start f16-higher res config
This commit is contained in:
parent
bbbeebf9a8
commit
c790c34e21
2 changed files with 161 additions and 6 deletions
|
@ -0,0 +1,129 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.001
|
||||
linear_end: 0.015
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 48
|
||||
channels: 16
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.22765929 # magic number
|
||||
|
||||
ckpt_path: # TODO: add
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 48 # not really needed
|
||||
in_channels: 16
|
||||
out_channels: 16
|
||||
model_channels: 320 # TODO: scale model here
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 16
|
||||
monitor: val/rec_loss
|
||||
ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
|
||||
ddconfig:
|
||||
double_z: True
|
||||
z_channels: 16
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ 16 ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
|
||||
batch_size: 10
|
||||
num_workers: 4
|
||||
multinode: True
|
||||
min_size: 384 # TODO: experiment. Note: for 2B, images are stored at max 384 resolution
|
||||
train:
|
||||
shards: '{000000..231317}.tar -'
|
||||
shuffle: 10000
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 768
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 768
|
||||
|
||||
# NOTE use enough shards to avoid empty validation loops in workers
|
||||
validation:
|
||||
shards: '{231318..231349}.tar -'
|
||||
shuffle: 0
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 768
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 768
|
||||
|
||||
|
||||
lightning:
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
batch_frequency: 5000
|
||||
max_images: 4
|
||||
increase_log_steps: False
|
||||
log_first_step: False
|
||||
log_images_kwargs:
|
||||
use_ema_scope: False
|
||||
inpaint: False
|
||||
plot_progressive_rows: False
|
||||
plot_diffusion_rows: False
|
||||
N: 4
|
||||
unconditional_guidance_scale: 3.0
|
||||
unconditional_guidance_label: [""]
|
||||
|
||||
trainer:
|
||||
benchmark: True
|
||||
val_check_interval: 5000000
|
||||
num_sanity_val_steps: 0
|
||||
accumulate_grad_batches: 2
|
|
@ -7,6 +7,7 @@ from tqdm import tqdm, trange
|
|||
from itertools import islice
|
||||
from einops import rearrange
|
||||
from torchvision.utils import make_grid
|
||||
import time
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
|
@ -63,6 +64,12 @@ if __name__ == "__main__":
|
|||
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--skip_save",
|
||||
action='store_true',
|
||||
help="do not save indiviual samples. For speed measurements.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ddim_steps",
|
||||
type=int,
|
||||
|
@ -103,6 +110,19 @@ if __name__ == "__main__":
|
|||
help="image width, in pixel space",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--C",
|
||||
type=int,
|
||||
default=4,
|
||||
help="latent channels",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--f",
|
||||
type=int,
|
||||
default=8,
|
||||
help="downsampling factor, most often 8 or 16",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--n_samples",
|
||||
type=int,
|
||||
|
@ -184,6 +204,7 @@ if __name__ == "__main__":
|
|||
|
||||
with torch.no_grad():
|
||||
with model.ema_scope():
|
||||
tic = time.time()
|
||||
for n in trange(opt.n_iter, desc="Sampling"):
|
||||
all_samples = list()
|
||||
for prompts in tqdm(data, desc="data"):
|
||||
|
@ -193,7 +214,7 @@ if __name__ == "__main__":
|
|||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
c = model.get_learned_conditioning(prompts)
|
||||
shape = [4, opt.H//8, opt.W//8]
|
||||
shape = [opt.C, opt.H//opt.f, opt.W//opt.f]
|
||||
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
||||
conditioning=c,
|
||||
batch_size=opt.n_samples,
|
||||
|
@ -207,6 +228,7 @@ if __name__ == "__main__":
|
|||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
|
||||
|
||||
if not opt.skip_save:
|
||||
for x_sample in x_samples_ddim:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:05}.png"))
|
||||
|
@ -224,4 +246,8 @@ if __name__ == "__main__":
|
|||
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||
grid_count += 1
|
||||
|
||||
print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
|
||||
toc = time.time()
|
||||
|
||||
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
||||
f"Sampling took {toc-tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
|
||||
f" \nEnjoy.")
|
||||
|
|
Loading…
Reference in a new issue