''' Find camera intrinsicts: camera matrix and distortion coefficients Largely a copy from https://longervision.github.io/2017/03/16/ComputerVision/OpenCV/opencv-internal-calibration-chessboard/ Usage: 1. Set dataset variable to point to a directory containing chessboard.mp4 2. make sure CHECKERBOARD has the nr of corners in the printed board used. Use (6,9) for https://github.com/opencv/opencv/blob/4.x/doc/pattern.png 3. Scripts creates a `calibration.json` in the dataset folder ''' import numpy as np import cv2 import json import tqdm import math dataset = 'hof2' # set needed detections. Use math.inf to scan the whole video needed_detections = math.inf # 20 # Defining the dimensions of checkerboard CHECKERBOARD = (6,9) # termination criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((CHECKERBOARD[0] * CHECKERBOARD[1],3), np.float32) objp[:,:2] = np.mgrid[0:CHECKERBOARD[0],0:CHECKERBOARD[1]].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. cap = cv2.VideoCapture(dataset / "chessboard.mp4") frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) dim = { 'width': frame_width, 'height': frame_height, } found = 0 p = tqdm.tqdm() p2 = tqdm.tqdm(total=needed_detections) while ((found < needed_detections) if math.isfinite(needed_detections) else True): ret, img = cap.read() # Capture frame-by-frame if not ret: break p.update() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chess board corners ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD,None) # If found, add object points, image points (after refining them) if ret == True: objpoints.append(objp) # Certainly, every loop objp is the same, in 3D. corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) imgpoints.append(corners2) p2.update() p2.n # Draw and display the corners img = cv2.drawChessboardCorners(img, CHECKERBOARD, corners2, ret) found += 1 cv2.imshow('img', img) cv2.waitKey(1) # When everything done, release the capture cap.release() cv2.destroyAllWindows() print(f"Calculating matrixes with {found} detections") ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) # It's very important to transform the matrix to list. data = {'dim': dim, 'camera_matrix': np.asarray(mtx).tolist(), 'dist_coeff': np.asarray(dist).tolist()} fn = dataset + "/calibration.json" print(f"write to {fn}") with open(fn, "w") as f: json.dump(data, f)