Update reference to laserspace

This commit is contained in:
Ruben van de Ven 2025-07-10 13:26:48 +02:00
parent f427b6bb3b
commit 53e0c464c8

View file

@ -7,7 +7,7 @@
## How to
> See also the sibling repo [traptools](https://git.rubenvandeven.com/security_vision/traptools) for camera calibration and homography tools that are needed for this repo. Also, [trap_rust](https://git.rubenvandeven.com/security_vision/trap_rust) is used to map the shapes (which are generated by `stage.py`) to lasers, as to use specific optimization techniques for the paths before sending them to the DAC.
> See also the sibling repo [traptools](https://git.rubenvandeven.com/security_vision/traptools) for camera calibration and homography tools that are needed for this repo. Also, [laserspace](https://git.rubenvandeven.com/security_vision/laserspace) is used to map the shapes (which are generated by `stage.py`) to lasers, as to use specific optimization techniques for the paths before sending them to the DAC.
These are roughly the steps to go from datagathering to training
@ -25,3 +25,29 @@ These are roughly the steps to go from datagathering to training
<!-- * On a video file (you can use a wildcard) `DISPLAY=:1 uv run trapserv --remote-log-addr 100.69.123.91 --eval_device cuda:0 --detector ultralytics --homography ../DATASETS/NAME/homography.json --eval_data_dict EXPERIMENTS/trajectron-data/hof2s-m_test.pkl --video-src ../DATASETS/NAME/*.mp4 --model_dir EXPERIMENTS/models/models_DATE_NAME/--smooth-predictions --smooth-tracks --num-samples 3 --render-window --calibration ../DATASETS/NAME/calibration.json` (the DISPLAY environment variable is used here to running over SSH connection and display on local monitor)
* or on the RTSP stream. Which uses gstreamer to substantially reduce latency compared to the default ffmpeg bindings in OpenCV.
* To just have a single trajectory pulled from distribution use `--full-dist`. Also try `--z_mode`. -->
## Testnight 2025-06-13
Stappenplan:
* Hang lasers. Connect all cables etc.
* `DISPLAY=:0 cargo run --example laser_frame_stream_gui`
* Use numbers to pick a nice shape. Use this to make sure both lasers cover the right area. (if it doesn't work. Flip some switches in the gui, the laser output should now start)
* In trap folder: `uv run supervisorctl start video`
* In laserspace folder: `DISPLAY=:0 cargo run --bin render_lines_gui` and use gui to draw and tweak projection area
* Use the save button to store configuration
/*
* in trap folder: `DISPLAY=:0 uv run trap_laser_calibration`
* follow instructions:
* camera points: 1-9 or cursor to create/select/move points
* move laser: vim movement keys : hjkl, use shift to move faster
* `c` to calibrate. Matrix is output to cli.
* `q` to quit
* saved to `laser_calib.json`, copy H field to `trap_rust/src/trap/laser.rs` (to e.g. TMP_STUDIO_CM_8)
* Restart `render_lines_gui` with new homographies
* `DISPLAY=:0 cargo run --bin render_lines_gui`
*/
* change video source in `supervisord.conf` and run `uv run supervisorctl update` to switch
* **if tracking is slow and there's no prediction.**
* `uv run python -c "import torch;print(torch.cuda.is_available())"`