Run tracker with smoother enabled
This commit is contained in:
parent
7c05c060c3
commit
c9f573fcdd
6 changed files with 261 additions and 107 deletions
File diff suppressed because one or more lines are too long
|
@ -152,6 +152,9 @@ inference_parser.add_argument('--predict_training_data',
|
|||
help='Ignore tracker and predict data from the training dataset',
|
||||
action='store_true')
|
||||
|
||||
inference_parser.add_argument("--smooth-predictions",
|
||||
help="Smooth the predicted tracks",
|
||||
action='store_true')
|
||||
|
||||
# Internal connections.
|
||||
|
||||
|
@ -214,6 +217,9 @@ tracker_parser.add_argument("--detector",
|
|||
help="Specify the detector to use",
|
||||
type=str,
|
||||
choices=DETECTORS)
|
||||
tracker_parser.add_argument("--smooth-tracks",
|
||||
help="Smooth the tracker tracks before sending them to the predictor",
|
||||
action='store_true')
|
||||
|
||||
# Renderer
|
||||
|
||||
|
|
|
@ -42,6 +42,7 @@ class Detection:
|
|||
h: int # height - image space
|
||||
conf: float # object detector probablity
|
||||
state: DetectionState
|
||||
frame_nr: int
|
||||
|
||||
def get_foot_coords(self):
|
||||
return [self.l + 0.5 * self.w, self.t+self.h]
|
||||
|
|
|
@ -27,7 +27,7 @@ import matplotlib.pyplot as plt
|
|||
import zmq
|
||||
|
||||
from trap.frame_emitter import Frame
|
||||
from trap.tracker import Track
|
||||
from trap.tracker import Track, Smoother
|
||||
|
||||
logger = logging.getLogger("trap.prediction")
|
||||
|
||||
|
@ -121,6 +121,9 @@ class PredictionServer:
|
|||
if self.config.eval_device == 'cpu':
|
||||
logger.warning("Running on CPU. Specifying --eval_device cuda:0 should dramatically speed up prediction")
|
||||
|
||||
if self.config.smooth_predictions:
|
||||
self.smoother = Smoother()
|
||||
|
||||
context = zmq.Context()
|
||||
self.trajectory_socket: zmq.Socket = context.socket(zmq.SUB)
|
||||
self.trajectory_socket.setsockopt(zmq.SUBSCRIBE, b'')
|
||||
|
@ -387,6 +390,10 @@ class PredictionServer:
|
|||
logger.info(f"Frame prediction: {len(trajectron.nodes)} nodes & {trajectron.scene_graph.get_num_edges()} edges. Trajectron: {end - start}s")
|
||||
else:
|
||||
logger.info(f"Total frame delay = {time.time()-frame.time}s ({len(trajectron.nodes)} nodes & {trajectron.scene_graph.get_num_edges()} edges. Trajectron: {end - start}s)")
|
||||
|
||||
if self.config.smooth_predictions:
|
||||
frame = self.smoother.smooth_frame_predictions(frame)
|
||||
|
||||
self.prediction_socket.send_pyobj(frame)
|
||||
logger.info('Stopping')
|
||||
|
||||
|
|
|
@ -107,9 +107,9 @@ class Renderer:
|
|||
|
||||
logger.debug(f"write frame {frame.time - first_time:.3f}s")
|
||||
if self.out_writer:
|
||||
self.out_writer.write(img)
|
||||
self.out_writer.write(frame.img)
|
||||
if self.streaming_process:
|
||||
self.streaming_process.stdin.write(img.tobytes())
|
||||
self.streaming_process.stdin.write(frame.img.tobytes())
|
||||
logger.info('Stopping')
|
||||
|
||||
if i>2:
|
||||
|
|
|
@ -24,6 +24,9 @@ from ultralytics.engine.results import Results as YOLOResult
|
|||
|
||||
from trap.frame_emitter import DetectionState, Frame, Detection, Track
|
||||
|
||||
|
||||
from tsmoothie.smoother import KalmanSmoother, ConvolutionSmoother
|
||||
|
||||
# Detection = [int, int, int, int, float, int]
|
||||
# Detections = [Detection]
|
||||
|
||||
|
@ -103,6 +106,13 @@ class Tracker:
|
|||
|
||||
self.H = np.loadtxt(self.config.homography, delimiter=',')
|
||||
|
||||
if self.config.smooth_tracks:
|
||||
logger.info("Smoother enabled")
|
||||
self.smoother = Smoother()
|
||||
else:
|
||||
logger.info("Smoother Disabled (enable with --smooth-tracks)")
|
||||
|
||||
|
||||
logger.debug("Set up tracker")
|
||||
|
||||
|
||||
|
@ -160,7 +170,7 @@ class Tracker:
|
|||
|
||||
|
||||
if self.config.detector == DETECTOR_YOLOv8:
|
||||
detections: [Detection] = self._yolov8_track(frame.img)
|
||||
detections: [Detection] = self._yolov8_track(frame)
|
||||
else :
|
||||
detections: [Detection] = self._resnet_track(frame.img, scale = 1)
|
||||
|
||||
|
@ -199,6 +209,9 @@ class Tracker:
|
|||
# self.trajectory_socket.send_string(json.dumps(trajectories))
|
||||
# else:
|
||||
# self.trajectory_socket.send(pickle.dumps(frame))
|
||||
if self.config.smooth_tracks:
|
||||
frame = self.smoother.smooth_frame_tracks(frame)
|
||||
|
||||
self.trajectory_socket.send_pyobj(frame)
|
||||
|
||||
current_time = time.time()
|
||||
|
@ -249,12 +262,12 @@ class Tracker:
|
|||
|
||||
logger.info('Stopping')
|
||||
|
||||
def _yolov8_track(self, img) -> [Detection]:
|
||||
results: [YOLOResult] = self.model.track(img, persist=True)
|
||||
def _yolov8_track(self, frame: Frame,) -> [Detection]:
|
||||
results: [YOLOResult] = self.model.track(frame.img, persist=True, tracker="bytetrack.yaml", verbose=False)
|
||||
if results[0].boxes is None or results[0].boxes.id is None:
|
||||
# work around https://github.com/ultralytics/ultralytics/issues/5968
|
||||
return []
|
||||
return [Detection(track_id, *bbox) for bbox, track_id in zip(results[0].boxes.xywh.cpu(), results[0].boxes.id.int().cpu().tolist())]
|
||||
return [Detection(track_id, bbox[0]-.5*bbox[2], bbox[1]-.5*bbox[3], bbox[2], bbox[3], 1, DetectionState.Confirmed, frame.index) for bbox, track_id in zip(results[0].boxes.xywh.cpu(), results[0].boxes.id.int().cpu().tolist())]
|
||||
|
||||
def _resnet_track(self, img, scale: float = 1) -> [Detection]:
|
||||
if scale != 1:
|
||||
|
@ -304,3 +317,54 @@ class Tracker:
|
|||
def run_tracker(config: Namespace, is_running: Event):
|
||||
router = Tracker(config, is_running)
|
||||
router.track()
|
||||
|
||||
|
||||
|
||||
class Smoother:
|
||||
|
||||
def __init__(self):
|
||||
self.smoother = ConvolutionSmoother(window_len=20, window_type='ones', copy=None)
|
||||
|
||||
def smooth_frame_tracks(self, frame: Frame) -> Frame:
|
||||
new_tracks = []
|
||||
for track in frame.tracks.values():
|
||||
ls = [d.l for d in track.history]
|
||||
ts = [d.t for d in track.history]
|
||||
ws = [d.w for d in track.history]
|
||||
hs = [d.h for d in track.history]
|
||||
self.smoother.smooth(ls)
|
||||
ls = self.smoother.smooth_data[0]
|
||||
self.smoother.smooth(ts)
|
||||
ts = self.smoother.smooth_data[0]
|
||||
self.smoother.smooth(ws)
|
||||
ws = self.smoother.smooth_data[0]
|
||||
self.smoother.smooth(hs)
|
||||
hs = self.smoother.smooth_data[0]
|
||||
new_history = [Detection(d.track_id, l, t, w, h, d.conf, d.state, d.frame_nr) for l, t, w, h, d in zip(ls,ts,ws,hs, track.history)]
|
||||
new_track = Track(track.track_id, new_history, track.predictor_history, track.predictions)
|
||||
new_tracks.append(new_track)
|
||||
frame.tracks = {t.track_id: t for t in new_tracks}
|
||||
return frame
|
||||
|
||||
def smooth_frame_predictions(self, frame) -> Frame:
|
||||
|
||||
for track in frame.tracks.values():
|
||||
new_predictions = []
|
||||
if not track.predictions:
|
||||
continue
|
||||
|
||||
for prediction in track.predictions:
|
||||
xs = [d[0] for d in prediction]
|
||||
ys = [d[1] for d in prediction]
|
||||
|
||||
self.smoother.smooth(xs)
|
||||
xs = self.smoother.smooth_data[0]
|
||||
self.smoother.smooth(ys)
|
||||
ys = self.smoother.smooth_data[0]
|
||||
|
||||
smooth_prediction = [[x,y] for x, y in zip(xs, ys)]
|
||||
|
||||
new_predictions.append(smooth_prediction)
|
||||
track.predictions = new_predictions
|
||||
|
||||
return frame
|
Loading…
Reference in a new issue