Preliminary rendering of second window with only animation

This commit is contained in:
Ruben van de Ven 2024-11-05 19:16:57 +01:00
parent 2e2bd76b05
commit a0c63c4929
7 changed files with 107 additions and 24 deletions

22
poetry.lock generated
View file

@ -2290,15 +2290,29 @@ files = [
[[package]]
name = "pyglet"
version = "2.0.15"
version = "2.0.18"
description = "pyglet is a cross-platform games and multimedia package."
optional = false
python-versions = ">=3.8"
files = [
{file = "pyglet-2.0.15-py3-none-any.whl", hash = "sha256:9e4cc16efc308106fd3a9ff8f04e7a6f4f6a807c6ac8a331375efbbac8be85af"},
{file = "pyglet-2.0.15.tar.gz", hash = "sha256:42085567cece0c7f1c14e36eef799938cbf528cfbb0150c484b984f3ff1aa771"},
{file = "pyglet-2.0.18-py3-none-any.whl", hash = "sha256:e592952ae0297e456c587b6486ed8c3e5f9d0c3519d517bb92dde5fdf4c26b41"},
{file = "pyglet-2.0.18.tar.gz", hash = "sha256:7cf9238d70082a2da282759679f8a011cc979753a32224a8ead8ed80e48f99dc"},
]
[[package]]
name = "pyglet-cornerpin"
version = "0.2.0"
description = "Add a corner pin transform to a pyglet window"
optional = false
python-versions = "<4.0,>=3.10"
files = [
{file = "pyglet_cornerpin-0.2.0-py3-none-any.whl", hash = "sha256:1e1cf4f2e86929fb74e89939be8f7ebdb110f65bf0923e51466e8fbd44773dc5"},
{file = "pyglet_cornerpin-0.2.0.tar.gz", hash = "sha256:8fe8a7618c11f93ac3b3c8b89b71e4398bf1223eea9ac3ea744e9d36031a44f9"},
]
[package.dependencies]
pyglet = ">=2.0.18,<3.0.0"
[[package]]
name = "pygments"
version = "2.17.2"
@ -3528,4 +3542,4 @@ watchdog = ["watchdog (>=2.3)"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10,<3.12,"
content-hash = "5154a99d490755a68e51595424649b5269fcd17ef14094c6285f5de7f972f110"
content-hash = "bffa0878a620996b47aa5623b951f09ab010c267880c6dcd5a53741f244e675a"

View file

@ -32,6 +32,7 @@ gdown = "^4.7.1"
pandas-helper-calc = {git = "https://github.com/scls19fr/pandas-helper-calc"}
tsmoothie = "^1.0.5"
pyglet = "^2.0.15"
pyglet-cornerpin = "^0.2.0"
[build-system]
requires = ["poetry-core"]

View file

@ -20,6 +20,7 @@ import shutil
import math
from pyglet import shapes
from PIL import Image
from trap.frame_emitter import DetectionState, Frame, Track
@ -70,11 +71,22 @@ class AnimationRenderer:
config = pyglet.gl.Config(sample_buffers=1, samples=4)
# , fullscreen=self.config.render_window
self.window = pyglet.window.Window(width=self.frame_size[0], height=self.frame_size[1], config=config, fullscreen=self.config.full_screen)
display = pyglet.canvas.get_display()
screen = display.get_screens()[1]
# self.window = pyglet.window.Window(width=self.frame_size[0], height=self.frame_size[1], config=config, fullscreen=False, screen=screens[1])
self.window = pyglet.window.Window(width=screen.width, height=screen.height, config=config, fullscreen=True, screen=screen)
self.window.set_handler('on_draw', self.on_draw)
self.window.set_handler('on_refresh', self.on_refresh)
self.window.set_handler('on_close', self.on_close)
# don't know why, but importing this before window leads to "x connection to :1 broken (explicit kill or server shutdown)"
from pyglet_cornerpin import PygletCornerPin
self.pins = PygletCornerPin(self.window)
self.window.push_handlers(self.pins)
pyglet.gl.glClearColor(0,0,0, 0)
self.fps_display = pyglet.window.FPSDisplay(window=self.window, color=(255,255,255,255))
self.fps_display.label.x = self.window.width - 50
@ -94,6 +106,13 @@ class AnimationRenderer:
self.batch_bg = pyglet.graphics.Batch()
self.batch_overlay = pyglet.graphics.Batch()
self.batch_anim = pyglet.graphics.Batch()
self.debug_lines = [
pyglet.shapes.Line(1380, self.config.camera.h, 1380, 690, 2, (255,255,255,255), batch=self.batch_overlay),
pyglet.shapes.Line(0, 660, 1380, 675, 2, (255,255,255,255), batch=self.batch_overlay),
]
self.init_shapes()
@ -217,13 +236,15 @@ class AnimationRenderer:
if not self.first_time:
self.first_time = self.frame.time
img = self.frame.img
# newcameramtx, roi = cv2.getOptimalNewCameraMatrix(self.config.camera.mtx, self.config.camera.dist, (self.frame.img.shape[1], self.frame.img.shape[0]), 1, (self.frame.img.shape[1], self.frame.img.shape[0]))
img = cv2.undistort(img, self.config.camera.mtx, self.config.camera.dist, None, self.config.camera.newcameramtx)
img = cv2.warpPerspective(img, self.H, (self.frame.img.shape[1], self.frame.img.shape[0]))
img = cv2.GaussianBlur(img, (15, 15), 0)
img = cv2.flip(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), 0)
img = pyglet.image.ImageData(self.frame_size[0], self.frame_size[1], 'RGB', img.tobytes())
# don't draw in batch, so that it is the background
self.video_sprite = pyglet.sprite.Sprite(img=img, batch=self.batch_bg)
self.video_sprite.opacity = 100
self.video_sprite.opacity = 30
except zmq.ZMQError as e:
# idx = frame.index if frame else "NONE"
# logger.debug(f"reuse video frame {idx}")
@ -255,9 +276,9 @@ class AnimationRenderer:
if self.prediction_frame:
for track_id, track in self.prediction_frame.tracks.items():
if track_id not in self.drawn_tracks:
self.drawn_tracks[track_id] = DrawnTrack(track_id, track, self, self.prediction_frame.H, PROJECTION_MAP)
self.drawn_tracks[track_id] = DrawnTrack(track_id, track, self, self.prediction_frame.H, PROJECTION_MAP, self.config.camera)
else:
self.drawn_tracks[track_id].set_track(track, self.prediction_frame.H)
self.drawn_tracks[track_id].set_track(track)
# clean up
for track_id in list(self.drawn_tracks.keys()):
@ -282,6 +303,7 @@ class AnimationRenderer:
def on_close(self):
self.is_running.clear()
def on_refresh(self, dt: float):
# update shapes
# self.bg =
@ -309,12 +331,10 @@ class AnimationRenderer:
shape.draw()
# self.batch_anim.draw()
self.batch_overlay.draw()
self.pins.draw()
# pyglet.graphics.draw(3, pyglet.gl.GL_LINE, ("v2i", (100,200, 600,800)), ('c3B', (255,255,255, 255,255,255)))
if not self.hide_stats:
self.fps_display.draw()
@ -400,6 +420,8 @@ class AnimationRenderer:
# cv2.imshow('frame',img)
# cv2.waitKey(1)
logger.info('Stopping')
logger.info(f'used corner pins {self.pins.corners}')
# if i>2:
if self.streaming_process:

View file

@ -5,6 +5,7 @@ import numpy as np
import json
from trap.tracker import DETECTORS
from trap.frame_emitter import Camera
from pyparsing import Optional
@ -62,10 +63,32 @@ class HomographyAction(argparse.Action):
H = np.array(json.load(fp))
else:
H = np.loadtxt(values, delimiter=',')
print('%r %r %r' % (namespace, values, option_string))
setattr(namespace, self.dest, values)
setattr(namespace, 'H', H)
class CameraAction(argparse.Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super().__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
if values is None:
setattr(namespace, self.dest, None)
else:
values = Path(values)
with values.open('r') as fp:
data = json.load(fp)
# print(data)
# print(data['camera_matrix'])
# camera = {
# 'camera_matrix': np.array(data['camera_matrix']),
# 'dist_coeff': np.array(data['dist_coeff']),
# }
camera = Camera(np.array(data['camera_matrix']), np.array(data['dist_coeff']), namespace.frame_width, namespace.frame_height)
setattr(namespace, 'camera', camera)
inference_parser.add_argument("--model_dir",
help="directory with the model to use for inference",
type=str, # TODO: make into Path
@ -253,6 +276,11 @@ tracker_parser.add_argument("--homography",
type=Path,
default='../DATASETS/VIRAT_subset_0102x/VIRAT_0102_homography_img2world.txt',
action=HomographyAction)
tracker_parser.add_argument("--calibration",
help="File with camera intrinsics and lens distortion params (calibration.json)",
# type=Path,
default=None,
action=CameraAction)
tracker_parser.add_argument("--save-for-training",
help="Specify the path in which to save",
type=Path,

View file

@ -32,6 +32,14 @@ class DetectionState(IntFlag):
return cls.Confirmed
raise RuntimeError("Should not run into Deleted entries here")
class Camera:
def __init__(self, mtx, dist, w, h):
self.mtx = mtx
self.dist = dist
self.w = w
self.h = h
self.newcameramtx, self.roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
@dataclass
class Detection:
@ -83,19 +91,25 @@ class Track:
predictor_history: Optional[list] = None # in image space
predictions: Optional[list] = None
def get_projected_history(self, H) -> np.array:
def get_projected_history(self, H, camera: Optional[Camera]= None) -> np.array:
foot_coordinates = [d.get_foot_coords() for d in self.history]
# TODO)) Undistort points before perspective transform
if len(foot_coordinates):
coords = cv2.perspectiveTransform(np.array([foot_coordinates]),H)
if camera:
coords = cv2.undistortPoints(np.array([foot_coordinates]).astype('float32'), camera.mtx, camera.dist, None, camera.newcameramtx)
coords = cv2.perspectiveTransform(np.array(coords),H)
return coords.reshape((coords.shape[0],2))
else:
coords = cv2.perspectiveTransform(np.array([foot_coordinates]),H)
return coords[0]
return np.array([])
def get_projected_history_as_dict(self, H) -> dict:
coords = self.get_projected_history(H)
def get_projected_history_as_dict(self, H, camera: Optional[Camera]= None) -> dict:
coords = self.get_projected_history(H, camera)
return [{"x":c[0], "y":c[1]} for c in coords]

View file

@ -269,7 +269,7 @@ class PredictionServer:
# TODO: modify this into a mapping function between JS data an the expected Node format
# node = FakeNode(online_env.NodeType.PEDESTRIAN)
history = [[h['x'], h['y']] for h in track.get_projected_history_as_dict(frame.H)]
history = [[h['x'], h['y']] for h in track.get_projected_history_as_dict(frame.H, self.config.camera)]
history = np.array(history)
x = history[:, 0]
y = history[:, 1]

View file

@ -18,11 +18,13 @@ import tempfile
from pathlib import Path
import shutil
import math
from typing import Optional
from pyglet import shapes
from PIL import Image
from trap.frame_emitter import DetectionState, Frame, Track
from trap.frame_emitter import DetectionState, Frame, Track, Camera
@ -61,24 +63,26 @@ PROJECTION_MAP = 2
PROJECTION_PROJECTOR = 4
class DrawnTrack:
def __init__(self, track_id, track: Track, renderer: PreviewRenderer, H, draw_projection = PROJECTION_IMG):
def __init__(self, track_id, track: Track, renderer: PreviewRenderer, H, draw_projection = PROJECTION_IMG, camera: Optional[Camera] = None):
# self.created_at = time.time()
self.draw_projection = draw_projection
self.update_at = self.created_at = time.time()
self.track_id = track_id
self.renderer = renderer
self.camera = camera
self.H = H # TODO)) Move H to Camera object
self.set_track(track, H)
self.drawn_positions = []
self.drawn_predictions = []
self.shapes: list[pyglet.shapes.Line] = []
self.pred_shapes: list[list[pyglet.shapes.Line]] = []
def set_track(self, track: Track, H):
def set_track(self, track: Track, H = None):
self.update_at = time.time()
self.track = track
self.H = H
self.coords = [d.get_foot_coords() for d in track.history] if self.draw_projection == PROJECTION_IMG else track.get_projected_history(self.H)
# self.H = H
self.coords = [d.get_foot_coords() for d in track.history] if self.draw_projection == PROJECTION_IMG else track.get_projected_history(self.H, self.camera)
# perhaps only do in constructor:
self.inv_H = np.linalg.pinv(self.H)
@ -268,7 +272,7 @@ class PreviewRenderer:
# self.H = np.array(json.load(fp))
# else:
# self.H = np.loadtxt(self.config.homography, delimiter=',')
print('h', self.config.H)
# print('h', self.config.H)
self.H = self.config.H