176 lines
5.8 KiB
Python
176 lines
5.8 KiB
Python
'''
|
|
Find camera intrinsicts:
|
|
camera matrix and distortion coefficients
|
|
Largely a copy from https://longervision.github.io/2017/03/16/ComputerVision/OpenCV/opencv-internal-calibration-chessboard/
|
|
|
|
|
|
Usage:
|
|
|
|
1. Set dataset variable to point to a directory containing chessboard.mp4
|
|
2. make sure CHECKERBOARD has the nr of corners in the printed board used. Use (6,9) for https://github.com/opencv/opencv/blob/4.x/doc/pattern.png
|
|
3. Scripts creates a `calibration.json` in the dataset folder
|
|
|
|
'''
|
|
|
|
from pathlib import Path
|
|
import time
|
|
import numpy as np
|
|
import cv2
|
|
import json
|
|
import tqdm
|
|
import math
|
|
|
|
CALIB_FISHEYE = True
|
|
|
|
dataset = Path('hof3-cam-baumer')
|
|
|
|
# set needed detections. Use math.inf to scan the whole video
|
|
needed_detections = math.inf # 20
|
|
|
|
# Defining the dimensions of checkerboard
|
|
CHECKERBOARD = (6,9)
|
|
|
|
CROPPED_HEIGHT = 1520
|
|
|
|
|
|
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
|
|
if not CALIB_FISHEYE:
|
|
objp = np.zeros((CHECKERBOARD[0] * CHECKERBOARD[1],3), np.float32)
|
|
objp[:,:2] = np.mgrid[0:CHECKERBOARD[0],0:CHECKERBOARD[1]].T.reshape(-1,2)
|
|
else:
|
|
objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32)
|
|
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
|
|
|
|
|
|
# Arrays to store object points and image points from all the images.
|
|
objpoints = [] # 3d point in real world space
|
|
imgpoints = [] # 2d points in image plane.
|
|
|
|
videofile = dataset / "chessboard7.mp4"
|
|
cap = cv2.VideoCapture(videofile)
|
|
_, img = cap.read()
|
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
_img_shape = img.shape[:2]
|
|
|
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
dim = {
|
|
'width': frame_width,
|
|
'height': frame_height,
|
|
}
|
|
|
|
|
|
loaded = np.load(dataset / "chessboard-points.npz")
|
|
objpoints, imgpoints = loaded['objpoints'], loaded['imgpoints']
|
|
|
|
print(f"Calculating matrixes with {len(objpoints)} detections")
|
|
|
|
|
|
if not CALIB_FISHEYE:
|
|
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, (frame_height, frame_width), None, None)
|
|
# It's very important to transform the matrix to list.
|
|
|
|
data = {'dim': dim, 'camera_matrix': np.asarray(mtx).tolist(), 'dist_coeff': np.asarray(dist).tolist()}
|
|
|
|
fn = dataset / "calibration.json"
|
|
print(f"write to {fn}")
|
|
with open(fn, "w") as f:
|
|
json.dump(data, f)
|
|
|
|
|
|
else:
|
|
#see also: https://medium.com/@kennethjiang/calibrate-fisheye-lens-using-opencv-333b05afa0b0
|
|
|
|
calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEW
|
|
cv2.CV_32FC3
|
|
# objpoints = objpoints.astype(np.int32)
|
|
# print(objpoints, imgpoints.dtype)
|
|
objpoints = [objp for i in range(len(imgpoints))]
|
|
|
|
N_OK = len(objpoints)
|
|
K = np.zeros((3, 3))
|
|
D = np.zeros((4, 1))
|
|
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
|
|
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
|
|
rms, _, _, _, _ = \
|
|
cv2.fisheye.calibrate(
|
|
objpoints,
|
|
imgpoints,
|
|
gray.shape[::-1],
|
|
K,
|
|
D,
|
|
rvecs,
|
|
tvecs,
|
|
calibration_flags,
|
|
(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
|
|
)
|
|
DIM=_img_shape[::-1]
|
|
print("Found " + str(N_OK) + " valid images for calibration")
|
|
print("DIM=" + str(DIM))
|
|
print("K=np.array(" + str(K.tolist()) + ")")
|
|
print("D=np.array(" + str(D.tolist()) + ")")
|
|
balance=0
|
|
dim2=None
|
|
dim3=None
|
|
|
|
|
|
# img = cv2.imread(dataset / "snapshot.png") # just use video frame
|
|
dim1 = img.shape[:2][::-1] #dim1 is the dimension of input image to un-distort
|
|
assert dim1[0]/dim1[1] == DIM[0]/DIM[1], "Image to undistort needs to have same aspect ratio as the ones used in calibration"
|
|
if not dim2:
|
|
dim2 = dim1
|
|
if not dim3:
|
|
dim3 = dim1
|
|
dim3 = (dim1[0], CROPPED_HEIGHT)
|
|
scaled_K = K * dim1[0] / DIM[0] # The values of K is to scale with image dimension.
|
|
scaled_K[2][2] = 1.0 # Except that K[2][2] is always 1.0
|
|
# This is how scaled_K, dim2 and balance are used to determine the final K used to un-distort image. OpenCV document failed to make this clear!
|
|
new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(scaled_K, D, dim2, np.eye(3), balance=balance)
|
|
|
|
map1, map2 = cv2.fisheye.initUndistortRectifyMap(scaled_K, D, np.eye(3), new_K, dim3, cv2.CV_16SC2)
|
|
|
|
t = time.perf_counter()
|
|
# print(map1, map2)
|
|
undistorted_img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
|
|
print(f"Took {time.perf_counter()-t}s")
|
|
|
|
data = {
|
|
'type': 'fisheye',
|
|
'dim1': dim1,
|
|
'dim2':dim2,
|
|
'dim3': dim3,
|
|
'K': np.asarray(K).tolist(),
|
|
'D':np.asarray(D).tolist(),
|
|
'new_K':np.asarray(new_K).tolist(),
|
|
'scaled_K':np.asarray(scaled_K).tolist(),
|
|
'balance':balance}
|
|
print(data)
|
|
|
|
with open(dataset/"calibration.json", "w") as f:
|
|
json.dump(data, f)
|
|
|
|
# map some points to test:
|
|
distorted_img_points = [
|
|
[1000,700],
|
|
[500,700],
|
|
[250,700],
|
|
[125,700],
|
|
]
|
|
|
|
new_points = cv2.fisheye.undistortPoints (np.array([distorted_img_points]).astype(np.float32), K=scaled_K, D=D, R=np.eye(3), P=new_K)
|
|
print ('new', new_points)
|
|
|
|
|
|
|
|
print(undistorted_img.shape)
|
|
for i, point in enumerate(distorted_img_points):
|
|
cv2.circle(img, point, 5, (0,255,0), 2)
|
|
cv2.circle(undistorted_img, new_points[0][i].astype(int), 5, (0,255,0), 2)
|
|
# cv2.circle(undistorted_img, new_points[0][0].astype(int), 5, (0,255,0), 2)
|
|
cv2.imshow("original", img)
|
|
cv2.imshow("undistorted", undistorted_img)
|
|
# img2 = cv2.imread("2.png")
|
|
# cv2.imshow("none undistorted", img2)
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows()
|
|
|