start f16-higher res config
This commit is contained in:
parent
bbbeebf9a8
commit
c790c34e21
2 changed files with 161 additions and 6 deletions
|
@ -0,0 +1,129 @@
|
||||||
|
model:
|
||||||
|
base_learning_rate: 1.0e-04
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.001
|
||||||
|
linear_end: 0.015
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 48
|
||||||
|
channels: 16
|
||||||
|
cond_stage_trainable: false # Note: different from the one we trained before
|
||||||
|
conditioning_key: crossattn
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.22765929 # magic number
|
||||||
|
|
||||||
|
ckpt_path: # TODO: add
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 10000 ]
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 48 # not really needed
|
||||||
|
in_channels: 16
|
||||||
|
out_channels: 16
|
||||||
|
model_channels: 320 # TODO: scale model here
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 768
|
||||||
|
use_checkpoint: True
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 16
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
|
||||||
|
ddconfig:
|
||||||
|
double_z: True
|
||||||
|
z_channels: 16
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: [ 16 ]
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||||
|
|
||||||
|
|
||||||
|
data:
|
||||||
|
target: ldm.data.laion.WebDataModuleFromConfig
|
||||||
|
params:
|
||||||
|
tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
|
||||||
|
batch_size: 10
|
||||||
|
num_workers: 4
|
||||||
|
multinode: True
|
||||||
|
min_size: 384 # TODO: experiment. Note: for 2B, images are stored at max 384 resolution
|
||||||
|
train:
|
||||||
|
shards: '{000000..231317}.tar -'
|
||||||
|
shuffle: 10000
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 768
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.RandomCrop
|
||||||
|
params:
|
||||||
|
size: 768
|
||||||
|
|
||||||
|
# NOTE use enough shards to avoid empty validation loops in workers
|
||||||
|
validation:
|
||||||
|
shards: '{231318..231349}.tar -'
|
||||||
|
shuffle: 0
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 768
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.CenterCrop
|
||||||
|
params:
|
||||||
|
size: 768
|
||||||
|
|
||||||
|
|
||||||
|
lightning:
|
||||||
|
callbacks:
|
||||||
|
image_logger:
|
||||||
|
target: main.ImageLogger
|
||||||
|
params:
|
||||||
|
batch_frequency: 5000
|
||||||
|
max_images: 4
|
||||||
|
increase_log_steps: False
|
||||||
|
log_first_step: False
|
||||||
|
log_images_kwargs:
|
||||||
|
use_ema_scope: False
|
||||||
|
inpaint: False
|
||||||
|
plot_progressive_rows: False
|
||||||
|
plot_diffusion_rows: False
|
||||||
|
N: 4
|
||||||
|
unconditional_guidance_scale: 3.0
|
||||||
|
unconditional_guidance_label: [""]
|
||||||
|
|
||||||
|
trainer:
|
||||||
|
benchmark: True
|
||||||
|
val_check_interval: 5000000
|
||||||
|
num_sanity_val_steps: 0
|
||||||
|
accumulate_grad_batches: 2
|
|
@ -7,6 +7,7 @@ from tqdm import tqdm, trange
|
||||||
from itertools import islice
|
from itertools import islice
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
from torchvision.utils import make_grid
|
from torchvision.utils import make_grid
|
||||||
|
import time
|
||||||
|
|
||||||
from ldm.util import instantiate_from_config
|
from ldm.util import instantiate_from_config
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
|
@ -63,6 +64,12 @@ if __name__ == "__main__":
|
||||||
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip_save",
|
||||||
|
action='store_true',
|
||||||
|
help="do not save indiviual samples. For speed measurements.",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--ddim_steps",
|
"--ddim_steps",
|
||||||
type=int,
|
type=int,
|
||||||
|
@ -103,6 +110,19 @@ if __name__ == "__main__":
|
||||||
help="image width, in pixel space",
|
help="image width, in pixel space",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--C",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="latent channels",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--f",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="downsampling factor, most often 8 or 16",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--n_samples",
|
"--n_samples",
|
||||||
type=int,
|
type=int,
|
||||||
|
@ -184,6 +204,7 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
with model.ema_scope():
|
with model.ema_scope():
|
||||||
|
tic = time.time()
|
||||||
for n in trange(opt.n_iter, desc="Sampling"):
|
for n in trange(opt.n_iter, desc="Sampling"):
|
||||||
all_samples = list()
|
all_samples = list()
|
||||||
for prompts in tqdm(data, desc="data"):
|
for prompts in tqdm(data, desc="data"):
|
||||||
|
@ -193,7 +214,7 @@ if __name__ == "__main__":
|
||||||
if isinstance(prompts, tuple):
|
if isinstance(prompts, tuple):
|
||||||
prompts = list(prompts)
|
prompts = list(prompts)
|
||||||
c = model.get_learned_conditioning(prompts)
|
c = model.get_learned_conditioning(prompts)
|
||||||
shape = [4, opt.H//8, opt.W//8]
|
shape = [opt.C, opt.H//opt.f, opt.W//opt.f]
|
||||||
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
||||||
conditioning=c,
|
conditioning=c,
|
||||||
batch_size=opt.n_samples,
|
batch_size=opt.n_samples,
|
||||||
|
@ -207,10 +228,11 @@ if __name__ == "__main__":
|
||||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
for x_sample in x_samples_ddim:
|
if not opt.skip_save:
|
||||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
for x_sample in x_samples_ddim:
|
||||||
Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:05}.png"))
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||||
base_count += 1
|
Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:05}.png"))
|
||||||
|
base_count += 1
|
||||||
all_samples.append(x_samples_ddim)
|
all_samples.append(x_samples_ddim)
|
||||||
|
|
||||||
if not opt.skip_grid:
|
if not opt.skip_grid:
|
||||||
|
@ -224,4 +246,8 @@ if __name__ == "__main__":
|
||||||
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||||
grid_count += 1
|
grid_count += 1
|
||||||
|
|
||||||
print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
|
toc = time.time()
|
||||||
|
|
||||||
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
||||||
|
f"Sampling took {toc-tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
|
||||||
|
f" \nEnjoy.")
|
||||||
|
|
Loading…
Reference in a new issue