first (in)stable steps
This commit is contained in:
parent
f7a6152022
commit
9a419a1b14
4 changed files with 310 additions and 66 deletions
130
configs/stable-diffusion/txt2img-ldm-vae-f8.yaml
Normal file
130
configs/stable-diffusion/txt2img-ldm-vae-f8.yaml
Normal file
|
@ -0,0 +1,130 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04 # TODO: run with scale_lr False
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 32
|
||||
channels: 4
|
||||
cond_stage_trainable: true
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 128 # 320 # TODO increase
|
||||
attention_resolutions: [ 4, 2, 1 ] # is equal to fixed spatial resolution: 32 , 16 , 8
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1,2,4,4 ]
|
||||
#num_head_channels: 32
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1280
|
||||
use_checkpoint: True
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ckpt_path: "/home/robin/projects/latent-diffusion/models/first_stage_models/kl-f8/model.ckpt"
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.BERTEmbedder
|
||||
params:
|
||||
n_embed: 1280
|
||||
n_layer: 3 #32 # TODO: increase
|
||||
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
|
||||
batch_size: 60
|
||||
num_workers: 4
|
||||
n_nodes: 2 # TODO: runs with two gpus
|
||||
train:
|
||||
shards: '{000000..000010}.tar -' # TODO: wild guess, change
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 512
|
||||
|
||||
shuffle: 5000
|
||||
n_examples: 16519100 # TODO: find out
|
||||
validation:
|
||||
shards: '{000011..000012}.tar -' # TODO: wild guess, change
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 512
|
||||
|
||||
shuffle: 0
|
||||
n_examples: 60000 # TODO: find out
|
||||
val_num_workers: 2
|
||||
|
||||
|
||||
|
||||
lightning:
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
batch_frequency: 5000 # 5000
|
||||
max_images: 8
|
||||
increase_log_steps: False
|
||||
log_first_step: True
|
||||
|
||||
|
||||
trainer:
|
||||
replace_sampler_ddp: False
|
||||
benchmark: True
|
||||
val_check_interval: 20000 # every 20k training steps
|
||||
num_sanity_val_steps: 0
|
|
@ -2,7 +2,178 @@ import webdataset as wds
|
|||
from PIL import Image
|
||||
import io
|
||||
import os
|
||||
import torchvision
|
||||
from PIL import Image
|
||||
import glob
|
||||
import random
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
from tqdm import tqdm
|
||||
from omegaconf import OmegaConf
|
||||
from einops import rearrange
|
||||
import torch
|
||||
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
|
||||
def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
||||
"""Take a list of samples (as dictionary) and create a batch, preserving the keys.
|
||||
If `tensors` is True, `ndarray` objects are combined into
|
||||
tensor batches.
|
||||
:param dict samples: list of samples
|
||||
:param bool tensors: whether to turn lists of ndarrays into a single ndarray
|
||||
:returns: single sample consisting of a batch
|
||||
:rtype: dict
|
||||
"""
|
||||
batched = {key: [] for key in samples[0]}
|
||||
# assert isinstance(samples[0][first_key], (list, tuple)), type(samples[first_key])
|
||||
|
||||
for s in samples:
|
||||
[batched[key].append(s[key]) for key in batched]
|
||||
|
||||
|
||||
result = {}
|
||||
for key in batched:
|
||||
if isinstance(batched[key][0], (int, float)):
|
||||
if combine_scalars:
|
||||
result[key] = np.array(list(batched[key]))
|
||||
elif isinstance(batched[key][0], torch.Tensor):
|
||||
if combine_tensors:
|
||||
# import torch
|
||||
|
||||
result[key] = torch.stack(list(batched[key]))
|
||||
elif isinstance(batched[key][0], np.ndarray):
|
||||
if combine_tensors:
|
||||
result[key] = np.array(list(batched[key]))
|
||||
else:
|
||||
result[key] = list(batched[key])
|
||||
# result.append(b)
|
||||
return result
|
||||
|
||||
|
||||
class WebDataModuleFromConfig(pl.LightningDataModule):
|
||||
def __init__(self, tar_base, batch_size, train=None, validation=None,
|
||||
test=None, num_workers=4, load_ddp=True, n_nodes=1,
|
||||
**kwargs):
|
||||
super().__init__(self)
|
||||
print(f'Setting tar base to {tar_base}')
|
||||
self.tar_base = tar_base
|
||||
self.batch_size = batch_size
|
||||
self.num_workers = num_workers
|
||||
self.train = train
|
||||
self.validation = validation
|
||||
self.test = test
|
||||
self.load_ddp = load_ddp
|
||||
self.multinode = n_nodes > 1
|
||||
self.n_nodes = n_nodes # n gpu ??
|
||||
|
||||
def make_loader(self, dataset_config, train=True):
|
||||
if 'image_transforms' in dataset_config:
|
||||
image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
|
||||
else:
|
||||
image_transforms = []
|
||||
|
||||
image_transforms.extend([torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
||||
image_transforms = torchvision.transforms.Compose(image_transforms)
|
||||
|
||||
if 'transforms' in dataset_config:
|
||||
transforms_config = OmegaConf.to_container(dataset_config.transforms)
|
||||
else:
|
||||
transforms_config = dict()
|
||||
|
||||
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey]) if transforms_config[
|
||||
dkey] != 'identity' else identity
|
||||
for dkey in transforms_config}
|
||||
img_key = dataset_config.get('image_key', 'jpeg')
|
||||
transform_dict.update({img_key: image_transforms})
|
||||
|
||||
shuffle = dataset_config.get('shuffle', 0)
|
||||
|
||||
# TODO fid strategy when n exmples not known beforehand
|
||||
n_examples = dataset_config.get('n_examples', 1e6) // self.n_nodes
|
||||
|
||||
shards_to_load = dataset_config.shards
|
||||
dset_name = 'unknown'
|
||||
if isinstance(shards_to_load, str):
|
||||
print(f'Loading tars based on the string {shards_to_load}')
|
||||
tars = os.path.join(self.tar_base, shards_to_load)
|
||||
start_shard_id, end_shard_id = dataset_config.shards.split('{')[-1].split('}')[0].split('..')
|
||||
n_shards = int(end_shard_id) - int(start_shard_id) + 1
|
||||
dset_name = dataset_config.shards.split('-')[0]
|
||||
elif isinstance(shards_to_load, int):
|
||||
print(f'Creating tar list, max shard is {shards_to_load}')
|
||||
try:
|
||||
tars = [tf for tf in natsorted(glob(os.path.join(self.tar_base, '*.tar'))) if
|
||||
int(tf.split('/')[-1].split('.')[0]) < shards_to_load]
|
||||
n_shards = len(tars)
|
||||
random.shuffle(tars)
|
||||
|
||||
except ValueError as e:
|
||||
print('tarfile names should follow the pattern <zero_padded_number>.tar . Check names of the files')
|
||||
raise e
|
||||
else:
|
||||
raise ValueError(
|
||||
'shards should be either a string containing consecutive shards or an int defining the max shard number')
|
||||
|
||||
print(f'Got {n_shards} shard files in datafolder for {"training" if train else "validation"}')
|
||||
|
||||
# if self.num_workers > 0:
|
||||
# assert n_shards % self.num_workers == 0 , f'Number of workers which is {self.num_workers} does not evenly divide number of shards which is {n_shards}'
|
||||
print(f'Loading webdataset based dataloader based on {n_shards} of {dset_name} dataset.')
|
||||
|
||||
# start creating the dataset
|
||||
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
||||
epoch_length = n_examples // (self.batch_size)
|
||||
|
||||
dset = wds.WebDataset(tars, nodesplitter=nodesplitter).shuffle(shuffle)
|
||||
|
||||
with_epoch_args = {'nsamples': n_examples, 'nbatches': epoch_length}
|
||||
|
||||
if 'filters' in dataset_config:
|
||||
for stage in tqdm(dataset_config.filters,
|
||||
desc=f'Applying the following filters: {[f for f in dataset_config.filters]}'):
|
||||
f = getattr(dset, stage)
|
||||
dset = f(dset, *dataset_config.filters[stage].args,
|
||||
**dataset_config.filters[stage].get('kwargs', dict()))
|
||||
|
||||
print(f'Dataset holding {len(dset.pipeline[0].urls)} shards')
|
||||
|
||||
dset = (dset
|
||||
.decode('pil')
|
||||
# .to_tuple("jpg;png;jpeg pickle cls hls")
|
||||
# .map_tuple(image_transforms,load_partial_from_config(nns_transform) if 'target' in nns_transform else identity,identity,identity)
|
||||
.map_dict(**transform_dict)
|
||||
.repeat()
|
||||
.batched(self.batch_size, partial=False,
|
||||
collation_fn=dict_collation_fn)
|
||||
.with_length(n_examples)
|
||||
.with_epoch(**with_epoch_args)
|
||||
)
|
||||
|
||||
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
||||
num_workers=self.num_workers)
|
||||
|
||||
return loader, n_examples
|
||||
|
||||
def train_dataloader(self):
|
||||
assert self.train is not None
|
||||
loader, dset_size = self.make_loader(self.train)
|
||||
# if self.load_ddp:
|
||||
# loader = loader.ddp_equalize(dset_size // self.batch_size)
|
||||
return loader
|
||||
|
||||
def val_dataloader(self):
|
||||
assert self.train is not None
|
||||
loader, _ = self.make_loader(self.validation, train=False)
|
||||
return loader
|
||||
|
||||
def test_dataloader(self):
|
||||
assert self.train is not None
|
||||
loader, _ = self.make_loader(self.test, train=False)
|
||||
return loader
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
||||
|
@ -18,7 +189,7 @@ if __name__ == "__main__":
|
|||
image = Image.open(io.BytesIO(example["jpg"]))
|
||||
outdir = "tmp"
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
image.save(os.path.join(outdir, example["__key__"]+".png"))
|
||||
image.save(os.path.join(outdir, example["__key__"] + ".png"))
|
||||
|
||||
|
||||
def load_example(example):
|
||||
|
|
|
@ -664,7 +664,7 @@ class LatentDiffusion(DDPM):
|
|||
if cond_key is None:
|
||||
cond_key = self.cond_stage_key
|
||||
if cond_key != self.first_stage_key:
|
||||
if cond_key in ['caption', 'coordinates_bbox']:
|
||||
if cond_key in ['caption', 'coordinates_bbox', "txt"]:
|
||||
xc = batch[cond_key]
|
||||
elif cond_key == 'class_label':
|
||||
xc = batch
|
||||
|
@ -762,66 +762,6 @@ class LatentDiffusion(DDPM):
|
|||
else:
|
||||
return self.first_stage_model.decode(z)
|
||||
|
||||
# same as above but without decorator
|
||||
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
||||
if predict_cids:
|
||||
if z.dim() == 4:
|
||||
z = torch.argmax(z.exp(), dim=1).long()
|
||||
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
||||
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
||||
|
||||
z = 1. / self.scale_factor * z
|
||||
|
||||
if hasattr(self, "split_input_params"):
|
||||
if self.split_input_params["patch_distributed_vq"]:
|
||||
ks = self.split_input_params["ks"] # eg. (128, 128)
|
||||
stride = self.split_input_params["stride"] # eg. (64, 64)
|
||||
uf = self.split_input_params["vqf"]
|
||||
bs, nc, h, w = z.shape
|
||||
if ks[0] > h or ks[1] > w:
|
||||
ks = (min(ks[0], h), min(ks[1], w))
|
||||
print("reducing Kernel")
|
||||
|
||||
if stride[0] > h or stride[1] > w:
|
||||
stride = (min(stride[0], h), min(stride[1], w))
|
||||
print("reducing stride")
|
||||
|
||||
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
||||
|
||||
z = unfold(z) # (bn, nc * prod(**ks), L)
|
||||
# 1. Reshape to img shape
|
||||
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
||||
|
||||
# 2. apply model loop over last dim
|
||||
if isinstance(self.first_stage_model, VQModelInterface):
|
||||
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
||||
force_not_quantize=predict_cids or force_not_quantize)
|
||||
for i in range(z.shape[-1])]
|
||||
else:
|
||||
|
||||
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
||||
for i in range(z.shape[-1])]
|
||||
|
||||
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
||||
o = o * weighting
|
||||
# Reverse 1. reshape to img shape
|
||||
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
||||
# stitch crops together
|
||||
decoded = fold(o)
|
||||
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
||||
return decoded
|
||||
else:
|
||||
if isinstance(self.first_stage_model, VQModelInterface):
|
||||
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
||||
else:
|
||||
return self.first_stage_model.decode(z)
|
||||
|
||||
else:
|
||||
if isinstance(self.first_stage_model, VQModelInterface):
|
||||
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
||||
else:
|
||||
return self.first_stage_model.decode(z)
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_first_stage(self, x):
|
||||
if hasattr(self, "split_input_params"):
|
||||
|
@ -1268,8 +1208,8 @@ class LatentDiffusion(DDPM):
|
|||
if hasattr(self.cond_stage_model, "decode"):
|
||||
xc = self.cond_stage_model.decode(c)
|
||||
log["conditioning"] = xc
|
||||
elif self.cond_stage_key in ["caption"]:
|
||||
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
||||
elif self.cond_stage_key in ["caption", "txt"]:
|
||||
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key])
|
||||
log["conditioning"] = xc
|
||||
elif self.cond_stage_key == 'class_label':
|
||||
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
||||
|
|
7
main.py
7
main.py
|
@ -667,8 +667,11 @@ if __name__ == "__main__":
|
|||
data.prepare_data()
|
||||
data.setup()
|
||||
print("#### Data #####")
|
||||
for k in data.datasets:
|
||||
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
|
||||
try:
|
||||
for k in data.datasets:
|
||||
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
|
||||
except:
|
||||
print("datasets not yet initialized.")
|
||||
|
||||
# configure learning rate
|
||||
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
|
||||
|
|
Loading…
Reference in a new issue