Try different trackers. Ultralytics & KeypointRCNN

This commit is contained in:
Ruben van de Ven 2023-10-20 18:49:51 +02:00
parent 2434470cdf
commit cc1e417db4
2 changed files with 95 additions and 23 deletions

View file

@ -2,6 +2,8 @@ import argparse
from pathlib import Path
import types
from trap.tracker import DETECTORS
from pyparsing import Optional
class LambdaParser(argparse.ArgumentParser):
@ -208,6 +210,10 @@ tracker_parser.add_argument("--save-for-training",
help="Specify the path in which to save",
type=Path,
default=None)
tracker_parser.add_argument("--detector",
help="Specify the detector to use",
type=str,
choices=DETECTORS)
# Renderer

View file

@ -1,5 +1,7 @@
from argparse import Namespace
from collections import defaultdict
import csv
from dataclasses import dataclass, field
import json
import logging
from multiprocessing import Event
@ -11,9 +13,12 @@ import torch
import zmq
import cv2
from torchvision.models.detection import retinanet_resnet50_fpn_v2, RetinaNet_ResNet50_FPN_V2_Weights
from torchvision.models.detection import retinanet_resnet50_fpn_v2, RetinaNet_ResNet50_FPN_V2_Weights, keypointrcnn_resnet50_fpn, KeypointRCNN_ResNet50_FPN_Weights
from deep_sort_realtime.deepsort_tracker import DeepSort
from deep_sort_realtime.deep_sort.track import Track
from deep_sort_realtime.deep_sort.track import Track as DeepsortTrack
from ultralytics import YOLO
from ultralytics.engine.results import Results as YOLOResult
from trap.frame_emitter import Frame
@ -28,6 +33,33 @@ TARGET_DT = .1
logger = logging.getLogger("trap.tracker")
DETECTOR_RESNET = 'resnet'
DETECTOR_YOLOv8 = 'ultralytics'
DETECTORS = [DETECTOR_RESNET, DETECTOR_YOLOv8]
@dataclass
class Track:
track_id: str = None
history: [Detection]= field(default_factory=lambda: [])
@dataclass
class Detection:
track_id: str
l: int # left
t: int # top
w: int # width
h: int # height
def get_foot_coords(self):
return [self.l + 0.5 * self.w, self.t+self.h]
@classmethod
def from_deepsort(cls, dstrack: DeepsortTrack):
return cls(dstrack.track_id, *dstrack.to_ltwh())
class Tracker:
def __init__(self, config: Namespace, is_running: Event):
self.config = config
@ -46,20 +78,30 @@ class Tracker:
# # TODO: config device
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
weights = RetinaNet_ResNet50_FPN_V2_Weights.DEFAULT
self.model = retinanet_resnet50_fpn_v2(weights=weights, score_thresh=0.35)
# TODO: support removal
self.tracks = defaultdict(lambda: Track())
if self.config.detector == DETECTOR_RESNET:
# weights = RetinaNet_ResNet50_FPN_V2_Weights.DEFAULT
# self.model = retinanet_resnet50_fpn_v2(weights=weights, score_thresh=0.2)
weights = KeypointRCNN_ResNet50_FPN_Weights.DEFAULT
self.model = keypointrcnn_resnet50_fpn(weights=weights, box_score_thresh=0.20)
self.model.to(self.device)
# Put the model in inference mode
self.model.eval()
# Get the transforms for the model's weights
self.preprocess = weights.transforms().to(self.device)
elif self.config.detector == DETECTOR_YOLOv8:
self.model = YOLO('EXPERIMENTS/yolov8x.pt')
else:
raise RuntimeError("No valid detector specified. See --help")
# homography = list(source.glob('*img2world.txt'))[0]
self.H = np.loadtxt(self.config.homography, delimiter=',')
self.mot_tracker = DeepSort(max_age=5)
self.mot_tracker = DeepSort(max_age=30, nms_max_overlap=0.9)
logger.debug("Set up tracker")
@ -94,30 +136,46 @@ class Tracker:
# logger.info(f"Frame delivery delay = {time.time()-frame.time}s")
start_time = time.time()
detections = self.detect_persons(frame.img)
tracks: [Track] = self.mot_tracker.update_tracks(detections, frame=frame.img)
TEMP_boxes = [t.to_ltwh() for t in tracks]
TEMP_coords = np.array([[[det[0] + 0.5 * det[2], det[1]+det[3]]] for det in TEMP_boxes])
if len(TEMP_coords):
TEMP_proj_coords = cv2.perspectiveTransform(TEMP_coords,self.H)
if self.config.detector == DETECTOR_YOLOv8:
detections: [Detection] = self._yolov8_track(frame.img)
else :
detections: [Detection] = self._resnet_track(frame.img)
# Store detections into tracklets
for detection in detections:
track = self.tracks[detection.track_id]
track.track_id = detection.track_id # for new tracks
track.history.append(detection)
# if len(track.history) > 30: # retain 90 tracks for 90 frames
# track.history.pop(0)
foot_coordinates = np.array([[t.get_foot_coords()] for t in detections])
if len(foot_coordinates):
projected_coordinates = cv2.perspectiveTransform(foot_coordinates,self.H)
else:
TEMP_proj_coords = []
projected_coordinates = []
# print(TEMP_proj_coords)
trajectories = {}
for i, coords in enumerate(TEMP_proj_coords):
tid = tracks[i].track_id
for detection, coords in zip(detections, projected_coordinates):
tid = str(detection.track_id)
trajectories[tid] = {
"id": tid,
"history": [{"x":c[0], "y":c[1]} for c in coords] # already doubles nested, fine for test
"history": [{"x":c[0], "y":c[1]} for c in coords] if not self.config.bypass_prediction else coords.tolist() # already doubles nested, fine for test
}
# logger.debug(f"{trajectories}")
# logger.info(f"{trajectories}")
frame.trajectories = trajectories
current_time = time.time()
logger.debug(f"Trajectories: {len(trajectories)}. Current frame delay = {current_time-frame.time}s (trajectories: {current_time - start_time}s)")
if self.config.bypass_prediction:
self.trajectory_socket.send_string(json.dumps(trajectories))
else:
self.trajectory_socket.send(pickle.dumps(frame))
# self.trajectory_socket.send_string(json.dumps(trajectories))
# provide a {ID: {id: ID, history: [[x,y],[x,y],...]}}
# TODO: provide a track object that actually keeps history (unlike tracker)
@ -154,8 +212,16 @@ class Tracker:
logger.info('Stopping')
def _yolov8_track(self, img) -> [Detection]:
results: [YOLOResult] = self.model.track(img, persist=True)
return [Detection(track_id, *bbox) for bbox, track_id in zip(results[0].boxes.xywh.cpu(), results[0].boxes.id.int().cpu().tolist())]
def detect_persons(self, frame) -> Detections:
def _resnet_track(self, img) -> [Detection]:
detections = self._resnet_detect_persons(img)
tracks: [DeepsortTrack] = self.mot_tracker.update_tracks(detections, frame=img)
return [Detection.from_deepsort(t) for t in tracks]
def _resnet_detect_persons(self, frame) -> Detections:
t = torch.from_numpy(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# change axes of image loaded image to be compatilbe with torch.io.read_image (which has C,W,H format instead of W,H,C)
t = t.permute(2, 0, 1)