unconditional_conditioning,
dynamic_threshold=dynamic_threshold)
img, pred_x0 = outs
if callback: callback(i)
if callback:
img = callback(i, img, pred_x0)
if img_callback: img_callback(pred_x0, i)
if index % log_every_t == 0 or index == total_steps - 1:

View file

@ -1343,9 +1343,8 @@ class LatentDiffusion(DDPM):
log["samples_x0_quantized"] = x_samples
if unconditional_guidance_scale > 1.0:
# uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
# FIXME
uc = torch.zeros_like(c)
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
# uc = torch.zeros_like(c)
with ema_scope("Sampling with classifier-free guidance"):
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
@ -1396,6 +1395,13 @@ class LatentDiffusion(DDPM):
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
# FIXME JP
# params = []
# from ldm.modules.attention import CrossAttention
# for n, m in self.model.named_modules():
# if isinstance(m, CrossAttention) and n.endswith('attn2'):
# params.extend(m.parameters())
# END FIXME JP
if self.cond_stage_trainable:
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
params = params + list(self.cond_stage_model.parameters())

View file

@ -172,6 +172,19 @@ class FrozenCLIPEmbedder(AbstractEncoder):
def encode(self, text):
return self(text)
class ProjectedFrozenCLIPEmbedder(AbstractEncoder):
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
super().__init__()
self.embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
self.projection = torch.nn.Linear(768, 768)
def forward(self, text):
z = self.embedder(text)
return self.projection(z)
def encode(self, text):
return self(text)
class FrozenCLIPImageEmbedder(AbstractEncoder):
"""
Uses the CLIP image encoder.
@ -192,6 +205,14 @@ class FrozenCLIPImageEmbedder(AbstractEncoder):
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
# I didn't call this originally, but seems like it was frozen anyway
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def preprocess(self, x):
# Expects inputs in the range -1, 1
x = kornia.geometry.resize(x, (224, 224),

20
main.py
View file

@ -172,11 +172,15 @@ def worker_init_fn(_):
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
shuffle_val_dataloader=False):
shuffle_val_dataloader=False, num_val_workers=None):
super().__init__()
self.batch_size = batch_size
self.dataset_configs = dict()
self.num_workers = num_workers if num_workers is not None else batch_size * 2
if num_val_workers is None:
self.num_val_workers = self.num_workers
else:
self.num_val_workers = num_val_workers
self.use_worker_init_fn = use_worker_init_fn
if train is not None:
self.dataset_configs["train"] = train
@ -221,7 +225,7 @@ class DataModuleFromConfig(pl.LightningDataModule):
init_fn = None
return DataLoader(self.datasets["validation"],
batch_size=self.batch_size,
num_workers=self.num_workers,
num_workers=self.num_val_workers,
worker_init_fn=init_fn,
shuffle=shuffle)
@ -304,7 +308,7 @@ class SetupCallback(Callback):
class ImageLogger(Callback):
def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True,
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
log_images_kwargs=None):
log_images_kwargs=None, log_all_val=False):
super().__init__()
self.rescale = rescale
self.batch_freq = batch_frequency
@ -320,6 +324,7 @@ class ImageLogger(Callback):
self.log_on_batch_idx = log_on_batch_idx
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
self.log_first_step = log_first_step
self.log_all_val = log_all_val
@rank_zero_only
def _testtube(self, pl_module, images, batch_idx, split):
@ -354,10 +359,13 @@ class ImageLogger(Callback):
def log_img(self, pl_module, batch, batch_idx, split="train"):
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
if self.log_all_val and split == "val":
should_log = True
else:
should_log = self.check_frequency(check_idx)
if (should_log and # batch_idx % self.batch_freq == 0
hasattr(pl_module, "log_images") and
callable(pl_module.log_images) and
batch_idx > 5 and
self.max_images > 0):
logger = type(pl_module.logger)
@ -687,7 +695,7 @@ if __name__ == "__main__":
}
},
}
default_logger_cfg = default_logger_cfgs["wandb"]
default_logger_cfg = default_logger_cfgs["testtube"]
if "logger" in lightning_config:
logger_cfg = lightning_config.logger
else:

View file

@ -15,6 +15,8 @@ webdataset==0.2.5
torchmetrics==0.6.0
fire==0.4.0
gradio==3.1.4
diffusers==0.3.0
datasets[vision]==2.4.0
-e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
-e git+https://github.com/openai/CLIP.git@main#egg=clip
-e .

View file

@ -0,0 +1,636 @@
# coding=utf-8
# Modified by Justin Pinkney
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """
import argparse
import torch
try:
from omegaconf import OmegaConf
except ImportError:
raise ImportError("OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`.")
from transformers import BertTokenizerFast, CLIPTokenizer, CLIPTextModel
from transformers import CLIPFeatureExtractor
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel, DDIMScheduler, PNDMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertModel, LDMBertConfig
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return '.'.join(path.split('.')[n_shave_prefix_segments:])
else:
return '.'.join(path.split('.')[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace('in_layers.0', 'norm1')
new_item = new_item.replace('in_layers.2', 'conv1')
new_item = new_item.replace('out_layers.0', 'norm2')
new_item = new_item.replace('out_layers.3', 'conv2')
new_item = new_item.replace('emb_layers.1', 'time_emb_proj')
new_item = new_item.replace('skip_connection', 'conv_shortcut')
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({'old': old_item, 'new': new_item})
return mapping
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace('nin_shortcut', 'conv_shortcut')
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({'old': old_item, 'new': new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({'old': old_item, 'new': new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace('norm.weight', 'group_norm.weight')
new_item = new_item.replace('norm.bias', 'group_norm.bias')
new_item = new_item.replace('q.weight', 'query.weight')
new_item = new_item.replace('q.bias', 'query.bias')
new_item = new_item.replace('k.weight', 'key.weight')
new_item = new_item.replace('k.bias', 'key.bias')
new_item = new_item.replace('v.weight', 'value.weight')
new_item = new_item.replace('v.bias', 'value.bias')
new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({'old': old_item, 'new': new_item})
return mapping
def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None):
"""
This does the final conversion step: take locally converted weights and apply a global renaming
to them. It splits attention layers, and takes into account additional replacements
that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map['query']] = query.reshape(target_shape)
checkpoint[path_map['key']] = key.reshape(target_shape)
checkpoint[path_map['value']] = value.reshape(target_shape)
for path in paths:
new_path = path['new']
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace('middle_block.0', 'mid_block.resnets.0')
new_path = new_path.replace('middle_block.1', 'mid_block.attentions.0')
new_path = new_path.replace('middle_block.2', 'mid_block.resnets.1')
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement['old'], replacement['new'])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path['old']][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path['old']]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def create_unet_diffusers_config(original_config):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
unet_params = original_config.model.params.unet_config.params
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
config = dict(
sample_size=64,
in_channels=unet_params.in_channels,
out_channels=unet_params.out_channels,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
layers_per_block=unet_params.num_res_blocks,
cross_attention_dim=unet_params.context_dim,
attention_head_dim=unet_params.num_heads,
)
return config
def create_vae_diffusers_config(original_config):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
latent_channles = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = dict(
sample_size=512,
in_channels=vae_params.in_channels,
out_channels=vae_params.out_ch,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
latent_channels=vae_params.z_channels,
layers_per_block=vae_params.num_res_blocks,
)
return config
def create_diffusers_schedular(original_config):
schedular = PNDMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
beta_schedule="scaled_linear",
skip_prk_steps=True,
)
return schedular
def create_ldm_bert_config(original_config):
bert_params = original_config.model.parms.cond_stage_config.params
config = LDMBertConfig(
d_model=bert_params.n_embed,
encoder_layers=bert_params.n_layer,
encoder_ffn_dim=bert_params.n_embed * 4,
)
return config
def convert_ldm_unet_checkpoint(checkpoint, config):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
unet_key = "model.diffusion_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint['time_embedding.linear_1.weight'] = unet_state_dict['time_embed.0.weight']
new_checkpoint['time_embedding.linear_1.bias'] = unet_state_dict['time_embed.0.bias']
new_checkpoint['time_embedding.linear_2.weight'] = unet_state_dict['time_embed.2.weight']
new_checkpoint['time_embedding.linear_2.bias'] = unet_state_dict['time_embed.2.bias']
new_checkpoint['conv_in.weight'] = unet_state_dict['input_blocks.0.0.weight']
new_checkpoint['conv_in.bias'] = unet_state_dict['input_blocks.0.0.bias']
new_checkpoint['conv_norm_out.weight'] = unet_state_dict['out.0.weight']
new_checkpoint['conv_norm_out.bias'] = unet_state_dict['out.0.bias']
new_checkpoint['conv_out.weight'] = unet_state_dict['out.2.weight']
new_checkpoint['conv_out.bias'] = unet_state_dict['out.2.bias']
# Retrieves the keys for the input blocks only
num_input_blocks = len({'.'.join(layer.split('.')[:2]) for layer in unet_state_dict if 'input_blocks' in layer})
input_blocks = {layer_id: [key for key in unet_state_dict if f'input_blocks.{layer_id}' in key] for layer_id in range(num_input_blocks)}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({'.'.join(layer.split('.')[:2]) for layer in unet_state_dict if 'middle_block' in layer})
middle_blocks = {layer_id: [key for key in unet_state_dict if f'middle_block.{layer_id}' in key] for layer_id in range(num_middle_blocks)}
# Retrieves the keys for the output blocks only
num_output_blocks = len({'.'.join(layer.split('.')[:2]) for layer in unet_state_dict if 'output_blocks' in layer})
output_blocks = {layer_id: [key for key in unet_state_dict if f'output_blocks.{layer_id}' in key] for layer_id in range(num_output_blocks)}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config['layers_per_block'] + 1)
layer_in_block_id = (i - 1) % (config['layers_per_block'] + 1)
resnets = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key and f'input_blocks.{i}.0.op' not in key]
attentions = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key]
if f'input_blocks.{i}.0.op.weight' in unet_state_dict:
new_checkpoint[f'down_blocks.{block_id}.downsamplers.0.conv.weight'] = unet_state_dict.pop(f'input_blocks.{i}.0.op.weight')
new_checkpoint[f'down_blocks.{block_id}.downsamplers.0.conv.bias'] = unet_state_dict.pop(f'input_blocks.{i}.0.op.bias')
paths = renew_resnet_paths(resnets)
meta_path = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'}
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}'}
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {'old': 'middle_block.1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config)
for i in range(num_output_blocks):
block_id = i // (config['layers_per_block'] + 1)
layer_in_block_id = i % (config['layers_per_block'] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split('.')[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key]
attentions = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'}
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config)
if ['conv.weight', 'conv.bias'] in output_block_list.values():
index = list(output_block_list.values()).index(['conv.weight', 'conv.bias'])
new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.weight'] = unet_state_dict[f'output_blocks.{i}.{index}.conv.weight']
new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.bias'] = unet_state_dict[f'output_blocks.{i}.{index}.conv.bias']
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
'old': f'output_blocks.{i}.1',
'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}'
}
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = '.'.join(['output_blocks', str(i), path['old']])
new_path = '.'.join(['up_blocks', str(block_id), 'resnets', str(layer_in_block_id), path['new']])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({'.'.join(layer.split('.')[:3]) for layer in vae_state_dict if 'encoder.down' in layer})
down_blocks = {layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(num_down_blocks)}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({'.'.join(layer.split('.')[:3]) for layer in vae_state_dict if 'decoder.up' in layer})
up_blocks = {layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(num_up_blocks)}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f'down.{i}' in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
paths = renew_vae_resnet_paths(resnets)
meta_path = {'old': f'down.{i}.block', 'new': f'down_blocks.{i}.resnets'}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {'old': f'mid.block_{i}', 'new': f'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [key for key in up_blocks[block_id] if f'up.{block_id}' in key and f"up.{block_id}.upsample" not in key]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
paths = renew_vae_resnet_paths(resnets)
meta_path = {'old': f'up.{block_id}.block', 'new': f'up_blocks.{i}.resnets'}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {'old': f'mid.block_{i}', 'new': f'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
def convert_ldm_bert_checkpoint(checkpoint, config):
def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
def _copy_linear(hf_linear, pt_linear):
hf_linear.weight = pt_linear.weight
hf_linear.bias = pt_linear.bias
def _copy_layer(hf_layer, pt_layer):
# copy layer norms
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
# copy attn
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
# copy MLP
pt_mlp = pt_layer[1][1]
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
_copy_linear(hf_layer.fc2, pt_mlp.net[2])
def _copy_layers(hf_layers, pt_layers):
for i, hf_layer in enumerate(hf_layers):
if i != 0: i += i
pt_layer = pt_layers[i:i+2]
_copy_layer(hf_layer, pt_layer)
hf_model = LDMBertModel(config).eval()
# copy embeds
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight
# copy layer norm
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
# copy hidden layers
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
return hf_model
def copy_ema_weights(checkpoint, config):
"""Copies ema weights over the original weights in a state_dict
Only applies to the unet
"""
from ldm.util import instantiate_from_config
model = instantiate_from_config(config.model)
for k, v in checkpoint.items():
if k.startswith('model.'):
model_key = k[6:]
ema_key = model.model_ema.m_name2s_name[model_key]
ema_weight = checkpoint["model_ema." + ema_key]
print(f"copying ema weight {ema_key} to {model_key}")
checkpoint[k] = ema_weight
return checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
required=True,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to the output model."
)
parser.add_argument(
"--use_ema", action="store_true", help="use EMA weights for conversion",
)
args = parser.parse_args()
original_config = OmegaConf.load(args.original_config_file)
checkpoint = torch.load(args.checkpoint_path, map_location="cpu")["state_dict"]
if args.use_ema:
checkpoint = copy_ema_weights(checkpoint, original_config)
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config(original_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(checkpoint, unet_config)
unet = UNet2DConditionModel(**unet_config)
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model.
vae_config = create_vae_diffusers_config(original_config)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
# Convert the text model.
text_model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
if text_model_type == "FrozenCLIPEmbedder":
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
else:
# TODO: update the convert function to use the state_dict without the model instance.
text_config = create_ldm_bert_config(original_config)
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-large-patch14")
scheduler = create_diffusers_schedular(original_config)
pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
pipe.save_pretrained(args.dump_path)