first (in)stable steps
This commit is contained in:
parent
f7a6152022
commit
9a419a1b14
4 changed files with 310 additions and 66 deletions
130
configs/stable-diffusion/txt2img-ldm-vae-f8.yaml
Normal file
130
configs/stable-diffusion/txt2img-ldm-vae-f8.yaml
Normal file
|
@ -0,0 +1,130 @@
|
||||||
|
model:
|
||||||
|
base_learning_rate: 1.0e-04 # TODO: run with scale_lr False
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 32
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: true
|
||||||
|
conditioning_key: crossattn
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 10000 ]
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32
|
||||||
|
in_channels: 4
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 128 # 320 # TODO increase
|
||||||
|
attention_resolutions: [ 4, 2, 1 ] # is equal to fixed spatial resolution: 32 , 16 , 8
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1,2,4,4 ]
|
||||||
|
#num_head_channels: 32
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 1280
|
||||||
|
use_checkpoint: True
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ckpt_path: "/home/robin/projects/latent-diffusion/models/first_stage_models/kl-f8/model.ckpt"
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.BERTEmbedder
|
||||||
|
params:
|
||||||
|
n_embed: 1280
|
||||||
|
n_layer: 3 #32 # TODO: increase
|
||||||
|
|
||||||
|
|
||||||
|
data:
|
||||||
|
target: ldm.data.laion.WebDataModuleFromConfig
|
||||||
|
params:
|
||||||
|
tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
|
||||||
|
batch_size: 60
|
||||||
|
num_workers: 4
|
||||||
|
n_nodes: 2 # TODO: runs with two gpus
|
||||||
|
train:
|
||||||
|
shards: '{000000..000010}.tar -' # TODO: wild guess, change
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.RandomCrop
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
|
||||||
|
shuffle: 5000
|
||||||
|
n_examples: 16519100 # TODO: find out
|
||||||
|
validation:
|
||||||
|
shards: '{000011..000012}.tar -' # TODO: wild guess, change
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.CenterCrop
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
|
||||||
|
shuffle: 0
|
||||||
|
n_examples: 60000 # TODO: find out
|
||||||
|
val_num_workers: 2
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
lightning:
|
||||||
|
callbacks:
|
||||||
|
image_logger:
|
||||||
|
target: main.ImageLogger
|
||||||
|
params:
|
||||||
|
batch_frequency: 5000 # 5000
|
||||||
|
max_images: 8
|
||||||
|
increase_log_steps: False
|
||||||
|
log_first_step: True
|
||||||
|
|
||||||
|
|
||||||
|
trainer:
|
||||||
|
replace_sampler_ddp: False
|
||||||
|
benchmark: True
|
||||||
|
val_check_interval: 20000 # every 20k training steps
|
||||||
|
num_sanity_val_steps: 0
|
|
@ -2,7 +2,178 @@ import webdataset as wds
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import io
|
import io
|
||||||
import os
|
import os
|
||||||
|
import torchvision
|
||||||
|
from PIL import Image
|
||||||
|
import glob
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
import pytorch_lightning as pl
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
from einops import rearrange
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
|
|
||||||
|
def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
||||||
|
"""Take a list of samples (as dictionary) and create a batch, preserving the keys.
|
||||||
|
If `tensors` is True, `ndarray` objects are combined into
|
||||||
|
tensor batches.
|
||||||
|
:param dict samples: list of samples
|
||||||
|
:param bool tensors: whether to turn lists of ndarrays into a single ndarray
|
||||||
|
:returns: single sample consisting of a batch
|
||||||
|
:rtype: dict
|
||||||
|
"""
|
||||||
|
batched = {key: [] for key in samples[0]}
|
||||||
|
# assert isinstance(samples[0][first_key], (list, tuple)), type(samples[first_key])
|
||||||
|
|
||||||
|
for s in samples:
|
||||||
|
[batched[key].append(s[key]) for key in batched]
|
||||||
|
|
||||||
|
|
||||||
|
result = {}
|
||||||
|
for key in batched:
|
||||||
|
if isinstance(batched[key][0], (int, float)):
|
||||||
|
if combine_scalars:
|
||||||
|
result[key] = np.array(list(batched[key]))
|
||||||
|
elif isinstance(batched[key][0], torch.Tensor):
|
||||||
|
if combine_tensors:
|
||||||
|
# import torch
|
||||||
|
|
||||||
|
result[key] = torch.stack(list(batched[key]))
|
||||||
|
elif isinstance(batched[key][0], np.ndarray):
|
||||||
|
if combine_tensors:
|
||||||
|
result[key] = np.array(list(batched[key]))
|
||||||
|
else:
|
||||||
|
result[key] = list(batched[key])
|
||||||
|
# result.append(b)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
class WebDataModuleFromConfig(pl.LightningDataModule):
|
||||||
|
def __init__(self, tar_base, batch_size, train=None, validation=None,
|
||||||
|
test=None, num_workers=4, load_ddp=True, n_nodes=1,
|
||||||
|
**kwargs):
|
||||||
|
super().__init__(self)
|
||||||
|
print(f'Setting tar base to {tar_base}')
|
||||||
|
self.tar_base = tar_base
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.num_workers = num_workers
|
||||||
|
self.train = train
|
||||||
|
self.validation = validation
|
||||||
|
self.test = test
|
||||||
|
self.load_ddp = load_ddp
|
||||||
|
self.multinode = n_nodes > 1
|
||||||
|
self.n_nodes = n_nodes # n gpu ??
|
||||||
|
|
||||||
|
def make_loader(self, dataset_config, train=True):
|
||||||
|
if 'image_transforms' in dataset_config:
|
||||||
|
image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
|
||||||
|
else:
|
||||||
|
image_transforms = []
|
||||||
|
|
||||||
|
image_transforms.extend([torchvision.transforms.ToTensor(),
|
||||||
|
torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
||||||
|
image_transforms = torchvision.transforms.Compose(image_transforms)
|
||||||
|
|
||||||
|
if 'transforms' in dataset_config:
|
||||||
|
transforms_config = OmegaConf.to_container(dataset_config.transforms)
|
||||||
|
else:
|
||||||
|
transforms_config = dict()
|
||||||
|
|
||||||
|
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey]) if transforms_config[
|
||||||
|
dkey] != 'identity' else identity
|
||||||
|
for dkey in transforms_config}
|
||||||
|
img_key = dataset_config.get('image_key', 'jpeg')
|
||||||
|
transform_dict.update({img_key: image_transforms})
|
||||||
|
|
||||||
|
shuffle = dataset_config.get('shuffle', 0)
|
||||||
|
|
||||||
|
# TODO fid strategy when n exmples not known beforehand
|
||||||
|
n_examples = dataset_config.get('n_examples', 1e6) // self.n_nodes
|
||||||
|
|
||||||
|
shards_to_load = dataset_config.shards
|
||||||
|
dset_name = 'unknown'
|
||||||
|
if isinstance(shards_to_load, str):
|
||||||
|
print(f'Loading tars based on the string {shards_to_load}')
|
||||||
|
tars = os.path.join(self.tar_base, shards_to_load)
|
||||||
|
start_shard_id, end_shard_id = dataset_config.shards.split('{')[-1].split('}')[0].split('..')
|
||||||
|
n_shards = int(end_shard_id) - int(start_shard_id) + 1
|
||||||
|
dset_name = dataset_config.shards.split('-')[0]
|
||||||
|
elif isinstance(shards_to_load, int):
|
||||||
|
print(f'Creating tar list, max shard is {shards_to_load}')
|
||||||
|
try:
|
||||||
|
tars = [tf for tf in natsorted(glob(os.path.join(self.tar_base, '*.tar'))) if
|
||||||
|
int(tf.split('/')[-1].split('.')[0]) < shards_to_load]
|
||||||
|
n_shards = len(tars)
|
||||||
|
random.shuffle(tars)
|
||||||
|
|
||||||
|
except ValueError as e:
|
||||||
|
print('tarfile names should follow the pattern <zero_padded_number>.tar . Check names of the files')
|
||||||
|
raise e
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
'shards should be either a string containing consecutive shards or an int defining the max shard number')
|
||||||
|
|
||||||
|
print(f'Got {n_shards} shard files in datafolder for {"training" if train else "validation"}')
|
||||||
|
|
||||||
|
# if self.num_workers > 0:
|
||||||
|
# assert n_shards % self.num_workers == 0 , f'Number of workers which is {self.num_workers} does not evenly divide number of shards which is {n_shards}'
|
||||||
|
print(f'Loading webdataset based dataloader based on {n_shards} of {dset_name} dataset.')
|
||||||
|
|
||||||
|
# start creating the dataset
|
||||||
|
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
||||||
|
epoch_length = n_examples // (self.batch_size)
|
||||||
|
|
||||||
|
dset = wds.WebDataset(tars, nodesplitter=nodesplitter).shuffle(shuffle)
|
||||||
|
|
||||||
|
with_epoch_args = {'nsamples': n_examples, 'nbatches': epoch_length}
|
||||||
|
|
||||||
|
if 'filters' in dataset_config:
|
||||||
|
for stage in tqdm(dataset_config.filters,
|
||||||
|
desc=f'Applying the following filters: {[f for f in dataset_config.filters]}'):
|
||||||
|
f = getattr(dset, stage)
|
||||||
|
dset = f(dset, *dataset_config.filters[stage].args,
|
||||||
|
**dataset_config.filters[stage].get('kwargs', dict()))
|
||||||
|
|
||||||
|
print(f'Dataset holding {len(dset.pipeline[0].urls)} shards')
|
||||||
|
|
||||||
|
dset = (dset
|
||||||
|
.decode('pil')
|
||||||
|
# .to_tuple("jpg;png;jpeg pickle cls hls")
|
||||||
|
# .map_tuple(image_transforms,load_partial_from_config(nns_transform) if 'target' in nns_transform else identity,identity,identity)
|
||||||
|
.map_dict(**transform_dict)
|
||||||
|
.repeat()
|
||||||
|
.batched(self.batch_size, partial=False,
|
||||||
|
collation_fn=dict_collation_fn)
|
||||||
|
.with_length(n_examples)
|
||||||
|
.with_epoch(**with_epoch_args)
|
||||||
|
)
|
||||||
|
|
||||||
|
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
||||||
|
num_workers=self.num_workers)
|
||||||
|
|
||||||
|
return loader, n_examples
|
||||||
|
|
||||||
|
def train_dataloader(self):
|
||||||
|
assert self.train is not None
|
||||||
|
loader, dset_size = self.make_loader(self.train)
|
||||||
|
# if self.load_ddp:
|
||||||
|
# loader = loader.ddp_equalize(dset_size // self.batch_size)
|
||||||
|
return loader
|
||||||
|
|
||||||
|
def val_dataloader(self):
|
||||||
|
assert self.train is not None
|
||||||
|
loader, _ = self.make_loader(self.validation, train=False)
|
||||||
|
return loader
|
||||||
|
|
||||||
|
def test_dataloader(self):
|
||||||
|
assert self.train is not None
|
||||||
|
loader, _ = self.make_loader(self.test, train=False)
|
||||||
|
return loader
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
||||||
|
|
|
@ -664,7 +664,7 @@ class LatentDiffusion(DDPM):
|
||||||
if cond_key is None:
|
if cond_key is None:
|
||||||
cond_key = self.cond_stage_key
|
cond_key = self.cond_stage_key
|
||||||
if cond_key != self.first_stage_key:
|
if cond_key != self.first_stage_key:
|
||||||
if cond_key in ['caption', 'coordinates_bbox']:
|
if cond_key in ['caption', 'coordinates_bbox', "txt"]:
|
||||||
xc = batch[cond_key]
|
xc = batch[cond_key]
|
||||||
elif cond_key == 'class_label':
|
elif cond_key == 'class_label':
|
||||||
xc = batch
|
xc = batch
|
||||||
|
@ -762,66 +762,6 @@ class LatentDiffusion(DDPM):
|
||||||
else:
|
else:
|
||||||
return self.first_stage_model.decode(z)
|
return self.first_stage_model.decode(z)
|
||||||
|
|
||||||
# same as above but without decorator
|
|
||||||
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
|
||||||
if predict_cids:
|
|
||||||
if z.dim() == 4:
|
|
||||||
z = torch.argmax(z.exp(), dim=1).long()
|
|
||||||
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
|
||||||
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
|
||||||
|
|
||||||
z = 1. / self.scale_factor * z
|
|
||||||
|
|
||||||
if hasattr(self, "split_input_params"):
|
|
||||||
if self.split_input_params["patch_distributed_vq"]:
|
|
||||||
ks = self.split_input_params["ks"] # eg. (128, 128)
|
|
||||||
stride = self.split_input_params["stride"] # eg. (64, 64)
|
|
||||||
uf = self.split_input_params["vqf"]
|
|
||||||
bs, nc, h, w = z.shape
|
|
||||||
if ks[0] > h or ks[1] > w:
|
|
||||||
ks = (min(ks[0], h), min(ks[1], w))
|
|
||||||
print("reducing Kernel")
|
|
||||||
|
|
||||||
if stride[0] > h or stride[1] > w:
|
|
||||||
stride = (min(stride[0], h), min(stride[1], w))
|
|
||||||
print("reducing stride")
|
|
||||||
|
|
||||||
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
|
||||||
|
|
||||||
z = unfold(z) # (bn, nc * prod(**ks), L)
|
|
||||||
# 1. Reshape to img shape
|
|
||||||
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
|
||||||
|
|
||||||
# 2. apply model loop over last dim
|
|
||||||
if isinstance(self.first_stage_model, VQModelInterface):
|
|
||||||
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
|
||||||
force_not_quantize=predict_cids or force_not_quantize)
|
|
||||||
for i in range(z.shape[-1])]
|
|
||||||
else:
|
|
||||||
|
|
||||||
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
|
||||||
for i in range(z.shape[-1])]
|
|
||||||
|
|
||||||
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
|
||||||
o = o * weighting
|
|
||||||
# Reverse 1. reshape to img shape
|
|
||||||
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
|
||||||
# stitch crops together
|
|
||||||
decoded = fold(o)
|
|
||||||
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
|
||||||
return decoded
|
|
||||||
else:
|
|
||||||
if isinstance(self.first_stage_model, VQModelInterface):
|
|
||||||
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
|
||||||
else:
|
|
||||||
return self.first_stage_model.decode(z)
|
|
||||||
|
|
||||||
else:
|
|
||||||
if isinstance(self.first_stage_model, VQModelInterface):
|
|
||||||
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
|
||||||
else:
|
|
||||||
return self.first_stage_model.decode(z)
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def encode_first_stage(self, x):
|
def encode_first_stage(self, x):
|
||||||
if hasattr(self, "split_input_params"):
|
if hasattr(self, "split_input_params"):
|
||||||
|
@ -1268,8 +1208,8 @@ class LatentDiffusion(DDPM):
|
||||||
if hasattr(self.cond_stage_model, "decode"):
|
if hasattr(self.cond_stage_model, "decode"):
|
||||||
xc = self.cond_stage_model.decode(c)
|
xc = self.cond_stage_model.decode(c)
|
||||||
log["conditioning"] = xc
|
log["conditioning"] = xc
|
||||||
elif self.cond_stage_key in ["caption"]:
|
elif self.cond_stage_key in ["caption", "txt"]:
|
||||||
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key])
|
||||||
log["conditioning"] = xc
|
log["conditioning"] = xc
|
||||||
elif self.cond_stage_key == 'class_label':
|
elif self.cond_stage_key == 'class_label':
|
||||||
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
||||||
|
|
3
main.py
3
main.py
|
@ -667,8 +667,11 @@ if __name__ == "__main__":
|
||||||
data.prepare_data()
|
data.prepare_data()
|
||||||
data.setup()
|
data.setup()
|
||||||
print("#### Data #####")
|
print("#### Data #####")
|
||||||
|
try:
|
||||||
for k in data.datasets:
|
for k in data.datasets:
|
||||||
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
|
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
|
||||||
|
except:
|
||||||
|
print("datasets not yet initialized.")
|
||||||
|
|
||||||
# configure learning rate
|
# configure learning rate
|
||||||
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
|
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
|
||||||
|
|
Loading…
Reference in a new issue