Merge branch 'main' of github.com:pesser/stable-diffusion into main
This commit is contained in:
commit
bbbeebf9a8
5 changed files with 84 additions and 9 deletions
|
@ -0,0 +1,69 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
|
@ -1,5 +1,5 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
base_learning_rate: 5.0e-05
|
||||
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
|
||||
params:
|
||||
low_scale_key: "lr"
|
||||
|
@ -66,10 +66,11 @@ model:
|
|||
image_size: 64 # not really needed
|
||||
in_channels: 20
|
||||
out_channels: 16
|
||||
model_channels: 192
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
model_channels: 96
|
||||
attention_resolutions: [ 8, 4, 2 ] # -> at 32, 16, 8
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
channel_mult: [ 1, 2, 4, 8, 8 ]
|
||||
# -> res, ds: (64, 1), (32, 2), (16, 4), (8, 8), (4, 16)
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
|
@ -105,7 +106,7 @@ data:
|
|||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
|
||||
batch_size: 8
|
||||
batch_size: 10
|
||||
num_workers: 4
|
||||
train:
|
||||
shards: '{00000..17279}.tar -'
|
||||
|
@ -143,6 +144,8 @@ data:
|
|||
factor: 4
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: False
|
||||
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
|
|
|
@ -1556,7 +1556,7 @@ class LatentUpscaleDiffusion(LatentDiffusion):
|
|||
uc[k] = [uc_tmp]
|
||||
elif k == "c_adm":
|
||||
assert isinstance(c[k], torch.Tensor)
|
||||
uc[k] = torch.ones_like(c[k]) * (self.low_scale_model.max_max_noise_level-1)
|
||||
uc[k] = torch.ones_like(c[k]) * (self.low_scale_model.max_noise_level-1)
|
||||
elif isinstance(c[k], list):
|
||||
uc[k] = [torch.zeros_like(c[k][i]) for i in range(len(c[k]))]
|
||||
else:
|
||||
|
|
|
@ -253,9 +253,9 @@ class SpatialTransformer(nn.Module):
|
|||
x_in = x
|
||||
x = self.norm(x)
|
||||
x = self.proj_in(x)
|
||||
x = rearrange(x, 'b c h w -> b (h w) c')
|
||||
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
||||
for block in self.transformer_blocks:
|
||||
x = block(x, context=context)
|
||||
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
||||
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
||||
x = self.proj_out(x)
|
||||
return x + x_in
|
||||
return x + x_in
|
||||
|
|
3
main.py
3
main.py
|
@ -759,6 +759,9 @@ if __name__ == "__main__":
|
|||
del callbacks_cfg['ignore_keys_callback']
|
||||
|
||||
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
|
||||
if not lightning_config.get("find_unused_parameters", True):
|
||||
from pytorch_lightning.plugins import DDPPlugin
|
||||
trainer_kwargs["plugins"] = DDPPlugin(find_unused_parameters=False)
|
||||
|
||||
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
|
||||
trainer.logdir = logdir ###
|
||||
|
|
Loading…
Reference in a new issue