Predictor options now configurable and rendered
This commit is contained in:
parent
8d9c7d3486
commit
7710794bad
3 changed files with 47 additions and 16 deletions
|
@ -156,6 +156,28 @@ inference_parser.add_argument("--smooth-predictions",
|
|||
help="Smooth the predicted tracks",
|
||||
action='store_true')
|
||||
|
||||
inference_parser.add_argument('--prediction-horizon',
|
||||
help='Trajectron.incremental_forward parameter',
|
||||
type=int,
|
||||
default=30)
|
||||
inference_parser.add_argument('--num-samples',
|
||||
help='Trajectron.incremental_forward parameter',
|
||||
type=int,
|
||||
default=5)
|
||||
inference_parser.add_argument("--full-dist",
|
||||
help="Trajectron.incremental_forward parameter",
|
||||
type=bool,
|
||||
default=False)
|
||||
inference_parser.add_argument("--gmm-mode",
|
||||
help="Trajectron.incremental_forward parameter",
|
||||
type=bool,
|
||||
default=True)
|
||||
inference_parser.add_argument("--z-mode",
|
||||
help="Trajectron.incremental_forward parameter",
|
||||
type=bool,
|
||||
default=False)
|
||||
|
||||
|
||||
# Internal connections.
|
||||
|
||||
connection_parser.add_argument('--zmq-trajectory-addr',
|
||||
|
|
|
@ -191,7 +191,7 @@ class PredictionServer:
|
|||
|
||||
# You need to have at least acceleration, so you want 2 timesteps of prior data, e.g. [0, 1],
|
||||
# so that you can immediately start incremental inference from the 3rd timestep onwards.
|
||||
init_timestep = 1
|
||||
init_timestep = 2
|
||||
|
||||
eval_scene = eval_env.scenes[scene_idx]
|
||||
online_env = create_online_env(eval_env, hyperparams, scene_idx, init_timestep)
|
||||
|
@ -314,24 +314,25 @@ class PredictionServer:
|
|||
maps = get_maps_for_input(input_dict, eval_scene, hyperparams)
|
||||
# print(maps)
|
||||
|
||||
robot_present_and_future = None
|
||||
if eval_scene.robot is not None and hyperparams['incl_robot_node']:
|
||||
robot_present_and_future = eval_scene.robot.get(np.array([timestep,
|
||||
timestep + hyperparams['prediction_horizon']]),
|
||||
hyperparams['state'][eval_scene.robot.type],
|
||||
padding=0.0)
|
||||
robot_present_and_future = np.stack([robot_present_and_future, robot_present_and_future], axis=0)
|
||||
# robot_present_and_future += adjustment
|
||||
# robot_present_and_future = None
|
||||
# if eval_scene.robot is not None and hyperparams['incl_robot_node']:
|
||||
# robot_present_and_future = eval_scene.robot.get(np.array([timestep,
|
||||
# timestep + hyperparams['prediction_horizon']]),
|
||||
# hyperparams['state'][eval_scene.robot.type],
|
||||
# padding=0.0)
|
||||
# robot_present_and_future = np.stack([robot_present_and_future, robot_present_and_future], axis=0)
|
||||
# # robot_present_and_future += adjustment
|
||||
|
||||
start = time.time()
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter('ignore') # prevent deluge of UserWarning from torch's rrn.py
|
||||
dists, preds = trajectron.incremental_forward(input_dict,
|
||||
maps,
|
||||
prediction_horizon=125, # TODO: make variable
|
||||
num_samples=5, # TODO: make variable
|
||||
robot_present_and_future=robot_present_and_future,
|
||||
full_dist=True)
|
||||
prediction_horizon=self.config.prediction_horizon, # TODO: make variable
|
||||
num_samples=self.config.num_samples, # TODO: make variable
|
||||
full_dist=self.config.full_dist,
|
||||
gmm_mode=self.config.gmm_mode,
|
||||
z_mode=self.config.z_mode)
|
||||
end = time.time()
|
||||
logger.debug("took %.2f s (= %.2f Hz) w/ %d nodes and %d edges" % (end - start,
|
||||
1. / (end - start), len(trajectron.nodes),
|
||||
|
|
|
@ -99,7 +99,7 @@ class Renderer:
|
|||
if first_time is None:
|
||||
first_time = frame.time
|
||||
|
||||
decorate_frame(frame, prediction_frame, first_time)
|
||||
decorate_frame(frame, prediction_frame, first_time, self.config)
|
||||
|
||||
img_path = (self.config.output_dir / f"{i:05d}.png").resolve()
|
||||
|
||||
|
@ -132,7 +132,7 @@ colorset = [(0, 0, 0),
|
|||
]
|
||||
|
||||
|
||||
def decorate_frame(frame: Frame, prediction_frame: Frame, first_time) -> np.array:
|
||||
def decorate_frame(frame: Frame, prediction_frame: Frame, first_time: float, config: Namespace) -> np.array:
|
||||
frame.img
|
||||
|
||||
overlay = np.zeros(frame.img.shape, np.uint8)
|
||||
|
@ -226,6 +226,14 @@ def decorate_frame(frame: Frame, prediction_frame: Frame, first_time) -> np.arra
|
|||
cv2.putText(img, f"ph: {np.average([len(t.predictor_history or []) for t in prediction_frame.tracks.values()])}", (660,17), cv2.FONT_HERSHEY_PLAIN, 1, info_color, 1)
|
||||
cv2.putText(img, f"p: {np.average([len(t.predictions or []) for t in prediction_frame.tracks.values()])}", (740,17), cv2.FONT_HERSHEY_PLAIN, 1, info_color, 1)
|
||||
|
||||
options = []
|
||||
for option in ['prediction_horizon','num_samples','full_dist','gmm_mode','z_mode', 'model_dir']:
|
||||
options.append(f"{option}: {config.__dict__[option]}")
|
||||
|
||||
|
||||
cv2.putText(img, options.pop(-1), (20,img.shape[0]-30), cv2.FONT_HERSHEY_PLAIN, 1, base_color, 1)
|
||||
cv2.putText(img, " | ".join(options), (20,img.shape[0]-10), cv2.FONT_HERSHEY_PLAIN, 1, base_color, 1)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue