Compare commits
No commits in common. "9284ce88494261ecec3ab26793e3faef977019fa" and "3d8cb7ef70fbf851ef2cad577ffea54e4fcaace7" have entirely different histories.
9284ce8849
...
3d8cb7ef70
10 changed files with 174 additions and 856 deletions
22
poetry.lock
generated
22
poetry.lock
generated
|
@ -2290,29 +2290,15 @@ files = [
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "pyglet"
|
name = "pyglet"
|
||||||
version = "2.0.18"
|
version = "2.0.15"
|
||||||
description = "pyglet is a cross-platform games and multimedia package."
|
description = "pyglet is a cross-platform games and multimedia package."
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.8"
|
python-versions = ">=3.8"
|
||||||
files = [
|
files = [
|
||||||
{file = "pyglet-2.0.18-py3-none-any.whl", hash = "sha256:e592952ae0297e456c587b6486ed8c3e5f9d0c3519d517bb92dde5fdf4c26b41"},
|
{file = "pyglet-2.0.15-py3-none-any.whl", hash = "sha256:9e4cc16efc308106fd3a9ff8f04e7a6f4f6a807c6ac8a331375efbbac8be85af"},
|
||||||
{file = "pyglet-2.0.18.tar.gz", hash = "sha256:7cf9238d70082a2da282759679f8a011cc979753a32224a8ead8ed80e48f99dc"},
|
{file = "pyglet-2.0.15.tar.gz", hash = "sha256:42085567cece0c7f1c14e36eef799938cbf528cfbb0150c484b984f3ff1aa771"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "pyglet-cornerpin"
|
|
||||||
version = "0.2.0"
|
|
||||||
description = "Add a corner pin transform to a pyglet window"
|
|
||||||
optional = false
|
|
||||||
python-versions = "<4.0,>=3.10"
|
|
||||||
files = [
|
|
||||||
{file = "pyglet_cornerpin-0.2.0-py3-none-any.whl", hash = "sha256:1e1cf4f2e86929fb74e89939be8f7ebdb110f65bf0923e51466e8fbd44773dc5"},
|
|
||||||
{file = "pyglet_cornerpin-0.2.0.tar.gz", hash = "sha256:8fe8a7618c11f93ac3b3c8b89b71e4398bf1223eea9ac3ea744e9d36031a44f9"},
|
|
||||||
]
|
|
||||||
|
|
||||||
[package.dependencies]
|
|
||||||
pyglet = ">=2.0.18,<3.0.0"
|
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "pygments"
|
name = "pygments"
|
||||||
version = "2.17.2"
|
version = "2.17.2"
|
||||||
|
@ -3542,4 +3528,4 @@ watchdog = ["watchdog (>=2.3)"]
|
||||||
[metadata]
|
[metadata]
|
||||||
lock-version = "2.0"
|
lock-version = "2.0"
|
||||||
python-versions = "^3.10,<3.12,"
|
python-versions = "^3.10,<3.12,"
|
||||||
content-hash = "bffa0878a620996b47aa5623b951f09ab010c267880c6dcd5a53741f244e675a"
|
content-hash = "5154a99d490755a68e51595424649b5269fcd17ef14094c6285f5de7f972f110"
|
||||||
|
|
|
@ -7,7 +7,6 @@ readme = "README.md"
|
||||||
|
|
||||||
[tool.poetry.scripts]
|
[tool.poetry.scripts]
|
||||||
trapserv = "trap.plumber:start"
|
trapserv = "trap.plumber:start"
|
||||||
tracker = "trap.tools:tracker_preprocess"
|
|
||||||
|
|
||||||
|
|
||||||
[tool.poetry.dependencies]
|
[tool.poetry.dependencies]
|
||||||
|
@ -33,7 +32,6 @@ gdown = "^4.7.1"
|
||||||
pandas-helper-calc = {git = "https://github.com/scls19fr/pandas-helper-calc"}
|
pandas-helper-calc = {git = "https://github.com/scls19fr/pandas-helper-calc"}
|
||||||
tsmoothie = "^1.0.5"
|
tsmoothie = "^1.0.5"
|
||||||
pyglet = "^2.0.15"
|
pyglet = "^2.0.15"
|
||||||
pyglet-cornerpin = "^0.2.0"
|
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
requires = ["poetry-core"]
|
requires = ["poetry-core"]
|
||||||
|
|
|
@ -1,451 +0,0 @@
|
||||||
# used for "Forward Referencing of type annotations"
|
|
||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import time
|
|
||||||
import ffmpeg
|
|
||||||
from argparse import Namespace
|
|
||||||
import datetime
|
|
||||||
import logging
|
|
||||||
from multiprocessing import Event
|
|
||||||
from multiprocessing.synchronize import Event as BaseEvent
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
import pyglet
|
|
||||||
import pyglet.event
|
|
||||||
import zmq
|
|
||||||
import tempfile
|
|
||||||
from pathlib import Path
|
|
||||||
import shutil
|
|
||||||
import math
|
|
||||||
|
|
||||||
from pyglet import shapes
|
|
||||||
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
from trap.frame_emitter import DetectionState, Frame, Track
|
|
||||||
from trap.preview_renderer import DrawnTrack, PROJECTION_IMG, PROJECTION_MAP
|
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger("trap.renderer")
|
|
||||||
|
|
||||||
class AnimationRenderer:
|
|
||||||
def __init__(self, config: Namespace, is_running: BaseEvent):
|
|
||||||
self.config = config
|
|
||||||
self.is_running = is_running
|
|
||||||
|
|
||||||
context = zmq.Context()
|
|
||||||
self.prediction_sock = context.socket(zmq.SUB)
|
|
||||||
self.prediction_sock.setsockopt(zmq.CONFLATE, 1) # only keep latest frame. NB. make sure this comes BEFORE connect, otherwise it's ignored!!
|
|
||||||
self.prediction_sock.setsockopt(zmq.SUBSCRIBE, b'')
|
|
||||||
self.prediction_sock.connect(config.zmq_prediction_addr)
|
|
||||||
|
|
||||||
self.tracker_sock = context.socket(zmq.SUB)
|
|
||||||
self.tracker_sock.setsockopt(zmq.CONFLATE, 1) # only keep latest frame. NB. make sure this comes BEFORE connect, otherwise it's ignored!!
|
|
||||||
self.tracker_sock.setsockopt(zmq.SUBSCRIBE, b'')
|
|
||||||
self.tracker_sock.connect(config.zmq_trajectory_addr)
|
|
||||||
|
|
||||||
self.frame_sock = context.socket(zmq.SUB)
|
|
||||||
self.frame_sock.setsockopt(zmq.CONFLATE, 1) # only keep latest frame. NB. make sure this comes BEFORE connect, otherwise it's ignored!!
|
|
||||||
self.frame_sock.setsockopt(zmq.SUBSCRIBE, b'')
|
|
||||||
self.frame_sock.connect(config.zmq_frame_addr)
|
|
||||||
|
|
||||||
self.H = self.config.H
|
|
||||||
|
|
||||||
self.inv_H = np.linalg.pinv(self.H)
|
|
||||||
|
|
||||||
# TODO: get FPS from frame_emitter
|
|
||||||
# self.out = cv2.VideoWriter(str(filename), fourcc, 23.97, (1280,720))
|
|
||||||
self.fps = 60
|
|
||||||
self.frame_size = (self.config.frame_width,self.config.frame_height)
|
|
||||||
self.hide_stats = False
|
|
||||||
self.out_writer = None # self.start_writer() if self.config.render_file else None
|
|
||||||
self.streaming_process = None # self.start_streaming() if self.config.render_url else None
|
|
||||||
|
|
||||||
if self.config.render_window:
|
|
||||||
pass
|
|
||||||
# cv2.namedWindow("frame", cv2.WND_PROP_FULLSCREEN)
|
|
||||||
# cv2.setWindowProperty("frame",cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN)
|
|
||||||
else:
|
|
||||||
pyglet.options["headless"] = True
|
|
||||||
|
|
||||||
config = pyglet.gl.Config(sample_buffers=1, samples=4)
|
|
||||||
# , fullscreen=self.config.render_window
|
|
||||||
|
|
||||||
display = pyglet.canvas.get_display()
|
|
||||||
screen = display.get_screens()[0]
|
|
||||||
|
|
||||||
# self.window = pyglet.window.Window(width=self.frame_size[0], height=self.frame_size[1], config=config, fullscreen=False, screen=screens[1])
|
|
||||||
self.window = pyglet.window.Window(width=screen.width, height=screen.height, config=config, fullscreen=True, screen=screen)
|
|
||||||
self.window.set_handler('on_draw', self.on_draw)
|
|
||||||
self.window.set_handler('on_refresh', self.on_refresh)
|
|
||||||
self.window.set_handler('on_close', self.on_close)
|
|
||||||
|
|
||||||
# don't know why, but importing this before window leads to "x connection to :1 broken (explicit kill or server shutdown)"
|
|
||||||
from pyglet_cornerpin import PygletCornerPin
|
|
||||||
|
|
||||||
self.pins = PygletCornerPin(self.window)
|
|
||||||
self.window.push_handlers(self.pins)
|
|
||||||
|
|
||||||
pyglet.gl.glClearColor(0,0,0, 0)
|
|
||||||
self.fps_display = pyglet.window.FPSDisplay(window=self.window, color=(255,255,255,255))
|
|
||||||
self.fps_display.label.x = self.window.width - 50
|
|
||||||
self.fps_display.label.y = self.window.height - 17
|
|
||||||
self.fps_display.label.bold = False
|
|
||||||
self.fps_display.label.font_size = 10
|
|
||||||
|
|
||||||
self.drawn_tracks: dict[str, DrawnTrack] = {}
|
|
||||||
|
|
||||||
|
|
||||||
self.first_time: float|None = None
|
|
||||||
self.frame: Frame|None= None
|
|
||||||
self.tracker_frame: Frame|None = None
|
|
||||||
self.prediction_frame: Frame|None = None
|
|
||||||
|
|
||||||
|
|
||||||
self.batch_bg = pyglet.graphics.Batch()
|
|
||||||
self.batch_overlay = pyglet.graphics.Batch()
|
|
||||||
self.batch_anim = pyglet.graphics.Batch()
|
|
||||||
|
|
||||||
self.debug_lines = [
|
|
||||||
pyglet.shapes.Line(1380, self.config.camera.h, 1380, 670, 2, (255,255,255,255), batch=self.batch_overlay),
|
|
||||||
pyglet.shapes.Line(0, 660, 1380, 670, 2, (255,255,255,255), batch=self.batch_overlay),
|
|
||||||
pyglet.shapes.Line(1140, 760, 1140, 675, 2, (255,255,255,255), batch=self.batch_overlay),
|
|
||||||
pyglet.shapes.Line(0, 750, 1380, 760, 2, (255,255,255,255), batch=self.batch_overlay),
|
|
||||||
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
self.init_shapes()
|
|
||||||
|
|
||||||
self.init_labels()
|
|
||||||
|
|
||||||
|
|
||||||
def init_shapes(self):
|
|
||||||
'''
|
|
||||||
Due to error when running headless, we need to configure options before extending the shapes class
|
|
||||||
'''
|
|
||||||
class GradientLine(shapes.Line):
|
|
||||||
def __init__(self, x, y, x2, y2, width=1, color1=[255,255,255], color2=[255,255,255], batch=None, group=None):
|
|
||||||
# print('colors!', colors)
|
|
||||||
# assert len(colors) == 6
|
|
||||||
|
|
||||||
r, g, b, *a = color1
|
|
||||||
self._rgba1 = (r, g, b, a[0] if a else 255)
|
|
||||||
r, g, b, *a = color2
|
|
||||||
self._rgba2 = (r, g, b, a[0] if a else 255)
|
|
||||||
|
|
||||||
# print('rgba', self._rgba)
|
|
||||||
|
|
||||||
super().__init__(x, y, x2, y2, width, color1, batch=None, group=None)
|
|
||||||
# <pyglet.graphics.vertexdomain.VertexList
|
|
||||||
# pyglet.graphics.vertexdomain
|
|
||||||
# print(self._vertex_list)
|
|
||||||
|
|
||||||
def _create_vertex_list(self):
|
|
||||||
'''
|
|
||||||
copy of super()._create_vertex_list but with additional colors'''
|
|
||||||
self._vertex_list = self._group.program.vertex_list(
|
|
||||||
6, self._draw_mode, self._batch, self._group,
|
|
||||||
position=('f', self._get_vertices()),
|
|
||||||
colors=('Bn', self._rgba1+ self._rgba2 + self._rgba2 + self._rgba1 + self._rgba2 +self._rgba1 ),
|
|
||||||
translation=('f', (self._x, self._y) * self._num_verts))
|
|
||||||
|
|
||||||
def _update_colors(self):
|
|
||||||
self._vertex_list.colors[:] = self._rgba1+ self._rgba2 + self._rgba2 + self._rgba1 + self._rgba2 +self._rgba1
|
|
||||||
|
|
||||||
def color1(self, color):
|
|
||||||
r, g, b, *a = color
|
|
||||||
self._rgba1 = (r, g, b, a[0] if a else 255)
|
|
||||||
self._update_colors()
|
|
||||||
|
|
||||||
def color2(self, color):
|
|
||||||
r, g, b, *a = color
|
|
||||||
self._rgba2 = (r, g, b, a[0] if a else 255)
|
|
||||||
self._update_colors()
|
|
||||||
|
|
||||||
self.gradientLine = GradientLine
|
|
||||||
|
|
||||||
def init_labels(self):
|
|
||||||
base_color = (255,)*4
|
|
||||||
color_predictor = (255,255,0, 255)
|
|
||||||
color_info = (255,0, 255, 255)
|
|
||||||
color_tracker = (0,255, 255, 255)
|
|
||||||
|
|
||||||
options = []
|
|
||||||
for option in ['prediction_horizon','num_samples','full_dist','gmm_mode','z_mode', 'model_dir']:
|
|
||||||
options.append(f"{option}: {self.config.__dict__[option]}")
|
|
||||||
|
|
||||||
self.labels = {
|
|
||||||
'waiting': pyglet.text.Label("Waiting for prediction"),
|
|
||||||
'frame_idx': pyglet.text.Label("", x=20, y=self.window.height - 17, color=base_color, batch=self.batch_overlay),
|
|
||||||
'tracker_idx': pyglet.text.Label("", x=90, y=self.window.height - 17, color=color_tracker, batch=self.batch_overlay),
|
|
||||||
'pred_idx': pyglet.text.Label("", x=110, y=self.window.height - 17, color=color_predictor, batch=self.batch_overlay),
|
|
||||||
'frame_time': pyglet.text.Label("t", x=140, y=self.window.height - 17, color=base_color, batch=self.batch_overlay),
|
|
||||||
'frame_latency': pyglet.text.Label("", x=235, y=self.window.height - 17, color=color_info, batch=self.batch_overlay),
|
|
||||||
'tracker_time': pyglet.text.Label("", x=300, y=self.window.height - 17, color=color_tracker, batch=self.batch_overlay),
|
|
||||||
'pred_time': pyglet.text.Label("", x=360, y=self.window.height - 17, color=color_predictor, batch=self.batch_overlay),
|
|
||||||
'track_len': pyglet.text.Label("", x=800, y=self.window.height - 17, color=color_tracker, batch=self.batch_overlay),
|
|
||||||
'options1': pyglet.text.Label(options.pop(-1), x=20, y=30, color=base_color, batch=self.batch_overlay),
|
|
||||||
'options2': pyglet.text.Label(" | ".join(options), x=20, y=10, color=base_color, batch=self.batch_overlay),
|
|
||||||
}
|
|
||||||
|
|
||||||
def refresh_labels(self, dt: float):
|
|
||||||
"""Every frame"""
|
|
||||||
|
|
||||||
if self.frame:
|
|
||||||
self.labels['frame_idx'].text = f"{self.frame.index:06d}"
|
|
||||||
self.labels['frame_time'].text = f"{self.frame.time - self.first_time: >10.2f}s"
|
|
||||||
self.labels['frame_latency'].text = f"{self.frame.time - time.time():.2f}s"
|
|
||||||
|
|
||||||
if self.tracker_frame:
|
|
||||||
self.labels['tracker_idx'].text = f"{self.tracker_frame.index - self.frame.index}"
|
|
||||||
self.labels['tracker_time'].text = f"{self.tracker_frame.time - time.time():.3f}s"
|
|
||||||
self.labels['track_len'].text = f"{len(self.tracker_frame.tracks)} tracks"
|
|
||||||
|
|
||||||
if self.prediction_frame:
|
|
||||||
self.labels['pred_idx'].text = f"{self.prediction_frame.index - self.frame.index}"
|
|
||||||
self.labels['pred_time'].text = f"{self.prediction_frame.time - time.time():.3f}s"
|
|
||||||
# self.labels['track_len'].text = f"{len(self.prediction_frame.tracks)} tracks"
|
|
||||||
|
|
||||||
|
|
||||||
# cv2.putText(img, f"{frame.index:06d}", (20,17), cv2.FONT_HERSHEY_PLAIN, 1, base_color, 1)
|
|
||||||
# cv2.putText(img, f"{frame.time - first_time:.3f}s", (120,17), cv2.FONT_HERSHEY_PLAIN, 1, base_color, 1)
|
|
||||||
|
|
||||||
# if prediction_frame:
|
|
||||||
# # render Δt and Δ frames
|
|
||||||
# cv2.putText(img, f"{prediction_frame.index - frame.index}", (90,17), cv2.FONT_HERSHEY_PLAIN, 1, info_color, 1)
|
|
||||||
# cv2.putText(img, f"{prediction_frame.time - time.time():.2f}s", (200,17), cv2.FONT_HERSHEY_PLAIN, 1, info_color, 1)
|
|
||||||
# cv2.putText(img, f"{len(prediction_frame.tracks)} tracks", (500,17), cv2.FONT_HERSHEY_PLAIN, 1, base_color, 1)
|
|
||||||
# cv2.putText(img, f"h: {np.average([len(t.history or []) for t in prediction_frame.tracks.values()]):.2f}", (580,17), cv2.FONT_HERSHEY_PLAIN, 1, info_color, 1)
|
|
||||||
# cv2.putText(img, f"ph: {np.average([len(t.predictor_history or []) for t in prediction_frame.tracks.values()]):.2f}", (660,17), cv2.FONT_HERSHEY_PLAIN, 1, info_color, 1)
|
|
||||||
# cv2.putText(img, f"p: {np.average([len(t.predictions or []) for t in prediction_frame.tracks.values()]):.2f}", (740,17), cv2.FONT_HERSHEY_PLAIN, 1, info_color, 1)
|
|
||||||
|
|
||||||
# options = []
|
|
||||||
# for option in ['prediction_horizon','num_samples','full_dist','gmm_mode','z_mode', 'model_dir']:
|
|
||||||
# options.append(f"{option}: {config.__dict__[option]}")
|
|
||||||
|
|
||||||
|
|
||||||
# cv2.putText(img, options.pop(-1), (20,img.shape[0]-30), cv2.FONT_HERSHEY_PLAIN, 1, base_color, 1)
|
|
||||||
# cv2.putText(img, " | ".join(options), (20,img.shape[0]-10), cv2.FONT_HERSHEY_PLAIN, 1, base_color, 1)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def check_frames(self, dt):
|
|
||||||
new_tracks = False
|
|
||||||
try:
|
|
||||||
self.frame: Frame = self.frame_sock.recv_pyobj(zmq.NOBLOCK)
|
|
||||||
if not self.first_time:
|
|
||||||
self.first_time = self.frame.time
|
|
||||||
img = self.frame.img
|
|
||||||
# newcameramtx, roi = cv2.getOptimalNewCameraMatrix(self.config.camera.mtx, self.config.camera.dist, (self.frame.img.shape[1], self.frame.img.shape[0]), 1, (self.frame.img.shape[1], self.frame.img.shape[0]))
|
|
||||||
img = cv2.undistort(img, self.config.camera.mtx, self.config.camera.dist, None, self.config.camera.newcameramtx)
|
|
||||||
img = cv2.warpPerspective(img, self.H, (self.frame.img.shape[1], self.frame.img.shape[0]))
|
|
||||||
img = cv2.GaussianBlur(img, (15, 15), 0)
|
|
||||||
img = cv2.flip(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), 0)
|
|
||||||
img = pyglet.image.ImageData(self.frame_size[0], self.frame_size[1], 'RGB', img.tobytes())
|
|
||||||
# don't draw in batch, so that it is the background
|
|
||||||
self.video_sprite = pyglet.sprite.Sprite(img=img, batch=self.batch_bg)
|
|
||||||
self.video_sprite.opacity = 30
|
|
||||||
except zmq.ZMQError as e:
|
|
||||||
# idx = frame.index if frame else "NONE"
|
|
||||||
# logger.debug(f"reuse video frame {idx}")
|
|
||||||
pass
|
|
||||||
try:
|
|
||||||
self.prediction_frame: Frame = self.prediction_sock.recv_pyobj(zmq.NOBLOCK)
|
|
||||||
new_tracks = True
|
|
||||||
except zmq.ZMQError as e:
|
|
||||||
pass
|
|
||||||
try:
|
|
||||||
self.tracker_frame: Frame = self.tracker_sock.recv_pyobj(zmq.NOBLOCK)
|
|
||||||
new_tracks = True
|
|
||||||
except zmq.ZMQError as e:
|
|
||||||
pass
|
|
||||||
|
|
||||||
if new_tracks:
|
|
||||||
self.update_tracks()
|
|
||||||
|
|
||||||
def update_tracks(self):
|
|
||||||
"""Updates the track objects and shapes. Called after setting `prediction_frame`
|
|
||||||
"""
|
|
||||||
|
|
||||||
# clean up
|
|
||||||
# for track_id in list(self.drawn_tracks.keys()):
|
|
||||||
# if track_id not in self.prediction_frame.tracks.keys():
|
|
||||||
# # TODO fade out
|
|
||||||
# del self.drawn_tracks[track_id]
|
|
||||||
|
|
||||||
if self.prediction_frame:
|
|
||||||
for track_id, track in self.prediction_frame.tracks.items():
|
|
||||||
if track_id not in self.drawn_tracks:
|
|
||||||
self.drawn_tracks[track_id] = DrawnTrack(track_id, track, self, self.prediction_frame.H, PROJECTION_MAP, self.config.camera)
|
|
||||||
else:
|
|
||||||
self.drawn_tracks[track_id].set_track(track)
|
|
||||||
|
|
||||||
# clean up
|
|
||||||
for track_id in list(self.drawn_tracks.keys()):
|
|
||||||
# TODO make delay configurable
|
|
||||||
if self.drawn_tracks[track_id].update_at < time.time() - 5:
|
|
||||||
# TODO fade out
|
|
||||||
del self.drawn_tracks[track_id]
|
|
||||||
|
|
||||||
|
|
||||||
def on_key_press(self, symbol, modifiers):
|
|
||||||
print('A key was pressed, use f to hide')
|
|
||||||
if symbol == ord('f'):
|
|
||||||
self.window.set_fullscreen(not self.window.fullscreen)
|
|
||||||
if symbol == ord('h'):
|
|
||||||
self.hide_stats = not self.hide_stats
|
|
||||||
|
|
||||||
def check_running(self, dt):
|
|
||||||
if not self.is_running.is_set():
|
|
||||||
self.window.close()
|
|
||||||
self.event_loop.exit()
|
|
||||||
|
|
||||||
def on_close(self):
|
|
||||||
self.is_running.clear()
|
|
||||||
|
|
||||||
|
|
||||||
def on_refresh(self, dt: float):
|
|
||||||
# update shapes
|
|
||||||
# self.bg =
|
|
||||||
for track_id, track in self.drawn_tracks.items():
|
|
||||||
track.update_drawn_positions(dt)
|
|
||||||
|
|
||||||
|
|
||||||
self.refresh_labels(dt)
|
|
||||||
|
|
||||||
# self.shape1 = shapes.Circle(700, 150, 100, color=(50, 0, 30), batch=self.batch_anim)
|
|
||||||
# self.shape3 = shapes.Circle(800, 150, 100, color=(100, 225, 30), batch=self.batch_anim)
|
|
||||||
pass
|
|
||||||
|
|
||||||
def on_draw(self):
|
|
||||||
self.window.clear()
|
|
||||||
|
|
||||||
self.batch_bg.draw()
|
|
||||||
|
|
||||||
for track in self.drawn_tracks.values():
|
|
||||||
for shape in track.shapes:
|
|
||||||
shape.draw() # for some reason the batches don't work
|
|
||||||
for track in self.drawn_tracks.values():
|
|
||||||
for shapes in track.pred_shapes:
|
|
||||||
for shape in shapes:
|
|
||||||
shape.draw()
|
|
||||||
# self.batch_anim.draw()
|
|
||||||
self.batch_overlay.draw()
|
|
||||||
self.pins.draw()
|
|
||||||
|
|
||||||
# pyglet.graphics.draw(3, pyglet.gl.GL_LINE, ("v2i", (100,200, 600,800)), ('c3B', (255,255,255, 255,255,255)))
|
|
||||||
|
|
||||||
if not self.hide_stats:
|
|
||||||
self.fps_display.draw()
|
|
||||||
|
|
||||||
# if streaming, capture buffer and send
|
|
||||||
try:
|
|
||||||
if self.streaming_process or self.out_writer:
|
|
||||||
buf = pyglet.image.get_buffer_manager().get_color_buffer()
|
|
||||||
img_data = buf.get_image_data()
|
|
||||||
data = img_data.get_data() # alternative: .get_data("RGBA", image_data.pitch)
|
|
||||||
img = np.asanyarray(data).reshape((img_data.height, img_data.width, 4))
|
|
||||||
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
|
||||||
img = np.flip(img, 0)
|
|
||||||
# img = cv2.flip(img, cv2.0)
|
|
||||||
|
|
||||||
# cv2.imshow('frame', img)
|
|
||||||
# cv2.waitKey(1)
|
|
||||||
if self.streaming_process:
|
|
||||||
self.streaming_process.stdin.write(img.tobytes())
|
|
||||||
if self.out_writer:
|
|
||||||
self.out_writer.write(img)
|
|
||||||
except Exception as e:
|
|
||||||
logger.exception(e)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
frame = None
|
|
||||||
prediction_frame = None
|
|
||||||
tracker_frame = None
|
|
||||||
|
|
||||||
i=0
|
|
||||||
first_time = None
|
|
||||||
|
|
||||||
self.event_loop = pyglet.app.EventLoop()
|
|
||||||
pyglet.clock.schedule_interval(self.check_running, 0.1)
|
|
||||||
pyglet.clock.schedule(self.check_frames)
|
|
||||||
self.event_loop.run()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# while self.is_running.is_set():
|
|
||||||
# i+=1
|
|
||||||
|
|
||||||
|
|
||||||
# # zmq_ev = self.frame_sock.poll(timeout=2000)
|
|
||||||
# # if not zmq_ev:
|
|
||||||
# # # when no data comes in, loop so that is_running is checked
|
|
||||||
# # continue
|
|
||||||
|
|
||||||
# try:
|
|
||||||
# frame: Frame = self.frame_sock.recv_pyobj(zmq.NOBLOCK)
|
|
||||||
# except zmq.ZMQError as e:
|
|
||||||
# # idx = frame.index if frame else "NONE"
|
|
||||||
# # logger.debug(f"reuse video frame {idx}")
|
|
||||||
# pass
|
|
||||||
# # else:
|
|
||||||
# # logger.debug(f'new video frame {frame.index}')
|
|
||||||
|
|
||||||
|
|
||||||
# if frame is None:
|
|
||||||
# # might need to wait a few iterations before first frame comes available
|
|
||||||
# time.sleep(.1)
|
|
||||||
# continue
|
|
||||||
|
|
||||||
# try:
|
|
||||||
# prediction_frame: Frame = self.prediction_sock.recv_pyobj(zmq.NOBLOCK)
|
|
||||||
# except zmq.ZMQError as e:
|
|
||||||
# logger.debug(f'reuse prediction')
|
|
||||||
|
|
||||||
# if first_time is None:
|
|
||||||
# first_time = frame.time
|
|
||||||
|
|
||||||
# img = decorate_frame(frame, prediction_frame, first_time, self.config)
|
|
||||||
|
|
||||||
# img_path = (self.config.output_dir / f"{i:05d}.png").resolve()
|
|
||||||
|
|
||||||
# logger.debug(f"write frame {frame.time - first_time:.3f}s")
|
|
||||||
# if self.out_writer:
|
|
||||||
# self.out_writer.write(img)
|
|
||||||
# if self.streaming_process:
|
|
||||||
# self.streaming_process.stdin.write(img.tobytes())
|
|
||||||
# if self.config.render_window:
|
|
||||||
# cv2.imshow('frame',img)
|
|
||||||
# cv2.waitKey(1)
|
|
||||||
logger.info('Stopping')
|
|
||||||
logger.info(f'used corner pins {self.pins.corners}')
|
|
||||||
|
|
||||||
|
|
||||||
# if i>2:
|
|
||||||
if self.streaming_process:
|
|
||||||
self.streaming_process.stdin.close()
|
|
||||||
if self.out_writer:
|
|
||||||
self.out_writer.release()
|
|
||||||
if self.streaming_process:
|
|
||||||
# oddly wrapped, because both close and release() take time.
|
|
||||||
self.streaming_process.wait()
|
|
||||||
|
|
||||||
# colorset = itertools.product([0,255], repeat=3) # but remove white
|
|
||||||
colorset = [(0, 0, 0),
|
|
||||||
(0, 0, 255),
|
|
||||||
(0, 255, 0),
|
|
||||||
(0, 255, 255),
|
|
||||||
(255, 0, 0),
|
|
||||||
(255, 0, 255),
|
|
||||||
(255, 255, 0)
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def run_animation_renderer(config: Namespace, is_running: BaseEvent):
|
|
||||||
renderer = AnimationRenderer(config, is_running)
|
|
||||||
renderer.run()
|
|
|
@ -1,11 +1,8 @@
|
||||||
import argparse
|
import argparse
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import types
|
import types
|
||||||
import numpy as np
|
|
||||||
import json
|
|
||||||
|
|
||||||
from trap.tracker import DETECTORS
|
from trap.tracker import DETECTORS
|
||||||
from trap.frame_emitter import Camera
|
|
||||||
|
|
||||||
from pyparsing import Optional
|
from pyparsing import Optional
|
||||||
|
|
||||||
|
@ -52,43 +49,6 @@ frame_emitter_parser = parser.add_argument_group('Frame emitter')
|
||||||
tracker_parser = parser.add_argument_group('Tracker')
|
tracker_parser = parser.add_argument_group('Tracker')
|
||||||
render_parser = parser.add_argument_group('Renderer')
|
render_parser = parser.add_argument_group('Renderer')
|
||||||
|
|
||||||
class HomographyAction(argparse.Action):
|
|
||||||
def __init__(self, option_strings, dest, nargs=None, **kwargs):
|
|
||||||
if nargs is not None:
|
|
||||||
raise ValueError("nargs not allowed")
|
|
||||||
super().__init__(option_strings, dest, **kwargs)
|
|
||||||
def __call__(self, parser, namespace, values: Path, option_string=None):
|
|
||||||
if values.suffix == '.json':
|
|
||||||
with values.open('r') as fp:
|
|
||||||
H = np.array(json.load(fp))
|
|
||||||
else:
|
|
||||||
H = np.loadtxt(values, delimiter=',')
|
|
||||||
|
|
||||||
setattr(namespace, self.dest, values)
|
|
||||||
setattr(namespace, 'H', H)
|
|
||||||
|
|
||||||
class CameraAction(argparse.Action):
|
|
||||||
def __init__(self, option_strings, dest, nargs=None, **kwargs):
|
|
||||||
if nargs is not None:
|
|
||||||
raise ValueError("nargs not allowed")
|
|
||||||
super().__init__(option_strings, dest, **kwargs)
|
|
||||||
def __call__(self, parser, namespace, values, option_string=None):
|
|
||||||
if values is None:
|
|
||||||
setattr(namespace, self.dest, None)
|
|
||||||
else:
|
|
||||||
values = Path(values)
|
|
||||||
with values.open('r') as fp:
|
|
||||||
data = json.load(fp)
|
|
||||||
# print(data)
|
|
||||||
# print(data['camera_matrix'])
|
|
||||||
# camera = {
|
|
||||||
# 'camera_matrix': np.array(data['camera_matrix']),
|
|
||||||
# 'dist_coeff': np.array(data['dist_coeff']),
|
|
||||||
# }
|
|
||||||
camera = Camera(np.array(data['camera_matrix']), np.array(data['dist_coeff']), namespace.frame_width, namespace.frame_height)
|
|
||||||
|
|
||||||
setattr(namespace, 'camera', camera)
|
|
||||||
|
|
||||||
inference_parser.add_argument("--model_dir",
|
inference_parser.add_argument("--model_dir",
|
||||||
help="directory with the model to use for inference",
|
help="directory with the model to use for inference",
|
||||||
type=str, # TODO: make into Path
|
type=str, # TODO: make into Path
|
||||||
|
@ -274,13 +234,7 @@ frame_emitter_parser.add_argument("--video-loop",
|
||||||
tracker_parser.add_argument("--homography",
|
tracker_parser.add_argument("--homography",
|
||||||
help="File with homography params",
|
help="File with homography params",
|
||||||
type=Path,
|
type=Path,
|
||||||
default='../DATASETS/VIRAT_subset_0102x/VIRAT_0102_homography_img2world.txt',
|
default='../DATASETS/VIRAT_subset_0102x/VIRAT_0102_homography_img2world.txt')
|
||||||
action=HomographyAction)
|
|
||||||
tracker_parser.add_argument("--calibration",
|
|
||||||
help="File with camera intrinsics and lens distortion params (calibration.json)",
|
|
||||||
# type=Path,
|
|
||||||
default=None,
|
|
||||||
action=CameraAction)
|
|
||||||
tracker_parser.add_argument("--save-for-training",
|
tracker_parser.add_argument("--save-for-training",
|
||||||
help="Specify the path in which to save",
|
help="Specify the path in which to save",
|
||||||
type=Path,
|
type=Path,
|
||||||
|
@ -292,15 +246,6 @@ tracker_parser.add_argument("--detector",
|
||||||
tracker_parser.add_argument("--smooth-tracks",
|
tracker_parser.add_argument("--smooth-tracks",
|
||||||
help="Smooth the tracker tracks before sending them to the predictor",
|
help="Smooth the tracker tracks before sending them to the predictor",
|
||||||
action='store_true')
|
action='store_true')
|
||||||
tracker_parser.add_argument("--frame-width",
|
|
||||||
help="width of the frames",
|
|
||||||
type=int,
|
|
||||||
default=1280)
|
|
||||||
tracker_parser.add_argument("--frame-height",
|
|
||||||
help="height of the frames",
|
|
||||||
type=int,
|
|
||||||
default=720)
|
|
||||||
|
|
||||||
|
|
||||||
# Renderer
|
# Renderer
|
||||||
|
|
||||||
|
|
|
@ -32,14 +32,6 @@ class DetectionState(IntFlag):
|
||||||
return cls.Confirmed
|
return cls.Confirmed
|
||||||
raise RuntimeError("Should not run into Deleted entries here")
|
raise RuntimeError("Should not run into Deleted entries here")
|
||||||
|
|
||||||
class Camera:
|
|
||||||
def __init__(self, mtx, dist, w, h):
|
|
||||||
self.mtx = mtx
|
|
||||||
self.dist = dist
|
|
||||||
self.w = w
|
|
||||||
self.h = h
|
|
||||||
self.newcameramtx, self.roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Detection:
|
class Detection:
|
||||||
|
@ -91,25 +83,19 @@ class Track:
|
||||||
predictor_history: Optional[list] = None # in image space
|
predictor_history: Optional[list] = None # in image space
|
||||||
predictions: Optional[list] = None
|
predictions: Optional[list] = None
|
||||||
|
|
||||||
def get_projected_history(self, H, camera: Optional[Camera]= None) -> np.array:
|
def get_projected_history(self, H) -> np.array:
|
||||||
foot_coordinates = [d.get_foot_coords() for d in self.history]
|
foot_coordinates = [d.get_foot_coords() for d in self.history]
|
||||||
# TODO)) Undistort points before perspective transform
|
|
||||||
if len(foot_coordinates):
|
if len(foot_coordinates):
|
||||||
if camera:
|
coords = cv2.perspectiveTransform(np.array([foot_coordinates]),H)
|
||||||
coords = cv2.undistortPoints(np.array([foot_coordinates]).astype('float32'), camera.mtx, camera.dist, None, camera.newcameramtx)
|
|
||||||
coords = cv2.perspectiveTransform(np.array(coords),H)
|
|
||||||
return coords.reshape((coords.shape[0],2))
|
|
||||||
else:
|
|
||||||
coords = cv2.perspectiveTransform(np.array([foot_coordinates]),H)
|
|
||||||
return coords[0]
|
return coords[0]
|
||||||
return np.array([])
|
return np.array([])
|
||||||
|
|
||||||
def get_projected_history_as_dict(self, H, camera: Optional[Camera]= None) -> dict:
|
def get_projected_history_as_dict(self, H) -> dict:
|
||||||
coords = self.get_projected_history(H, camera)
|
coords = self.get_projected_history(H)
|
||||||
return [{"x":c[0], "y":c[1]} for c in coords]
|
return [{"x":c[0], "y":c[1]} for c in coords]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -120,7 +106,6 @@ class Frame:
|
||||||
time: float= field(default_factory=lambda: time.time())
|
time: float= field(default_factory=lambda: time.time())
|
||||||
tracks: Optional[dict[str, Track]] = None
|
tracks: Optional[dict[str, Track]] = None
|
||||||
H: Optional[np.array] = None
|
H: Optional[np.array] = None
|
||||||
camera: Optional[Camera] = None
|
|
||||||
|
|
||||||
def aslist(self) -> [dict]:
|
def aslist(self) -> [dict]:
|
||||||
return { t.track_id:
|
return { t.track_id:
|
||||||
|
@ -135,13 +120,6 @@ class Frame:
|
||||||
} for t in self.tracks.values()
|
} for t in self.tracks.values()
|
||||||
}
|
}
|
||||||
|
|
||||||
def video_src_from_config(config):
|
|
||||||
if config.video_loop:
|
|
||||||
video_srcs: Iterable[Path] = cycle(config.video_src)
|
|
||||||
else:
|
|
||||||
video_srcs: Iterable[Path] = config.video_src
|
|
||||||
return video_srcs
|
|
||||||
|
|
||||||
class FrameEmitter:
|
class FrameEmitter:
|
||||||
'''
|
'''
|
||||||
Emit frame in a separate threat so they can be throttled,
|
Emit frame in a separate threat so they can be throttled,
|
||||||
|
@ -159,7 +137,10 @@ class FrameEmitter:
|
||||||
|
|
||||||
logger.info(f"Connection socket {config.zmq_frame_addr}")
|
logger.info(f"Connection socket {config.zmq_frame_addr}")
|
||||||
|
|
||||||
self.video_srcs: video_src_from_config(self.config)
|
if self.config.video_loop:
|
||||||
|
self.video_srcs: Iterable[Path] = cycle(self.config.video_src)
|
||||||
|
else:
|
||||||
|
self.video_srcs: [Path] = self.config.video_src
|
||||||
|
|
||||||
|
|
||||||
def emit_video(self):
|
def emit_video(self):
|
||||||
|
@ -170,8 +151,8 @@ class FrameEmitter:
|
||||||
# numeric input is a CV camera
|
# numeric input is a CV camera
|
||||||
video = cv2.VideoCapture(int(str(video_path)))
|
video = cv2.VideoCapture(int(str(video_path)))
|
||||||
# TODO: make config variables
|
# TODO: make config variables
|
||||||
video.set(cv2.CAP_PROP_FRAME_WIDTH, int(self.config.frame_width))
|
video.set(cv2.CAP_PROP_FRAME_WIDTH, int(1280))
|
||||||
video.set(cv2.CAP_PROP_FRAME_HEIGHT, int(self.config.frame_height))
|
video.set(cv2.CAP_PROP_FRAME_HEIGHT, int(720))
|
||||||
print("exposure!", video.get(cv2.CAP_PROP_AUTO_EXPOSURE))
|
print("exposure!", video.get(cv2.CAP_PROP_AUTO_EXPOSURE))
|
||||||
video.set(cv2.CAP_PROP_FPS, 5)
|
video.set(cv2.CAP_PROP_FPS, 5)
|
||||||
else:
|
else:
|
||||||
|
@ -217,7 +198,7 @@ class FrameEmitter:
|
||||||
# hack to mask out area
|
# hack to mask out area
|
||||||
cv2.rectangle(img, (0,0), (800,200), (0,0,0), -1)
|
cv2.rectangle(img, (0,0), (800,200), (0,0,0), -1)
|
||||||
|
|
||||||
frame = Frame(index=i, img=img, H=self.config.H, camera=self.config.camera)
|
frame = Frame(index=i, img=img, H=video_H)
|
||||||
# TODO: this is very dirty, need to find another way.
|
# TODO: this is very dirty, need to find another way.
|
||||||
# perhaps multiprocessing Array?
|
# perhaps multiprocessing Array?
|
||||||
self.frame_sock.send(pickle.dumps(frame))
|
self.frame_sock.send(pickle.dumps(frame))
|
||||||
|
|
|
@ -9,8 +9,7 @@ import time
|
||||||
from trap.config import parser
|
from trap.config import parser
|
||||||
from trap.frame_emitter import run_frame_emitter
|
from trap.frame_emitter import run_frame_emitter
|
||||||
from trap.prediction_server import run_prediction_server
|
from trap.prediction_server import run_prediction_server
|
||||||
from trap.preview_renderer import run_preview_renderer
|
from trap.renderer import run_renderer
|
||||||
from trap.animation_renderer import run_animation_renderer
|
|
||||||
from trap.socket_forwarder import run_ws_forwarder
|
from trap.socket_forwarder import run_ws_forwarder
|
||||||
from trap.tracker import run_tracker
|
from trap.tracker import run_tracker
|
||||||
|
|
||||||
|
@ -76,10 +75,7 @@ def start():
|
||||||
|
|
||||||
if args.render_file or args.render_url or args.render_window:
|
if args.render_file or args.render_url or args.render_window:
|
||||||
procs.append(
|
procs.append(
|
||||||
ExceptionHandlingProcess(target=run_preview_renderer, kwargs={'config': args, 'is_running': isRunning}, name='renderer')
|
ExceptionHandlingProcess(target=run_renderer, kwargs={'config': args, 'is_running': isRunning}, name='renderer')
|
||||||
)
|
|
||||||
procs.append(
|
|
||||||
ExceptionHandlingProcess(target=run_animation_renderer, kwargs={'config': args, 'is_running': isRunning}, name='map_renderer')
|
|
||||||
)
|
)
|
||||||
|
|
||||||
if not args.bypass_prediction:
|
if not args.bypass_prediction:
|
||||||
|
|
|
@ -269,7 +269,7 @@ class PredictionServer:
|
||||||
|
|
||||||
# TODO: modify this into a mapping function between JS data an the expected Node format
|
# TODO: modify this into a mapping function between JS data an the expected Node format
|
||||||
# node = FakeNode(online_env.NodeType.PEDESTRIAN)
|
# node = FakeNode(online_env.NodeType.PEDESTRIAN)
|
||||||
history = [[h['x'], h['y']] for h in track.get_projected_history_as_dict(frame.H, self.config.camera)]
|
history = [[h['x'], h['y']] for h in track.get_projected_history_as_dict(frame.H)]
|
||||||
history = np.array(history)
|
history = np.array(history)
|
||||||
x = history[:, 0]
|
x = history[:, 0]
|
||||||
y = history[:, 1]
|
y = history[:, 1]
|
||||||
|
|
|
@ -10,7 +10,7 @@ from multiprocessing import Event
|
||||||
from multiprocessing.synchronize import Event as BaseEvent
|
from multiprocessing.synchronize import Event as BaseEvent
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import json
|
|
||||||
import pyglet
|
import pyglet
|
||||||
import pyglet.event
|
import pyglet.event
|
||||||
import zmq
|
import zmq
|
||||||
|
@ -18,17 +18,15 @@ import tempfile
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import shutil
|
import shutil
|
||||||
import math
|
import math
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
|
|
||||||
from pyglet import shapes
|
from pyglet import shapes
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
from trap.frame_emitter import DetectionState, Frame, Track, Camera
|
from trap.frame_emitter import DetectionState, Frame, Track
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger("trap.preview")
|
logger = logging.getLogger("trap.renderer")
|
||||||
|
|
||||||
class FrameAnimation:
|
class FrameAnimation:
|
||||||
def __init__(self, frame: Frame):
|
def __init__(self, frame: Frame):
|
||||||
|
@ -57,42 +55,32 @@ def relativePointToPolar(origin, point) -> tuple[float, float]:
|
||||||
def relativePolarToPoint(origin, r, angle) -> tuple[float, float]:
|
def relativePolarToPoint(origin, r, angle) -> tuple[float, float]:
|
||||||
return r * np.cos(angle) + origin[0], r * np.sin(angle) + origin[1]
|
return r * np.cos(angle) + origin[0], r * np.sin(angle) + origin[1]
|
||||||
|
|
||||||
PROJECTION_IMG = 0
|
|
||||||
PROJECTION_UNDISTORT = 1
|
|
||||||
PROJECTION_MAP = 2
|
|
||||||
PROJECTION_PROJECTOR = 4
|
|
||||||
|
|
||||||
class DrawnTrack:
|
class DrawnTrack:
|
||||||
def __init__(self, track_id, track: Track, renderer: PreviewRenderer, H, draw_projection = PROJECTION_IMG, camera: Optional[Camera] = None):
|
def __init__(self, track_id, track: Track, renderer: Renderer, H):
|
||||||
# self.created_at = time.time()
|
# self.created_at = time.time()
|
||||||
self.draw_projection = draw_projection
|
|
||||||
self.update_at = self.created_at = time.time()
|
self.update_at = self.created_at = time.time()
|
||||||
self.track_id = track_id
|
self.track_id = track_id
|
||||||
self.renderer = renderer
|
self.renderer = renderer
|
||||||
self.camera = camera
|
|
||||||
self.H = H # TODO)) Move H to Camera object
|
|
||||||
self.set_track(track, H)
|
self.set_track(track, H)
|
||||||
self.drawn_positions = []
|
self.drawn_positions = []
|
||||||
self.drawn_predictions = []
|
self.drawn_predictions = []
|
||||||
self.shapes: list[pyglet.shapes.Line] = []
|
self.shapes: list[pyglet.shapes.Line] = []
|
||||||
self.pred_shapes: list[list[pyglet.shapes.Line]] = []
|
self.pred_shapes: list[list[pyglet.shapes.Line]] = []
|
||||||
|
|
||||||
def set_track(self, track: Track, H = None):
|
def set_track(self, track: Track, H):
|
||||||
self.update_at = time.time()
|
self.update_at = time.time()
|
||||||
|
|
||||||
self.track = track
|
self.track = track
|
||||||
# self.H = H
|
self.H = H
|
||||||
self.coords = [d.get_foot_coords() for d in track.history] if self.draw_projection == PROJECTION_IMG else track.get_projected_history(self.H, self.camera)
|
self.coords = [d.get_foot_coords() for d in track.history]
|
||||||
|
|
||||||
# perhaps only do in constructor:
|
# perhaps only do in constructor:
|
||||||
self.inv_H = np.linalg.pinv(self.H)
|
self.inv_H = np.linalg.pinv(self.H)
|
||||||
|
|
||||||
pred_coords = []
|
pred_coords = []
|
||||||
if self.draw_projection == PROJECTION_IMG:
|
for pred_i, pred in enumerate(track.predictions):
|
||||||
for pred_i, pred in enumerate(track.predictions):
|
pred_coords.append(cv2.perspectiveTransform(np.array([pred]), self.inv_H)[0].tolist())
|
||||||
pred_coords.append(cv2.perspectiveTransform(np.array([pred]), self.inv_H)[0].tolist())
|
|
||||||
elif self.draw_projection == PROJECTION_MAP:
|
|
||||||
pred_coords = [pred for pred in track.predictions]
|
|
||||||
|
|
||||||
self.pred_coords = pred_coords
|
self.pred_coords = pred_coords
|
||||||
# color = (128,0,128) if pred_i else (128,
|
# color = (128,0,128) if pred_i else (128,
|
||||||
|
@ -244,7 +232,7 @@ class FrameWriter:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class PreviewRenderer:
|
class Renderer:
|
||||||
def __init__(self, config: Namespace, is_running: BaseEvent):
|
def __init__(self, config: Namespace, is_running: BaseEvent):
|
||||||
self.config = config
|
self.config = config
|
||||||
self.is_running = is_running
|
self.is_running = is_running
|
||||||
|
@ -253,8 +241,7 @@ class PreviewRenderer:
|
||||||
self.prediction_sock = context.socket(zmq.SUB)
|
self.prediction_sock = context.socket(zmq.SUB)
|
||||||
self.prediction_sock.setsockopt(zmq.CONFLATE, 1) # only keep latest frame. NB. make sure this comes BEFORE connect, otherwise it's ignored!!
|
self.prediction_sock.setsockopt(zmq.CONFLATE, 1) # only keep latest frame. NB. make sure this comes BEFORE connect, otherwise it's ignored!!
|
||||||
self.prediction_sock.setsockopt(zmq.SUBSCRIBE, b'')
|
self.prediction_sock.setsockopt(zmq.SUBSCRIBE, b'')
|
||||||
# self.prediction_sock.connect(config.zmq_prediction_addr if not self.config.bypass_prediction else config.zmq_trajectory_addr)
|
self.prediction_sock.connect(config.zmq_prediction_addr if not self.config.bypass_prediction else config.zmq_trajectory_addr)
|
||||||
self.prediction_sock.connect(config.zmq_prediction_addr)
|
|
||||||
|
|
||||||
self.tracker_sock = context.socket(zmq.SUB)
|
self.tracker_sock = context.socket(zmq.SUB)
|
||||||
self.tracker_sock.setsockopt(zmq.CONFLATE, 1) # only keep latest frame. NB. make sure this comes BEFORE connect, otherwise it's ignored!!
|
self.tracker_sock.setsockopt(zmq.CONFLATE, 1) # only keep latest frame. NB. make sure this comes BEFORE connect, otherwise it's ignored!!
|
||||||
|
@ -266,23 +253,14 @@ class PreviewRenderer:
|
||||||
self.frame_sock.setsockopt(zmq.SUBSCRIBE, b'')
|
self.frame_sock.setsockopt(zmq.SUBSCRIBE, b'')
|
||||||
self.frame_sock.connect(config.zmq_frame_addr)
|
self.frame_sock.connect(config.zmq_frame_addr)
|
||||||
|
|
||||||
|
self.H = np.loadtxt(self.config.homography, delimiter=',')
|
||||||
# TODO)) Move loading H to config.py
|
|
||||||
# if self.config.homography.suffix == '.json':
|
|
||||||
# with self.config.homography.open('r') as fp:
|
|
||||||
# self.H = np.array(json.load(fp))
|
|
||||||
# else:
|
|
||||||
# self.H = np.loadtxt(self.config.homography, delimiter=',')
|
|
||||||
# print('h', self.config.H)
|
|
||||||
self.H = self.config.H
|
|
||||||
|
|
||||||
|
|
||||||
self.inv_H = np.linalg.pinv(self.H)
|
self.inv_H = np.linalg.pinv(self.H)
|
||||||
|
|
||||||
# TODO: get FPS from frame_emitter
|
# TODO: get FPS from frame_emitter
|
||||||
# self.out = cv2.VideoWriter(str(filename), fourcc, 23.97, (1280,720))
|
# self.out = cv2.VideoWriter(str(filename), fourcc, 23.97, (1280,720))
|
||||||
self.fps = 60
|
self.fps = 60
|
||||||
self.frame_size = (self.config.frame_width,self.config.frame_height)
|
self.frame_size = (1280,720)
|
||||||
self.hide_stats = False
|
self.hide_stats = False
|
||||||
self.out_writer = self.start_writer() if self.config.render_file else None
|
self.out_writer = self.start_writer() if self.config.render_file else None
|
||||||
self.streaming_process = self.start_streaming() if self.config.render_url else None
|
self.streaming_process = self.start_streaming() if self.config.render_url else None
|
||||||
|
@ -794,6 +772,6 @@ def decorate_frame(frame: Frame, prediction_frame: Frame, first_time: float, con
|
||||||
return img
|
return img
|
||||||
|
|
||||||
|
|
||||||
def run_preview_renderer(config: Namespace, is_running: BaseEvent):
|
def run_renderer(config: Namespace, is_running: BaseEvent):
|
||||||
renderer = PreviewRenderer(config, is_running)
|
renderer = Renderer(config, is_running)
|
||||||
renderer.run()
|
renderer.run()
|
|
@ -1,72 +0,0 @@
|
||||||
from trap.config import parser
|
|
||||||
from trap.frame_emitter import video_src_from_config, Frame
|
|
||||||
from trap.tracker import DETECTOR_YOLOv8, _yolov8_track, Track, TrainingDataWriter
|
|
||||||
from collections import defaultdict
|
|
||||||
|
|
||||||
import logging
|
|
||||||
import cv2
|
|
||||||
from typing import List, Iterable
|
|
||||||
|
|
||||||
from ultralytics import YOLO
|
|
||||||
from ultralytics.engine.results import Results as YOLOResult
|
|
||||||
import tqdm
|
|
||||||
|
|
||||||
config = parser.parse_args()
|
|
||||||
|
|
||||||
logger = logging.getLogger('tools')
|
|
||||||
|
|
||||||
def tracker_preprocess():
|
|
||||||
video_srcs = video_src_from_config(config)
|
|
||||||
if not hasattr(config, "H"):
|
|
||||||
print("Set homography file with --homography param")
|
|
||||||
return
|
|
||||||
|
|
||||||
if config.detector != DETECTOR_YOLOv8:
|
|
||||||
print("Only YOLO for now...")
|
|
||||||
return
|
|
||||||
|
|
||||||
model = YOLO('EXPERIMENTS/yolov8x.pt')
|
|
||||||
|
|
||||||
with TrainingDataWriter(config.save_for_training) as writer:
|
|
||||||
for video_nr, video_path in enumerate(video_srcs):
|
|
||||||
logger.info(f"Play from '{str(video_path)}'")
|
|
||||||
video = cv2.VideoCapture(str(video_path))
|
|
||||||
fps = video.get(cv2.CAP_PROP_FPS)
|
|
||||||
frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT)
|
|
||||||
i = 0
|
|
||||||
if config.video_offset:
|
|
||||||
logger.info(f"Start at frame {config.video_offset}")
|
|
||||||
video.set(cv2.CAP_PROP_POS_FRAMES, config.video_offset)
|
|
||||||
i = config.video_offset
|
|
||||||
|
|
||||||
bar = tqdm.tqdm()
|
|
||||||
tracks = defaultdict(lambda: Track())
|
|
||||||
|
|
||||||
while True:
|
|
||||||
bar.update()
|
|
||||||
ret, img = video.read()
|
|
||||||
i+=1
|
|
||||||
|
|
||||||
# seek to 0 if video has finished. Infinite loop
|
|
||||||
if not ret:
|
|
||||||
# now loading multiple files
|
|
||||||
break
|
|
||||||
|
|
||||||
frame = Frame(index=bar.n, img=img, H=config.H, camera=config.camera)
|
|
||||||
|
|
||||||
detections = _yolov8_track(frame, model, classes=[0])
|
|
||||||
# detections = _yolov8_track(frame, model, imgsz=1440, classes=[0])
|
|
||||||
|
|
||||||
bar.set_description(f"[{video_nr}/{len(video_srcs)}] [{i}/{frame_count}] {str(video_path)} -- Detections {len(detections)}: {[d.conf for d in detections]}")
|
|
||||||
|
|
||||||
for detection in detections:
|
|
||||||
track = tracks[detection.track_id]
|
|
||||||
track.track_id = detection.track_id # for new tracks
|
|
||||||
track.history.append(detection) # add to history
|
|
||||||
|
|
||||||
active_track_ids = [d.track_id for d in detections]
|
|
||||||
active_tracks = {t.track_id: t for t in tracks.values() if t.track_id in active_track_ids}
|
|
||||||
|
|
||||||
writer.add(frame, active_tracks.values())
|
|
||||||
|
|
||||||
logger.info("Done!")
|
|
319
trap/tracker.py
319
trap/tracker.py
|
@ -8,7 +8,7 @@ from multiprocessing import Event
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import pickle
|
import pickle
|
||||||
import time
|
import time
|
||||||
from typing import Optional, List
|
from typing import Optional
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import zmq
|
import zmq
|
||||||
|
@ -47,89 +47,8 @@ DETECTOR_YOLOv8 = 'ultralytics'
|
||||||
DETECTORS = [DETECTOR_RETINANET, DETECTOR_MASKRCNN, DETECTOR_FASTERRCNN, DETECTOR_YOLOv8]
|
DETECTORS = [DETECTOR_RETINANET, DETECTOR_MASKRCNN, DETECTOR_FASTERRCNN, DETECTOR_YOLOv8]
|
||||||
|
|
||||||
|
|
||||||
def _yolov8_track(frame: Frame, model: YOLO, **kwargs) -> List[Detection]:
|
|
||||||
|
|
||||||
results: List[YOLOResult] = list(model.track(frame.img, persist=True, tracker="bytetrack.yaml", verbose=False, **kwargs))
|
|
||||||
if results[0].boxes is None or results[0].boxes.id is None:
|
|
||||||
# work around https://github.com/ultralytics/ultralytics/issues/5968
|
|
||||||
return []
|
|
||||||
|
|
||||||
return [Detection(track_id, bbox[0]-.5*bbox[2], bbox[1]-.5*bbox[3], bbox[2], bbox[3], 1, DetectionState.Confirmed, frame.index) for bbox, track_id in zip(results[0].boxes.xywh.cpu(), results[0].boxes.id.int().cpu().tolist())]
|
|
||||||
|
|
||||||
|
|
||||||
class TrainingDataWriter:
|
|
||||||
def __init__(self, training_path = Optional[Path]):
|
|
||||||
if training_path is None:
|
|
||||||
self.path = None
|
|
||||||
return
|
|
||||||
|
|
||||||
if not isinstance(training_path, Path):
|
|
||||||
raise ValueError("save-for-training should be a path")
|
|
||||||
if not training_path.exists():
|
|
||||||
logger.info(f"Making path for training data: {training_path}")
|
|
||||||
training_path.mkdir(parents=True, exist_ok=False)
|
|
||||||
else:
|
|
||||||
logger.warning(f"Path for training-data exists: {training_path}. Continuing assuming that's ok.")
|
|
||||||
|
|
||||||
# following https://github.com/StanfordASL/Trajectron-plus-plus/blob/master/experiments/pedestrians/process_data.py
|
|
||||||
|
|
||||||
self.path = training_path
|
|
||||||
|
|
||||||
def __enter__(self):
|
|
||||||
if self.path:
|
|
||||||
self.training_fp = open(self.path / 'all.txt', 'w')
|
|
||||||
# following https://github.com/StanfordASL/Trajectron-plus-plus/blob/master/experiments/pedestrians/process_data.py
|
|
||||||
self.csv = csv.DictWriter(self.training_fp, fieldnames=['frame_id', 'track_id', 'l', 't', 'w', 'h', 'x', 'y', 'state'], delimiter='\t', quoting=csv.QUOTE_NONE)
|
|
||||||
self.count = 0
|
|
||||||
return self
|
|
||||||
|
|
||||||
def add(self, frame: Frame, tracks: List[Track]):
|
|
||||||
if not self.path:
|
|
||||||
# skip if disabled
|
|
||||||
return
|
|
||||||
|
|
||||||
self.csv.writerows([{
|
|
||||||
'frame_id': round(frame.index * 10., 1), # not really time
|
|
||||||
'track_id': t.track_id,
|
|
||||||
'l': float(t.history[-1].l), # to float, so we're sure it's not a torch.tensor()
|
|
||||||
't': float(t.history[-1].t),
|
|
||||||
'w': float(t.history[-1].w),
|
|
||||||
'h': float(t.history[-1].h),
|
|
||||||
'x': t.get_projected_history(frame.H, frame.camera)[-1][0],
|
|
||||||
'y': t.get_projected_history(frame.H, frame.camera)[-1][1],
|
|
||||||
'state': t.history[-1].state.value
|
|
||||||
# only keep _actual_detections, no lost entries
|
|
||||||
} for t in tracks
|
|
||||||
# if t.history[-1].state != DetectionState.Lost
|
|
||||||
])
|
|
||||||
self.count += len(tracks)
|
|
||||||
|
|
||||||
def __exit__(self, exc_type, exc_value, exc_tb):
|
|
||||||
# ... ignore exception (type, value, traceback)
|
|
||||||
if not self.path:
|
|
||||||
return
|
|
||||||
|
|
||||||
self.training_fp.close()
|
|
||||||
lines = {
|
|
||||||
'train': int(self.count * .8),
|
|
||||||
'val': int(self.count * .12),
|
|
||||||
'test': int(self.count * .08),
|
|
||||||
}
|
|
||||||
logger.info(f"Splitting gathered data from {self.training_fp.name}")
|
|
||||||
with open(self.training_fp.name, 'r') as source_fp:
|
|
||||||
for name, line_nrs in lines.items():
|
|
||||||
dir_path = self.path / name
|
|
||||||
dir_path.mkdir(exist_ok=True)
|
|
||||||
file = dir_path / 'tracked.txt'
|
|
||||||
logger.debug(f"- Write {line_nrs} lines to {file}")
|
|
||||||
with file.open('w') as target_fp:
|
|
||||||
for i in range(line_nrs):
|
|
||||||
target_fp.write(source_fp.readline())
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Tracker:
|
class Tracker:
|
||||||
def __init__(self, config: Namespace, is_running: Event):
|
def __init__(self, config: Namespace, is_running: Event):
|
||||||
self.config = config
|
self.config = config
|
||||||
|
@ -179,14 +98,14 @@ class Tracker:
|
||||||
# embedder='torchreid', embedder_wts="../MODELS/osnet_x1_0_imagenet.pth"
|
# embedder='torchreid', embedder_wts="../MODELS/osnet_x1_0_imagenet.pth"
|
||||||
)
|
)
|
||||||
elif self.config.detector == DETECTOR_YOLOv8:
|
elif self.config.detector == DETECTOR_YOLOv8:
|
||||||
self.model = YOLO('EXPERIMENTS/yolov8x.pt', classes=0)
|
self.model = YOLO('EXPERIMENTS/yolov8x.pt')
|
||||||
else:
|
else:
|
||||||
raise RuntimeError(f"{self.config.detector} is not implemented yet. See --help")
|
raise RuntimeError(f"{self.config.detector} is not implemented yet. See --help")
|
||||||
|
|
||||||
|
|
||||||
# homography = list(source.glob('*img2world.txt'))[0]
|
# homography = list(source.glob('*img2world.txt'))[0]
|
||||||
|
|
||||||
self.H = self.config.H
|
self.H = np.loadtxt(self.config.homography, delimiter=',')
|
||||||
|
|
||||||
if self.config.smooth_tracks:
|
if self.config.smooth_tracks:
|
||||||
logger.info("Smoother enabled")
|
logger.info("Smoother enabled")
|
||||||
|
@ -201,118 +120,156 @@ class Tracker:
|
||||||
def track(self):
|
def track(self):
|
||||||
prev_run_time = 0
|
prev_run_time = 0
|
||||||
|
|
||||||
# training_fp = None
|
training_fp = None
|
||||||
# training_csv = None
|
training_csv = None
|
||||||
# training_frames = 0
|
training_frames = 0
|
||||||
|
|
||||||
# if self.config.save_for_training is not None:
|
if self.config.save_for_training is not None:
|
||||||
# if not isinstance(self.config.save_for_training, Path):
|
if not isinstance(self.config.save_for_training, Path):
|
||||||
# raise ValueError("save-for-training should be a path")
|
raise ValueError("save-for-training should be a path")
|
||||||
# if not self.config.save_for_training.exists():
|
if not self.config.save_for_training.exists():
|
||||||
# logger.info(f"Making path for training data: {self.config.save_for_training}")
|
logger.info(f"Making path for training data: {self.config.save_for_training}")
|
||||||
# self.config.save_for_training.mkdir(parents=True, exist_ok=False)
|
self.config.save_for_training.mkdir(parents=True, exist_ok=False)
|
||||||
# else:
|
else:
|
||||||
# logger.warning(f"Path for training-data exists: {self.config.save_for_training}. Continuing assuming that's ok.")
|
logger.warning(f"Path for training-data exists: {self.config.save_for_training}. Continuing assuming that's ok.")
|
||||||
# training_fp = open(self.config.save_for_training / 'all.txt', 'w')
|
training_fp = open(self.config.save_for_training / 'all.txt', 'w')
|
||||||
# # following https://github.com/StanfordASL/Trajectron-plus-plus/blob/master/experiments/pedestrians/process_data.py
|
# following https://github.com/StanfordASL/Trajectron-plus-plus/blob/master/experiments/pedestrians/process_data.py
|
||||||
# training_csv = csv.DictWriter(training_fp, fieldnames=['frame_id', 'track_id', 'l', 't', 'w', 'h', 'x', 'y', 'state'], delimiter='\t', quoting=csv.QUOTE_NONE)
|
training_csv = csv.DictWriter(training_fp, fieldnames=['frame_id', 'track_id', 'l', 't', 'w', 'h', 'x', 'y', 'state'], delimiter='\t', quoting=csv.QUOTE_NONE)
|
||||||
|
|
||||||
prev_frame_i = -1
|
prev_frame_i = -1
|
||||||
|
|
||||||
with TrainingDataWriter(self.config.save_for_training) as writer:
|
while self.is_running.is_set():
|
||||||
while self.is_running.is_set():
|
# this waiting for target_dt causes frame loss. E.g. with target_dt at .1, it
|
||||||
# this waiting for target_dt causes frame loss. E.g. with target_dt at .1, it
|
# skips exactly 1 frame on a 10 fps video (which, it obviously should not do)
|
||||||
# skips exactly 1 frame on a 10 fps video (which, it obviously should not do)
|
# so for now, timing should move to emitter
|
||||||
# so for now, timing should move to emitter
|
# this_run_time = time.time()
|
||||||
# this_run_time = time.time()
|
# # logger.debug(f'test {prev_run_time - this_run_time}')
|
||||||
# # logger.debug(f'test {prev_run_time - this_run_time}')
|
# time.sleep(max(0, prev_run_time - this_run_time + TARGET_DT))
|
||||||
# time.sleep(max(0, prev_run_time - this_run_time + TARGET_DT))
|
# prev_run_time = time.time()
|
||||||
# prev_run_time = time.time()
|
|
||||||
|
|
||||||
zmq_ev = self.frame_sock.poll(timeout=2000)
|
zmq_ev = self.frame_sock.poll(timeout=2000)
|
||||||
if not zmq_ev:
|
if not zmq_ev:
|
||||||
logger.warn('skip poll after 2000ms')
|
logger.warn('skip poll after 2000ms')
|
||||||
# when there's no data after timeout, loop so that is_running is checked
|
# when there's no data after timeout, loop so that is_running is checked
|
||||||
continue
|
continue
|
||||||
|
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
frame: Frame = self.frame_sock.recv_pyobj() # frame delivery in current setup: 0.012-0.03s
|
frame: Frame = self.frame_sock.recv_pyobj() # frame delivery in current setup: 0.012-0.03s
|
||||||
|
|
||||||
if frame.index > (prev_frame_i+1):
|
if frame.index > (prev_frame_i+1):
|
||||||
logger.warn(f"Dropped {frame.index - prev_frame_i - 1} frames ({frame.index=}, {prev_frame_i=})")
|
logger.warn(f"Dropped {frame.index - prev_frame_i - 1} frames ({frame.index=}, {prev_frame_i=})")
|
||||||
|
|
||||||
|
|
||||||
prev_frame_i = frame.index
|
|
||||||
# load homography into frame (TODO: should this be done in emitter?)
|
|
||||||
if frame.H is None:
|
|
||||||
# logger.warning('Falling back to default H')
|
|
||||||
# fallback: load configured H
|
|
||||||
frame.H = self.H
|
|
||||||
|
|
||||||
# logger.info(f"Frame delivery delay = {time.time()-frame.time}s")
|
|
||||||
|
|
||||||
|
|
||||||
if self.config.detector == DETECTOR_YOLOv8:
|
|
||||||
detections: [Detection] = _yolov8_track(frame, self.model)
|
|
||||||
else :
|
|
||||||
detections: [Detection] = self._resnet_track(frame.img, scale = 1)
|
|
||||||
|
|
||||||
|
|
||||||
# Store detections into tracklets
|
|
||||||
projected_coordinates = []
|
|
||||||
for detection in detections:
|
|
||||||
track = self.tracks[detection.track_id]
|
|
||||||
track.track_id = detection.track_id # for new tracks
|
|
||||||
|
|
||||||
track.history.append(detection) # add to history
|
|
||||||
# projected_coordinates.append(track.get_projected_history(self.H)) # then get full history
|
|
||||||
|
|
||||||
# TODO: hadle occlusions, and dissappearance
|
|
||||||
# if len(track.history) > 30: # retain 90 tracks for 90 frames
|
|
||||||
# track.history.pop(0)
|
|
||||||
|
|
||||||
|
|
||||||
# trajectories = {}
|
prev_frame_i = frame.index
|
||||||
# for detection in detections:
|
# load homography into frame (TODO: should this be done in emitter?)
|
||||||
# tid = str(detection.track_id)
|
if frame.H is None:
|
||||||
# track = self.tracks[detection.track_id]
|
# logger.warning('Falling back to default H')
|
||||||
# coords = track.get_projected_history(self.H) # get full history
|
# fallback: load configured H
|
||||||
# trajectories[tid] = {
|
frame.H = self.H
|
||||||
# "id": tid,
|
|
||||||
# "det_conf": detection.conf,
|
|
||||||
# "bbox": detection.to_ltwh(),
|
|
||||||
# "history": [{"x":c[0], "y":c[1]} for c in coords[0]] if not self.config.bypass_prediction else coords[0].tolist() # already doubles nested, fine for test
|
|
||||||
# }
|
|
||||||
active_track_ids = [d.track_id for d in detections]
|
|
||||||
active_tracks = {t.track_id: t for t in self.tracks.values() if t.track_id in active_track_ids}
|
|
||||||
# logger.info(f"{trajectories}")
|
|
||||||
frame.tracks = active_tracks
|
|
||||||
|
|
||||||
# if self.config.bypass_prediction:
|
# logger.info(f"Frame delivery delay = {time.time()-frame.time}s")
|
||||||
# self.trajectory_socket.send_string(json.dumps(trajectories))
|
|
||||||
# else:
|
|
||||||
# self.trajectory_socket.send(pickle.dumps(frame))
|
|
||||||
if self.config.smooth_tracks:
|
|
||||||
frame = self.smoother.smooth_frame_tracks(frame)
|
|
||||||
|
|
||||||
self.trajectory_socket.send_pyobj(frame)
|
|
||||||
|
|
||||||
current_time = time.time()
|
|
||||||
logger.debug(f"Trajectories: {len(active_tracks)}. Current frame delay = {current_time-frame.time}s (trajectories: {current_time - start_time}s)")
|
|
||||||
|
|
||||||
# self.trajectory_socket.send_string(json.dumps(trajectories))
|
|
||||||
# provide a {ID: {id: ID, history: [[x,y],[x,y],...]}}
|
|
||||||
# TODO: provide a track object that actually keeps history (unlike tracker)
|
|
||||||
|
|
||||||
#TODO calculate fps (also for other loops to see asynchonity)
|
if self.config.detector == DETECTOR_YOLOv8:
|
||||||
# fpsfilter=fpsfilter*.9+(1/dt)*.1 #trust value in order to stabilize fps display
|
detections: [Detection] = self._yolov8_track(frame)
|
||||||
writer.add(frame, active_tracks.values())
|
else :
|
||||||
|
detections: [Detection] = self._resnet_track(frame.img, scale = 1)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Store detections into tracklets
|
||||||
|
projected_coordinates = []
|
||||||
|
for detection in detections:
|
||||||
|
track = self.tracks[detection.track_id]
|
||||||
|
track.track_id = detection.track_id # for new tracks
|
||||||
|
|
||||||
|
track.history.append(detection) # add to history
|
||||||
|
# projected_coordinates.append(track.get_projected_history(self.H)) # then get full history
|
||||||
|
|
||||||
|
# TODO: hadle occlusions, and dissappearance
|
||||||
|
# if len(track.history) > 30: # retain 90 tracks for 90 frames
|
||||||
|
# track.history.pop(0)
|
||||||
|
|
||||||
|
|
||||||
|
# trajectories = {}
|
||||||
|
# for detection in detections:
|
||||||
|
# tid = str(detection.track_id)
|
||||||
|
# track = self.tracks[detection.track_id]
|
||||||
|
# coords = track.get_projected_history(self.H) # get full history
|
||||||
|
# trajectories[tid] = {
|
||||||
|
# "id": tid,
|
||||||
|
# "det_conf": detection.conf,
|
||||||
|
# "bbox": detection.to_ltwh(),
|
||||||
|
# "history": [{"x":c[0], "y":c[1]} for c in coords[0]] if not self.config.bypass_prediction else coords[0].tolist() # already doubles nested, fine for test
|
||||||
|
# }
|
||||||
|
active_track_ids = [d.track_id for d in detections]
|
||||||
|
active_tracks = {t.track_id: t for t in self.tracks.values() if t.track_id in active_track_ids}
|
||||||
|
# logger.info(f"{trajectories}")
|
||||||
|
frame.tracks = active_tracks
|
||||||
|
|
||||||
|
# if self.config.bypass_prediction:
|
||||||
|
# self.trajectory_socket.send_string(json.dumps(trajectories))
|
||||||
|
# else:
|
||||||
|
# self.trajectory_socket.send(pickle.dumps(frame))
|
||||||
|
if self.config.smooth_tracks:
|
||||||
|
frame = self.smoother.smooth_frame_tracks(frame)
|
||||||
|
|
||||||
|
self.trajectory_socket.send_pyobj(frame)
|
||||||
|
|
||||||
|
current_time = time.time()
|
||||||
|
logger.debug(f"Trajectories: {len(active_tracks)}. Current frame delay = {current_time-frame.time}s (trajectories: {current_time - start_time}s)")
|
||||||
|
|
||||||
|
# self.trajectory_socket.send_string(json.dumps(trajectories))
|
||||||
|
# provide a {ID: {id: ID, history: [[x,y],[x,y],...]}}
|
||||||
|
# TODO: provide a track object that actually keeps history (unlike tracker)
|
||||||
|
|
||||||
|
#TODO calculate fps (also for other loops to see asynchonity)
|
||||||
|
# fpsfilter=fpsfilter*.9+(1/dt)*.1 #trust value in order to stabilize fps display
|
||||||
|
if training_csv:
|
||||||
|
training_csv.writerows([{
|
||||||
|
'frame_id': round(frame.index * 10., 1), # not really time
|
||||||
|
'track_id': t.track_id,
|
||||||
|
'l': t.history[-1].l,
|
||||||
|
't': t.history[-1].t,
|
||||||
|
'w': t.history[-1].w,
|
||||||
|
'h': t.history[-1].h,
|
||||||
|
'x': t.get_projected_history(frame.H)[-1][0],
|
||||||
|
'y': t.get_projected_history(frame.H)[-1][1],
|
||||||
|
'state': t.history[-1].state.value
|
||||||
|
# only keep _actual_detections, no lost entries
|
||||||
|
} for t in active_tracks.values()
|
||||||
|
# if t.history[-1].state != DetectionState.Lost
|
||||||
|
])
|
||||||
|
training_frames += len(active_tracks)
|
||||||
|
# print(time.time() - start_time)
|
||||||
|
|
||||||
|
|
||||||
|
if training_fp:
|
||||||
|
training_fp.close()
|
||||||
|
lines = {
|
||||||
|
'train': int(training_frames * .8),
|
||||||
|
'val': int(training_frames * .12),
|
||||||
|
'test': int(training_frames * .08),
|
||||||
|
}
|
||||||
|
logger.info(f"Splitting gathered data from {training_fp.name}")
|
||||||
|
with open(training_fp.name, 'r') as source_fp:
|
||||||
|
for name, line_nrs in lines.items():
|
||||||
|
dir_path = self.config.save_for_training / name
|
||||||
|
dir_path.mkdir(exist_ok=True)
|
||||||
|
file = dir_path / 'tracked.txt'
|
||||||
|
logger.debug(f"- Write {line_nrs} lines to {file}")
|
||||||
|
with file.open('w') as target_fp:
|
||||||
|
for i in range(line_nrs):
|
||||||
|
target_fp.write(source_fp.readline())
|
||||||
|
|
||||||
logger.info('Stopping')
|
logger.info('Stopping')
|
||||||
|
|
||||||
|
def _yolov8_track(self, frame: Frame,) -> [Detection]:
|
||||||
|
results: [YOLOResult] = self.model.track(frame.img, persist=True, tracker="bytetrack.yaml", verbose=False)
|
||||||
|
if results[0].boxes is None or results[0].boxes.id is None:
|
||||||
|
# work around https://github.com/ultralytics/ultralytics/issues/5968
|
||||||
|
return []
|
||||||
|
return [Detection(track_id, bbox[0]-.5*bbox[2], bbox[1]-.5*bbox[3], bbox[2], bbox[3], 1, DetectionState.Confirmed, frame.index) for bbox, track_id in zip(results[0].boxes.xywh.cpu(), results[0].boxes.id.int().cpu().tolist())]
|
||||||
|
|
||||||
def _resnet_track(self, img, scale: float = 1) -> [Detection]:
|
def _resnet_track(self, img, scale: float = 1) -> [Detection]:
|
||||||
if scale != 1:
|
if scale != 1:
|
||||||
dsize = (int(img.shape[1] * scale), int(img.shape[0] * scale))
|
dsize = (int(img.shape[1] * scale), int(img.shape[0] * scale))
|
||||||
|
|
Loading…
Reference in a new issue