267 lines
15 KiB
Markdown
267 lines
15 KiB
Markdown
# Latent Diffusion Models
|
|
[arXiv](https://arxiv.org/abs/2112.10752) | [BibTeX](#bibtex)
|
|
|
|
<p align="center">
|
|
<img src=assets/results.gif />
|
|
</p>
|
|
|
|
|
|
|
|
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)<br/>
|
|
[Robin Rombach](https://github.com/rromb)\*,
|
|
[Andreas Blattmann](https://github.com/ablattmann)\*,
|
|
[Dominik Lorenz](https://github.com/qp-qp)\,
|
|
[Patrick Esser](https://github.com/pesser),
|
|
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
|
|
\* equal contribution
|
|
|
|
<p align="center">
|
|
<img src=assets/modelfigure.png />
|
|
</p>
|
|
|
|
## Requirements
|
|
A suitable [conda](https://conda.io/) environment named `ldm` can be created
|
|
and activated with:
|
|
|
|
```
|
|
conda env create -f environment.yaml
|
|
conda activate ldm
|
|
```
|
|
|
|
# Pretrained Models
|
|
A general list of all available checkpoints is available in via our [model zoo](#model-zoo).
|
|
If you use any of these models in your work, we are always happy to receive a [citation](#bibtex).
|
|
|
|
## Text-to-Image
|
|
![text2img-figure](assets/txt2img-preview.png)
|
|
|
|
|
|
Download the pre-trained weights (5.7GB)
|
|
```
|
|
mkdir -p models/ldm/text2img-large/
|
|
wget -O models/ldm/text2img-large/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt
|
|
```
|
|
and sample with
|
|
```
|
|
python scripts/txt2img.py --prompt "a virus monster is playing guitar, oil on canvas" --ddim_eta 0.0 --n_samples 4 --n_iter 4 --scale 5.0 --ddim_steps 50
|
|
```
|
|
This will save each sample individually as well as a grid of size `n_iter` x `n_samples` at the specified output location (default: `outputs/txt2img-samples`).
|
|
Quality, sampling speed and diversity are best controlled via the `scale`, `ddim_steps` and `ddim_eta` arguments.
|
|
As a rule of thumb, higher values of `scale` produce better samples at the cost of a reduced output diversity.
|
|
Furthermore, increasing `ddim_steps` generally also gives higher quality samples, but returns are diminishing for values > 250.
|
|
Fast sampling (i.e. low values of `ddim_steps`) while retaining good quality can be achieved by using `--ddim_eta 0.0`.
|
|
|
|
#### Beyond 256²
|
|
|
|
For certain inputs, simply running the model in a convolutional fashion on larger features than it was trained on
|
|
can sometimes result in interesting results. To try it out, tune the `H` and `W` arguments (which will be integer-divided
|
|
by 8 in order to calculate the corresponding latent size), e.g. run
|
|
|
|
```
|
|
python scripts/txt2img.py --prompt "a sunset behind a mountain range, vector image" --ddim_eta 1.0 --n_samples 1 --n_iter 1 --H 384 --W 1024 --scale 5.0
|
|
```
|
|
to create a sample of size 384x1024. Note, however, that controllability is reduced compared to the 256x256 setting.
|
|
|
|
The example below was generated using the above command.
|
|
![text2img-figure-conv](assets/txt2img-convsample.png)
|
|
|
|
|
|
|
|
## Inpainting
|
|
![inpainting](assets/inpainting.png)
|
|
|
|
Download the pre-trained weights
|
|
```
|
|
wget -O models/ldm/inpainting_big/last.ckpt https://heibox.uni-heidelberg.de/f/4d9ac7ea40c64582b7c9/?dl=1
|
|
```
|
|
|
|
and sample with
|
|
```
|
|
python scripts/inpaint.py --indir data/inpainting_examples/ --outdir outputs/inpainting_results
|
|
```
|
|
`indir` should contain images `*.png` and masks `<image_fname>_mask.png` like
|
|
the examples provided in `data/inpainting_examples`.
|
|
|
|
## Class-Conditional ImageNet
|
|
|
|
Available via a [notebook](scripts/latent_imagenet_diffusion.ipynb) [![][colab]][colab-cin].
|
|
![class-conditional](assets/birdhouse.png)
|
|
|
|
[colab]: <https://colab.research.google.com/assets/colab-badge.svg>
|
|
[colab-cin]: <https://colab.research.google.com/github/CompVis/latent-diffusion/blob/main/scripts/latent-imagenet-diffusion.ipynb>
|
|
|
|
|
|
## Unconditional Models
|
|
|
|
We also provide a script for sampling from unconditional LDMs (e.g. LSUN, FFHQ, ...). Start it via
|
|
|
|
```shell script
|
|
CUDA_VISIBLE_DEVICES=<GPU_ID> python scripts/sample_diffusion.py -r models/ldm/<model_spec>/model.ckpt -l <logdir> -n <\#samples> --batch_size <batch_size> -c <\#ddim steps> -e <\#eta>
|
|
```
|
|
|
|
# Train your own LDMs
|
|
|
|
## Data preparation
|
|
|
|
### Faces
|
|
For downloading the CelebA-HQ and FFHQ datasets, proceed as described in the [taming-transformers](https://github.com/CompVis/taming-transformers#celeba-hq)
|
|
repository.
|
|
|
|
### LSUN
|
|
|
|
The LSUN datasets can be conveniently downloaded via the script available [here](https://github.com/fyu/lsun).
|
|
We performed a custom split into training and validation images, and provide the corresponding filenames
|
|
at [https://ommer-lab.com/files/lsun.zip](https://ommer-lab.com/files/lsun.zip).
|
|
After downloading, extract them to `./data/lsun`. The beds/cats/churches subsets should
|
|
also be placed/symlinked at `./data/lsun/bedrooms`/`./data/lsun/cats`/`./data/lsun/churches`, respectively.
|
|
|
|
### ImageNet
|
|
The code will try to download (through [Academic
|
|
Torrents](http://academictorrents.com/)) and prepare ImageNet the first time it
|
|
is used. However, since ImageNet is quite large, this requires a lot of disk
|
|
space and time. If you already have ImageNet on your disk, you can speed things
|
|
up by putting the data into
|
|
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/` (which defaults to
|
|
`~/.cache/autoencoders/data/ILSVRC2012_{split}/data/`), where `{split}` is one
|
|
of `train`/`validation`. It should have the following structure:
|
|
|
|
```
|
|
${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/
|
|
├── n01440764
|
|
│ ├── n01440764_10026.JPEG
|
|
│ ├── n01440764_10027.JPEG
|
|
│ ├── ...
|
|
├── n01443537
|
|
│ ├── n01443537_10007.JPEG
|
|
│ ├── n01443537_10014.JPEG
|
|
│ ├── ...
|
|
├── ...
|
|
```
|
|
|
|
If you haven't extracted the data, you can also place
|
|
`ILSVRC2012_img_train.tar`/`ILSVRC2012_img_val.tar` (or symlinks to them) into
|
|
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_train/` /
|
|
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_validation/`, which will then be
|
|
extracted into above structure without downloading it again. Note that this
|
|
will only happen if neither a folder
|
|
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/` nor a file
|
|
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/.ready` exist. Remove them
|
|
if you want to force running the dataset preparation again.
|
|
|
|
|
|
## Model Training
|
|
|
|
Logs and checkpoints for trained models are saved to `logs/<START_DATE_AND_TIME>_<config_spec>`.
|
|
|
|
### Training autoencoder models
|
|
|
|
Configs for training a KL-regularized autoencoder on ImageNet are provided at `configs/autoencoder`.
|
|
Training can be started by running
|
|
```
|
|
CUDA_VISIBLE_DEVICES=<GPU_ID> python main.py --base configs/autoencoder/<config_spec>.yaml -t --gpus 0,
|
|
```
|
|
where `config_spec` is one of {`autoencoder_kl_8x8x64`(f=32, d=64), `autoencoder_kl_16x16x16`(f=16, d=16),
|
|
`autoencoder_kl_32x32x4`(f=8, d=4), `autoencoder_kl_64x64x3`(f=4, d=3)}.
|
|
|
|
For training VQ-regularized models, see the [taming-transformers](https://github.com/CompVis/taming-transformers)
|
|
repository.
|
|
|
|
### Training LDMs
|
|
|
|
In ``configs/latent-diffusion/`` we provide configs for training LDMs on the LSUN-, CelebA-HQ, FFHQ and ImageNet datasets.
|
|
Training can be started by running
|
|
|
|
```shell script
|
|
CUDA_VISIBLE_DEVICES=<GPU_ID> python main.py --base configs/latent-diffusion/<config_spec>.yaml -t --gpus 0,
|
|
```
|
|
|
|
where ``<config_spec>`` is one of {`celebahq-ldm-vq-4`(f=4, VQ-reg. autoencoder, spatial size 64x64x3),`ffhq-ldm-vq-4`(f=4, VQ-reg. autoencoder, spatial size 64x64x3),
|
|
`lsun_bedrooms-ldm-vq-4`(f=4, VQ-reg. autoencoder, spatial size 64x64x3),
|
|
`lsun_churches-ldm-vq-4`(f=8, KL-reg. autoencoder, spatial size 32x32x4),`cin-ldm-vq-8`(f=8, VQ-reg. autoencoder, spatial size 32x32x4)}.
|
|
|
|
# Model Zoo
|
|
|
|
## Pretrained Autoencoding Models
|
|
![rec2](assets/reconstruction2.png)
|
|
|
|
All models were trained until convergence (no further substantial improvement in rFID).
|
|
|
|
| Model | rFID vs val | train steps |PSNR | PSIM | Link | Comments
|
|
|-------------------------|------------|----------------|----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|
|
| f=4, VQ (Z=8192, d=3) | 0.58 | 533066 | 27.43 +/- 4.26 | 0.53 +/- 0.21 | https://ommer-lab.com/files/latent-diffusion/vq-f4.zip | |
|
|
| f=4, VQ (Z=8192, d=3) | 1.06 | 658131 | 25.21 +/- 4.17 | 0.72 +/- 0.26 | https://heibox.uni-heidelberg.de/f/9c6681f64bb94338a069/?dl=1 | no attention |
|
|
| f=8, VQ (Z=16384, d=4) | 1.14 | 971043 | 23.07 +/- 3.99 | 1.17 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/vq-f8.zip | |
|
|
| f=8, VQ (Z=256, d=4) | 1.49 | 1608649 | 22.35 +/- 3.81 | 1.26 +/- 0.37 | https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip |
|
|
| f=16, VQ (Z=16384, d=8) | 5.15 | 1101166 | 20.83 +/- 3.61 | 1.73 +/- 0.43 | https://heibox.uni-heidelberg.de/f/0e42b04e2e904890a9b6/?dl=1 | |
|
|
| | | | | | | |
|
|
| f=4, KL | 0.27 | 176991 | 27.53 +/- 4.54 | 0.55 +/- 0.24 | https://ommer-lab.com/files/latent-diffusion/kl-f4.zip | |
|
|
| f=8, KL | 0.90 | 246803 | 24.19 +/- 4.19 | 1.02 +/- 0.35 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | |
|
|
| f=16, KL (d=16) | 0.87 | 442998 | 24.08 +/- 4.22 | 1.07 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f16.zip | |
|
|
| f=32, KL (d=64) | 2.04 | 406763 | 22.27 +/- 3.93 | 1.41 +/- 0.40 | https://ommer-lab.com/files/latent-diffusion/kl-f32.zip | |
|
|
|
|
### Get the models
|
|
|
|
Running the following script downloads und extracts all available pretrained autoencoding models.
|
|
```shell script
|
|
bash scripts/download_first_stages.sh
|
|
```
|
|
|
|
The first stage models can then be found in `models/first_stage_models/<model_spec>`
|
|
|
|
|
|
|
|
## Pretrained LDMs
|
|
| Datset | Task | Model | FID | IS | Prec | Recall | Link | Comments
|
|
|---------------------------------|------|--------------|---------------|-----------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|
|
| CelebA-HQ | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=0)| 5.11 (5.11) | 3.29 | 0.72 | 0.49 | https://ommer-lab.com/files/latent-diffusion/celeba.zip | |
|
|
| FFHQ | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=1)| 4.98 (4.98) | 4.50 (4.50) | 0.73 | 0.50 | https://ommer-lab.com/files/latent-diffusion/ffhq.zip | |
|
|
| LSUN-Churches | Unconditional Image Synthesis | LDM-KL-8 (400 DDIM steps, eta=0)| 4.02 (4.02) | 2.72 | 0.64 | 0.52 | https://ommer-lab.com/files/latent-diffusion/lsun_churches.zip | |
|
|
| LSUN-Bedrooms | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=1)| 2.95 (3.0) | 2.22 (2.23)| 0.66 | 0.48 | https://ommer-lab.com/files/latent-diffusion/lsun_bedrooms.zip | |
|
|
| ImageNet | Class-conditional Image Synthesis | LDM-VQ-8 (200 DDIM steps, eta=1) | 7.77(7.76)* /15.82** | 201.56(209.52)* /78.82** | 0.84* / 0.65** | 0.35* / 0.63** | https://ommer-lab.com/files/latent-diffusion/cin.zip | *: w/ guiding, classifier_scale 10 **: w/o guiding, scores in bracket calculated with script provided by [ADM](https://github.com/openai/guided-diffusion) |
|
|
| Conceptual Captions | Text-conditional Image Synthesis | LDM-VQ-f4 (100 DDIM steps, eta=0) | 16.79 | 13.89 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/text2img.zip | finetuned from LAION |
|
|
| OpenImages | Super-resolution | LDM-VQ-4 | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip | BSR image degradation |
|
|
| OpenImages | Layout-to-Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=0) | 32.02 | 15.92 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip | |
|
|
| Landscapes | Semantic Image Synthesis | LDM-VQ-4 | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/semantic_synthesis256.zip | |
|
|
| Landscapes | Semantic Image Synthesis | LDM-VQ-4 | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip | finetuned on resolution 512x512 |
|
|
|
|
|
|
### Get the models
|
|
|
|
The LDMs listed above can jointly be downloaded and extracted via
|
|
|
|
```shell script
|
|
bash scripts/download_models.sh
|
|
```
|
|
|
|
The models can then be found in `models/ldm/<model_spec>`.
|
|
|
|
|
|
|
|
## Coming Soon...
|
|
|
|
* More inference scripts for conditional LDMs.
|
|
* In the meantime, you can play with our colab notebook https://colab.research.google.com/drive/1xqzUi2iXQXDqXBHQGP9Mqt2YrYW6cx-J?usp=sharing
|
|
|
|
## Comments
|
|
|
|
- Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion)
|
|
and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch).
|
|
Thanks for open-sourcing!
|
|
|
|
- The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
|
|
|
|
|
|
## BibTeX
|
|
|
|
```
|
|
@misc{rombach2021highresolution,
|
|
title={High-Resolution Image Synthesis with Latent Diffusion Models},
|
|
author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
|
|
year={2021},
|
|
eprint={2112.10752},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV}
|
|
}
|
|
```
|
|
|
|
|