116 lines
3.6 KiB
Python
116 lines
3.6 KiB
Python
|
"""
|
||
|
After obtaining the calibration.json (camera P and distortion matrixes)
|
||
|
using 01-calibrate.py, this script previews the calibration. Using the cursor
|
||
|
on the original (not-yet-undistorted) image you can add points, which can be
|
||
|
used for the homography later.
|
||
|
|
||
|
1. Set dataset variable to point to the folder with calibration.json and a preview image
|
||
|
2. Set a snapshot image. Note that this image _can_ be higher resolution than the video that is used
|
||
|
this allows for more precise point placement, but might need some conversion in the next step
|
||
|
3. Points are read and saved from points.json in the dataset folder
|
||
|
"""
|
||
|
import cv2
|
||
|
import json
|
||
|
import os
|
||
|
import numpy as np
|
||
|
|
||
|
dataset = 'hof2'
|
||
|
snapshot_img = 'snapshot3.png'
|
||
|
|
||
|
with open(dataset + '/calibration.json', 'r') as fp:
|
||
|
calibdata = json.load(fp)
|
||
|
mtx = np.array(calibdata['camera_matrix'])
|
||
|
dist = np.array(calibdata['dist_coeff'])
|
||
|
w, h = calibdata['dim']['width'], calibdata['dim']['height']
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# # Refining the camera matrix using parameters obtained by calibration
|
||
|
# if we don't set this, the new image will be cropped to the minimum size
|
||
|
# this way, no cropping occurs
|
||
|
# w, h = 2560, 1440
|
||
|
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
|
||
|
|
||
|
if os.path.exists(dataset + '/points.json'):
|
||
|
with open(dataset + '/points.json', 'r') as fp:
|
||
|
points = json.load(fp)
|
||
|
else:
|
||
|
points = [[500,500],[1000,1000]]
|
||
|
|
||
|
def add_point(event,x,y,flags,param):
|
||
|
global points
|
||
|
if event == cv2.EVENT_LBUTTONUP:
|
||
|
selected = None
|
||
|
for i, p in enumerate(points):
|
||
|
d = (p[0]-x)**2 + (p[1]-y)**2
|
||
|
if d < 14:
|
||
|
selected = i
|
||
|
break
|
||
|
print('click', selected)
|
||
|
if selected is None:
|
||
|
points.append([x,y])
|
||
|
else:
|
||
|
points.pop(selected)
|
||
|
|
||
|
# cv2.circle(img,(x,y),100,(255,0,0),-1)
|
||
|
# mouseX,mouseY = x,y
|
||
|
|
||
|
cv2.namedWindow('original image')
|
||
|
cv2.setMouseCallback('original image',add_point)
|
||
|
|
||
|
# cap = cv2.VideoCapture("./hof2-hikvision.mp4")
|
||
|
cap = cv2.VideoCapture(dataset + "/" + snapshot_img)
|
||
|
img_w = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
|
||
|
img_h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
||
|
|
||
|
# scale saved points to snapshot
|
||
|
points = [
|
||
|
[p[0]*(img_w/w), p[1]*(img_h/h)] for p in points
|
||
|
]
|
||
|
|
||
|
imgOld = None
|
||
|
while True: # (found < needed): # Here, 10 can be changed to whatever number you like to choose
|
||
|
ret, img = cap.read() # Capture frame-by-frame
|
||
|
|
||
|
if not ret:
|
||
|
img = imgOld
|
||
|
else:
|
||
|
imgOld = img
|
||
|
|
||
|
# Method 1 to undistort the image
|
||
|
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
|
||
|
dstPoints = cv2.undistortPoints(np.array(points).astype('float32'), mtx, dist, None, P=newcameramtx)
|
||
|
|
||
|
# dst = cv2.undistort(img, mtx, dist, None)
|
||
|
|
||
|
# # Method 2 to undistort the image
|
||
|
# mapx,mapy=cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5)
|
||
|
|
||
|
# dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)
|
||
|
|
||
|
# Displaying the undistorted image
|
||
|
drawImg = img.copy()
|
||
|
drawDst = dst.copy()
|
||
|
for p in dstPoints:
|
||
|
x = int(p[0][0])
|
||
|
y= int(p[0][1])
|
||
|
cv2.circle(drawDst, (x,y), radius=2, color=(0, 0, 255), thickness=-1)
|
||
|
for i, p in enumerate(points):
|
||
|
x = int(p[0])
|
||
|
y= int(p[1])
|
||
|
cv2.circle(drawImg, (x,y), radius=2, color=(0, 0, 255), thickness=-1)
|
||
|
cv2.putText(drawImg, f"{i}", (x,y-5), cv2.FONT_HERSHEY_COMPLEX, 4, (0,0,255))
|
||
|
|
||
|
cv2.imshow("undistorted image",drawDst)
|
||
|
cv2.imshow("original image",drawImg)
|
||
|
if cv2.waitKey(5) == ord('q'):
|
||
|
break
|
||
|
|
||
|
|
||
|
print("write points.json")
|
||
|
with open(dataset + '/points.json', 'w') as fp:
|
||
|
points = [
|
||
|
[p[0]*(w/img_w), p[1]*(h/img_h)] for p in points
|
||
|
]
|
||
|
json.dump(points, fp)
|