testing the tracker

This commit is contained in:
Ruben van de Ven 2024-04-25 16:31:51 +02:00
parent ba4d2f7909
commit 7c05c060c3
10 changed files with 1016 additions and 217 deletions

55
poetry.lock generated
View file

@ -1817,9 +1817,9 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.23.5", markers = "python_version >= \"3.11\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\""},
]
[[package]]
@ -1939,8 +1939,8 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.23.2,<2", markers = "python_version == \"3.11\""},
{version = ">=1.22.4,<2", markers = "python_version < \"3.11\""},
{version = ">=1.23.2,<2", markers = "python_version == \"3.11\""},
]
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
@ -1970,6 +1970,21 @@ sql-other = ["SQLAlchemy (>=1.4.36)"]
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"]
xml = ["lxml (>=4.8.0)"]
[[package]]
name = "pandas_helper_calc"
version = "0.0.1"
description = ""
optional = false
python-versions = "*"
files = []
develop = false
[package.source]
type = "git"
url = "https://github.com/scls19fr/pandas-helper-calc"
reference = "HEAD"
resolved_reference = "22df480f09c0fa96548833f9dee8f9128512641b"
[[package]]
name = "pandocfilters"
version = "1.5.0"
@ -2961,6 +2976,24 @@ all = ["numpy", "pytest", "pytest-cov"]
test = ["pytest", "pytest-cov"]
vectorized = ["numpy"]
[[package]]
name = "simdkalman"
version = "1.0.4"
description = "Kalman filters vectorized as Single Instruction, Multiple Data"
optional = false
python-versions = "*"
files = [
{file = "simdkalman-1.0.4-py2.py3-none-any.whl", hash = "sha256:fc2c6b9e540e0a26b39d087e78623d3c1e8c6677abf5d91111f5d49e328e1668"},
]
[package.dependencies]
numpy = ">=1.9.0"
[package.extras]
dev = ["check-manifest"]
docs = ["sphinx"]
test = ["pylint"]
[[package]]
name = "six"
version = "1.16.0"
@ -3300,6 +3333,22 @@ tqdm = "^4.65.0"
type = "directory"
url = "../Trajectron-plus-plus"
[[package]]
name = "tsmoothie"
version = "1.0.5"
description = "A python library for timeseries smoothing and outlier detection in a vectorized way."
optional = false
python-versions = ">=3"
files = [
{file = "tsmoothie-1.0.5-py3-none-any.whl", hash = "sha256:dedf8d8e011562824abe41783bf33e1b9ee1424bc572853bb82408743316a90e"},
{file = "tsmoothie-1.0.5.tar.gz", hash = "sha256:d83fa0ccae32bde7b904d9581ebf137e8eb18629cc3563d7379ca5f92461f6f5"},
]
[package.dependencies]
numpy = "*"
scipy = "*"
simdkalman = "*"
[[package]]
name = "types-python-dateutil"
version = "2.8.19.14"
@ -3468,4 +3517,4 @@ watchdog = ["watchdog (>=2.3)"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10,<3.12,"
content-hash = "c9d4fe6a1d054a835a689cee011753b900b696aa8a06b81aa7a10afc24a8bc70"
content-hash = "66f062f9db921cfa83e576288d09fd9b959780eb189d95765934ae9a6769f200"

View file

@ -29,6 +29,8 @@ ultralytics = "^8.0.200"
ffmpeg-python = "^0.2.0"
torchreid = "^0.2.5"
gdown = "^4.7.1"
pandas-helper-calc = {git = "https://github.com/scls19fr/pandas-helper-calc"}
tsmoothie = "^1.0.5"
[build-system]
requires = ["poetry-core"]

File diff suppressed because one or more lines are too long

574
test_tracker.ipynb Normal file

File diff suppressed because one or more lines are too long

View file

@ -1,5 +1,6 @@
from argparse import Namespace
from dataclasses import dataclass, field
from enum import IntFlag
from itertools import cycle
import logging
from multiprocessing import Event
@ -12,9 +13,25 @@ import numpy as np
import cv2
import zmq
from deep_sort_realtime.deep_sort.track import Track as DeepsortTrack
from deep_sort_realtime.deep_sort.track import TrackState as DeepsortTrackState
logger = logging.getLogger('trap.frame_emitter')
class DetectionState(IntFlag):
Tentative = 1 # state before n_init (see DeepsortTrack)
Confirmed = 2 # after tentative
Lost = 4 # lost when DeepsortTrack.time_since_update > 0 but not Deleted
@classmethod
def from_deepsort_track(cls, track: DeepsortTrack):
if track.state == DeepsortTrackState.Tentative:
return cls.Tentative
if track.state == DeepsortTrackState.Confirmed:
if track.time_since_update > 0:
return cls.Lost
return cls.Confirmed
raise RuntimeError("Should not run into Deleted entries here")
@dataclass
class Detection:
@ -24,13 +41,27 @@ class Detection:
w: int # width - image space
h: int # height - image space
conf: float # object detector probablity
state: DetectionState
def get_foot_coords(self):
return [self.l + 0.5 * self.w, self.t+self.h]
@classmethod
def from_deepsort(cls, dstrack: DeepsortTrack):
return cls(dstrack.track_id, *dstrack.to_ltwh(), dstrack.det_conf)
return cls(dstrack.track_id, *dstrack.to_ltwh(), dstrack.det_conf, DetectionState.from_deepsort_track(dstrack))
def get_scaled(self, scale: float = 1):
if scale == 1:
return self
return Detection(
self.track_id,
self.l*scale,
self.t*scale,
self.w*scale,
self.h*scale,
self.conf,
self.state)
def to_ltwh(self):
return (int(self.l), int(self.t), int(self.w), int(self.h))
@ -39,6 +70,7 @@ class Detection:
return (int(self.l), int(self.t), int(self.l+self.w), int(self.t+self.h))
@dataclass
class Track:
"""A bit of an haphazardous wrapper around the 'real' tracker to provide
@ -63,6 +95,7 @@ class Track:
return [{"x":c[0], "y":c[1]} for c in coords]
@dataclass
class Frame:
index: int
@ -71,6 +104,19 @@ class Frame:
tracks: Optional[dict[str, Track]] = None
H: Optional[np.array] = None
def aslist(self) -> [dict]:
return { t.track_id:
{
'id': t.track_id,
'history': t.get_projected_history(self.H).tolist(),
'det_conf': t.history[-1].conf,
# 'det_conf': trajectory_data[node.id]['det_conf'],
# 'bbox': trajectory_data[node.id]['bbox'],
# 'history': history.tolist(),
'predictions': t.predictions
} for t in self.tracks.values()
}
class FrameEmitter:
'''
Emit frame in a separate threat so they can be throttled,
@ -95,6 +141,7 @@ class FrameEmitter:
def emit_video(self):
i = 0
for video_path in self.video_srcs:
logger.info(f"Play from '{str(video_path)}'")
video = cv2.VideoCapture(str(video_path))
@ -102,8 +149,21 @@ class FrameEmitter:
target_frame_duration = 1./fps
logger.info(f"Emit frames at {fps} fps")
if '-' in video_path.stem:
path_stem = video_path.stem[:video_path.stem.rfind('-')]
else:
path_stem = video_path.stem
path_stem += "-homography"
homography_path = video_path.with_stem(path_stem).with_suffix('.txt')
logger.info(f'check homography file {homography_path}')
if homography_path.exists():
logger.info(f'Found custom homography file! Using {homography_path}')
video_H = np.loadtxt(homography_path, delimiter=',')
else:
video_H = None
prev_time = time.time()
i = 0
while self.is_running.is_set():
ret, img = video.read()
@ -120,7 +180,7 @@ class FrameEmitter:
# hack to mask out area
cv2.rectangle(img, (0,0), (800,200), (0,0,0), -1)
frame = Frame(index=i, img=img)
frame = Frame(index=i, img=img, H=video_H)
# TODO: this is very dirty, need to find another way.
# perhaps multiprocessing Array?
self.frame_sock.send(pickle.dumps(frame))

View file

@ -243,7 +243,7 @@ class PredictionServer:
if self.config.predict_training_data:
input_dict = eval_scene.get_clipped_input_dict(timestep, hyperparams['state'])
else:
zmq_ev = self.trajectory_socket.poll(timeout=3)
zmq_ev = self.trajectory_socket.poll(timeout=2000)
if not zmq_ev:
# on no data loop so that is_running is checked
continue
@ -252,7 +252,7 @@ class PredictionServer:
frame: Frame = pickle.loads(data)
# trajectory_data = {t.track_id: t.get_projected_history_as_dict(frame.H) for t in frame.tracks.values()}
# trajectory_data = json.loads(data)
logger.debug(f"Receive {frame.index}")
# logger.debug(f"Receive {frame.index}")
# class FakeNode:
# def __init__(self, node_type: NodeType):
@ -276,12 +276,12 @@ class PredictionServer:
ax = derivative_of(vx, 0.1)
ay = derivative_of(vy, 0.1)
data_dict = {('position', 'x'): x[:],
('position', 'y'): y[:],
('velocity', 'x'): vx[:],
('velocity', 'y'): vy[:],
('acceleration', 'x'): ax[:],
('acceleration', 'y'): ay[:]}
data_dict = {('position', 'x'): x[:], # [-10:-1]
('position', 'y'): y[:], # [-10:-1]
('velocity', 'x'): vx[:], # [-10:-1]
('velocity', 'y'): vy[:], # [-10:-1]
('acceleration', 'x'): ax[:], # [-10:-1]
('acceleration', 'y'): ay[:]} # [-10:-1]
data_columns = pd.MultiIndex.from_product([['position', 'velocity', 'acceleration'], ['x', 'y']])
node_data = pd.DataFrame(data_dict, columns=data_columns)
@ -301,7 +301,7 @@ class PredictionServer:
# TODO: we want to send out empty result...
# And want to update the network
data = json.dumps({})
# data = json.dumps({})
self.prediction_socket.send_pyobj(frame)
continue
@ -325,7 +325,7 @@ class PredictionServer:
warnings.simplefilter('ignore') # prevent deluge of UserWarning from torch's rrn.py
dists, preds = trajectron.incremental_forward(input_dict,
maps,
prediction_horizon=25, # TODO: make variable
prediction_horizon=125, # TODO: make variable
num_samples=5, # TODO: make variable
robot_present_and_future=robot_present_and_future,
full_dist=True)

View file

@ -1,3 +1,4 @@
import time
import ffmpeg
from argparse import Namespace
import datetime
@ -8,7 +9,7 @@ import numpy as np
import zmq
from trap.frame_emitter import Frame
from trap.frame_emitter import DetectionState, Frame
logger = logging.getLogger("trap.renderer")
@ -84,7 +85,7 @@ class Renderer:
while self.is_running.is_set():
i+=1
zmq_ev = self.frame_sock.poll(timeout=3)
zmq_ev = self.frame_sock.poll(timeout=2000)
if not zmq_ev:
# when no data comes in, loop so that is_running is checked
continue
@ -95,6 +96,32 @@ class Renderer:
except zmq.ZMQError as e:
logger.debug(f'reuse prediction')
if first_time is None:
first_time = frame.time
decorate_frame(frame, prediction_frame, first_time)
img_path = (self.config.output_dir / f"{i:05d}.png").resolve()
# cv2.imwrite(str(img_path), img)
logger.debug(f"write frame {frame.time - first_time:.3f}s")
if self.out_writer:
self.out_writer.write(img)
if self.streaming_process:
self.streaming_process.stdin.write(img.tobytes())
logger.info('Stopping')
if i>2:
if self.streaming_process:
self.streaming_process.stdin.close()
if self.out_writer:
self.out_writer.release()
if self.streaming_process:
# oddly wrapped, because both close and release() take time.
self.streaming_process.wait()
def decorate_frame(frame: Frame, prediction_frame: Frame, first_time) -> np.array:
img = frame.img
# all not working:
@ -108,27 +135,31 @@ class Renderer:
if not prediction_frame:
cv2.putText(img, f"Waiting for prediction...", (20,50), cv2.FONT_HERSHEY_PLAIN, 1, (255,255,0), 1)
continue
# continue
else:
inv_H = np.linalg.pinv(prediction_frame.H)
for track_id, track in prediction_frame.tracks.items():
if not len(track.history):
continue
# coords = cv2.perspectiveTransform(np.array([prediction['history']]), self.inv_H)[0]
coords = [d.get_foot_coords() for d in track.history]
confirmations = [d.state == DetectionState.Confirmed for d in track.history]
# logger.warning(f"{coords=}")
for ci in range(1, len(coords)):
start = [int(p) for p in coords[ci-1]]
end = [int(p) for p in coords[ci]]
cv2.line(img, start, end, (255,255,255), 2, lineType=cv2.LINE_AA)
color = (255,255,255) if confirmations[ci] else (100,100,100)
cv2.line(img, start, end, color, 2, lineType=cv2.LINE_AA)
if not track.predictions or not len(track.predictions):
continue
for pred_i, pred in enumerate(track.predictions):
pred_coords = cv2.perspectiveTransform(np.array([pred]), self.inv_H)[0]
color = (0,0,255) if pred_i == 1 else (100,100,100)
pred_coords = cv2.perspectiveTransform(np.array([pred]), inv_H)[0]
color = (0,0,255) if pred_i else (100,100,100)
for ci in range(1, len(pred_coords)):
start = [int(p) for p in pred_coords[ci-1]]
end = [int(p) for p in pred_coords[ci]]
@ -148,36 +179,20 @@ class Renderer:
cv2.rectangle(img, p1, p2, (255,0,0), 1)
cv2.putText(img, f"{track_id} ({(track.history[-1].conf or 0):.2f})", (center[0]+8, center[1]), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.7, thickness=2, color=(0,255,0), lineType=cv2.LINE_AA)
if first_time is None:
first_time = frame.time
cv2.putText(img, f"{frame.index:06d}", (20,50), cv2.FONT_HERSHEY_PLAIN, 1, (255,255,0), 1)
cv2.putText(img, f"{frame.time - first_time:.3f}s", (120,50), cv2.FONT_HERSHEY_PLAIN, 1, (255,255,0), 1)
if prediction_frame:
# render Δt and Δ frames
cv2.putText(img, f"{prediction_frame.index - frame.index}", (90,50), cv2.FONT_HERSHEY_PLAIN, 1, (0,0,255), 1)
cv2.putText(img, f"{prediction_frame.time - time.time():.2f}s", (200,50), cv2.FONT_HERSHEY_PLAIN, 1, (0,0,255), 1)
cv2.putText(img, f"{len(prediction_frame.tracks)} tracks", (500,50), cv2.FONT_HERSHEY_PLAIN, 1, (0,0,255), 1)
cv2.putText(img, f"h: {np.average([len(t.history or []) for t in prediction_frame.tracks.values()])}", (580, 50), cv2.FONT_HERSHEY_PLAIN, 1, (0,0,255), 1)
cv2.putText(img, f"ph: {np.average([len(t.predictor_history or []) for t in prediction_frame.tracks.values()])}", (660, 50), cv2.FONT_HERSHEY_PLAIN, 1, (0,0,255), 1)
cv2.putText(img, f"p: {np.average([len(t.predictions or []) for t in prediction_frame.tracks.values()])}", (740, 50), cv2.FONT_HERSHEY_PLAIN, 1, (0,0,255), 1)
img_path = (self.config.output_dir / f"{i:05d}.png").resolve()
# cv2.imwrite(str(img_path), img)
logger.info(f"write frame {frame.time - first_time:.3f}s")
if self.out_writer:
self.out_writer.write(img)
if self.streaming_process:
self.streaming_process.stdin.write(img.tobytes())
logger.info('Stopping')
if i>2:
if self.streaming_process:
self.streaming_process.stdin.close()
if self.out_writer:
self.out_writer.release()
if self.streaming_process:
# oddly wrapped, because both close and release() take time.
self.streaming_process.wait()
return img
def run_renderer(config: Namespace, is_running: Event):

View file

@ -28,7 +28,7 @@ class WebSocketTrajectoryHandler(tornado.websocket.WebSocketHandler):
self.zmq_socket = zmq_socket
async def on_message(self, message):
logger.debug(f"recieve msg")
logger.debug(f"receive msg")
try:
await self.zmq_socket.send_string(message)
@ -116,6 +116,7 @@ class WsRouter:
context = zmq.asyncio.Context()
self.trajectory_socket = context.socket(zmq.PUB)
logger.info(f'Publish trajectories on {config.zmq_trajectory_addr}')
self.trajectory_socket.bind(config.zmq_trajectory_addr)
self.prediction_socket = context.socket(zmq.SUB)

View file

@ -22,7 +22,7 @@ from deep_sort_realtime.deep_sort.track import Track as DeepsortTrack
from ultralytics import YOLO
from ultralytics.engine.results import Results as YOLOResult
from trap.frame_emitter import Frame, Detection, Track
from trap.frame_emitter import DetectionState, Frame, Detection, Track
# Detection = [int, int, int, int, float, int]
# Detections = [Detection]
@ -66,6 +66,9 @@ class Tracker:
# TODO: support removal
self.tracks = defaultdict(lambda: Track())
logger.debug(f"Load tracker: {self.config.detector}")
if self.config.detector == DETECTOR_RETINANET:
# weights = RetinaNet_ResNet50_FPN_V2_Weights.DEFAULT
# self.model = retinanet_resnet50_fpn_v2(weights=weights, score_thresh=0.2)
@ -76,7 +79,7 @@ class Tracker:
self.model.eval()
# Get the transforms for the model's weights
self.preprocess = weights.transforms().to(self.device)
self.mot_tracker = DeepSort(max_iou_distance=1, max_cosine_distance=0.5, max_age=12, nms_max_overlap=0.9,
self.mot_tracker = DeepSort(max_iou_distance=1, max_cosine_distance=0.5, max_age=15, nms_max_overlap=0.9,
# embedder='torchreid', embedder_wts="../MODELS/osnet_x1_0_imagenet.pth"
)
elif self.config.detector == DETECTOR_MASKRCNN:
@ -87,7 +90,7 @@ class Tracker:
self.model.eval()
# Get the transforms for the model's weights
self.preprocess = weights.transforms().to(self.device)
self.mot_tracker = DeepSort(n_init=5, max_iou_distance=1, max_cosine_distance=0.5, max_age=12, nms_max_overlap=0.9,
self.mot_tracker = DeepSort(n_init=5, max_iou_distance=1, max_cosine_distance=0.5, max_age=15, nms_max_overlap=0.9,
# embedder='torchreid', embedder_wts="../MODELS/osnet_x1_0_imagenet.pth"
)
elif self.config.detector == DETECTOR_YOLOv8:
@ -120,7 +123,7 @@ class Tracker:
logger.warning(f"Path for training-data exists: {self.config.save_for_training}. Continuing assuming that's ok.")
training_fp = open(self.config.save_for_training / 'all.txt', 'w')
# following https://github.com/StanfordASL/Trajectron-plus-plus/blob/master/experiments/pedestrians/process_data.py
training_csv = csv.DictWriter(training_fp, fieldnames=['frame_id', 'track_id', 'x', 'y'], delimiter='\t', quoting=csv.QUOTE_NONE)
training_csv = csv.DictWriter(training_fp, fieldnames=['frame_id', 'track_id', 'l', 't', 'w', 'h', 'x', 'y', 'state'], delimiter='\t', quoting=csv.QUOTE_NONE)
prev_frame_i = -1
@ -133,6 +136,12 @@ class Tracker:
# time.sleep(max(0, prev_run_time - this_run_time + TARGET_DT))
# prev_run_time = time.time()
zmq_ev = self.frame_sock.poll(timeout=2000)
if not zmq_ev:
logger.warn('skip poll after 2000ms')
# when there's no data after timeout, loop so that is_running is checked
continue
start_time = time.time()
frame: Frame = self.frame_sock.recv_pyobj() # frame delivery in current setup: 0.012-0.03s
@ -142,6 +151,9 @@ class Tracker:
prev_frame_i = frame.index
# load homography into frame (TODO: should this be done in emitter?)
if frame.H is None:
# logger.warning('Falling back to default H')
# fallback: load configured H
frame.H = self.H
# logger.info(f"Frame delivery delay = {time.time()-frame.time}s")
@ -150,7 +162,7 @@ class Tracker:
if self.config.detector == DETECTOR_YOLOv8:
detections: [Detection] = self._yolov8_track(frame.img)
else :
detections: [Detection] = self._resnet_track(frame.img)
detections: [Detection] = self._resnet_track(frame.img, scale = 1)
# Store detections into tracklets
@ -201,10 +213,18 @@ class Tracker:
if training_csv:
training_csv.writerows([{
'frame_id': round(frame.index * 10., 1), # not really time
'track_id': t['id'],
'x': t['history'][-1]['x' if not self.config.bypass_prediction else 0],
'y': t['history'][-1]['y' if not self.config.bypass_prediction else 1],
} for t in active_tracks.values()])
'track_id': t.track_id,
'l': t.history[-1].l,
't': t.history[-1].t,
'w': t.history[-1].w,
'h': t.history[-1].h,
'x': t.get_projected_history(frame.H)[-1][0],
'y': t.get_projected_history(frame.H)[-1][1],
'state': t.history[-1].state.value
# only keep _actual_detections, no lost entries
} for t in active_tracks.values()
# if t.history[-1].state != DetectionState.Lost
])
training_frames += len(active_tracks)
# print(time.time() - start_time)
@ -236,10 +256,13 @@ class Tracker:
return []
return [Detection(track_id, *bbox) for bbox, track_id in zip(results[0].boxes.xywh.cpu(), results[0].boxes.id.int().cpu().tolist())]
def _resnet_track(self, img) -> [Detection]:
def _resnet_track(self, img, scale: float = 1) -> [Detection]:
if scale != 1:
dsize = (int(img.shape[1] * scale), int(img.shape[0] * scale))
img = cv2.resize(img, dsize)
detections = self._resnet_detect_persons(img)
tracks: [DeepsortTrack] = self.mot_tracker.update_tracks(detections, frame=img)
return [Detection.from_deepsort(t) for t in tracks]
return [Detection.from_deepsort(t).get_scaled(1/scale) for t in tracks]
def _resnet_detect_persons(self, frame) -> [Detection]:
t = torch.from_numpy(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))

View file

@ -30,7 +30,8 @@
<script>
// map the field to coordinates of our dummy tracker
const field_range = { x: [-30, 10], y: [-10, 10] }
// see test_homography.ipynb for the logic behind these values
const field_range = { x: [-13.092, 15.37], y: [-4.66, 10.624] }
// Create WebSocket connection.
const trajectory_socket = new WebSocket(`ws://${window.location.hostname}:{{ ws_port }}/ws/trajectory`);
@ -125,7 +126,7 @@
const mousePos = getMousePos(fieldEl, event);
const position = mouse_coordinates_to_position(mousePos)
current_pos = position;
// tracker[person_counter].addToHistory(current_pos);
tracker[person_counter].addToHistory(current_pos);
// trajectory_socket.send(JSON.stringify(tracker))
});
@ -134,8 +135,8 @@
const mousePos = getMousePos(fieldEl, event);
const position = mouse_coordinates_to_position(mousePos)
current_pos = position;
// tracker[person_counter].addToHistory(current_pos);
// trajectory_socket.send(JSON.stringify(tracker))
tracker[person_counter].addToHistory(current_pos);
trajectory_socket.send(JSON.stringify(tracker))
});
document.addEventListener('mouseup', (e) => {
person_counter++;
@ -174,8 +175,9 @@
// multiple predictions can be sampled
person.predictions.forEach((prediction, i) => {
ctx.beginPath()
ctx.lineWidth = i === 1 ? 3 : 0.2;
ctx.lineWidth = 0.2;
ctx.strokeStyle = i === 1 ? "#ff0000" : "#ccaaaa";
ctx.strokeStyle = "#ccaaaa";
// start from current position:
ctx.moveTo(...coord_as_list(position_to_canvas_coordinate(person.history[person.history.length - 1])));
@ -184,6 +186,33 @@
}
ctx.stroke();
});
// average stroke:
ctx.beginPath()
ctx.lineWidth = 3;
ctx.strokeStyle = "#ff0000";
// start from current position:
ctx.moveTo(...coord_as_list(position_to_canvas_coordinate(person.history[person.history.length - 1])));
for (let index = 0; index < person.predictions[0].length; index++) {
sum = person.predictions.reduce(
(accumulator, prediction) => ({
"x": accumulator.x + prediction[index][0],
"y": accumulator.y + prediction[index][1],
}),
{ x: 0, y: 0 },
);
avg = { x: sum.x / person.predictions.length, y: sum.y / person.predictions.length }
// console.log(sum, avg)
ctx.lineTo(...coord_as_list(position_to_canvas_coordinate(avg)))
}
// for (const position of ) {
// }
ctx.stroke();
}
}
ctx.restore();